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Preface

Logic deals with the formal principles and criteria of validity of patterns of inference.
This reader! discusses logics for a particular group of patterns of inference, viz. infer-
ences that are not absolutely certain, but that can still be rationally made as long as they
cannot be defeated on the basis of information to the contrary (hence the term defeasible
reasoning). Such patterns can especially be found in commonsense reasoning, i.e., the
inferences humans make in their daily life (hence the words commonsense reasoning in
the title of this reader). Defeasible reasoning lacks one important property of ‘standard’
or ‘deductive’ reasoning, viz. the property of monotonicity of their inference relation.
Since defeasible inferences are not absolutely certain, it may happen that conclusions
inferrable from a particular body of information, are not inferrable from an extended
body of information (hence the often-used term nonmonotonic logic).

Nonmonotonic notions of logical consequence have been studied in artificial in-
telligence since 1980. The course Commonsense Reasoning and Argumentation, for
which this reader is written, treats three of the most important nonmonotonic logics,
viz. default logic, circumscription, and logics for defeasible argumentation. In addi-
tion, dynamic aspects of argumentation will be studied, as well as dialogue systems for
multi-agent argumentation.

For default logic a paper will be used that is available online. Circumscription is
introduced in this reader in Chapter 1, written especially for this course. The largest
part of this reader is devoted to argumentation. Abstract argumentation is discussed in
Chapters 3 and 5 (based on and extending Prakken and Vreeswijk (2002) and Vreeswijk
and Prakken (2000)), a logical framework for structured argumentation is discussed in
Chapter 6 (based on Modgil and Prakken (2014)), dynamic aspects of argumentation
are discussed in Chapter 7 (written especially for this course) and, finally, dialogue
systems for agent interaction with argumentation are the topic of Chapter 8 (based on
Prakken (2006)),

Exercises on default logic and circumscription can with their answers be found
in Chapter 2. These exercises and answers are partly taken from earlier collections
developed by Rogier van Eijk and Cees Witteveen. Exercises on argumentation can be
found at the end of the relevant chapters, while their answers are in Chapter 9.

"Thanks are due to the students of earlier years and in particular to Bas van Gijzel, Marc van Zee and
Elisa Friscione, for their corrections to previous versions of this reader.






Chapter 1

Circumscription

In this chapter we explore a semantic approach to nonmonotonic reasoning based on the
idea of minimal models. Originally, this approach, which is often called minimal-model
semantics or preferential entailment, was meant as a semantics for a nonmonotonic
logic called circumscription. In this section we briefly summarise the circumscription
logic and then present its model-theoretic semantics in detail. To this end, we first recall
the main notions of the model-theoretic semantics of first-order predicate logic (FOL).

Recall that the semantics of a logic defines the notion of logical consequence in
terms of the meaning of its logical language. In particular, a model-theoretic semantics
defines the meaning of a sentence as the way the world looks like if the sentence is
true. For instance, in FOL the sentence Birds can fly is true just in case all objects in
the world that have the property of being a bird, also have the property of being able to
fly. A formula is then a logical consequence of a theory iff the formula has to be true
whenever all formulas of the theory are true.

Of course, it is impossible to display the actual world in a definition. Therefore, a
model-theoretic semantics abstracts the world into a structure which contains only those
features which are relevant for interpreting a logical language and it turns a structure
into a model by interpreting the logical language in terms of these features. For FOL
these features are a set of objects (the domain), and various functions and relations
defined over this set.

Definition 1.0.1 [Structures and models in FOL.]

e A structure is a triple (D, F, R) such that D (the domain) is a set of objects, F'
is a set of functions on D and R a set of relations over D, i.e., a set of subsets of
D™ (where D" is the set of all n-tuples with elements from D).

e Let (D, F, R) be a structure. An interpretation function I of a first-order lan-
guage L is a function that to each term ¢ from £ assigns an object I(t) € D, to
each function symbol f from £ assigns a function I(f) € F and to each n-ary
predicate symbol P" from L assigns a set of n-tuples of objects I(P) C D"
(I(P) is also called the extent of P).

e A model for a language L is a pair .S, [ where S is a structure and [ is an inter-
pretation function for L.

o A model M is a model of a set of formulas 7' iff all formulas of T" are true
in M (where truth is defined with the usual truth definitions). A formula ¢ is
(classically) entailed by a set T' of formulas iff ¢ is true in all models of 7.
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These definitions must be combined with the usual truth definitions for atomic formulas,
the connectives and the quantifiers. The classical notion of entailment is then monotonic
for the following reason. Given the usual truth definitions, enlarging a theory can only
remove some of the models of the old theory as models of the enlarged one: it can never
create new models. Therefore, everything that is true in all models of the old theory, is
also true in the new one.

1.1 The basic idea: model preference

How can a model-theoretic account of nonmonotonic reasoning be developed? The
crucial observation is that to define nonmonotonic entailment, we cannot look at all
models of the premises. Consider the following example.

Example 1.1.1 The theory 7" consists of

(1) Va((Bird(x) N —=Ab(z)) D Canfly(x))
(2) Bird(Tweety)

Formula (1) expresses the default that birds normally fly, and the only thing 7 tells
us about Tweety is that it is a bird, so we would like to nonmonotonically conclude
from T that Canfly( Tweety)). However, it is easy to verify that this formula is not
classically entailed by 7": even though 7" does not entail = Ab( Tweety), this formula
is still consistent with T', so it is possible to construct models of 7" in which Tweety is
abnormal and cannot fly.

Now the idea of minimal-model semantics is that, in verifying whether a formula is
nonmonotonically entailed by a theory, we restrict our attention to those models of the
theory in which things are as normal as possible. More precisely, we inspect only those
models of the theory in which as few objects as possible are in the extent of the Ab
predicate (hence the term minimal-model semantics). If a formula is true in all these
models, it is nonmonotonically entailed by the theory. This new notion of entailment
is nonmonotonic since, even though enlarging a theory can only remove some of its
models, it may happen that some old models that were not minimal are minimal models
of the new theory.

Let us apply these ideas to our example by looking only at those models of 7" in
which the extent of the Ab predicate is as small as possible. Clearly, in all those models
the object denoted by Tweety belongs to the extent of the Bird predicate. Furthermore,
all those models satisfy (1). Now since Bird(Tweety) is true in all models of T, (1)
can only be true in a model of 7" if in that model the object denoted by Tiveety either
belongs to the extent of the Canfly predicate, or belongs to the extent of the Ab predicate,
or belongs to both (to verify this, apply the truth definition of the material implication).
Thus the models of our theory split into three classes. Clearly, the abnormality-minimal
class of models is the one in which the object denoted by Tweety does not belong to the
extent of the Ab predicate. But in all those models that object belongs to the extent of
the Canfly predicate, otherwise these models would not satisfy (1). So all abnormality-
minimal models of 7" satisfy the sentence Canfly( Tweety), and so this sentence is
nonmonotonically entailed by 7.

The main task now is to formally define when a model is minimal. The key idea
here is that of minimising, or ‘circumscribing’ the extent of predicates in a model. First,
however, the original circumscription logic will be briefly explained.
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1.2 Syntactic form of circumscription

Circumscription was originally formulated by McCarthy (1980) as a syntactic method.
The idea was to minimise the extent of a predicate P in a first-order theory by adding a
new formula to the theory which (informally) says ‘those objects of which 7" says that
they have the property are the only objects that have the property P’. To specify this
formula, the following shorthands are convenient:

P=Q means Vz[P(z)=Q(z)]
P <@ means Vz[P(z) D Q(z)]

P<@ means P<QbutP #Q

Let T'(P) be a first-order sentence with predicate constant P. The circumscription of
PinT(P)is:
T*(P) =pes T(P) A =3p[T(p) Ap < P]

Here T'(p) is the formula resulting from substituting all occurences of P in 7" with
p. The idea then is to infer nonmonotonic conclusions from 7' by reasoning classically
with T%(P). In our example (letting 7' be the conjunction of (1) and (2)) 7™ (Ab)
classically entails Vx—Ab(x) so that 7% (Ab) also entails Canfly( Tweety.

It turns out that (under certain conditions) the classical models of 7*(P) coincide
with the minimal models of 7', i.e., with those models of 7" in which the extent of P
is minimal. This correspondence clarifies that, although the reasoning from 7*(P) is
classical and therefore monotonic, circumscription still models nonmonotonic reason-
ing, since conclusions of 7*(P) may not be conclusions of 7"*(P) for a 7" that extends
T. For example, if the theory T'(Ab) of our example is extended with Ab( Tweety) to
T'(Ab), then T"*(Ab) does not classically entail Vz—Ab(z) so it neither classically
entails Canfly( Tweety). Semantically this means that there are minimal models of
T'( Ab) that are non-minimal models of T'( Ab).

At this point the reader will wonder how the classical reasoning with circumscrip-
tion formulas takes place. In fact, this is rather complicated and what is worse, in
general this reasoning cannot be done in first-order predicate logic since 7 (P) quan-
tifies not only over objects but also over predicates. So in general circumscriptive rea-
soning takes place in second-order logic, which is known to be intractable and even
incomplete. Does this mean that circumscription is useless for practical purposes? For-
tunately, this is not the case, since for several special classes of theories T'(P) the
circumscription 7% (P) turns out to be first-order. A particularly useful class is when
the only formulas containing the predicate P are material implications with an atomic
formula Pxy,...x, in its consequent and no occurrences of P in its antecedent. In
this special case the circumscription formula implies the so-called completion of the
predicate P. The completion of a predicate can be computed as follows.

Definition 1.2.1 [Predicate completion] Let Px; (Where x; = x1, ... x,) be an atomic
formula and 7" =

{Vai(¢1 D Px;)

Vai(pn D Px;)}

such that P does not occur in g . . . ¢o,. The completion of P in T is
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Vmi(gol V...V, = P.%'Z)

To understand this definition, note that 7" is equivalent with Vz;(¢1 V...V ¢, D Px;)

It turns out that for many practical purposes predicate completion is all that is
needed. Therefore, in this course the full syntactic version of circumscription will
be left untreated. Its model-theoretic version, on the other hand, will be discussed in
detail, for two reasons. Firstly, it gives a semantics to the method of completion and
secondly, the idea of minimal-model semantics is much more widely applicable than
just to circumscription. If the minimality criterion for first-order models is generalised
to any preference relation on models for any classical logic, then the result is the seman-
tics of preferential entailment. To verify whether a conclusion is preferentially entailed
by a theory, we only need to inspect the preferred models of the theory (according to
some given preference criterion) and verify whether the conclusion is true in all of these
preferred models.

1.3 A semantic model preference relation

How can the idea of preferential entailment be applied to the minimisation of pred-
icates? Consider a theory T' with a predicate P that is to be minimised. As a first
approximation we can say that a model M of T is P-smaller than a model M’ of T
iff they have the same domain and if the extent of P in M is a subset of the extent
of P in M’. However, this definition has to be refined, since we have to allow for the
minimisation of more than one predicate.

Example 1.3.1 Consider the defaults

(1) Va((Bird(z) AN —Ab(x)) D Canfly(zx))
(2) Vz((Penguin(x) A —Ab(z)) D ~Canfly(x))

If Tiveety is a penguin, we want to say that Tweety is an abnormal bird, but this should
not imply that Tweety also is an abnormal penguin. To avoid this, we need two abnor-
mality predicates Ab; and Abs, capturing, respectively, being abnormal with respect to
the birds default and being abnormal with respect to the penguin default.

(1) Va((Bird(xz) A ~Abi(z)) D Canfly(z))
(2°) Va((Penguin(z) A = Aba(x)) D —Canfly(x))

Accordingly, the model preference relation should be refined follows. Let P be a set of
predicates to be minimised. Then a model M of a theory 7" is P-smaller than a model
M’ of T iff they have the same domain and if of every predicate in P the extent in M
is a subset of that in M.

In sum, in circumscription each theory comes with a specification which predicates
are to be minimised. Such a specification is called a circumscription policy, and a
theory plus circumscription policy is called a circumscriptive theory.

Definition 1.3.2 Let T be a set of sentences of first-order predicate logic and P a set
of predicates to be minimised. Then P is a circumscription policy, and T is a circum-
scriptive theory.

We can now give the formal definition of the semantic model preference relation
for circumscription.
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Definition 1.3.3 [Model preference.] Let P be a circumscription policy and M; and
M> two models. We write M; <P M, iff

e M7 and M5 have the same domain; and
o Iy, (P) C Ing, (P) for every predicate P € P.

In other words, M; <P M, means that M; and M, may differ only in how they
interpret the predicates, and the extent of every predicate from P in M is a subset of
its extent in M.

The predicates in P need not be unary; the definition also applies to relations with
arity higher than 1. In the latter case the extent of a predicate is not a set of objects but a
set of tuples of objects. An example of a default with a twoplace abnormality predicate
is ‘usually, married couples love each other’, which can be formalised as:

VaVy((Married(x,y) A —Ab(z,y)) D (Loves(x,y) A Loves(y, x)))

Since the relation <¥ is transitive and reflexive, we can talk about the models that
are minimal relative to this relation. A model M is a <F-minimal model of a theory T'
iff there is no model M’ of T" such that M’ <® M.

We can now formally define the nonmonotonic notion of entailment, which we will
call ‘minimal entailment’.

Definition 1.3.4 a sentence ¢ is minimally entailed by a circumscriptive theory T, or
TP b, in p, iff © is true in all <P_minimal models of 7.

In applications of circumscription it is usually assumed that all objects in a domain
have a unique name. The following example illustrates the need for this assumption.
Example 1.3.5 Consider the single default

(1) Va((Bird(x) N —Ab(z)) D HasWings(z))
And assume that we also know that Bird ( Tweety), Bird(Polly) and Ab(Polly). Then

HasWings( Tweety) is not minimally entailed since there are minimal models in which
Tweety = Polly is true so in those models Ab( Tweety) is true.

Usually, the unique-name assumption is combined with the domain-closure assump-
tion, which says that all objects in a domain have a name. If the domain is finite, then
these two assumptions can be expressed as first-order predicate logic sentences. Sup-
pose ci, ..., cy are all ground terms of the language. Then the domain closure axiom
is

Ve(z=c1V...o =cp)

And the unique names axiom is

c1FCaN...ctFECpN...Ch1 F Cn

The conjunction of these two axioms for a tuple cy, ..., c, is sometimes denoted as
UNAJcq, ..., cnl.
In our example, these axioms amount to:

Va(x = Tweety V ...x = Polly)
Tweety # Polly

The latter axiom excludes the undesired minimal models where Tweety = Polly and
Ab( Tweety) are true.
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1.4 Examples

In this section some further examples will be discussed. Let us first look at some ex-
amples (adapted from Lifschitz 1994) where only one predicate P is minimised, i.e.,
P = P (when P is a singleton, the brackets will be omitted). These examples illustrate
that circumscription formalises the idea that only those objects have a certain property
that can be shown to have this property. Accordingly, we are interested whether a given
theory minimally entails the completion of a minimised predicate P, i.e. whether all
minimal models satisfy a formula of the form

Vz(Pz = ¢)
such that ¢ does not contain P.
Example 1.4.1 Let the theory T contain only Pa. Then all minimal models satisfy
Ve(Pr =z =a)

This is because in all models of 1" the extent of PP must contain a but need not contain
any other object, so that in all minimal models of " the extent of P only contains a.

Example 1.4.2 Let 7" now contain only —Pa. Then all minimal models satisfy
Ve(Px = 1)
which is equivalent to Vz—Pz.

Example 1.4.3 Next we consider a theory consisting of Pa A Pb. Then all minimal
models satisfy
Ve(Pxr=(z=aVax=0»))

Example 1.4.4 Let T next consist of Pa V Pb. This theory does not minimally entail
a completion of P; the strongest that is entailed is the following disjunction of two
completions.

Ve(Px =z =a)VVe(Pr=x=0>)

Example 1.4.5 A similar but slightly more complicated example is a theory 7" consist-
ing of Pa vV (Pb A Pc). Itis easy to verify that all minimal models of T satisfy

Ve(Pr=xz=a)VVx(Pr=(x=b0Vz=c))

However, this can be strengthened by taking into account that ¢ may be equal to b or
¢, in which case the second disjunctive term does not give a minimal P. So 7' also
minimally entails

Ve(Pr=x=a)V(Ve(Pr=(x=bVz=c)Aa#bAa#c)

Example 1.4.6 Finally, we consider a theory T with Vz(Qz O Px). Minimising P
transforms the implication into an equivalence. 7" minimally entails:

Va(Qx = Px)
If instead (@ is allowed to vary, a stronger result is obtained, viz.

Va(-Qx N —Px)
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Next two classic examples from nonmonotonic logic will be discussed, the ‘Tweety
Triangle’ and the ‘Nixon Diamond’, starting with the Tweety Triangle, which extends
Example 1.1.1 discussed above.

Example 1.4.7 Consider a circumscriptive theory T¥ where P = {Aby, Aby} and T
consists of

(1) Vz((Bird(x) AN —Abi(x)) D Canfly(z))

(2) x(Pengum( ) D Ab;(z))

(3) Vz((Penguin(z) A ~Abz(z)) D —~Canfly(x))
(4) Vz(Penguin(z) D Bird(x))

(5) Bird(t)

We are interested whether Tweety can fly, i.e., whether this theory minimally entails
Canfly(t). This is the case if Aby(t) is false in all minimal models. It is easy to
verify that this holds: the example extends Example 1.1.1 with a ‘Penguins cannot fly’
default and the information that all Penguins are birds; however, since it is not given
that Tweety is a penguin, this additional information does not give rise to models where
—~Canfly(t) and so Abj (t) is true. In conclusion, 7F minimally entails that Tweety can
fly.
Let us now extend 7" with the following information:

(6) Penguin(t)

The presence of both (2) and (6) in 7" makes that all models of 7" now satisfy Ab; ().
This enables minimal models of 7' that satisfy —Canfly(t), so the new information
has invalidated the previous conclusion that Tweety can fly. In fact, since —Aba (%) is
consistent with 7', all minimal models of T satisfy this sentence, so they also all satisfy
—~Canfly(t). Hence TF now minimally entails that Tweety cannot fly.

Next we turn to the Nixon Diamond.

Example 1.4.8 Consider a circumscriptive theory TP where P = {Aby, Aby} and T
consists of

(1) Vz((Quaker(z) N —Abi(z)) D Pacifist(z))
(2) Vz((Republican(x) N = Abs(x)) D —Pacifist(z))
(3) Quaker(n) A Republican(n)

We are interested whether Nixon was a pacifist, i.e. whether 7F minimally entails
Pacifist(n) or = Pacifist(n). Clearly, no model of 7' can satisfy both —Ab;(n) and
—Aby(n), since that would require the model to satisfy both Pacifist(n) and = Pacifist(n).
Also, models that satisfy both Ab;(n) and Aby(n) can be made smaller by omitting
I(n) either from the extent of Ab; or from the extent of Aby. Doing the first results in
minimal models of 7" that satisfy = Ab; (n) and therefore also satisfy Pacifist(n), while
doing the latter results in minimal models of T that satisfy —Aby(n) and therefore also
satisfy = Pacifist(n). In conclusion, nothing of interest about Nixon’s Pacifism is min-
imally entailed by T'F.

Finally, a well-known somewhat problematic example will be discussed. It is an
extension of the Tweety Triangle (Example 1.4.7) with default information on when
something is a penguin.

Example 1.4.9 Consider a circumscriptive theory TP where P = {Aby, Abs, Abs}
and 7T consists of
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(1) Va((Bird(x) N —=Abi(x)) D Canfly(z))
(2) Va(Penguin(z) D Ab;s(z))
3) VwE(Penguin(x) A —Aby(z)) D —~Canfly(z))

(4) Vx((ObservedAsPenguin(z) A ~Abg(z)) D Penguin(z))
(5) Vx(Penguin(z) D Bird(z))
(6) ObservedAsPenguin(t)

Intuitively, we would expect that, as in Example 1.4.7, this theory also minimally entails
—Canfly(t). All that has changed is replacing the fact that Tweety is a penguin with a
default ‘Normally, if something is observed as a penguin, it is a penguin’ and the fact
that Tweety is observed as a penguin. And the information does not seem to give rise
to an exception to this default.

However, perhaps surprisingly, the conclusion that Tweety cannot fly is not mini-
mally entailed. The point is that 7' = Ab (t)V Abs(t), which not only allows a minimal
model satisfying = Abz(t) and Ab () but also one satisfying —Ab; (¢) and Abs(t).

Examples of this kind have been much discussed in the literature. Some have argued
that, to obtain the intuitive outcome, the model preference relation must be refined.
Others have blamed the material implication for the problems, and have proposed the
use of a conditional operator that does not satisfy contraposition, such as default-logic’s
domain-specific inference rules.

1.5 Prioritised circumscription

As with default logic, prioritised variants have also been developed of circumscription.
With circumscription the idea is that some predicates are minimised with higher priority
than other predicates. In this section only a brief sketch of this idea will be given; for
the details the reader is referred to Baker and Ginsberg (1989).

Model-theoretically, the idea leads to a refinement of the model preference rela-
tion. Suppose, for instance, that in Example 1.4.8 the Republican default is regarded as
stronger than the Quaker default. This can be captured by minimising Aby with higher
priority than Ab;. Then a model in which —Abs(n) holds at the expense of Ab;(n)
is preferred over a model in which —Ab;(n) holds at the expense of Abj(n), so that
the conclusion —Pacifist(n) is defeasibly entailed by the prioritised circumscriptive
theory.



Chapter 2

Exercises on default logic and
circumscription

2.1 Exercises on default logic

All exercises below which ask to determine extensions should, unless indicated other-
wise, be answered by giving a process tree.

EXERCISE 2.1.1 Try to think of exceptions to the following rules, and to the eventual
exceptions.

1. If a kept object is released, it will fall.
2. Tomatoes are red.

3. One ought to stop in front of a red light.
4. Presidents of the USA are male.

5. A bachelor is unmarried.

EXERCISE 2.1.2 Show that the default theory with W = & and the following set of

defaults:
D— {p a :7"}
—\q —r s

EXERCISE 2.1.3 Determine the extensions of the default theory given by:

has only one extension.

W ={p>D(~gA-r)}

D:{:p;q;r}
p qg T

EXERCISE 2.1.4 Show that the default theory with W = {p} and the set of defaults

below:
D {p:r,p:s}
q -q

has no extension.
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EXERCISE 2.1.5 Determine the extensions of the following default theories.

1. The default theory (W7, D) with

Wi ={d,a D> -b,d D> —c}

Dlz{d:a -c:b b:e b/\d:—|e}

a’ b e’ —e

2. The default theory (Ws, D2) with

Wy ={a,d,e D —c}

a:bANec d:=b :dANe :—e
Dy —
2 { b ) _‘b’ e ’_\6}

3. The default theory (W3, D3) with

W3 ={a,(bVe) D —d}

Dg:{a:b a:c c:—b —b:e d}

b’ ¢’ ab’ e ' d
EXERCISE 2.1.6

1. Determine the extensions of the default theory given by:

Wi = {p}
- (o

2. Answer the same question for the following default theory:

Ws = {p}
DQZ{p:qAﬁq}

Compare your answer to that of 1.

EXERCISE 2.1.7 Answer Exercise 2.1.5(1,3) for Prioritised Default logic, given the
following partial default orderings:

o (1) AR < B2

e

Lo <

EXERCISE 2.1.8 Show that if a default theory has an inconsistent extension, this
extension is its unique extension.

EXERCISE 2.1.9 Translate the defeasible rules and their exceptions from your an-
swer to Exercise 2.1.1 into defaults.
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EXERCISE 2.1.10 Consider the following default rules from the legal domain.

- Drivers ought not to drive next to each other

- Cyclists are allowed to drive next to each other

- In case of danger for obstruction, cyclists ought not to drive
next to each other

Assume further as a hard fact that cyclists are drivers.

1. Translate this information into a propositional default theory which has a unique
extension for each consistent W/ that includes these hard facts, and such that in
case of conflicting defaults the most specific one is applied.

2. Answer the same question for Prioritised Default Logic.

EXERCISE 2.1.11 Consider the following empirical default rules.

- Birds normally can fly
- Penguins normally cannot fly

Assume further as hard facts that penguins are birds and that genetically modified pen-
guins are abnormal penguins.

1. Translate this information with the help of abnormality predicates into a default
theory (W, D) which has a unique extension for each consistent 1 that includes
these hard facts, and such that in case of conflicting defaults the most specific
one is applied.

2. Answer the same question for Prioritised Default Logic, using priorities instead
of abnormality predicates.

EXERCISE 2.1.12 We define two consequence relations for default theories, one for
skeptical reasoning (|~*) and one for credulous reasoning (J~©):

o (W, D) |~® ¢ =g all extensions of (W, D) contain ¢.
o (W,D) ~¢ ¢ =4 some extension of (W, D) contains (.
Determine the skeptical consequences of the default theories of Exercise 2.1.5.

EXERCISE 2.1.13 A default theory (W, D) is called finite if D is finite. Can it be
determined whether a default theory with

Pzx: Qx
D=<¢——
is finite? If so, is it finite? If not, which information is lacking?

EXERCISE 2.1.14 Consider a default theory A = (D, W) with the following set of

defaults:
T:P(f(c)) T:P(f(f(c) )

P="5G0y U@y

and

W = {Vec# f(x),YaVy((f(x) = f(y)) D = =y),Vavy((P(x) A P(y)) Dz = y)}

Show that this default theory has infinitely many extensions.
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2.2 Exercises on circumscription

EXERCISE 2.2.1 Specify all models with one object for the theory of Example 1.1.1,
and verify the line of reasoning in this example. Illustrate by extending the theory that
the new entailment notion is nonmonotonic.

EXERCISE 2.2.2 In this exercise you should apply Definition 1.3.3. Consider a first-
order language with object constants a and b, a unary predicate symbol P, a binary
predicate symbol 12 and no other terms and predicate symbols.

1. Give all <*-minimal models with two distinct objects d; and dp such that I(a) =
dy and I(b) = da, for the following formulas:
(a) = Pa
(b) PaV Raa
(¢) PaVv —Pb
(d) JxPx
(e) VaVy(Px D Rxy)
(f) VaVy(Rxy D Px)
(2) Rab AVaVy(Rzxy D Prx)
(h) VaVy(—Pz D Rxy)

2. Give for each of the formulas under 1 one or more formulas that are true in all
<P_minimal models of the formula, but not in all its models.

EXERCISE 2.2.3

1. Consider a circumscriptive theory 77" such that ' = {Pa, Rb}. Is =Pb mini-
mally entailed by 77?

2. Formulate the unique-names and domain-closure axioms for 77

3. Consider 7" which is formed from T* by adding the unique-names and domain
closure axioms. Is —Pb minimally entailed by 7"7?

EXERCISE 2.2.4 Consider the circumscriptive theory 74? where T' =
Vz((Bird(z) A —Ab(x)) D Canfly(zx))
Bird(Sam)
Ab(Tweety)
1. Is Canfly(Sam) minimally entailed by 74%?

2. Extend T to T” by formulating the domain closure and unique-names axioms for
T and adding them to 7T'.

3. Is Canfly(Sam) minimally entailed by 774%?



Answers to Selected Exercises 21

EXERCISE 2.2.5 Consider the following formulas:

Va((P(z) A =Ab(z)) O Q)
Vo (R(z) D Ab(z))
P(a)

Give all <A°-minimal models for this set of formulas. Is Q(a) true in all these models?
And what can you say about R(a)?

EXERCISE 2.2.6 Consider the following empirical default rules.

- Birds normally can fly
- Penguins normally cannot fly
- Genetically modified penguins normally can fly

Assume further as facts that all penguins are birds and all genetically modified penguins
are penguins. Translate this information with the help of abnormality predicates into a
circumscriptive theory. Ensure that in case of conflict the most specific default is ap-
plied; test this with minimal models, assuming that the language contains one constant,
viz. Tweety.

EXERCISE 2.2.7 Consider a circumscriptive theory TF, where P = { Aby, Aby, Abs, Aby}
and T' =
(1) Vz((BornInNL(z) A —~Abi(z)) D Dutch(z))
(2) Va((NorwegianName(xz) N ~Aby(x)) D Norwegian(z))
(3) Va((Dutch(xz) N ~Abs(z)) D LikesSkating(z))
4)  Va((Norwegian(x) N = Aby(x)) D LikesSkating(x))
(5) Va—(Dutch(z) N Norwegian(z))
(6) BornInNL(Brigt) A NorwegianName(Brygt)

Verify whether LikesSkating(Brigt) is minimally entailed by TF.

EXERCISE 2.2.8 Let T7 be a circumscriptive theory consisting of the following
sentences:

a; # a;(0 <i<j<3),
Ve, y(S(z,y) =[x =a1ANy=ap)V(r=a2 ANy =a1)V (z =a3 ANy = a2))),
Va,y((=Pz A S(y,x)) O Py)

The a; could, for instance, denote time units and the relation S could denote the suc-
cessor relation, while P could be regarded as an abnormality predicate.

a) What is the strongest information on the extent of P that is minimally entailed by
T"?

b) Answer the same question when we add to T’ the sentence = Payg.

2.3 Answers to the Exercises

2.3.1 Default Logic

Below, defaults are assumed to be named as d, . . ., d,, in their order of appearance in
the set of defaults.
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Exercise 2.1.1:
1. Except in space, ...
2. Except if it is not ripe, or painted ...
3. Except police cars with their sirenes on, ...
4. No exceptions yet ...
5. No exceptions, since this is a lexical definition.

Exercise 2.1.2: The unique extension of this default theory is Th({—q, —s}). The
following process tree shows that there are no more extensions. The tree has four
processes:

Iy = {dy,d3}
Iy = {da,d1}
I3 = {d3,d2}
Iy = {ds,d1}

The first and last process are closed and successful, and lead to the same extension,
while the other two are failed:

In(IL{1]) = Th({-q})  Out(IL[1]) = {-p}
In(IL[2] = Th({~q,~s})  Out(I1[2]) = {=p, -7}

In(Ia[1]) = Th({=r})  Out(Ilz2[1]) = {~q}
In(lla[2] = Th({-r,~q})  Out(llz[2]) = {~q, —p}

In(Il3[1]) = Th({-s})  Out(Il3[l]) = {-r}
In(ll3[2] = Th({-s,—r})  Out(ll3[2]) = {-r, ~q}

In(I4[1]) = Th({=s})  Out(ll4]1]) = {-r}
In(I42] = Th({=s,~q})  Out(I4[2]) = {-r, —p}

Exercise 2.1.3: The extensions are
e Fy =Th(W U {p}, generated by the process d;.
o 9y =Th(W U{q,r}, generated by the processes do, d3 and ds, ds.

The trick is to see that W makes that applying d; blocks both dy and d3 and applying
do or ds blocks d;.

Exercise 2.1.4: Any process that applies zero or one of the defaults is not closed, while
the process II that applies both defaults is failed: since both p and —p are in In(II),
every well-formed formula is In(II), and since s and r are in Out(II), we have that
In(IT) N Out(Il) # @.

Exercise 2.1.5: Question 1: This default theory has 3 extensions:
Ey =Th(W U{a})
Ey =Th(W U{b,e})
Es =Th(W U {b,—e})
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The corresponding process tree has three closed and successful branches:

Iy = {d\}
Iy = {da,d3}
I3 = {d2,ds}

The extensions are constructed as follows:
In(I11[1]) = Th(W U {a}) Out(I11[1]) = {—a}

In(IL[1]) = TAW U {3}))  Out(IL,[1)) = {-b}
In(I[2)) = Th(W U {b,e})  Out(I5[2]) = {=b, —e}

In(Il3[1]) = Th(W U {b}) Out(Il3[1]) = {-b}
In(I13[2)) = Th(W U {b,~¢}) Out(Il3[2]) = {-b, e}

No failed branches can be constructed. Question 2: This default theory has 3 exten-
sions:

Ey =Th(Wy U {b,—e})

Es = Th(W2 U {ﬁb, 6})

Es = Th(Wy U {=b, —e})

F is created by the processes di, d4 and dy, dy
FE) is created by the processes da, d3 and ds, da
E5 is created by the processes do, d4 and dy, da
There is one failed process, viz. dy, ds.

Question 3: This default theory has 3 extensions:

FE = Th(W3 U {b, C})
Ey = Th(W3 U {=b,c,d})
Es =Th(W3U{=b,c,e})

FE is created by the processes d1, do and da, dy
F) is created by the processes ds, d3, ds and da, ds, d3 and ds, da, d3
FE5 is created by the process do, ds, dy.

Exercise 2.1.6:

1. This default theory has one extension, viz. Th({p, r}), generated by applying the
only default in D;.

2. This default theory has a different unique extension, viz. Th({p}), generated by
the empty process. Note that (g A —¢) is in In(II) for any process II.

Exercise 2.1.7:

(1) Only E; and F5 are PDL-extensions of this theory, since the corresponding pro-
cesses are generated by a total order containing <. By contrast, in Il the default d3 is
applied while according to the priority ordering d4 should have been applied instead.
So E is not generated by any total order containing <.

(3) E5 is not a PDL-extension, since its generation requires that de < ds5, which contra-
dicts the fact that d5 < do. However, F/; and F» are also PDL-extensions: one ordering
that generates F is d3 < dj < ds < d2 < dy, while one ordering that generates F
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1sds € dg < do < di < dy.

Exercise 2.1.8: Th. 4.5 of Antoniou implies that any default theory with an inconsis-
tent extension has an inconsistent W. Then T'h(W') contains all well-formed formulas.
But then no default is applicable to In(2&) = Th(W) so & is a closed process, which
means that no other extension than T'h(WW) can be created (we already proved at HC3
that since Out(@) = & we have that & is successful, so that Th(WW) is an extension).
Exercise 2.1.9 Left to the student.

Exercise 2.1.10:

(1) with specific exception clauses:

driver : —next A —cyclist cyclist : next A —danger cyclist A\ danger : —next
D = d1 : ds : ds :

s 2 . , U3

—next next —next

W = {cyclist O driver}

(1) with general exception clauses:

}

, a2 ,a3 :
next

driver : —next A\ —excy cyclist : next \ —~exca cyclist A\ danger : —next \ —excs
D=<d;: ds : ds :

—next —next

W = {cyclist D driver, cyclist D excy, (cyclist A danger) D exca}

(2):
D {d1 : driver : —\nea:t7d2 : cyclist : nemt7d3 : cyclist A\ danger : —\nea:t}
—next next —next
ds < do < d;
W = {cyclist D driver}
Exercise 2.1.11:
p_da . Bird(x) : Flies(z) A —Aby (x) 5o - Penguin(z) : ~Flies(z) A ~Abg(z)
R Flies(z) e —Flies(z)

W =
{Va(Penguin(z) D Bird(z)),

Vz(Penguin(z) D Ab;(z)),

YV ((Penguin(z) A GeneticallyModified(z)) D Abz(z))}

(2): Since the exception for genetically modified penguins intuitively is an ‘undercutter’
instead of a ‘rebuttal’ (i.e., it only blocks conclusions but does not support conclusions),
the optimal formalisation in PDL is slightly contrived:

D = {dl, dg,d3, d4} where

_ Bird(x) N —Aby(x) : Flies(x)

Penguin(z) N —~Abg(z) : ~Flies(x)
dy : - :
Flies(x)

da :
7 —Flies(x)

}
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d2 < d1
W is as under (1)

Exercise 2.1.12:

(1) Th(Wh)
(2) Th(Wa)
(3) Th(W3 U {c})

Exercise 2.1.13: This can be determined only if it is known whether the set of terms
in the object language is finite. If it is, the default theory is finite, otherwise it is infinite.

Exercise 2.1.14: Observe first that P(f%(c)) and P(f%(c)) (for 0 < i # j) cannot be
together in the same extension, since together with W these two formulas are inconsis-
tent while W alone is consistent and therefore has no inconsistent extension. Consider
next the following sets:

By = Th(W U{P(f'(c))})

It is easy to verify that each F; (for ¢ a natural number) is an extension of A, created by
applying exactly one default.

The first observation explained in more detail: suppose we apply to defaults to
obtain Pf1(c) and Pf?(c). Then the third formula in W implies f'(c) = f2(c). Then
with the second formula in W this implies ¢ = f(c) but this contradicts the first formula
in W. It is easy to see that this line of reasoning holds for any two (or more) defaults
we apply, so we can apply just one default. Since we have infinitely many choices, we
end up with infinitely many extensions.

2.3.2 Circumscription

Exercise 2.2.1:
M,: I(Bird) = {Tweety} I(Ab) =@ I(Canfly) = { Tweety}
My: I(Bird) = { Tweety} I(Ab) = {Tweety} I(Canfly) = {Tweety}
Ms: I(Bird) = { Tweety} I(Ab) = {Tweety} 1(Canfly) =@

M is the only Ab-minimal model and in this model Canfly( Tweety) is true, so it is
true in all Ab-minimal models of T, so it is nonmonotonically entailed by 7.

If T' is extended with Ab( Tweety) then M is not a model of the new theory and the
remaining models My and M3 are both ab-minimal. In M3 Canfly( Tweety) is false,
so this formula is not nonmonotonically entailed by the new theory.
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Exercise 2.2.2:

Question 1:

a I(P)=g, I(R) = any

b: I(P)=g, {(d1,d1)} CI(R) C {(d1,d1),(d1,d2),(d2,d1), (d2,d2)}

c. I(P)=g, I(R) = any

d: I(P)={di}, I(R)=any

I(P) ={d2}, I(R)=any

e: I(P)=g, I(R) = any

f: I(P)=g2, I(R)=o

g I(P)={di}, I(R)={(d1,d2)}

I(P)={di}, I(R)={(d1,d1),dr,d2)}

h: I(P) =g, I(R) = {(d1,d1), (d1,d2), (d2,d1), (d2,d2)}
Question 2:

a: Va—Px

b: —Pa,Yz—-Px, Raa

c: —-Pa,Vx—Px

d: —VaxPzx,Ve(Pzr <+ z=a)VVe(Pr <+ z=>0)

e: Va—-Px

f: Va—-Px

g Ve(Pxr=xz=a)

h: VaVyRzy

Exercise 2.2.3:

1. —Pbis not minimally entailed. Consider a model M; with domain {d; } and with
I(a) = I(b) = {d1}: M, satisfies Pb and it is a <P-minimal model of 7.

2. Unique-names: a # b. Domain closure: Vz(z = a V x = b).

3. Yes. M; is not a countermodel any more, since it does not satisfy the unique-
names axiom.

Exercise 2.2.4:

1. No, since there is a minimal model of this theory in which I( Tweety) = I(Sam),
I(Ab) = {Sam, Tweety} and Sam ¢ I(Canfly).

2. Unique-names: Tweety # Sam. Domain closure: Vz(x = TweetyVaz = Sam).

3. Yes. The countermodel of question (1) is not a model of T'4b since it does not
satisfy the unique-names axiom. The minimal models of 774? are those in which
I(Tweety) # I(Sam) and I(Ab) = {Tweety}, and in those models we have
that Sam € I(Canfly).

Exercise 2.2.5: Let I(a) = d. Then the minimal models are all models such that
deI(P),I(R)=a,1(Ab) = @, d € I(Q). So Q(a) is true in all minimal models.
Moreover, R(a) is false in all minimal models.
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Exercise 2.2.6:
Va((Bird(z) N —Ab;(x)) D Canfly(x))
Va((Penguin(z) A —Abg(z)) D —Canfly(z))
Vx((Penguin(z) A GeneticallyManipulated(z) A ~Abs(z)) D Canfly(x))
Vx(Penguin(z) D Abs(z))
Vaz((Penguin(z) A GeneticallyManipulated(z)) D Abz(x))
Vx(Penguin(z) D Bird(z))

Minimised predicates: Aby, Aba, Abs

Exercise 2.2.7: Yes, this is minimally entailed. This theory has two classes of min-
imal models. In one class Ab;(Brigt) is true while Abg(Brigt), Abs(Brigt) and
Ab, (Brigt) are false, and in the other class of models tAbs(Brigt) is true while the
other three abnormality expressions are false. In the first class of models Norwegian(Brigt)
is true because of (2) and so LikesSkating(Brigt) is true because of (4). In the second
class of models Dutch(Brigt) is true because of (1) and so LikesSkating(Brigt) is
true because of (3).

Exercise 2.2.8: Let us inspect the minimal models (where I (a;) = a;).

(a) Assume ag € P; since we look at minimal models, we then have that a; & P.
Because of the content of T, as must then be an element of P. Finally, we have
as & P. So P = {ag,az}. If we inspect all models in this way, we obtain:

Va(P(z)
Va(P(z)

r=aVzx=a3)VVr(P(zx)=x=ayVx=az)V

r=a1Vx=ay)

(b) We lose the minimal model P = {ap, as}, since this is not a model of the new
theory. So we obtain:

Ve(P(x) =z =a1 Vz=a3)
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Chapter 3

Argumentation logics: introduction

This chapter introduces another way to conceptualise nonmonotonic reasoning, viz. as
patterns of inference where arguments for and against a certain claim are produced and
evaluated, to test the tenability of the claim. In the present chapter some motivating
examples will be presented and the main concepts will be informally introduced, while
in Chapters 4—6 the formal theory of argumentation systems will be developed.

3.1 Motivating examples

We shall illustrate the idea of argumentation-based inference with a dispute between
two persons, A and B. They disagree on whether it is morally acceptable for a newspa-
per to publish a certain piece of information concerning a politician’s private life. Let
us assume that the two parties have reached agreement on the following points.

(1) The piece of information I concerns the health of person P;

(2) P does not agree with publication of [;

(3) Information concerning a person’s health is information concerning
that person’s private life

A now states the moral principle that

(4) Information concerning a person’s private life may not be published
if that person does not agree with publication.

and A says “So the newspapers may not publish I (Fig. 3.1, page 30). Although B
accepts principle (4) and is therefore now committed to (1-4), B still refuses to accept
the conclusion that the newspapers may not publish /. B motivates her refusal by
replying that:

(5) P is acabinet minister

(6) I is about a disease that might affect P’s political functioning

(7) Information about things that might affect a cabinet minister’s
political functioning has public significance

Furthermore, B maintains that there is also the moral principle that
(8) Newspapers may publish any information that has public significance

B concludes by saying that therefore the newspapers may write about P’s disease
(Fig. 3.2, page 31). A agrees with (5-7) and even accepts (8) as a moral principle,
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but A does not give up his initial claim. Instead he tries to defend it by arguing that he
has the stronger argument: he does so by arguing that in this case

(9) The likelihood that the disease mentioned in [ affects P’s
functioning is small.
(10) If the likelihood that the disease mentioned in I affects P’s
functioning is small, then principle (4) has priority over principle (8).

Thus it can be derived that the principle used in A’s first argument is stronger than the
principle used by B (Fig. 3.3, page 31), which makes A’s first argument stronger than
B’s, so that it follows after all that the newspapers should be silent about P’s disease.

(3) Information
concerning a
person’s health is

information
concerning that
person’s private (1) I concerns
life. the health of P. (2) P does not
I concerns the permit .
private life of P. publication of 1. @) Inform?mon
concerning a
I concerns the person’s private
private life of P life may not be
and P does not published against
permit that person’s
publication of I. will.

The newspapers
may not publish I.

Figure 3.1: A’s argument.

Let us examine the various stages of this dispute in some detail. Intuitively, it seems
obvious that the accepted basis for discussion after A has stated (4) and B has accepted
it, viz. (1,2,3,4), warrants the conclusion that the piece of information / may not be
published. However, after B’s counterargument and A’s acceptance of its premises (5-
8) things have changed. At this stage the joint basis for discussion is (1-8), which gives
rise to two conflicting arguments. Moreover, (1-8) does not yield reasons to prefer one
argument over the other: so at this point A’s conclusion has ceased to be warranted.
But then A’s second argument, which states a preference between the two conflicting
moral principles, tips the balance in favour of his first argument: so after the basis
for discussion has been extended to (1-10), we must again accept A’s moral claim as
warranted.

Logical systems that formalise this kind of reasoning are called ‘argumentation
logics’, or ‘argumentation systems’. As the example shows, these systems lack the
monotonicity property of ‘standard’, deductive logic (say, first-order predicate logic,
FOL). According to FOL, if A’s claim is implied by (1-4), it is surely also implied
by (1-8). From the point of view of FOL it is pointless for B to accept (1-4) and yet
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(6) I is about a
disease that
might affect P’s

Ersli)nli[;tlesra capinet funcrziooliltilrclgl (7) Information
i " about things that
I is about a might affect a
disease that cabinet
might affect a minister’s
cabinet political
mir?i.ster’s functioning hz.ls (8) Newspapers
political public .
functioning. significance. may publ.ISh any
information that
I has public has public
significance. significance.
The newspapers
may publish I.
Figure 3.2: B’s argument.
(9) The likelihood that the (10) If the likelihood that the disease
disease mentioned in [ mentioned in I affects P’s functioning is
affects P’s functioning is small, then principle (4) has priority over
small. principle (8).

Principle (4) has priority
over principle (8).

Figure 3.3: A’s priority argument.

state a counterargument; B should also have refused to accept one of the premises, for
instance, (4).

Does this mean that our informal account of the example is misleading, that it con-
ceals a subtle change in the interpretation of, say, (4) as the dispute progresses? This
is not so easy to answer in general. Although in some cases it might indeed be best to
analyse an argument move like B’s as a reinterpretation of a premise, in other cases this
is different. In actual reasoning, rules are not always neatly labelled with an exhaustive
list of possible exceptions; rather, people are often forced to apply ‘rules of thumb’ or
‘default rules’, in the absence of evidence to the contrary, and it seems natural to anal-
yse an argument like B’s as an attempt to provide such evidence to the contrary. When
the example is thus analysed, the force of the conclusions drawn in it can only be cap-
tured by a consequence notion that is nonmonotonic: although A’s claim is warranted
on the basis of (1-4), it is not warranted on the basis of (1-8).

Argumentation logics are the most direct attempt to formalise examples like the
above one, by defining notions like argument, counterargument, attack and defeat, and
by defining nonmonotonic consequence in terms of the interaction of arguments for
and against certain conclusions. This approach was initiated by the philosopher John
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Pollock (Pollock, 1987), based on his earlier work in epistemology, e.g. (Pollock, 1974),
and the Al researcher Ronald Loui (Loui, 1987).

One application of argumentation logics is to to formalise ‘quick-and-dirty’ com-
monsense reasoning with empirical generalisations. In everyday life people often rea-
son with generalisations such as ‘Birds fly’, ‘Italians usually like coffee’, ‘Chinese
usually do not like coffee’, ‘Witnesses usually speak the truth’ or “‘When the streets are
wet, it must have rained’. In commonsense reasoning, people apply such a generalisa-
tion if nothing is known about exceptions, but they are prepared to retract a conclusion
if further knowledge tells us that there is an exception (for instance, a given bird is in
fact a penguin, a witness has a reason to lie or the streets are wet because they are being
cleaned).

However, argumentation systems have wider scope than just reasoning with such
empirical generalisations. Firstly, argumentation systems can be applied to any form of
reasoning with contradictory information, whether the contradictions have to do with
generalisations and exceptions or not. For instance, the contradictions may arise from
reasoning with several sources of information, or they may be caused by disagreement
about beliefs or about moral, ethical or political claims. Moreover, it is important that
several argumentation systems allow the construction and attack of arguments that are
traditionally called ‘ampliative’, such as inductive, analogical and abductive arguments;
these reasoning forms fall outside the scope of most other nonmonotonic logics.

One domain in which argumentation systems have become popular is legal reason-
ing. This is not surprising, since legal reasoning often takes place in an adversarial
context, where notions like argument, counterargument, rebuttal and defeat are very
common. Argumentation systems have also been applied in, for instance, the medical
domain and in multi-agent models of negotiation and collaboration.

3.2 Argumentation systems: a conceptual sketch

In this section we give a conceptual sketch of the general ideas behind argumentation
logics. First we sketch the general idea, and then we discuss the five main elements of
such logics.

3.2.1 The general idea

Argumentation systems formalise nonmonotonic reasoning as the construction and com-
parison of arguments for and against certain conclusions. The idea is that the construc-
tion of arguments on the basis of a theory is monotonic, i.e., an argument stays an argu-
ment if the theory is enlarged with new information. Nonmonotonicity is explained in
terms of the interactions between conflicting arguments: it arises from the fact that the
new information may give rise to stronger counterarguments, which defeat the original
argument. For instance, in case of Tweety the penguin we may construct one argument
that Tweety flies because it is a bird, and another argument that Tweety does not fly
because it is a penguin, and then we may prefer the latter argument because it is about
a specific class of birds, and is therefore an exception to the general rule.
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3.2.2 Five elements of argumentation systems

Argumentation systems contain the following five elements (although sometimes im-
plicitly): an underlying logical language plus inference rules, definitions of an argu-
ment, of conflicts between arguments and of defeat between arguments and, finally, a
definition of the dialectical status of arguments, which can be used to define a non-
monotonic notion of logical consequence.

A logical language plus inference rules

Argumentation systems are built around an underlying logical language and a set of
inference rules defined over this language. Some systems assume a specific logical
language and set of inferene rules, while other systems leave these things partly or
wholly unspecified. The latter systems can thus be instantiated in alternative ways,
which makes them frameworks rather than systems. An example of such a framework
will be presented in Chapter 6.

Arguments

The notion of an argument corresponds to a tentative proof (or the existence of such
a proof) in the ‘logic’ of the chosen logical language, where this ‘logic’ is expressed
in the set of inference rules over the language. ‘Logic’ is here written between quotes
because the logic does not need to be a standard deductive logic but can also contain
defeasible inference rules (cf. the defaults of default logic). The nature of the inference
rules of an argumentation system will be further discussed in Chapter 6. For now it
suffices to say that the underlying logic of an argumentation system is still monotonic
in the sense that new information cannot invalidate arguments as arguments but can
only give rise to new counterarguments.

As for the layout of arguments, in the literature on argumentation systems three
basic formats can be distinguished, all familiar from the logic literature. Sometimes
arguments are defined as a tree of inferences grounded in the premises, and sometimes
as a sequence of such inferences, i.e., as a deduction. Finally, some systems simply
define an argument as a premises - conclusion pair, leaving implicit that the underlying
logic validates a proof of the conclusion from the premises.

The notions of an underlying logic and an argument still fit with the standard pic-
ture of what a logical system is. The remaining three elements are what makes an
argumentation system a framework for nonmonotonic reasoning.

Conflicts between arguments

The first is the notion of a conflict between arguments (also used are the terms ‘attack’
and ‘counterargument’). In the literature, three types of conflicts are discussed. Firstly,
arguments can be attacked on one of their premises, with an argument whose conclusion
negates that premise. For example, an argument “Tweety flies, because it is a bird’ can
be attacked by arguing that Tweety is not a bird. This kind of attack will in Chapter 6
be called undermining attack. The second type of attack is to negate the conclusion of
an argument, as in ‘“Tweety flies, because it is a bird’ and ‘Tweety does not fly because
it is a penguin’ (cf. the left part of Fig. 3.4). Finally, when an argument uses a non-
deductive, or defeasible inference rule, it can be attacked on its inference by arguing
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Figure 3.4: Rebutting attack (left) vs. undercutting attack (right).

that there is a special case to which the inference rule does not apply (cf. the right
part of Fig. 3.4). After Pollock (1974, 1987), this is usually called undercutting attack.
Unlike a rebutting attack, an undercutting attack does not negate the conclusion of its
target but just says that its conclusion is not supported by its premises and can therefore
not be drawn. In order to formalise this type of conflict, the rule of inference that is to
be undercut (in Fig. 3.4: the rule that is enclosed in the dotted box, in flat text written
as p,q,r,s/t) must be expressed in the object language: [p,q,r,s/t]) and denied:
=[p,q,r s/t]. ! While all arguments can be attacked on their premises, only defeasible
arguments can be attacked on their conclusion or inference. The reason why deductive
arguments cannot be rebutted or undercut is that deductive inferences are by definition
truth-preserving, i.e., the truth of their premises guarantees the truth of their conclusion,
so the only way to disagree with the conclusion of a deductive argument is to deny one
of its premsies. By contrast, the conclusion of a defeasible argument can be rejected
even if all its premises are accepted. In Chapter 6 the difference between deductive and
defeasible inference rules will be formalised and several examples of defeasible rules
will be discussed. For now, consider the following example of a defeasible argument
applying the principle of induction: the argument ‘Raven 1¢; is black since the observed
ravens raven; ...ravenjgyp were black’ is undercut by an argument ‘I saw ravenigo,
which was white’.

Note, finally, that all three kinds of attack have a direct and an indirect version; indi-
rect attack is directed against a subconclusion or a substep of an argument, as illustrated
by Figure 3.5 for indirect rebutting.

Figure 3.5: Direct attack (left) vs. indirect attack (right).

! Ceiling brackets around a meta-level formula denote a conversion of that formula to the object lan-
guage, provided that the object language is expressive enough to enable such a conversion.
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Defeat between arguments

The notion of conflicting, or attacking arguments does not embody any form of evalua-
tion; evaluating conflicting pairs of arguments, or in other words, determining whether
an attack is successful, is another element of argumentation systems. It has the form
of a binary relation between arguments, standing for ‘attacking and not weaker’ (in a
weak form) or ‘attacking and stronger’ (in a strong form). The terminology varies:
some terms that have been used are ‘defeat’, ‘attack’ and ‘interference’. Other systems
do not explicitly name this notion but leave it implicit in the definitions. In this text
we shall use ‘defeat’ for the weak notion and ‘strict defeat’ for the strong, asymmetric
notion. Note that the several forms of attack, rebutting vs. assumption vs. undercutting
and direct vs. indirect, have their counterparts for defeat.

Argumentation systems vary in their grounds for determining the defeat relations.
Often only domain-specific criteria are available, which, moreover, are often defeasible.
For this reason argumentation systems have been developed that allow for defeasible
arguments on these criteria. To give some examples of domain-specific criteria, in do-
mains where observations are important, defeat may depend on the reliability of tests,
observers or sensors. In advice giving or consultancy, defeat may be determined by the
level of expertise of the advisors or consultants. And in legal applications, defeat may
depend on the legal hierarchy among statutes, on the court’s level of authority, or on
social or moral values. Our example in the introduction contains an argument on the cri-
teria for defeat, viz. A’s use of a priority rule (10) based on the expected consequences
of certain events. This argument might, for instance, be attacked by an argument that in
case of important officials even a small likelihood that the disease affects the official’s
functioning justifies publication, or by an argument that the negative consequences of
publication for the official are small.

The dialectical status of arguments

The notion of defeat is a binary relation on the set of arguments. It is important to
note that this relation does not yet tell us with what arguments a dispute can be won;
it only tells us something about the relative strength of two individual conflicting ar-
guments. The ultimate status of an argument depends on the interaction between all
available arguments: it may very well be that argument B defeats argument A, but
that B is itself defeated by a third argument C'; in that case C' ‘reinstates’ A (see Fig-
ure 3.6)>. Suppose, for instance, that the argument A that Tweety flies because it is a
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Figure 3.6: Argument C' reinstates argument A.

bird is regarded as being defeated by the argument B that Tweety does not fly because
it is a penguin (for instance, because conflicting arguments are compared with respect
to specificity). And suppose that B is in turn defeated by an argument C, attacking

*While in figures 3.4 and 3.5 the arrows stood for attack relations, from now on they will depict defeat
relations.
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B’s intermediate conclusion that Tweety is a penguin. C might, for instance, say that
the penguin observation was done with faulty instruments. In that case C' reinstates
argument A.

Therefore, what is also needed is a definition of the dialectical status of arguments
on the basis of all the ways in which they interact. Besides reinstatement, this defini-
tion must also capture the principle that an argument cannot be justified unless all its
subarguments are justified. There is a close relation between these two notions, since
reinstatement often proceeds by indirect attack, i.e., attacking a subargument of the
attacking argument (as illustrated by Figure 3.5). It is this definition of the status of
arguments that produces the output of an argumentation system: it typically divides ar-
guments in at least two classes: arguments with which a dispute can be ‘won’ and argu-
ments with which a dispute should be ‘lost’. Sometimes a third, intermediate category
is also distinguished, of arguments that leave the dispute undecided. The terminology
varies here also: terms that have been used are justified vs. defensible vs. defeated (or
overruled), defeated vs. undefeated, in force vs. not in force, preferred vs. not preferred,
etcetera. Unless indicated otherwise, we shall use the terms ‘justified’, ‘defensible’ and
‘overruled’ arguments.

These notions can be defined both in a ‘declarative’ and in a ‘procedural’ form.
The declarative form, usually with fixed-point definitions, just declares certain sets of
arguments as acceptable, (given a set of statements and evaluation criteria) without
defining a procedure for testing whether an argument is a member of this set; the pro-
cedural form amounts to defining just such a procedure. Thus the declarative form of
an argumentation system can be regarded as its (argumentation-theoretic) semantics,
and the procedural form as its proof theory. Note that it is very well possible that,
while an argumentation system has an argumentation-theoretic semantics, at the same
time its underlying logic for constructing arguments has a model-theoretic semantics in
the usual sense, for instance, the semantics of standard first-order logic, or a possible-
worlds semantics of some modal logic.

EXERCISE 3.2.1 Reinstatement.

1. Extend Figure 3.6 (p. 35) with an argument D, such that D defeats C. Are there
arguments that are justified? If so, which arguments? Are there arguments that
are reinstated by D? If so, which?

2. Extend the figure just drawn with a fifth argument, F, such that E defeats D. Are
there arguments that are justified? If so, which arguments? Are there arguments
that are reinstated by D? If so, which? Are there arguments that are reinstated
by E? If so, which?

The content of the remaining chapters on argumentation is as follows. Chapter 4
presents a fully abstract formal framework for the semantics of argumentation systems,
which leaves the structure of arguments and the nature of the defeat relation unspeci-
fied. Chapter 5 discusses the proof-theory of these abstract argumentation systems in
the form of so-called argument games. Chapter 6 then presents an instantiation of the
abstract framework with structured arguments and two kinds of inference rules, deduc-
tive and defeasible ones. This framework is still partly abstract in that it abstracts from
the nature and origin of these rules and from the nature of the logical language.



Chapter 4

A framework for abstract
argumentation

This chapter presents a fully abstract framework for the semantics of argumentation,
which leaves the internal structure of arguments and the nature of the defeat relation
completely unspecified. As input it assumes nothing else but a set (of arguments) or-
dered by a binary relation (of defeat) and then defines several ‘semantics’, that is, prop-
erties that subsets of the set of all arguments should satisfy to be justified or defensible.
Note that such argumentation semantics are, unlike the semantics of, say, standard first-
order logic, not based on the notion of truth: since argumentation systems formalise
reasoning that is defeasible, they are not concerned with truth of propositions, but with
justification of accepting a proposition as true. In particular, one is justified in accepting
a proposition as true if there is an argument for the proposition that one is justified in
accepting. Argument-based semantics specify the conditions for when this is the case.

The abstract framework was introduced by Dung (1995). Historically, it came after
the development of a number of more concrete argumentation systems, such as the
systems of Pollock (1987)—(1994) and Vreeswijk (1993) (which are both predecessors
of the framework to be discussed in Chapter 6). Nevertheless, Dung’s article is by
now widely regarded as seminal. It was a breakthrough in several ways. Firstly, it
contains a general account of argumentation semantics, applicable to all systems that
instantiate his framework. Secondly, it made a precise comparison possible between
different systems by translating them into his abstract format. Third, it made a general
study of formal properties of systems possible, which are inherited by all systems that
instantiate his framework. Finally, all this applies not just to argumentation systems but
also to other nonmonotonic logics, since Dung (1995) showed for several such logics
how they can be translated into his abstract framework. In Section 4.6 we shall discuss
his argument-based reconstruction of default logic.

4.1 The status of arguments: preliminary remarks

We now start the discussion of abstract argument-based semantics. As explained above,
the task of argument-based semantics is to specify the conditions under which it is
justified to accept an argument. These conditions assume an ‘input’ set of arguments,



38 A framework for abstract argumentation

ordered by a binary relation of ‘defeat’.! The framework is as abstract as possible,
leaving both the structure of arguments and the grounds for defeat unspecified.

With Dung (1995) we shall call the input of the framework an ‘abstract argumenta-
tion framework (sometimes ‘argumentation framework’ for short), abbreviated as AF'.

Definition 4.1.1 [Abstract argumentation frameworks. ]

1. Anabstract argumentation framework (AF') is a pair ( Args, defeat), where Args
is a set of arguments, and defeat a binary relation on Arygs.

2. We say that a set S of arguments defeats an argument A iff some argument in S
defeats A; and S defeats a set S’ of arguments iff it defeats a member of S’.

As for applications of the framework, one might think of the set Args as all arguments
that can be constructed in a given logic from a given set of premises (although this
is not always the case: the framework equally applies to cases where just some of
the constructible arguments are constructed). Unless stated otherwise, we shall below
implicitly assume an arbitrary but fixed argumentation framework. Recall that we read
‘A defeats B’ in the weak sense of ‘A conflicts with B and is not weaker than B’; so
in some cases it may happen that A defeats B and B defeats A. If A defeats B, then if
B does not defeat A we say that A strictly defeats B, otherwise A weakly defeats B.
Let us now concentrate on the task of defining the notion of a justified argument.
Which properties should such a definition have? A simple definition is the following.

Definition 4.1.2 Arguments are either justified or not justified.
1. An argument is justified iff all arguments defeating it (if any) are not justified.
2. An argument is not justified iff it is defeated by an argument that is justified.

This definition works well in simple cases, in which it is clear which arguments should
emerge victorious, as in the following example.

Example 4.1.3 Consider three arguments A, B and C such that B defeats A and C'
defeats B:

A—B—C

A concrete version of this example is

A= “Tweety flies because it is a bird’
B = ‘Tweety does not fly because it is a penguin’
C = “The observation that Tweety is a penguin is unreliable’

C'is justified since it is not defeated by any other argument. This makes B not justified,
since B is defeated by C. This in turn makes A justified: although A is defeated by B,
A is reinstated by C, since C' makes B not justified.

In other cases, however, Definition 4.1.2 is circular or ambiguous. In particular
when arguments of equal strength interfere with each other, it is unclear which argument
should remain undefeated.

"Dung (1995) uses the term ‘attack’, but to maintain uniformity throughout this text, we shall use
‘defeat’.
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Example 4.1.4 (Even cycle.) Consider the arguments A and B such that A defeats B
and B defeats A.

77N
A B
"
A concrete example is
A = ‘Nixon was a pacifist because he was a quaker’
B = ‘Nixon was not a pacifist because he was a republican’

Can we regard A as justified? Yes, we can, if B is not justified. Can we regard B as
not justified? Yes, we can, if A is justified. So, if we regard A as justified and B as not
justified, Definition 4.1.2 is satisfied. However, it is obvious that by a symmetrical line
of reasoning we can also regard B as justified and A as not justified. So there are two
possible ‘status assignments’ to A and B that satisfy Definition 4.1.2: one in which A
is justified at the expense of B, and one in which B is justified at the expense of A. Yet
intuitively, we are not justified in accepting either of them.

In the literature, two approaches to the solution of this problem can be found. The
first approach consists of changing Definition 4.1.2 in such a way that there is always
precisely one possible way to assign a status to arguments, and which is such that with
‘undecided conflicts’ as in our example both of the conflicting arguments receive the
status ‘not justified’. The second approach instead regards the existence of multiple
status assignments not as a problem but as a feature: it allows for multiple assignments
and defines an argument as ‘genuinely’ justified if and only if it receives this status
in all possible assignments. The following two sections discuss the details of both
approaches.

First, however, another problem with Definition 4.1.2 must be explained, having to
do with self-defeating arguments.

Example 4.1.5 (Self-defeat.) Consider an argument L, such that L defeats L (Fig-
ure 4.1). Suppose L is not justified. Then all arguments defeating L are not justified, so
by clause 1 of Definition 4.1.2 L is justified. Contradiction. Suppose now L is justified.
Then L is defeated by a justified argument, so by clause 2 of Definition 4.1.2 L is not
justified. Contradiction.

N
N

Figure 4.1: A self-defeating argument.

Thus, Definition 4.1.2 implies that there are no self-defeating arguments. Yet in ordi-
nary discourse examples of self-defeating arguments can be found, as in the following
example.
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Example 4.1.6 (The Liar.) An elementary self-defeating argument can be fabricated
on the basis of the so-called paradox of the Liar. There are many versions of this
paradox. The one we use here, runs as follows:

Dutch people can be divided into two classes: people who always tell the
truth, and people who always lie. Hendrik is Dutch monk, and from Dutch
monks we know that they tend to be consistent truth-tellers. Therefore, it
is reasonable to assume that Hendrik is a consistent truth-teller. However,
Hendrik says he is a liar. Is Hendrik a truth-teller or a liar?

The Liar-paradox is a paradox, because either answer leads to a contradiction.

1. Suppose that Hendrik tells the truth. Then what Hendrik says must be true. So,
Hendrik is a lier. Contradiction.

2. Suppose that Hendrik lies. Then what Hendrik says must be false. So, Hendrik
is not a lier. Because Dutch people are either consistent truth-tellers or consistent
liers, it follows that Hendrik always tells the truth. Contradiction.

From this paradox, a self-defeating argument L can be made out of (1):

Dutch monks

tend to be
consistent Hendrik is a
truth-tellers Dutch monk
Hendrik is a
Hendrik says: consistent
“I lie” truth-teller
Hendrik lies
Hendrik is not a
consistent

truth-teller

If the argument for “Hendrik is not a consistent truth-teller” is as strong as its subargu-
ment for “Hendrik is a consistent truth-teller,” then L defeats one of its own subargu-
ments, and thus is a self-defeating argument.

In conclusion, the treatment of self-defeating arguments deserves special attention.
Below we shall discuss for each particular semantics how it deals with self-defeat.

4.2 The unique-status-assignment approach

We now discuss an approach that changes Definition 4.1.2 in such a way that there is
always precisely one possible way to assign a status to arguments. This ‘unique-status-
assignment’ approach can best be explained by the way it formalises ‘reinstatement’
(see above, Section 3.2). It does so by combining a notion of acceptability with a
fixed-point operator. Recall that an argument that is defeated by another argument can
only be justified if it is reinstated by a third argument, viz. by a justified argument that
defeats its defeater. Part of this idea is captured by the notion of acceptability (which,
by the way, is also relevant for the multiple-status-assignments approach, as we shall
see below in Section 4.3).
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Definition 4.2.1 [Acceptability.] An argument A is acceptable with respect to a set S
of arguments iff each argument defeating A is defeated by S. When A is acceptable
with respect to S, we also say that S defends A.

The arguments in S can be seen as the arguments capable of reinstating A in case A
is defeated. To illustrate acceptability, consider again Example 4.1.3: A is acceptable
with respect to {C'}, {A,C}, {B,C} and {A, B,C}, but not with respect to & and
{B}.

The notion of acceptability is not yet sufficient. Consider in Example 4.1.4 the set
S = {A}. Ttis easy to see that A is acceptable with respect to S, since all arguments
defeating A (viz. B) are defeated by an argument in S, viz. A itself. Clearly, we do not
want that an argument can reinstate itself, and this is the reason why, to obtain a unique
status assignment, a fixed-point operator must be used.

Intermezzo: fixed point operators Below we need some basics on fixed-point op-
erators. Let S be a set and O : Pow(S) — Pow(S) be an operator which for any
subset of S returns a subset of S. T" C S is a fixed point of O iff O(T) = T. It is
known that if O satisfies certain properties, it has a least fixed point, i.e. a fixed point
which is a subset of all other fixed points of O. The most important of these properties
is monotonicity, which is that O(T") € O(T") whenever T' C T".

Consider now the following operator, which for each set of arguments returns the set of
all arguments that are acceptable to it.

Definition 4.2.2 [Grounded semantics.] Let AF be an abstract argumentation frame-
work, and let S C Args 4. Then the operator FAF is defined as follows:

o [AF(S) ={A € Argsar | Ais acceptable with respect to S}
The grounded extension of AF is defined as the least fixed point of A%,

It can be shown that the operator F' has a least fixed point, so that the notion of a
grounded extension is well-defined?. (The basic idea is that if an argument is acceptable
with respect to .S, it is also acceptable with respect to any superset of S, so that F' is
monotonic.) Self-reinstatement can then be avoided by defining the set of justified
arguments as that least fixed point. Note that in Example 4.1.4 the set {A} and {B}
are fixed points of F but not its least fixed point, which is the empty set. In general we
have that if no argument is undefeated, then F'(@) = @.
These observations allow the following definition of a justified argument.>

Definition 4.2.3 [Justified arguments in grounded semantics.] An argument is justified
with respect to grounded semantics iff it is a member of the grounded extension.

In applying these definitions, it is useful to know that the least fixed point of F' can be
approximated, and under certain conditions even obtained, by iterative application of F'
to the empty set.

Proposition 4.2.4 Dung (1995) Consider the following sequence of arguments.

*Below the superscript of F' will usually be omitted.
3Henceforth, the definitions in this and the next chapter will, unless specified otherwise, impicitly
assume an arbitrary but fixed abstract argumentation framework.
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o FV=g
o Fi*l = 1A € Args | Ais acceptable with respect to F*}.
Let F¥ = U2 (F*). The following observations hold.

1. All arguments in F'“ are justified.

2. If each argument is defeated by at most a finite number of arguments, then an
argument is justified iff it is in F'*.

Proof: (1) follows from the facts that F* is included in the least fixed point of F' and
that if an argument is acceptable with respect to S, it is also acceptable with respect to
any superset of S. For (2), assume that each argument has at most a finite number of
defeaters. Let Sg C ... C S, C ... be an increasing sequence of sets of arguments,
and let S = SpU...S, U.... Let A € F(S). Since there are only finitely many
arguments which defeat A, there exists a number m such that A € F™(S). Therefore,
F(S)=F(So)U...F(S,)U...O

Note that if the condition of (2) does not hold, it is possible that F C F'(F“).

In the iterative construction of the set of justified arguments first all arguments that
are not defeated by any argument are added, and at each further application of F' all
arguments that are reinstated by arguments that are already in the set are added. This
is achieved through the notion of acceptability. To see this, suppose we apply F' for
the ith time: then for any argument A, if all arguments that defeat A are themselves
defeated by an argument in =1, then A is in F".

It is instructive to see how this works in Example 4.1.3. We have that

F!' = F(2) ={C}
F? = F(F')={A,C}
F3 = F(F?) = F?

The following example, with an infinite chain of defeat relations, provides another

illustration.

Example 4.2.5 Consider an infinite chain of arguments Ay, ..., A,,... such that A
is defeated by As, A, is defeated by A3, and so on.

Ay Ay As Ay As

The least fixed point of this chain is empty, since no argument is undefeated. Conse-
quently, F'(&) = &. Note that this example has two other fixed points, which also
satisfy Definition 4.1.2, viz. the set of all A; where 7 is odd, and the set of all A; where
1 1s even.

Defensible arguments

Definition 4.2.3 allows a distinction between two types of arguments that are not jus-
tified. Consider first again Example 4.1.3 and observe that, although B defeats A, A
is still justified since it is reinstated by C. Consider next the following extension of
Example 4.1.4.
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Example 4.2.6 (Zombie arguments.) Consider three arguments A, B and C such that
A defeats B, B defeats A, and B defeats C.

~
A B C
N 7

A concrete example is

A = ‘Dixon is no pacifist because he is a republican’

B = ‘Dixon is a pacifist because he is a quaker, and he has no gun

because he is a pacifist’
C = ‘Dixon has a gun because he lives in Chicago’

According to Definition 4.2.3, neither of the three arguments are justified. For A and
B this is since their relation is the same as in Example 4.1.4, and for C this is since
it is defeated by B. Here a crucial distinction between the two examples becomes
apparent: unlike in Example 4.1.3, B is, although not justified, not defeated by any
justified argument and therefore B retains the potential to prevent C' from becoming
justified: there is no justified argument that reinstates C' by defeating B. Sometimes
arguments like B are called ‘zombie arguments’: B is not ‘alive’, (i.e., not justified)
but it is not fully dead either; it has an intermediate status, in which it can still influence
the status of other arguments.

We shall call the intermediate status of zombie arguments ‘defensible’. In the
unique-status-assignment approach it can be defined as follows.

Definition 4.2.7 [Overruled and defensible arguments in grounded semantics.] With
respect to grounded semantics, an argument is:

e overruled iff it is not justified, and defeated by a justified argument;

e defensible iff it is not justified and not overruled.

Self-defeating arguments

How does Definition 4.2.2 deal with self-defeating arguments? Consider the following
extension of Example 4.1.5.

Example 4.2.8 Consider two arguments A and B such that A defeats A and A defeats
B.
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We have that F'(@) = &, so neither A nor B are justified. Moreover, they are
both defensible, since they are not defeated by any justified argument. At first sight, it
might be thought that this is undesired since it would seem that self-defeating arguments
should always be overruled. However, in Chapter 6 we will see that that things are more
subtle and that a proper analysis of self-defeating arguments can only be given if the
internal structure of arguments is made explicit.
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Unique status assignments: problems

We have seen that the unique-assignment approach can be formalised in a mathemati-
cally elegant way, and that it produces intuitive results in many cases. However, there
are also problems, in particular with examples of the following kind.

Example 4.2.9 (Floating arguments.) Consider the arguments A, B, C' and D such that
A defeats B, B defeats A, A defeats C, B defeats C and C defeats D.
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Since no argument is undefeated, Definition 4.2.3 tells us that all of them are defensible.
However, it might be argued that for C' and D this should be otherwise: since C' is
defeated by both A and B, C should be overruled. The reason is that as far as the status
of C' is concerned, there is no need to resolve the conflict between A and B: the status
of C ‘floats’ on that of A and B. And if C should be overruled, then D should be
justified, since C'is its only defeater.

A variant of this example is the following piece of default reasoning. To analyse
this example, we must make two assumptions on the structure of arguments, viz. that
they have a conclusion and that they have subarguments.

Example 4.2.10 (Floating conclusions.) Consider the arguments A~, A, B~ and B
such that A~ and B~ defeat each other and A and B have the same conclusion.

An intuitive reading is

A~ = Brigt Rykkje is Dutch because he was born in Holland

B~ = Brigt Rykkje is Norwegian because he has a Norwegian name
A = Brigt Rykkje likes ice skating because he is Dutch

B = Brigt Rykkje likes ice skating because he is Norwegian

The point is that whichever way the conflict between A~ and B~ is decided, we always
end up with an argument for the conclusion that Brigt Rykkje likes ice skating, so it
seems that it is justified to accept this conclusion as true, even though it is not supported
by a justified argument. In other words, the status of this conclusion floats on the status
of the arguments A~ and B™.

While the unique-assignment approach is inherently unable to capture floating ar-
guments and conclusions, there is a way to capture them, viz. by working with multiple
status assignments. To this approach we now turn.



Multiple status assignments 45

4.3 The multiple-status-assignments approach

A second way to deal with competing arguments of equal strength is to let them induce
two alternative status assignments, in both of which one is justified at the expense of
the other. In this approach, an argument is ‘genuinely’ justified iff it receives this status
in all status assignments. This approach can be formalised in various ways, of which
so-called stable and preferred semantics are the two best-known.

4.3.1 Stable semantics

The first way to allow for multiple status assignments, called stable semantics, is to
take Definition 4.1.2 as the basis, and simply use the fact that it allows for multiple
assignments. To this end, we turn this definition into one of a ‘stable status assignment’.

Definition 4.3.1 [stable status assignments.]

Let AF = (Args, defeat) be an abstract argumentation framework and In and Out
two subsets of Args. Then (In, Out) is a stable status assignment on the basis of AF'
iff In N Out = @ and In U Out = Args and for all A € Args it holds that:

1. Aisin (thatis, A € In) iff all arguments defeating A (if any) are out.
2. Aisout (thatis, A € Out) iff A is defeated by an argument that is in.

Note that the conditions 1 and 2 are just the conditions of Definition 4.1.2.

Definition 4.3.1 is said to define stable status assignments for the following reasons.
Firstly, with each stable status assignment a so-called stable argument extension can be
associated, containing all the arguments that are in in the status assignment.

Definition 4.3.2 [Stable argument extensions.] A set of arguments is a stable argument
extension iff for some stable status assignment it is the set of all arguments that are
assigned the status in.

Now stable argument extensions coincide with what Dung (1995) calls stable exten-
sions. In fact, Dung gives another but equivalent definition, which uses the notion of a
conflict-free set of arguments.

Definition 4.3.3 [Conflict-free sets.] A set S of arguments is conflict-free iff no argu-
ment in S defeats an argument in S.

Then Dung defines stable extensions as follows.

Definition 4.3.4 [Stable extensions.] A set S of arguments is a stable extension iff S
is conflict-free and every argument that is not in .S, is defeated by S.

Proposition 4.3.5 The stable argument extensions induced by Definition 4.3.1 are pre-
cisely the stable extensions defined by Definition 4.3.4.

Proof: =

Suppose (In, Out) is a stable status assignment. To be proven:
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1. In is conflict-free.

Assume for contradiction that In contains arguments A and B such that A defeats
B. Then by condition (2) of Definition 4.3.1 B is in Qut. But since In N Out =
&, we have that B is not in In. Contradiction. So there are no such A and B, so
In is conflict-free.

2. In defeats every argument outside In.

Since stable status assignments assign a status to all arguments in Args and
In N Out = @, every argument outside In is in Out. Then by condition (2)
of Definition 4.3.1 every such argument is defeated by an argument in In.

<~

Suppose S is a stable extension. To be proven: (S, Args/S) is a stable status
assignment. Note first that by construction this is a partition of Args, so In N Out = &
and In U Out = Args. Then it must be verified that the two labelling conditions of
Definition 4.3.1 are satisfied.

1. Condition (1) of Definition 4.3.1 is satisfied as follows. For the only if-part, if
A € S then since S is conflict-free, no B € S defeats A, so all defeaters of A
are in Args/S. For the if-part, if all defeaters of an argument A are in Args/S,
then A cannot be in Args/S, since no defeater of Aisin S. So Aisin S.

2. Condition (2) of Definition 4.3.1 is satisfied as follows. For the only-if part, sup-
pose A € Args/S. Then since S defeats all arguments outside it, A is defeated
by an argument in S. For the if-part, suppose A is defeated by an argument in S.
Then since S is conflict-free, A € Args/S. O

Below we shall use the term stable extension both for stable argument extensions and
for Dung’s stable extensions.

Example 4.1.3 has only one stable extension, viz. { A, C'}, while Example 4.1.4 has
two, induced by the following two status assignments:
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Recall that an argumentation system is supposed to define when it is justified to accept
an argument. What can we say in case of A and B in Example 4.1.4? Since both of
them are in in one stable status assignment but out in the other, we must conclude that
with respect to stable semantics neither of them is justified. This is captured by the
following definition:

Definition 4.3.6 [Justified arguments in stable semantics.] With respect to stable se-
mantics, an argument is justified iff it is in in all stable status assignments.

However, this is not all; just as in the unique-status-assignment approach, it is possible
to distinguish between two different categories of arguments that are not justified. Some
of those arguments are in no stable status assignment, but others are at least in some
extensions. The first category can be called the overruled, and the latter category the
defensible arguments.
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Definition 4.3.7 [Overruled and defensible arguments in stable semantics.] With re-
spect to stable semantics, an argument is:

o overruled iff it is out in all stable status assignments;
o defensible iff it is in in some but not in all stable status assignments.

It is easy to see that the unique-assignment and multiple-assignments approaches
are not equivalent. Consider again Example 4.2.9. Argument A and B form an even
defeat loop, thus, according to the multiple-assignments approach, either A and B can
be assigned in but not both. So the above defeat relation induces stable two status
assignments:
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While in the unique-assignment approach all arguments are defensible, we now have
that, while A and B are defensible, D is justified and C' is overruled.

Multiple status assignments also make it possible to capture floating conclusions.
Informally, this can be done by defining that a formula ¢ is justified as ‘all extensions
contain an argument for ¢’, rather than as ‘there exists an argument for ¢ that is in all
extensions’. In Chapter 6, in which the structure of arguments is formally defined, these
alternative consequence notions for formulas will be fully formalised.

4.3.2 Preferred semantics

There is reason to discuss a second variant of the multiple-status-assignments approach.
Since a stable extension is conflict-free, it reflects in some sense a coherent point of
view. It is also a maximal point of view, in the sense that every possible argument is
either accepted or rejected. In fact, stable semantics is the most ‘aggressive’ type of
semantics, since a stable extension defeats every argument not belonging to it, whether
or not that argument is hostile to the extension.

This feature is the reason why not all argumentation frameworks have stable exten-
sions, as the following example shows. It contains an ‘odd loop’ of defeat relations.

Example 4.3.8 (Odd loop.) Let A, B and C be three arguments, represented in a tri-
angle, such that A defeats C, B defeats A, and C' defeats B.

C
/ / \\_

In this situation, Definition 4.3.1 has some problems, since this example has no stable
status assignments.

1. Assume that A is in. Then, since A defeats C, C is out. Since C is out, B is in,
but then, since B defeats A, A is out. Contradiction.
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2. Assume next that A is out. Then, since A is the only defeater of C, C'is in. Then,
since C' defeats B, B is out. But then, since B is the only defeater of A, A is in.
Contradiction.

Note that a self-defeating argument is a special case of Example 4.3.8, viz. the case
where B and C are identical to A. This means that argumentation frameworks contain-
ing a self-defeating argument may have no stable status assignment.

To give such examples also a multiple-assignment semantics, we need allow for the
possibility of partial status assignments.

Definition 4.3.9 [(Preferred) status assignments.] Let AF' = (Args, defeat) be an ab-
stract argumentation framework and In and Out two subsets of Args. Then (In, Out)
is a status assignment on the basis of AF iff In N Out = @& and for all A € Args it
holds that:

1. Aisin (thatis, A € In) iff all arguments defeating A (if any) are out.
2. Ais out (thatis, A € Out) iff A is defeated by an argument that is in.

A status assignment (In, Out) is preferred iff it maximises the set of argument labelled
in, that is, if there exists no status assignment (In', Out’) such that In C In’.

To go back to Example 4.3.8, preferred semantics gives it a unique preferred status
assignment, viz. (&, &).

The notions of justified, overruled and defensible arguments defined in Defini-
tions 4.3.6 and 4.3.7 can be easily defined also for preferred semantics, by uniformly
replacing ‘stable’ by ‘preferred’. However, in preferred semantics there are reasonable
alternatives for the definitions of defensible and overruled arguments (and conclusions).
This is because in each status assignment the status of an argument can be one of three
kinds: in, out or undefined. Hence there are, unlike in stable semantics, situations
where an argument is in in some but not in all assignments but yet not out in any as-
signment. Likewise, there are situations where an argument is ouf in some but not in all
assignments but yet not in in any assignment. In the remainder of this reader we will
for simplicity interpret the notions of defensible and overruled arguments as defined in
Definitions 4.3.7.

To return to the notion of preferred extensions, Dung (1995) defines it not in terms
of partial status assignments but with the notion of an admissible set, which in turn is
defined in terms of acceptability.

Definition 4.3.10 [conflict-free and admissible sets.]

1. A set of arguments is conflict-free iff no argument in the set defeats an argument
in the set.

2. A set of arguments S is admissible iff S is conflict-free and each argument in S
is acceptable with respect to S.

Intuitively, an admissible set represents an admissible, or defendable, point of view.
In Example 4.1.3 the sets @, {C'} and {A, C'} are admissible but all other subsets of
{4, B, C} are not admissible.
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Definition 4.3.11 [Preferred extensions.] A conflict-free set of arguments is a preferred
extension iff it is a maximal (with respect to set inclusion) admissible set.

There is a one-to-one correspondence between preferred status assignments and pre-
ferred extensions.

Proposition 4.3.12
1. If (In, Out) is a status assignment, then In is an admissible set;

2. Let Out(FE) be the set of all arguments defeated by E. If F is a preferred exten-
sion, then (E, Out(E)) is a status assignment;

3. (In,Out) is a preferred status assignment iff In is a preferred extension.

Proof: We first prove the following lemma (which is Lemma 10 of Dung 1995).

(*) If E is an admissible set and A is acceptable wrt E, then {A} U E' is
admissible.

Proof of (*): It suffices to show that { A} U E' is conflict-free. Assume for contradiction
the contrary. Then there is a B € E such that either A defeats B or B defeats A. Since
E is admissible and A is acceptable wrt F, there is a B” in E such that B’ defeats B or
B’ defeats A. Since E is conflict-free, it follows that B’ defeats A. But then there is an
argument B” in E such that B” defeats B’. Contradiction. O

Proof of (1):

Let (In,Out) be any status assignment and A be any member of In. Observe first
that I'n is conflict-free. Next, all arguments defeating A are in Out, so all arguments
defeating A are defeated by In. But then I'n is an admissible set.

Proof of (2):

Let E be any preferred extension. Condition 2 of Definition 4.3.9 is satisfied by def-
inition of Out(E). To verify condition 1, observe first that all members of E' are ac-
ceptable with respect to F, so all their defeaters are in Out(FE). Next, let A be any
argument such that all its defeaters are in Out(E). Then A is acceptable with respect
to F, and by (*), {A} U E is admissible. But then, since £ is maximally admissible, it
follows that A € F.

Proof of (3), =

Consider any preferred status assignment (In, Out). By (1), In is admissible. To prove
that In is maximally admissible, assume for contradiction that there is an admissible
set In’ O In. By a result of Dung (1995) we may without loss of generality assume
that In’ is maximally admissible. Then (In’, Out’) is a status assignment by (2). But
since In’ D In, (In,Out) is not a preferred status assignment. Contradiction.
Proof of (3), <:

Assume that E is a preferred extension. By (2), (E, Out(E)) is a status assignment.
Next, to prove that FE is a preferred status assignment, assume for contradiction other-
wise, viz. that there is a status assignment (/n, Out) such that In O E. By (1), In is
an admissible set. But then F is not maximally admissible. Contradiction. O

It follows from Definition 4.3.11 that:

Proposition 4.3.13 (Dung, 1995) Every abstract argumentation framework has at least
one preferred extension.
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Proof: We begin by proving that every admissible set is contained in a maximal admis-
sible set. From this the observation follows since the empty set is admissible.

Consider a sequence Sop C ... € 5; C ... of admissible sets. Clearly, S =
SpU...US;U...is maximal in this sequence.* We prove that S is also admissible by
proving that the union of any two elements of .S is admissible.

Consider any 5;,S; € S. Observe first that if S; C S, then since S; is conflict-
free, S; does not defeat S;. Suppose next that S; defeats S;. Since S; is admissible,
S; then also defeats S;. Contradiction. So S; U S; is conflict-free. Next, since S; as
well as S; defeats each argument that defeats one of its members, the same holds for
S; U S}, so that this set is admissible. O

Grounded status assignments It turns out that grounded semantics can also be for-
mulated in terms of status assignments, namely, as those assignments that minimise the
set of arguments that is labelled in.

Definition 4.3.14 [Grounded status assignments.] A status assignment S = (In, Out)
is grounded iff there is no status assignment S’ = (I'n/, Out’) such that In’ C In.

Proposition 4.3.15 (Caminada, 2006) S is the grounded extension of AF' if and only
if (S, Out) is a grounded status assignment of AF".

Self-defeat in preferred semantics Finally, how does preferred semantics deal with
self-defeating arguments? It turns out that, just as in grounded semantics, self-defeating
arguments can prevent other arguments from being justified. This can be illustrated with
Example 4.2.8 (two arguments A and B such that A defeats A and A defeats B). The
set { B} is not admissible, so the only preferred extension is the empty set. As said
above, a full analysis of self-defeat requires that the internal structure of arguments is
made explicit; this will be further discussed in Chapter 6, Section 6.6.

4.4 Formal relations between grounded, stable and preferred
semantics

We now give some results on the relation between the various semantics proven by
Dung (1995).

Proposition 4.4.1 Every stable extension is preferred, but not vice versa.

Proof: It is clear that each stable extension is a preferred extension. And Example 4.2.8
shows that the reverse does not hold: the empty set is a preferred extension of this
argumentation framework, but it is not stable. O

The following results are listed without proofs.

1. The grounded extension is contained in the intersection of all preferred exten-
sions (Example 4.2.9 is a counterexample against ‘equal to’).

4Strictly speaking, this follows from a result in lattice theory.
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2. If an abstract argumentation framework does not give rise to infinite paths Ay, ..., A,, ...

through the defeat graph such that each A;,; defeats A; then it has exactly one
stable extension, which is also grounded and preferred. (Note that the even loop
of Example 4.1.4 and the odd loop of Example 4.3.8 give rise to such an infinite
defeat path.)

3. Finally, Dung (1995) identifies conditions under which preferred and stable se-
mantics coincide. A necessary condition is that an abstract argumentation frame-
work does not contain odd defeat loops.

4.5 Comparing the two approaches

How do the unique- and multiple-assignment approaches compare to each other? It
is sometimes said that their difference reflects a difference between a ‘skeptical’ and
‘credulous’ attitude towards drawing defeasible conclusions: when faced with an un-
resolvable conflict between two arguments, a skeptic would refrain from drawing any
conclusion, while a credulous reasoner would choose one conclusion at random (or both
alternatively) and further explore its consequences. However, the distinction skeptical-
credulous is independent of the distinction between the unique- and multiple-status-
assignment approach. When deciding what to accept as a justified belief, what is im-
portant is not whether one or more possible status assignments are considered, but
how the arguments are ultimately evaluated given these assignments. And this evalu-
ation is captured by the qualifications ‘justified’ and ‘defensible’, which thus capture
the distinction between ‘skeptical’ and ‘credulous’ reasoning. And since, as we have
seen, the distinction justified vs. defensible arguments can be made in both the unique-
assignment and the multiple-assignments approach, these approaches are independent
of the distinction ‘skeptical’ vs. ‘credulous’ reasoning.

The use of skeptical reasoning (in whatever way it is formalised) is often defended
by saying that since in an unresolvable conflict no argument is stronger than the other,
neither of them can be accepted as justified, while the use of credulous reasoning has
sometimes been defended by saying that the practical circumstances often require a
person to act, whether or not s/he has conclusive reasons to decide which act to perform.
In our opinion the notions of skeptical and credulous reasoning do not exclude but
completement each other: whether it is better to reason skeptically or credulously may
depend on the application context. For example, for a judge in a law court the reasoning
about whether the suspect is guilty must clearly be skeptical, while for an intelligent
software agent faced with two conflicting goals it makes sense to reason credulously, to
achieve at least one of the goals.

As for their outcomes, the unique- and multiple-assignment approaches mainly dif-
fer in their treatment of floating arguments and conclusions. With respect to these ex-
amples, the question easily arises whether one approach is the right one. However, we
prefer a different attitude: instead of speaking about the ‘right’ or ‘wrong’ definition,
we prefer to speak of ‘senses’ in which an argument or conclusion can be justified. For
instance, the sense in which the conclusion that Brigt Rykkje likes ice skating in Exam-
ple 4.2.10 is justified is different from the sense in which, for instance, the conclusion
that Tweety flies in Example 4.1.3 is justified: only in the second case is the conclusion
supported by a justified argument. And the status of D in Example 4.2.9 is not quite
the same as the status of, for instance, A in Example 4.1.3. Although both arguments
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need the help of other arguments to be justified, the argument helping A is itself justi-
fied, while the arguments helping D are merely defensible. Again it may depend on the
application context which sense of justification is the best.

4.6 Argument-based reconstruction of other nonmonotonic
logics

The application of Dung’s abstract argumentation framework is not restricted to argument-
based systems; it can also be used to reformulate other nonmonotonic logics in argument-
based terms. The advantage of this is that these logics can thus be compared in terms
of a general theory: it can be systematically investigated in which respects they differ,
and what the consequences are of these differences. Moreover, it becomes easier to
formulate alternative versions of these logics. For instance, it is very easy to switch
from one type of semantics to another.

We shall illustrate this for one of the best-known nonmonotonic logics, default
logic. Our reconstruction is based on the one of Dung (1995), but somewhat devi-
ates from it: while Dung bases his reconstruction on Reiter’s original version of default
logic, we base it on Antoniou’s (1999) reformulation in terms of processes.

One way to reconstruct default logic in argument-based terms is by defining an
argument as a finite process in the sense of Antoniou (1999). Recall that (informally) a
process is a sequence of defaults without multiple occurrences such that the prerequisite
of each default is logically implied by the union of the ‘hard’ knowledge W and the
consequents of all preceding defaults in the sequence. A process is closed iff no more
defaults can be appended to the sequence, and it is successful iff each of its assumptions
is consistent with what is derived during the process. Clearly, processes as arguments
do not have to be closed, since arguments are typically constructed to prove a particular
conclusion. Moreover, they do not have to be successful, since unsuccessful processes
correspond to self-defeating arguments.

A default theory can now be interpreted as an abstract argumentation framework as
follows.

Definition 4.6.1 For any default theory A = (W, D), the abstract argumentation frame-
work AF(A) = (Argsa, defeat 5) is defined as follows.

e Argsa = {II | Il is a finite process of A};
o Il defeatsp 11" iff ¢ € In(11) for some ¢ € Out(IT').
A formula ¢ is a conclusion of an argument IT iff ¢ € In(IT).

Thus an argument can be defeated by deriving the negation of one of its assumptions.

Under this translation of default logic into an argumentation system, a correspon-
dence can be proven between default logic and stable semantics. More precisely, let A
be a default theory, and

- for any set E of formulas, let Args(F) be the set of all II € Argsa such that for
all k € Out(II) : {—k} U E is consistent,
- for any set S C Argsa, let Concs(.S) be the union of all sets In(I1;) such that
II, € S.
Then the following holds:
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Proposition 4.6.2 For any default theory A:
1. If S is a stable extension of AF'(A), then Concs(S) is a Reiter-extension of A;
2. If E is a Reiter-extension of A, then Args(FE) is a stable extension of AF'(A).

The proof of this proposition uses some notation: if d is a default, then Pre(d), Jus(d)
and Cons(d) respectively denote d’s prerequisite, justifications and consequent. We
first prove the following lemma, which in effect says that violating the consistency
check in testing applicability of a default gives rise to a defeating counterargument.

Lemma 4.6.3 If S is a stable extension of AF'(A) and IT € S, then:

1. all subsequences II" of II that are arguments are in .S

2. all arguments in .S are processes.

Proof: For (1), observe that any defeater of I also is a defeater of II, so is outside S
but then IT" € S by definition of a stable extension.

For (2), suppose II € S and II is not a process. Then for some subsequence I1[i]
of IT and d; € II the negation of some j € Jus(d;) is in In(II[¢]). So II[i] defeats II.
Also, II[i] € S by (1); but then S is not conflict-free. Contradiction. O

Proof: To prove (1) of Proposition 4.6.2, we first append all arguments in .S into a
sequence of defaults IT and delete each repeated occurrence of every default. Clearly,
by Lemma 4.6.3 and conflict-freeness of S we have that II is a process. We claim that
IT is a closed and successful process.

Firstly, since S is conflict-free, it follows by definition of defeat that In(II) N
Out(IT) = @, so IT is successful.

Next, consider any default d not in IT and suppose that Pre(d) € In(II). We claim
that In(IT) F —k for some k& € Jus(d). By compactness® of first-order logic, Pre(d)
is implied by some finite subset of In(II). With this subset a finite subprocess I1]]
of IT can be associated. Since d is not an element of II, we have that I1[i], d is not a
subprocess of II. So by construction of IT we have that II[i], d ¢ S. But then since S is
stable, S defeats I1[i], d so In(II) - =k for some k € Jus(d). Hence II is closed.

Next, to prove (2), consider a closed process II generating E and let Args(II) be the
set of all finite processes that only use defaults from II. Since II is closed, we have that
Args(Il) = Args(E).

We next show that Args(II) is a stable extension. Conflict-freeness of Args(IT)
follows immediately from successfulness of II. To show that Args(II) defeats any
argument outside it, consider any such argument A = dy, ..., d, and let d; be the first
default in A that is not in IT. Then since IT is closed, we have that In(IT) - —k for some
k € Jus(d). But then by compactness of first-order logic, some argument in Args(II)
defeats A. O

>Compactness means that if a sentence follows from an infinite set of premises, it also follows from a
finite subset of these premises.
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Example 4.6.4 Consider the following default theory Ay = (W, D) where W = {p}
and

g N : Tu Nt
D = dlipiq 7’" d2:7q S, d3:p7U
q t =t

The argumentation framework AF'(A1) consists of the following arguments.

A=0

B =d;

C =di,dy
D =d3
E=d,ds
F=dsd;

G =dy,ds,ds
H =d3,d;,dy

And the defeat relations are depicted in figure 4.2, except that the figure leaves implicit
that G and H also defeat all other arguments.

D
E

A
C F

B

O
i

Figure 4.2: AF(A)

It is easy to verify that the default theory A; has one default logic extension, viz.
Th({p, q,t}), generated by the process dy, d2. Correspondingly, AF'(A1) has a unique
stable extension, viz. {A, B, C'}. Note that this stable extension contains the process
that generates the default logic extension of Ay, as well as all its subprocesses.

Example 4.6.5 Consider next a default theory Ay = (&, {ﬁ—’;}) We know from Anto-
niou (1999) that this default theory has no extensions. We have that AF'(A3) contains
two arguments, viz. & and ;—Z;. The only defeat relation is that the latter argument
defeats itself. Then it is easy to see that this argumentation framework has no stable
extensions.

4.7 Final remarks

As remarked above, Dung’s fully abstract approach was a major innovation in the study
of defeasible argumentation, in that it provided an elegant general framework for inves-
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tigating the various argumentation systems. Moreover, the framework also applies to
other nonmonotonic logics, since Dung showed how several of these logics can be trans-
lated into argumentation systems. Thus it becomes very easy to formulate alternative
semantics for nonmonotonic logics. For instance, default logic, which above was shown
to have a stable semantics, can very easily be given an alternative semantics in which
extensions are guaranteed to exist, like preferred or grounded semantics. Moreover,
the proof theories that have been or will be developed for the various argument-based
semantics immediately apply to the systems that are an instance of these semantics.

On the other hand, the fully abstract nature of Dung’s framework also leaves much
to the developers of particular systems. In particular, they have to define the internal
structure of an argument, the ways in which arguments can conflict, and the origin of
the defeat relation. In the next chapter a more concrete framework will be discussed in
which these elements have been defined.

4.8 Exercises

EXERCISE 4.8.1 Determine, if possible, with Definition 4.1.2 which arguments are
justified in the following two examples.

(a) (b)
TN N
A B c A B C
" N %

EXERCISE 4.8.2 Prove that if no argument of AF is undefeated, then FAF (@) = @,

EXERCISE 4.8.3 Determine the grounded extension of the following defeat graphs.
Show in each case its construction as in Proposition 4.2.4.

(a) (b)

/ /B\- \
\\cf

x‘x\\

D ¢ -
Q /SN E
N,

C B — C
() . (d)
)
o "D — ~
A L _ B A D — F

EXERCISE 4.8.4 Let

o G(S)={A € Args | Ais not defeated by a member of S’}

1. Show that, for every set of arguments X, F(X) = G?(X) [= G(G(X))].
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2. Show that G is anti-monotonic. G is anti-monotonic if A C B implies G(B) C
G(A).

3. Show on the basis of (2) that F' is monotonic.
4. Let {G;}i>0 be sets of arguments, such that

Go =pe 9,
Gi =pe G(Gi-1).

Show that Go C G C G4 C ... C G5 C G3 C G1.

EXERCISE 4.8.5 Determine for each of the defeat graphs in Exercise 4.8.3 which
arguments are justified, which are defensible and which are overruled, all according to
grounded semantics.

EXERCISE 4.8.6 Prove that S is a stable extension iff S = {A | A is not defeated by
S}.

EXERCISE 4.8.7 Determine all status assignments in Examples 4.1.3,4.1.4 and 4.3.8.
Which of these assignments are maximal?

EXERCISE 4.8.8 Consider two status assignments S = (In, Out) and S" = (In’, Out’)
to the same argumentation framework such that In C In’.

1. Does it hold that Out C Owut’? If so, give the proof; if not, give a counterexam-
ple.

2. Does it hold that Out C Out’? Again, if so, give the proof; if not, give a coun-
terexample.

EXERCISE 4.8.9 Give one or more alternative definitions of the notions of defensible
and overruled arguments in preferred semantics. Verify for each definition whether it
implies that each argument is either justified, or defensible, or overruled. If not, do you
regard this as a flaw of your definition?

EXERCISE 4.8.10 Determine the admissible sets in Example 4.3.8. Which of these
is or are maximally admissible?

EXERCISE 4.8.11

1. Determine the preferred and stable extension(s) of the following defeat graphs.
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(b)
D C — T~
n_\\ r_/ \ FE
A
) B — C
A D — F

P

a [
NS

D

2. Determine for each of the above defeat graphs, and with respect to each seman-
tics, which arguments are justified, which are defensible and which are overruled.

EXERCISE 4.8.12 Consider four arguments A, B, C' and D such that B strictly de-
feats A, D strictly defeats C, A and D defeat each other and B and C' defeat each
other.

Here is a natural-language version, in which the defeat relations are based on which
argument uses the more specific of two conflicting defaults.

A = Larry is rich because he is a public defender, public defenders are
lawyers, and lawyers are rich;

B = Larry is not rich because he is a public defender, and public
defenders are not rich;

C = Larry is rich because he lives in Hollywood, and people who live
in Hollywood are rich;

D = Larry is not rich because he rents in Hollywood, and people who

rent in Hollywood are not rich.

1. Determine the grounded extension and the preferred extension(s) of this argu-
mentation framework.

2. Determine in both cases which conclusions about Larry’s richness are justified.
Does the result agree with your intuitions?
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EXERCISE 4.8.13 This exercise builds on Example 4.6.5. To see why preferred se-
mantics can improve default logic, consider the default theory Ag which is As plus an

extra default .
1. Determine the stable and preferred extensions of AF'(Ag).

2. Explain why preferred semantics gives the better outcome.

EXERCISE 4.8.14
1. Consider a default theory A = (W, D) with

W=uo
b e a:cANd c:b e:—a :—a
D=4 — —
{a’e7 c ’b7ﬁd’ﬁa}

and answer the following questions on the basis of the argumentation framework
AF(A).
(a) Construct an argument for the conclusion b.
(b) Construct all minimal arguments that defeat the argument found under (a).
(c) Is the argument found under (a) element of an admissible set?
(d) Isitin a preferred extension?

(e) Isitin the grounded extension?

EXERCISE 4.8.15 Verify that any failed finite process is a selfdefeating argument.
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Games for abstract argumentation

So far mainly semantical aspects have been discussed, where the main focus was on
characterising properties of sets of arguments, without specifying procedures for deter-
mining whether a given argument is a member of the set. In this chapter we shall go
deeper into proof-theoretical, or procedural aspects of argumentation, where the chief
concern is to investigate the status of individual arguments. This aspect of argumenta-
tion logics is less well-developed than its semantics; much research is ongoing or still
to be carried out.

5.1 General ideas

The main question of this chapter is: given an argument from an abstract argumentation
framework, how can its status be investigated? Several argumentation systems have
tackled this problem in dialectical style. The common idea can be explained in terms of
an argument game between two players, a proponent and an opponent of an argument.
A dispute is an alternating series of moves by the two players. The proponent starts
with an argument to be tested, and each following move consists of an argument that
defeats (or in some cases strictly defeats) a move of the other party. The initial argument
provably has a certain dialectical status if the proponent has a winning strategy, i.e., if
he can win whatever moves the opponent makes.

The precise rules of the game depend on the semantics the game is meant to capture.
A common winning criterion is that a player has won if s/he has made the other player
run out of moves. However, other criteria are also possible. Other aspects on which
choices have to be made are:

- Must moves strictly defeat their target or can they be weakly defeating?
- May moves be repeated?

- May players backtrack?

- May players defeat or be defeated by their own earlier moves?

These choices have to be made independently for both sides.

A natural idea in dialectical proof theories is that of dialectical asymmetry. The
players of an argument game have different objectives: proponent wants to build a (di-
alectical) proof, while opponent wants to prevent proponent from doing so. In other
words, while proponent is constructive, opponent is destructive, and this leads to dif-
ferent rules for the two players. Moreover, the burden induced by these rules will be
heavier for one player than for the other. Which player has the heavier burden depends
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on whether the reasoning is credulous or skeptical: in skeptical reasoning the heavier
burden is on proponent, while in credulous reasoning it is on opponent.

Let us now make these informal observations more precise. A dialectical proof
theory takes the form of an argument game regulating a dispute between two players,
the proponent P and opponent O of an argument. If p is a player, then p denotes the
other player. The players move alternatingly, moving one argument at each turn. The
game has a protocol function for determining legality of moves, by defining at each
point in a dispute which arguments can be moved. Finally, a winning criterion is a
partial function that determines the winner of a dispute, if any. If one player wins, the
other player loses, so the argument game is a so-called zero-sum game.

These notions are formally defined as follows (recall that, unless stated otherwise,
we implicitly assume an arbitrary but fixed argumentation framework).

Definition 5.1.1 [Moves, disputes and protocols.] Given an argumentation framework
AF = (Args, defeat) we define the following notions.

e The set M of moves consists of all pairs (p, A) such that p € {P,O} and A €
Args; for any move (p, A) in M we denote p by pl(m) and A by s(m).

e The set of M=% of disputes is the set of all sequences from M and the set
M <°°0f finite disputes is the set of all finite sequences from M.

e A protocol is a function that specifies the legal moves at each stage of a dispute.
Formally, protocol is a function Pr with domain a nonempty subset D of M <>
taking subsets of M as values. That is:

- Pr:D — Pow(M)

such that D C M <°°. The elements of D are called the legal finite disputes. The
elements of Pr(d) are called the moves allowed after d. If d is a legal dispute
and Pr(d) = @, then d is said to be a ferminated dispute. Pr must satisfy the
following conditions for all finite disputes d and moves m:

1. de€ Dandm € Pr(d) iffd,m € D;
2. if m € Pr(d) then pl(m) = P if d is of even length, otherwise pl(m) = O.

e A winning function is a partial function of type W : D — { P, O}.

The crucial elements of this definition are the protocol and the winning criterion. Di-
alectical proof theories differ only on these two elements.

We now define an abstract game-theoretic notion of defeasible provability, which
is the same for all dialectical proof theories. It is defined in terms of the notion of a
strategy. A strategy for a player in a dispute game has the form of a tree of disputes that
for each possible move of the other player specifies a unique reply.

Definition 5.1.2 [Strategies.]

1. A strategy for player p is a tree of disputes only branching after p’s moves, and
containing all legal replies of p.

2. A strategy for p is winning iff p wins all disputes in the strategy.
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If the winning criterion is that the other player has no legal moves, then it is easy to see
that a winning strategy for a player is a strategy in which all branches end with a move
by that player.

Defeasible provability is now defined as follows, parametrised by a protocol X.

Definition 5.1.3 [Provability.] An argument A is defeasibly provable in the X-game
iff the proponent has a winning strategy in a dispute with as root the argument A that
satisfies protocol X.

5.2 Dialectics for grounded semantics

In this section we discuss a proof theory for determining whether an argument is in the
grounded extension of a given argumentation framework. Since a grounded extension
only contains justified arguments, the dialectical asymmetry favours the opponent: her
moves are allowed to be simply defeating', while proponent’s moves must be strictly
defeating. Moreover, the proponent is not allowed to repeat his arguments. Finally,
backtracking is not allowed for both players.

Definition 5.2.1 [Proof theory for grounded semantics.] A dispute satisfies the G-game
protocol iff it satisfies the following conditions.

1. Moves are legal iff in addition to Definition 5.1.1 they satisfy the following con-
ditions.
(a) Proponent does not repeat his moves; and

(b) Proponent’s moves (except the first) strictly defeat opponent’s last move;
and

(c) Opponent’s moves defeat proponent’s last move.
2. A player wins a dispute iff the other player has no legal moves.

A dispute satisfying the protocol of the G-game is called a G-dispute.

Example 5.2.2 Let A, B, C and D be arguments such that B and D defeat A, and C'
defeats B. Then a G-dispute on A may run as follows:

P: A O: B, P: C

In this dispute P attempts to show A justified. Both B and D defeat A, which means
that O has two choices in response to A. O chooses to respond with B in the second
move. Then C' is the only argument defeating B, so that P has no choice than to
respond with C' in the third move. There are no arguments against C, so that O cannot
move and loses the dispute.

However, this outcome is not inevitable for O; her loss was merely caused by her
weak play. A dispute in which O follows an optimal strategy is

P: A O:D

'"When below we say that move m defeats move m’ we mean that s(m) defeats s(m/).
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And P has no reply, so O wins. Concluding, in this example P has no winning strategy.
The only reason why P wins the first dispute is that O chooses the wrong argument,
viz. B, in response to A. In fact, O is in the position to win every game, provided it
chooses the right moves. In other words, O possesses a winning strategy.

Example 5.2.3 To give an another example, consider two strategies for P as depicted
in Figure 5.1. The tree on the left is based on an argumentation framework AF} with
Args = {A,B,C,D,E,F,G} and defeat as shown by the arrows. Here P has a
winning strategy, since in all disputes O eventually runs out of moves; so argument A
is provable on the basis of AF}. The tree on the right is based on an extension of AF}
into AF5 by adding H, I and J to Args and adding new defeat relations corresponding
to the new arrows (the extension is shown inside the dotted box). This is not a winning
strategy for P, since one dispute ends with a move by O; so (assuming P has no better
strategy) A is not provable on the basis of AF5.

P1: A PLA
OJ{( \1 / \ O1':H
i v 3 i
P2 E P2: pP2': E P2
02 F 02 02 F 02:C 502”:0 02’”:J§
i a } i %
P3: G P3:E P3: G P3: E P3"E
A isprovable A isnot provable

Figure 5.1: Two trees of proof-theoretical disputes.

Some words are in order on the non-repetition requirement of Definition 5.2.1 (con-
dition la). This requirement does not change provability of any argument, since O will
have a reply the second time iff she had a reply the first time. However, it avoids infinite
disputes if Args is finite, which is especially convenient for computational purposes.
The same holds for the condition that P’s arguments are strictly defeating; allowing
them to be simply defeating does not change provability, but it avoids certain infinite
disputes.

As for the relation between grounded semantics and its proof theory, the following
proposition holds.

Proposition 5.2.4 [Soundness and completeness of the G-game.] An argument is in
the grounded extension of an AF' iff it is defeasibly provable on the basis of AF in the
G-game.

Proof: (Sketch). We give a sketch of the proof for finitary AF’s. Without this restric-
tion the proof is more complicated. The restriction makes sense for computational
purposes, since saying that an AF' is finitary is equivalent to saying that each strategy
based on AF has at most a finite number of branches.
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<= (soundness):

Assume that P has a winning strategy W for A. Clearly, all of W’s leaves A,, are in
F1, since they have no defeaters. But then in every branch of W, A,,_s is acceptable
with respect to F'! and so is in F'2. This can be repeated until the root of W is reached.
a

= (completeness):

Suppose A is in the grounded extension of AF. Then, since AF is finitary, there is
a least number 7 such that A € F'. Then P has the following winning strategy if
he begins a dispute with A. For each argument B defeating A moved by O, P can
choose one argument C' from F'~! that strictly defeats B. This can be repeated for
each argument defeating C, and so on, until P can choose an argument from F'!, which
has no defeaters, so O has no legal reply. O

Note that completeness here does not imply semi-decidability (a logic is semi-decidable
iff there exists an algorithm that can produce any provable formula): if the logic for con-
structing individual arguments is not decidable, then the search for counterarguments is
in general not even semi-decidable, since this search is essentially a consistency check.

This completes the discussion of the dialectical proof theory for grounded seman-
tics. We now turn to a dialectical proof theory for credulous reasoning, in particular for
preferred semantics.

5.3 Dialectics for preferred semantics

In this section we present the so-called P- game?, which serves as a credulous proof
theory for preferred semantics, and was developed by Vreeswijk and Prakken (2000).
For notational convenience we now denote defeat relations with <—. Throughout this
section we will use the following example.

Example 5.3.1 The pair A = (X, <) with arguments
X = {a7b7c7d7e7f7g7h7i7j7k7l7m7n7p7q}

and +— as indicated in Figure 5.2 is an example of an abstract argumentation framework.
It accommodates a number of interesting cases, and will therefore be used as a running
example throughout this chapter.

5.3.1 The basic ideas illustrated

Example 5.3.1 gives us some useful clues as to which features the argument game
for preferred semantics should have. We are interested in credulous reasoning, so in
testing membership of some extension. The argument game is based on the following
idea. By definition, a preferred extension is a C-maximal admissible set. It is known
that each admissible set is contained in a maximal admissible set (see the proof of
Proposition 4.3.13), so the procedure comes down to trying to construct an admissible
set ‘around’ the argument in question. If this succeeds, we know that the admissible set
and hence the argument in question is contained in a preferred extension.

“The P in ‘ P-game should not be confused with the P denoting proponent.
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Figure 5.2: Defeat relations in the running example.

Suppose now we wish to investigate whether a is preferred, i.e., belongs to a pre-
ferred extension. We know that it suffices to show that the argument in question is
admissible. The idea is to start with S = {a} and, if a has defeaters, to find other
arguments in order to complete S into an admissible set.

Example 5.3.2 (Straight failure). Consider the argument system of Figure 5.2, and
suppose that P’s task is to show that a is preferred. The first action of P is simply
putting forward a:

TN

If a cannot be defeated, then S = {a} is admissible, and P succeeds. However, since
a <+ h, O forwards h:

Now it is up to P to defend a by finding arguments against h. There are no such argu-
ments, so that P fails to construct an admissible set ‘around’ a. So a is not admissible,
hence not preferred.

Example 5.3.3 (Straight success). Suppose that P wants to show that b is admissible.
The first action of P is putting forward b:

(s
.

O defeats b with d:
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P defends this attack with g:

o
\.

Since O s attack on b with d
has failed. O returns to b and / \
defeats it again, this time R

with e: :\ b

P defends b again. this time
with L. Since O is unable to
find other arguments against

b. g or h. P may now close S \ / /

ﬁ/f\*

Example 5.3.4 (Even loop success). Suppose that P wants to show that f is admissi-
ble.

The first action of P is —

putting forward f: ( f

O defeats f with n: n
P defends this attack with i:
O defeats i with j:

P defends 7 with 7 itself (so

that 7 is self-defending). O is / \ / T
unable to put forward other N _/ﬁ
arguments that defeat f or i \ f t /‘
so that P closes S: -

This example shows that P must be allowed to repeat his arguments, while O must be
forbidden to repeat O ’s arguments (at least in the same ‘line of dispute’; see further
below).
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Example 5.3.5 (Odd loop failure). Suppose that P wants to show that m is admissible.

The first action of P is S

putting forward m: [ m

O defeats m with [: I
(i
([ m
N

P defends this attack with p: I

N

/_ TN
Lom p
o

O deteats p with h: I h

\ j;

/_ N
Lom p
N

P backtracks and removes p I

trom S. He then tries to FARY

~ . . J—1

defend [ with k instead: R
Lom k
S

O defeats k with m (and. as a i m

bonus. introduces an IN

inconsistency in S): VRN
N

P has no other arguments in response to [ and m, so that he is unable to close S into an
admissible set. So m is not contained in an admissible set. Note that we cannot allow
P to reply to m with [, since otherwise the set that P is constructing ‘around’ m is not
conflict-free, hence not admissible. So we must forbid P to repeat O ’s moves. On the
other hand, this example also shows that O should be allowed to repeat P ’s moves,
since such a repetition reveals a conflict in P ’s position.

Example 5.3.6 (The need for backtracking). The next feature of our argument game is
not illustrated by Figure 5.2 so we need a new example. Consider an argument system
with five arguments a, b, ¢, d and e and defeat relations as shown in the graph.

This example shows that we must allow O to backtrack. Suppose P starts with a, O
defeats a with d, and P defends a with e. If O now defeats e with b, P can defend e
by repeating e itself. However, O can backtrack to a, this time defeating it with ¢, after
which P can only defend a with b which repeats O, and in Example 5.3.5 we concluded
that P must be forbidden to do so. So by backtracking O can reveal that P’s position
is not conflict-free.
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Repetition
Let us summarise our observations about repetition of moves.

i. It makes sense for P to repeat himself (if possible), because O might fail to find
or produce a new defeater of P’s repeated argument. If so, then P’s repetition
closes a cycle of even length, of which P’s arguments are admissible.

ii. It makes sense for O to repeat P (if possible), because thus she shows that P’s
collection of arguments is not conflict-free.

iii. P must not repeat O, because doing so would introduce a conflict into P’s own
collection of arguments.

iv. O must not repeat herself, because P has already shown to have adequate defense
for O’s previous arguments.

5.3.2 The P-game defined

We now turn to the formal definition of the argument game for preferred semantics. Let
us fix some terminology.

- A dispute line is a dispute without backtracking moves.
- An eo ipso (meaning: “you said it yourself”) is a move that uses a previous argument
of the other player.

Definition 5.3.7 [A proof theory for preferred semantics.] A dispute satisfies the P-
game protocol iff satisfies the following conditions.

1. Moves are legal iff in addition to Definition 5.1.1 they satisfy the following con-
ditions.
(a) A move by P responds to the previous move by O.
(b) A move by O responds to some earlier move by P.
(¢) A move defeats the argument to which it responds.
(d) P does not repeat O’s moves.
(e) O does not repeat O’s moves in the same dispute line.
(f) No two responses to the same move have the same content.

2. O wins a dispute iff she does an eo ipso or makes P run out of legal moves;
otherwise P wins.

A dispute satisfying the rules of the P-game is called a P-dispute.

Note that an infinite dispute is won by P.

Since the P-game allows O to backtrack, during a P-dispute a tree of dispute lines
is constructed. (By contrast, a G-dispute consists of only one dispute line, since in a
G-dispute each argument replies to the immediately preceding move in the dispute.)
Accordingly, there are two ways to display a P-dispute: as a linear structure, in the or-
der in which the arguments are moved, and as a free structure, where the edges indicate
to which argument an argument replies. The reader should not confuse the tree form of
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a single dispute with the tree form of a strategy: in the latter tree (cf. Definition 5.1.2)
an edge between two arguments indicates that the child argument is moved immediately
after the parent argument; in other words, each branch of a strategy tree is a complete
dispute, possibly with backtracking moves, but displayed in linear form.

Proposition 5.3.8 [Soundness and completeness of the P-game.] An argument is in
some preferred extension of an AF iff it is defeasibly provable on the basis of AF in
the P-game

Proof: (Below we say that an argument a is defended in a dispute iff the dispute begins
with a and is won by P.) By definition of preferred extensions it suffices to show that
an argument is admissible iff it can be defended in every dispute.

First suppose that a can be defended in every dispute. This includes disputes in
which O has opposed optimally. Let us consider such a dispute. Let A be the arguments
that P used to defend a. (in particular @ € A.) If A is not conflict-free then a; < a;
for some a;,a; € A, and O would have done an eo ipso, which is not the case. If A is
not admissible, then a; < b for some a; € A while b </ A. In that case, O would have
used b as a winning argument, which is also not the case. Hence A is admissible.

Conversely, suppose that a € A with A admissible. Now P can win every dispute
by starting with a, and replying with arguments from A only. (P can do this, because
all arguments in A are acceptable wrt A.) As long as P picks his arguments from A, O
cannot win by eo ipso, because A is conflict-free. So a can be defended in dispute.O]

Finally, a drawback of the P-game is that in some cases proofs have to be infinite.
This is obvious when an argument has an infinite number of defeaters, but even other-
wise some proofs are infinite, as in the case of Example 4.2.5. Nevertheless, it is easy
to verify that with a finite set of arguments all proofs are finite.

5.4 A simplification of the P-game

Applying the P-game as defined above can be quite complex, since it combines two
kinds of trees: the tree of reply relations within a single P- game and the game tree in
the game-theoretical sense, that is, the tree of all possible ways in which a game about
a given argument can be played. Fortunately, a simplification is possible, since Wu
(2012) has proved that the proponent has a winning strategy in the P-game just in case
there exists a terminated game won by the proponent. Here ‘terminated’ means that the
player to move cannot move any further legal move. Note that infinite games can also
be terminated in this sense. The intuition behind this result is that since the opponent
can freely backtrack in a single game, a single terminated game will already contain all
possible ways the opponent can attack the proponent’s arguments.

5.5 Exercises

EXERCISE 5.5.1 Consider an argumentation framework with the arguments { A — G}
and the following defeat relations: A and B defeat each other, £ and G defeat each
other, C defeats B, D defeats A, E defeats D, and I defeats D.

1. Draw the defeat graph.
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2. Determine all strategies for P and O in a game for A according to grounded
semantics. Indicate which of these strategies are winning.

EXERCISE 5.5.2

1. Change Definition 5.2.1 to the effect that the non-repetition rule is dropped, and
P’s arguments are allowed to be simply defeating. Give a dispute that is finite
under the original definition but infinite under the new definition.

2. Answer the same question for the case that only the non-repetition rule is dropped.
3. Give a dispute that is infinite under the original definition.

EXERCISE 5.5.3

1. Investigate for the following arguments in Exercise 4.8.3 whether they can be
proven justified with respect to grounded semantics. For each provable argument,
give a winning strategy for P. For each argument that is not provable, show why
P’s strategies fail.

(a) In (a): investigate A, B and D.
(b) In (b): investigate C' and FE.
(¢) In (c): investigate A, B and C.
(d) In (d): investigate C'.

2. Answer the same question about defeat graph (e) of Exercise 4.8.11, for the ar-
guments C' and D.

3. For each argument under 1 that is provable, compare the structure of P’s win-
ning strategy with the construction of the grounded extension that you found in
Exercise 4.8.3. How are they related?

EXERCISE 5.5.4 This exercise is a continuation of Exercise 4.8.14. Investigate whether
the argument for b that you constructed in that exercise, is defeasibly provable in the
G-game. If so, give a winning strategy for P.

EXERCISE 5.5.5 Verify that a proof in the P-game of A; in Example 4.2.5 has to be
infinite.

EXERCISE 5.5.6 Show with an example that the P-game is incorrect as a proof the-
ory for stable semantics.

EXERCISE 5.5.7

1. Investigate for the following arguments in Exercise 4.8.11 whether they can be
proven to be in some preferred extension. For each provable argument, give a
winning strategy for P. For each argument that is not provable, show why P’s
strategies fail.

(a) All arguments in (b);
(b) All arguments in (c);
(c) Argument c in (d).

2. Answer the same question for argument c in Figure 5.2.






Chapter 6

A framework for argumentation
with structured arguments

6.1 Introduction

As explained above, Dung’s (1995) abstract framework was an important advance in the
formal study of argumentation. However, its fully abstract nature makes it less suitable
for directly representing specific argumentation problems. It is best used as a tool for
analysing particular argumentation formalisms and for developing a metatheory of such
systems. When actual applications of argumentation-based inference have to be mod-
elled, Dung’s framework should be refined with accounts of the structure of arguments
and the nature of the defeat relation. However, here too abstraction is still possible
and worthwhile. This chapter instantiates Dung’s abstract approach by assuming an
unspecified logical language and by defining arguments as (directed acyclic) inference
graphs formed by applying two kinds of inference rules, deductive (or ‘strict’) and de-
feasible rules’. As explained in Section 3.2, the notion of an argument as an inference
graph naturally leads to three ways of attacking an argument: attacking a premise, at-
tacking a conclusion and attacking an inference. To resolve such conflicts, preferences
may be used, which leads to three corresponding kinds of defeat: undermining, re-
butting and undercutting defeat. To characterise them, some minimal assumptions on
the logical object language must be made, namely that certain well-formed formulas
are a contrary or contradictory of certain other well-formed formulas. Apart from this
the framework is still abstract: it applies to any set of inference rules, as long as it is
divided into strict and defeasible ones, and to any logical language with a (possibly
non-symmetric) negation connective.

The resulting framework unifies two ways to capture the fallibility of reasoning.
Some, e.g. Bondarenko et al. (1997), locate the fallibility of arguments in the uncer-
tainty of their premises, so that arguments can only be attacked on their premises.
Others, e.g. Pollock (1994); Vreeswijk (1997), instead locate the fallibility of argu-
ments in the riskiness of their inference rules: in these logics inference rules are of
two kinds, being either deductive or defeasible, and arguments can only be attacked on
their applications of defeasible inference rules. Vreeswijk (1993, Ch. 8) called these
two approaches plausible and defeasible reasoning: he described plausible reasoning
as sound (i.e, deductive) reasoning on an uncertain basis, and defeasible reasoning as
unsound (but still rational) reasoning on a solid basis. In his chapter 8, Vreeswijk at-
tempted to combine both forms of reasoning in a single formalism, but since then most
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formal accounts of argumentation have modelled either only plausible or only defeasi-
ble reasoning. The present framework again combines the two forms of reasoning but
this time within the abstract setting of Dung (1995).

The account offered in this chapter further develops work undertaken in the Euro-
pean ASPIC project (Amgoud et al., 2006; Caminada and Amgoud, 2007) and is more
fully reported in (Prakken, 2010; Modgil and Prakken, 2013). It is based on work of
John Pollock (1987; 1994) and Gerard Vreeswijk (1993; 1997) on the structure of ar-
guments, work of Pollock (1974; 1987) on notions of defeat and work of Prakken and
Sartor (1997) and others on argumentation with prioritised rules. The proofs of the for-
mal results stated in this chapter can be found in (Prakken, 2010; Modgil and Prakken,
2013). The text of this chapter is largely based on Modgil and Prakken (2014), which
gives a tutorial introduction to the ASPICT framework.

6.2 Design choices and Overview

People argue to remove doubt about a claim (Walton, 2006, p. 1), by giving reasons
why one should accept the claim and by defending these reasons against criticism. The
strongest way to remove doubt is to show that the claim deductively follows from in-
disputable grounds. A mathematical proof from the axioms of arithmetic is like this:
its grounds are mathematical axioms, while its inferences are deductively sound. So
such a proof cannot be attacked in any way: not on its grounds and not on its infer-
ences. However, such perfection is not attainable in real life: our grounds may not be
indisputable or they may provide less than conclusive support for their claim.

Suppose we believe that John was in Holland Park some morning and that Holland
Park is in London. Then we can deductively reason from these beliefs, to conclude
that John was in London that morning. So the reasoning cannot be attacked. However,
perfection remains unattainable since the argument is still fallible: its grounds may turn
out to be wrong. For instance, Jan may tell us that he met John in Amsterdam that
morning around the same time. We now have a reason against our belief that John was
in Holland Park that morning, since witnesses usually speak the truth. Can we retain
our belief or must we give it up? The answer to this question determines whether we
can accept that John was in London that morning.

Maybe we originally believed that John was in Holland Park for a reason. Maybe
we went jogging in Holland Park and we saw John. We then have a reason supporting
our belief that John was in Holland Park that morning, since we know that our senses
are usually accurate. But we cannot be sure, since Jan told us that he met John in
Amsterdam that morning around the same time. Perhaps our senses betrayed us this
morning? But then we hear that Jan has a reason to lie, since John is a suspect in a
robbery in Holland Park that morning and Jan and John are friends. We then conclude
that the basis for questioning our belief that John was in Holland Park that morning
(namely, that witnesses usually speak the truth and Jan witnesses John in Amsterdam)
does not apply to witnesses who have a reason to lie. So our reason in support of our
belief is undefeated and we accept it.

If we want to formalise a logic for argumentation, then this simple example (dis-
played in Figure 6.1) already suggests a number of issues we have to deal with. At least
two further important design decisions have to be made: how can arguments be built,
i.e., how can claims be supported with grounds, and how can arguments be attacked?
We shall see that the answers to these two questions are related.
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Figure 6.1: An informal example

First, the claims and beliefs in our example were supported in various ways: in
the first case we appealed to the principles of deductive inference when concluding
that John was in London (visualised in Figure 6.1 with solid links). ASPIC™ is there-
fore designed so that arguments can be constructed using deductive or strict inference
rules that license deductive inferences from premises to conclusions. However, in the
other two cases the reasoning from grounds to claim appealed to the reliability of, re-
spectively, our senses and witnesses as sources of information. Should these kinds of
support (inferences) from grounds to claims be modelled as deductive?

To help answer this question, consider that our informal example contains three
ways of attacking an argument: 1) Our initial argument that John was in London was
attacked by the witness argument on its ground, or premise, that John was in Holland
Park that morning; 2) We then modified our initial argument by extending it with an
additional argument for the attacked premise, but the extended argument was still at-
tacked (by the witness argument) on the (now) intermediate conclusion that John was in
Holland Park that morning; 3) Finally, we counterattacked the witness argument not on
a premise or conclusion but on the reasoning from the grounds to the claim: namely, the
inference step from the premise that Jan said he met John in Amsterdam that morning
to the claim that John was in Amsterdam that morning (note that here we regard the
principle that witnesses usually speak the truth as an inference rule).

Now, returning to the question whether all kinds of inference should be deductive,
the second type of attack would not be possible on the deductively inferred intermediate
conclusion since the nature of deductive support is that it is absolutely watertight: if one
accepts all antecedents of a deductively valid inference rule, then one must also accept
its consequent no matter what, on the penalty of being irrational. If the antecedents of
a deductively valid inference rule are true, then its consequent must also be true. So if
we have reason to believe that the conclusion of a deductive inference is not true, then
there must be something wrong with its premises (which may in turn be the conclusions
of subarguments). It is for this very same reason that the third type of attack, on the
deductive inferential step itself, is also not possible.

ASPIC™ is therefore designed to comply with the common-sense and philosoph-
ically argued position (Pollock (1995, p.41); Pollock (2009, p. 173)) advocating the
rationality of supporting claims with grounds that do not deductively entail them. In
other words, the fallibility of an argument need not only be located in its premises, but
can also be located in the inference steps from premises to conclusion (visualised in
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Figure 6.1 with dashed links). Thus, arguments in ASPIC™ can be constructed using
defeasible inference rules, and arguments can be attacked on the application of such
defeasible inference rules, in keeping with the interpretation that the premises of such
a rule presumptively, rather than deductively, support their conclusions,

However, some would argue that the second and third type of attacks can be simu-
lated using only deductive rules (specifically the deductive rules of classical logic) by
augmenting the antecedents of these rules with normality premises. For example, with
regard to the second type of attack, could we not say that our argument claiming that
John was in Holland Park that morning since we saw him there has an implicit premise
our senses functioned normally, and that the argument that John was in Amsterdam that
morning in fact attacks this implicit premise, rather than its claim, thus reducing attacks
on conclusions to attacks on premises? With regard to the third type of attack, could
we not say that instead of attacking the defeasible inference step from Jan’s testimony
to the claim that John was in Amsterdam, we could model this step as deductive, and
then add the premise that normally witnesses speak the truth, and then direct the at-
tack at this premise? In other words, can we reduce attacks on inferences to attacks on
premises?

In answer to these questions, we first note that some have argued that such deduc-
tive simulations are prone to yielding counterintuitive results. This is a topic that we
will return to and examine in more detail in Section 6.4.5. Second, we claim that there
is some merit in modelling the everyday practice of ‘jumping to defeasible conclusions’
and of considering arguments for contradictary conclusions. This is especially impor-
tant given that one of the argumentation paradigm’s key strengths is its characterisation
of formal logical modes of reasoning in a way that corresponds with human modes of
reasoning and debate.

The above discussion introduced the notion of fallible premises that can be attacked.
However ASPIC™ also wants to allow you to distinguish premises that are axiomatic
and so cannot be attacked. We discuss the uses of such premises in Section 6.4, but for
the moment we can summarise by saying that ASPIC™ arguments can be constructed
from fallible and infallible premises (respectively called ordinary and axiom premises
in Section 6.3), and strict and defeasible inference rules, and that arguments can be
attacked on their ordinary premises, the conclusions of defeasible inference rules, and
the defeasible inference steps themselves. Finally, a key feature of the ASPIC™ frame-
work is that it accommodates the use of preferences over arguments, so that an attack
from one argument to another only succeeds (as a defeat) if the attacked argument is
not stronger than (strictly preferred to) the attacking argument, according to some given
preference relation. The justified ASPIC arguments are then evaluated with respect to
the Dung framework relating ASPIC" arguments by the defeat relation.

6.3 The framework defined: Special case with ‘ordinary’ nega-
tion

In this section we present the basis definitions of the ASPIC™ framework. Note that
in this section we present a special case of ASPIC™T, in which conflict is based on the
standard classical notion of negation, and then in Section 6.5 we replace negation by a
more general notion of conflict between formulae.
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6.3.1 Argumentation systems, knowledge bases, and arguments

To use ASPICT, you need to provide the following information. You must choose
a logical language L closed under negation — (which we later replace with a more
general notion of conflict). You must then provide two (possibly empty) sets of strict
(Rs) and defeasible (R ) inference rules. If you provide a non-empty set of defeasible
rules, you then need to also specify which well-formed formulas in £ correspond to
(i.e., name) which defeasible rule in R4. To do the latter requires specifying a partial
function n from R4 to £. These names can then by used when attacking arguments on
defeasible inference steps. Informally, n(r) is a wff in £ which says that the defeasible
rule r € R is applicable, so that an argument claiming —n(r) attacks the inference step
in the corresponding rule!.
The above is summarised in the following formal definition:

Definition 6.3.1 [Argumentation systems] An argumentation system is a triple AS =
(L, R,n) where:

e L is a nonempty logical language with a unary negation symbol —.

e R = RsUTRy,is a set of strict (Rs) and defeasible (R ) inference rules of the
form ¢1, ..., pp = @ and 1, ..., @, = @ respectively (where ¢;, ¢ are meta-
variables ranging over wff in £), and R; N Ry = @.

e n is a partial function such thatn : Ry — L.

If there is no danger for confusion, we will sometimes write the sequence of antecedents
of a strict or defeasible rule as a set. Furthermore, we write ¥» = — just in case
¥ = - or ¢ = —p (we will sometimes informally say that formulas ¢ and —¢
are each other’s negation). Note that — is not part of the logical language £ but a
metalinguistic function symbol to obtain more concise definitions.

It is important to stress here that ASPIC*’s strict and defeasible inference rules are
not object-level formulae in the language £, but are meta to the language, allowing
one to deductively, respectively defeasibly, infer the rule’s consequent from the rule’s
antecedents. Such inference rules may range over arbitrary formulae in the language,
in which case they will, as usual in logic, be specified as schemes. For example, a
scheme for strict inference rules capturing modus ponens for the material implication
of classical logic can be written as o, &« O 5 — (3%, where o and 3 are metavariables for
wif in L. Alternatively, strict or defeasible inference rules may be domain-specific in
that they reference specific formulae, as in the defeasible inference rule concluding that
an individual flies if that individual is a bird: Bird = Flies. We will further discuss
these distinct uses of inference rules in Section 6.4.

If you want to use ASPICT, then an argumentation system is not all you have to
specify: you must also specify from which body of information the premises of an
argument can be taken. We call this a knowledge base, and as discussed in Section 6.2,
distinguish ordinary premises, which are uncertain and so can be attacked, and premises
that are axioms, hence certain, and so cannot be attacked.

' is a partial function since you may want to enforce that some defeasible inference steps cannot be
attacked.
*In this chapter we use D to denote the material implication connective of classical logic.
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Definition 6.3.2 [Knowledge bases] A knowledge base in an AS = (L, R,n) is a
set £ C L consisting of two disjoint subsets X,, (the axioms) and K, (the ordinary
premises).

ASPIC™ leaves you fully free to choose your language, what is an axiom and what
is an ordinary premise and how you specify your strict and defeasible rules. However
some care needs to be taken in making these choices, to ensure that the result of argu-
mentation is guaranteed to be well-behaved. By ‘well-behaved’ we mean that the desir-
able properties proposed by Caminada and Amgoud (2007) are satisfied; for example,
that the conclusions of arguments in the same extension are mutually consistent (we
will define below what this means) and are closed under application of strict inference
rules (whatever you can derive from your conclusions of arguments in an extension,
with strict rules alone, is already a conclusion of an argument in that extension). In
Section 6.4 we present some theorems which tell you how you can make your choices
in such a way that the result is guaranteed to be well-behaved. These theorems will
talk about two notions of consistency, namely, direct and indirect consistency. Indirect
consistency is defined in terms of the closure of a set of well-formed formulas under
application of strict inference rules. Informally, the strict closure of a set of wif is the
set itself plus everything that can be derived from it when only applying strict rules.

Definition 6.3.3 [Consistency and strict closure] For any .S C L, let the closure of S
under strict rules, denoted C(.S), be the smallest set containing .S and the consequent
of any strict rule in R s whose antecedents are in C'(.S). Then aset S C L is

e directly consistent iff A1), ¢ € S such that ) = —¢

e indirectly consistent iff C1(.S) is directly consistent.

We call the combination of an argumentation system and a knowledge base an ar-
gumentation theory:

Definition 6.3.4 [Argumentation theory] An argumentation theory is a tuple AT =
(AS, K) where AS is an argumentation system and K is a knowledge base in AS.

ASPIC* arguments are now defined relative to an argumentation theory AT =
(AS, K), and chain applications of the inference rules from AS into directed acyclic
inference graphs, starting with elements from the knowledge base K (if no premise is
used more than once, then the graph will be a tree). In what follows, for a given argu-
ment, the function Prem returns all the formulas of K (called premises) used to build
the argument, Conc returns its conclusion, Sub returns all its sub-arguments, DefRules
returns all the defeasible rules of the argument and TopRule returns the last inference
rule used in the argument.

Definition 6.3.5 [Argument] An argument A on the basis of an argumentation theory
with a knowledge base K and an argumentation system (£, R, n) is:

1. ¢if ¢ € K with: Prem(A) = {¢}, Conc(A) = ¢, Sub(A) = {¢}, DefRules(A)
= &, TopRule(A) = undefined.
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2. Ay,... A, =y if Ay, ..., A, are arguments such that there exists a strict rule
Conc(Aj1),...,Conc(A4,) — ¢ in Rs.

Prem(A) = Prem(A;)U...UPrem(4,),

Conc(A) = v,

Sub(A) = Sub(A4;)U...USub(4,)U{A4}.

DefRules(A) =DefRules(A;) U... UDefRules(A4,),

TopRule(A) = Conc(A41),...Conc(4,) — ¢

3. Ay,... A, = pif Ay, ..., A, are arguments such that there exists a defeasible
rule Conc(A4;),...,Conc(Ay,) = 1 in Ry.
Prem(A) = Prem(A;)U...UPren(4,),
Conc(A) = v,
Sub(A) = Sub(A4;)U...USub(4,) U {4},
DefRules(A) = DefRules(A;)U...UDefRules(A,)U{Conc(A4;),...Conc(4,) =

¥},
TopRule(A) = Conc(A4;),...Conc(4,) = 1.

For any argument A we define Prem,, (A) = Prem(A)NK,, and Prem,(A) =Prem(A)N
Kp.

Example 6.3.6 Consider a knowledge base in an argumentation system with £ con-
sisting of p,q,7,s,t,u,v,w,x,dy,ds,ds,dy,ds,ds and their negations, with Ry =
{81, 82} and Rd = {dl, dz, d3, d4, d5, dﬁ}, where

di: p=gq dy: u=v s1: p,q—rT
do: s=1t ds: v,z = —t S9: UV — 8
ds: t= —d; dg: s= —p

Moreover, K, = {p} and K, = {s,u,x}. Note that in presenting the example, we
have informally used names d; to refer to defeasible inference rules. We now define
the n function that formally assigns wit d; to such rules, i.e., for any rule informally
referred to as d;, we have that n(d;) = d;, so that ‘n(d;) = dy’ is a shorthand for
n(p = ¢) = d;. In further examples we will often specify the n function in the same
way.?

An argument for 7 (i.e., with conclusion r) is displayed in Figure 6.2, with the
premises at the bottom and the conclusion at the top of the argument graph (which in
this case is a tree). In this and the next figure, the type of a premise is indicated with
a superscript and defeasible inferences, underminable premises and rebuttable conclu-
sions are displayed with dotted lines. The figure also displays the formal structure of
the argument. We have that

Prem(A43) = {p} DefRules(As3) = {di}

Conc(A3) = r TopRule(A3) =  s;
Sub(Ag) = {Al, AQ, Ag}

The distinction between two kinds of inference rules and two kinds of premises moti-
vates a distinction into four kinds of arguments.

3In our further examples we will often leave the logical language £ and the n function implicit, trusting
that they will be obvious.
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Figure 6.2: An argument

Definition 6.3.7 [Argument properties] An argument A is strict if DefRules(A) = &;
defeasible if DefRules(A) # @, firm if Prem(A) C Ky,; plausible if Prem(A) N K, #
. We write S I ¢ if there exists a strict argument for ¢ with all premises taken from
S, and S |~ ¢ if there exists a defeasible argument for  with all premises taken from

S.

Example 6.3.8 In Example 6.3.6 the argument A; is both strict and firm, while A5 and
As are defeasible and firm. Furthermore, we have that C - p, K |~ g and KC |~ r.

In logic-based approaches to argumentation (see Section 6.4.4 below) arguments
are often required to be minimal in that no proper subset of their premises should log-
ically (according to the adopted base logic) imply the conclusion. In the ASPIC* con-
text such a constraint would be fine for applications of strict rules. However, minimality
cannot be required for application of defeasible inference rules, since defeasible rules
that are based on more information may well make an argument stronger. For example,
Observations done in ideal circumstances are usually correct is stronger than Observa-
tions are usually correct.

Another requirement of logic-based approaches, namely, that an argument’s premises
have to be consistent, can optionally be imposed in basic ASPIC™, leading to two vari-
ants of the basic framework. We define a special class of arguments whose premises are
indirectly consistent. In this way ASPIC* can be used as a framework for reconstruct-
ing logic-based argumentation formalisms, as we will further discuss in Section 6.4.4.

Definition 6.3.9 [consistent arguments] An argument A is consistent iff Prem(A) is
indirectly consistent.

6.3.2 Attack and defeat

Recall that ASPICT is meant to generate Dung-style abstract argumentation frame-
works, that is, a set of arguments with a binary relation of defeat. Having defined
arguments above, we now define the attack relation and then, as discussed in Section
6.2, we apply preferences to determine the defeat relation (in fact Dung called his rela-
tion “attack” but we reserve this term for the basic notion of conflict, to which we then
apply preferences).
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Attack

We now first present the three ways in which arguments in ASPIC™ can be in con-
flict, that is, three kinds of attack. In short, arguments can be attacked on a conclusion
of a defeasible inference (rebutting attack), on a defeasible inference step itself (un-
dercutting attack), or on an ordinary premise (undermining attack). As discussed in
Section 6.2, that arguments cannot be attacked on their strict inferences goes without
saying. We also discussed why arguments cannot be attacked on the conclusions of
strict inferences: if the antecedents of a deductively valid inference rule are true, then
its consequent must also be true no matter what. So if we have reason to believe that
the conclusion of a deductive inference is not true, then there must be something wrong
with the claims from which it is drawn. In Section 6.4.2 we will give a second reason
why arguments cannot be attacked on conclusions of strict inferences. In short, this
is because if we allow such attacks, then consistency and strict closure of conclusions
cannot be guaranteed.

To define undercutting attack, the function n of an AS is used, which assigns to
elements of R4 a well-formed formula in £. Recall that informally, n(r) (where r €
R;) means that r is applicable. Then an argument using r is undercut by any argument
with conclusion —n(r).

Definition 6.3.10 [attacks] A attacks B iff A undercuts, rebuts or undermines B, where:

e A undercuts argument B (on B') iff Conc(A) = —n(r) for some B’ € Sub(B)
such that B”’s top rule r is defeasible.

o A rebuts argument B (on B') iff Conc(A) = —¢ for some B’ € Sub(B) of the

form BY,..., B! = .
o Argument A undermines B (on ) iff Conc(A) = —¢ for an ordinary premise ¢
of B.

This definition allows for a distinction between direct and indirect attack: an argument
can be indirectly attacked by directly attacking one of its proper subarguments. This
distinction will turn out to be crucial for a proper application of preferences to resolve
attacks.

Example 6.3.11 In our running example argument A3 cannot be undermined, since all
its premises are axioms. As can potentially be rebutted on Ao, with an argument for
—q. However, the argumentaton theory of our example does not allow the construction
of such a rebuttal. Likewise, A3 can potentially be undercut on Ao, with an argument
for =d;. Our example does allow the construction of such an undercutter, namely:

Bll S

Bgi Bl =1

Bs: By = —dy
Argument Bs has an ordinary premise s, so it can be undermined on B; with an argu-
ment for —s:

Clt u

CQZ Cl = v

Cg: Cg — TS

Note that since C's has a strict top rule, argument By does not in turn rebut Cs.
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Argument B3 can potentially be rebut or undercut on either By or B3, since both
of these subarguments of B3 have a defeasible top rule. Our argumentation theory only
allows for a rebutting attack on Bs:

Ci:u

CQZ 01 =V
Ds: x

Dy: Cy, D3 — —t

All relevant arguments and attacks are displayed in Figure 6.3.
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Figure 6.3: Attacks

Defeat

The attack relation tells us which arguments are in conflict with each other: if two
arguments are in conflict then they cannot both be justified. However, Definition 4.2.1’s
notion of the acceptability of arguments is based on the notion that one argument can
be used as a counter-argument to another. In general, an argument A can be used as a
counter-argument to B, if A successfully attacks, i.e., defeats, B. Whether an attack
from A to B (on its sub-argument B’) succeeds as a defeat, may depend on the relative
strength of A and B’, i.e., whether B’ is strictly stronger than, or strictly preferred to
A. Note that only the success of undermining and rebutting attacks is contingent on
preferences; undercutting attacks succeed as defeats independently of any preferences
(see Modgil and Prakken (2013) for a discussion as to why this is the case).
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Where do these preferences come from? Again, ASPIC* allows you to make any
choice you like. All that ASPICT as a framework wants is that you as a user give a
binary ordering < on the set of all arguments that can be constructed on the basis of an
argumentation theory. Then, as usual, if A < B and B £ A then B is strictly preferred
to A (denoted A < B). Also,if A < Band B < Athen A ~ B. We will later
identify some conditions under which argument orderings are well-behaved in that they
promote consistency and strict closure of conclusions. We will also define two example
argument orderings that satisfy these conditions. However, for now all we need for
defining ASPIC*’s defeat relation is the attack relation and a preference ordering over
arguments.

How should the preference ordering be applied to resolve attacks? At first sight,
it would seem that ASPIC* can be taken to generate a so-called preference-based ar-
gumentation framework (PAF) in the sense of Amgoud and Cayrol (2002), that is, a
triple consisting of the set of arguments, the attack relation and the argument ordering.
That A defeats B could then be defined as A attacks B and A A B. However, this
does not work, for two reasons. First, PAFs do not recognise that undercutting attacks
succeed irrespective of preferences. More seriously, PAFs cannot express how and at
which points arguments attack each other, and yet this is crucial for a proper application
of preferences to attack relations. Prakken (2012); Modgil and Prakken (2013) have
shown that the use of PAFs leads to violation of the rationality postulates of subargu-
ment closure and consistency (see further Section 6.4.2 below) in cases where ASPICT
with the following definition satisfies these postulates.

Definition 6.3.12 [Successful rebuttal, undermining and defeat]
o A successfully rebuts B if A rebuts Bon B’ and A £ B’.
o A successfully undermines B if A undermines B on ¢ and A 4 .
e A defeats B iff A undercuts or successfully rebuts or successfully undermines B.

The success of rebutting and undermining attacks thus involves comparing the conflict-
ing arguments at the points where they conflict; that is, by comparing those arguments
that are in a direct rebutting or undermining relation with each other. The definition
of successful undermining exploits the fact that an argument premise is also a subargu-
ment.

Example 6.3.13 In our running example two argument orderings are relevant for whether
attacks are successful: between B and C'5 and and between By and D,4. Note that the
undercutting attack of B3 on As (and thereby on As3) succeeds as a defeat irrespective
of the argument ordering between B3 and As. The undermining attack of C5 on B
succeeds if C3 £ By. If Bo =~ Dy or their relation is undefined then these two argu-
ments defeat each other, while D, strictly defeats B3. If Dy < Bs then Bs strictly
defeats Dy while if By < Dy then Dy strictly defeats both By and Bs.

Let us now put all these elements together; that is the arguments and attacks defined on
the basis of an argumentation theory, and a preference ordering over the arguments:

Definition 6.3.14 Let AT be an argumentation theory (AS, KB). A (c-)structured
argumentation framework ((c-)SAF) defined by AT, is a triple (Args, attack, <)
where
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Ina SAF, Args is the smallest set of all finite arguments constructed from K B
in AS satisfying Definition 6.3.5;

Inac-SAF, Args is the smallest set of all finite consistent arguments constructed
from K B in AS satisfying Definition 6.3.5;

= is a preference ordering on Arygs;

(X,Y) € attack iff X attacks Y.

Example 6.3.15 In our running example Args = { A1, A, A3, By, Ba, B3, C1,C>, Cs,
Ds, Dy}, while attack is such that Bs attacks both A and A3, argument Cs attacks all
of By, By, B3, argument D, attacks both B and B3 and, finally, By attacks D,.

6.3.3 Generating Dung-style abstract argumentation frameworks

We are now ready to instantiate a Dung framework with ASPIC™ arguments and the
ASPIC™ defeat relation.

Definition 6.3.16 [Argumentation frameworks] An abstract argumentation frame-
work (AF') corresponding to a (c-)SAF = (Args, attack, <) is a pair (Args, defeat)
such that defeat is the defeat relation on Args determined by (Args, attack, < ).

The justified arguments of the above defined AF' are then defined under the various
semantics of Chapter 4.

It is now also possible to define a consequence notion for well-formed formulas.
Several definitions are possible. The following definition directly uses the notions of
justified, defensible and overruled arguments from Chapter 4: (here an S-justified (S-
defensible, S-overruled) argument is an argument that is justified (defensible, over-
ruled) according to semantics .5):

Definition 6.3.17 [The status of conclusions] For every semantics .S and for every (c-
)structured argumentation framework (c-)SAF with corresponding abstract argumenta-
tion framework AF’, and every formula ¢ € La7p:

1. @ is S-justified in (c-)SAF if and only if there exists an S-justified argument on
the basis of AF with conclusion ¢;

2. @ is S-defensible in (c-)SAF if and only if ¢ is not S-justified in SAF and there
exists an S-defensible argument on the basis of AF with conclusion ¢;

3. @is S-overruled in (c-)SAF if and only if it is not S-justified or S-defensible in
SAF and there exists an S-overruled argument on the basis of AF with conclu-
sion .

Example 6.3.18 In our running example, if D, strictly defeats Bo, then we have a
unique extension in all semantics which at least contains the set S = { A;, Ay, A3, C1, Co,
C3, D3, Dy}. If in addition C'3 does not defeat B, then the extension also contains Bj.
In both cases this yields that wtf r is sceptically justified.

Alternatively, if By strictly defeats Dy, then the status of r depends on whether C3
defeats Bj. If it does, then we again have a unique extension in all semantics consisting
of the set S, so r is sceptically justified. By contrast, if C3 does not defeat B;, we



Special case with ‘ordinary’ negation 83

obtain a unique extension with Ay, By, By, Bs, C1, C3, (5 and Ds3, so r is neither
sceptically nor credulously justified.

Finally, if By and D, defeat each other, then the outcome again depends on whether
Cs defeats Bj. If it does, then the situation is as in the previous case — a unique ex-
tension S — but if C3 does not defeat By, then the grounded extension consists of A1,
Bi, C1-Cs, Ds. So in the latter case, in grounded semantics r is neither sceptically nor
credulously justified. However, in preferred and stable semantics we then obtain two
alternative extensions: the first contains D4 while the second instead contains By and
B3 and so excludes As and As. So in the latter case r is credulously, but not sceptically
justified under stable and preferred semantics.

Note that the first condition of Definition 6.3.17 is equivalent to

1. @ is S-justified in (c-)SAF if and only if there exists an argument with conclusion
(o that is contained in all S-extensions of AF'.

Thus this definition does not allow that different extensions contain different arguments
for a skeptical conclusion and therefore does not capture floating conclusions (see Sec-
tion 4.2). The following alternative definition does capture floating conclusions.

Definition 6.3.19 [Justified conclusions (possibly floating)]

1. ¢ is S-f-justified in (c-)SAF if and only if all S-extensions of AF' contain an
argument with conclusion ¢.

6.3.4 More on argument orderings

A well studied use of preferences in the non-monotonic logic literature is based on the
use of priority orderings over formulae in the language or defeasible inference rules. If
ASPIC™ is to be used as a framework for giving argumentation-based characterizations
of non-monotonic formalisms augmented with priorities, then it needs to provide an
account of how these priority orderings can be ‘lifted’ to preferences over arguments.
Now the first thing to note is that if your use of ASPICT involves using defeasible
inference rules and ordinary premises, then both may come equipped with priority or-
derings < on R4 and <’ on C,,. We assume that these priority orderings are distinct to
allow for the ontological nature of the rules and premises to be distinct. For example,
the ordinary premises may represent the content of percepts from sensors or of witness
testimonies, whose priority ordering reflects the relative reliability of the sensors, re-
spectively witnesses. The defeasible rules may, for example, be prioritized based on
probabilistic strength, on temporal precedence (defeasible rules acquired later are pre-
ferred to those acquired earlier), on the basis of principles of legal precedence, and so
on. The challenge is to then define a preference over arguments A and B based on the
priorities over their constituent ordinary premises and defeasible rules.

We now define two argument preference orderings, called the weakest-link and last-
link orderings. These orderings are in turn based on priority orderings < on R4 and
<’ on K,, where as usual, X <) Y'iff X <) Y and Y £() X (note that we may
represent orderings in terms of the strict counterpart they define). However, these pri-
orities relate individual defeasible rules, respectively ordinary premises, whereas when
comparing two arguments, we want to compare them on the (possibly non-singleton)
sets of rules/premises that these arguments are constructed from. So, to define these
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argument preferences, we need to first define an ordering over sets of rules/premises.
We will denote this ordering with <l,. For technical reasons we interpret it as strict
preference; that is, I' <15 I'” means that I/ is strictly preferred over I'.

Note that for any sets of defeasible rules/ordinary premises I" and I, we intuitively
want that:
1) if T is the empty set, it cannot be that I" <15 T"/;
2) if T is the empty set, it must be for any non-empty I' that T’ <15 TV .
In other words, arguments that have no defeasible rules (ordinary premises) are, modulo
the premises (rules), strictly stronger than (preferred to) arguments that have defeasible
rules (ordinary premises). Hence the following definition explicitly imposes these con-
straints, and then gives two alternative ways of defining <I5; the so called E1itist and
Democratic ways (i.e., s = E1i and Dem respectively). E1i compares sets on their
minimal and Dem on their maximal elements.

Definition 6.3.20 [Orderings <;] Let I" and I" be finite sets*. Then < is defined as
follows:

1. If I’ = @ then it cannot be that T’ <15 I ;

2. IfIV=@andT' # @ then T < TV ;

else, assuming a preordering < over the elements in I" U T”, then if :

3. s = Eli:
P VifAX eTst. VY eIV, X < Y.

else, if:

4. s = Dem:
D <dpep IVifVX e, Y €TV, X < Y.

Henceforth, we will assume that <lg;; is used to compare sets of rules/premises.

Now the last-link principle strictly prefers an argument A over another argument
B if the last defeasible rules used in B are strictly less preferred (<) than the last
defeasible rules in A or, in case both arguments are strict, if the premises of B are
strictly less preferred than the premises of A. The concept of ‘last defeasible rules’ is
defined as follows.

Definition 6.3.21 [Last defeasible rules] Let A be an argument.
e LastDefRules(A) = & iff DefRules(A) = @.

o IfA=A,,..., A, = ¢, thenLastDefRules(A)={Conc(A4;),...,Conc(A,)=
¢}, else LastDefRules(A) =LastDefRules(A;) U...ULastDefRules(A4,).

A simple example with more than one last defeasible rule is with L = {p;q}, Rs =
{r,s — t} and R4y = {p = r; ¢ = s}. Then for the argument A for ¢ we have that
LastDefRules(A) = {p = r; ¢ = s}.

The above definition is now used to compare pairs of arguments as follows:

*Notice that it suffices to restrict < to finite sets since ASPIC™ arguments are assumed to be finite (in
Definition 6.3.14) and so their sets of ordinary premises/defeasible rules must be finite.
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Definition 6.3.22 [Last link principle] Let A and B be two arguments. Then A <* B
iff:

1. LastDefRules(A) <5 LastDefRules(B); or
2. LastDefRules(A) and LastDefRules(B) are empty and Prem,,(A) <Ig Prem(,B).
Moreover, A < Biff A < Bor A = B.

Because of this definition, the last-link ordering =< is in fact a strict partial ordering,
i.e., it is transitive If A < B and B < C then A < C) and antisymmetric if A < B
and B < Athen A = B).

Example 6.3.23 Suppose in our running example that u <’ s, x <’ s, dy < d5 and
dy < da. Applying the last-link ordering, we must, to check whether C5 defeats
By, compare LastDefRules(C3) = {d4} with LastDefRules(B;) = &. Clearly,
{d4}<g119, s0 C3 < By, so C5 does not defeat B;. Next, to check the conflict between
By and Dy we compare LastDefRules(By) = {d2} with LastDefRules(Dy) =
{ds}. Since d2 < d5 we have that LastDefRules(B;) <ig1; LastDefRules(Dy), so
Dy strictly defeats Bs.

The weakest-link principle considers not the last but all uncertain elements in an ar-
gument. Recall that in the following definition, Prem,(A) = Prem(A) N IC,.

Definition 6.3.24 [Weakest link principle] Let A and B be two arguments. Then A <
B iff

1. If both B and A are strict, then Prem;,(A) <Is Premy(B), else;
2. If both B and A are firm, then DefRules(A) <Is DefRules(B), else;
3. Premp(A) <Is Premy(B) and DefRules(A) <Is DefRules(B)
Moreover, A < Biff A < Bor A = B.
Like the last-link ordering, the weakest-link ordering is also a strict partial ordering.

Example 6.3.25 If in our running example we apply the weakest-link ordering, then
we must, to check whether C3 defeats B, first compare Prem,(C3) = {u} with
Prem,(B;) = {s}. Since u <’ s we have that Prem,(C'3) <lg1; Premy(B;). Then we
must compare DefRules(C3) = {d4} with DefRules(B;) = &. We have as above
that {d4} <g11 @. So C3 < Bj and so C5 does not defeat By. Next, to check the con-
flict between By and D4 we must first compare Prem,(B2) = {s} with Prem,(Dy) =
{u, x}. Since both u <" s and <’ s we have that Prem,(D4) <lg1; Prem,(B3). We
must then compare DefRules(By) = {d2} with DefRules(Dy) = {d4,d5}. Since
dy < dg we now have that DefRules(D,) <Ig1; DefRules(B3). So Dy < Bs and By
strictly defeats D,.

We next discuss with two examples when the last-, respectively, weakest-link ordering
may be more suitable. Consider first the following example on whether people misbe-
having in a university library may be denied access to the library.’

5In all examples below, sets that are not specified are assumed to be empty.
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Example 6.3.26 Let IC, = {Snores; Professor}, Rq =

{Snores =4, Misbehaves;
Misbehaves =4, AccessDenied;
Professor =4, ~AccessDenied}.

Assume that Snores <’ Professor and di < do, di < d3, d3 < ds, and consider the
following arguments.

Ai: Snores Bi:  Professor
Ao Ay = Misbehaves By: Bi = —AccessDenied
Asz: A9 = AccessDenied

Let us apply the ordering to the arguments A3 and By. The rule sets to be compared
are LastDefRules(A3) = {d2} and LastDefRules(B3) = {d3}. Since d3 < da
we have that LastDefRules(B2) <g1; LastDefRules(As), hence By < As. So As
strictly defeats By (i.e., Az defeats Bs but By does not defeat A3). We therefore have
that As is justified in any semantics, so we conclude AccessDenied.

With the weakest-link principle the ordering between A3 and B is different. Both
A and B are plausible and defeasible so we are in case (3) of Definition 6.3.24. Since
Snores <' Professor, we have that Prem,(As) <ig; Prem,(Bsy). Furthermore, the
rule sets to be compared are now DefRules(Az) = {d;,d2} and DefRules(B;) =
{ds}. Since d; < d3 we have that DefRules(As) <lg1; DefRules(B3). So now we
have that A3 < Bs. Hence Bs now strictly defeats A3 and we conclude instead that
—AccessDenied.

Which outcome in this example is better? Some have argued that the last-link ordering
gives the better outcome since the conflict really is between the two legal rules about
whether someone may be denied access to the library, while d; just provides a sufficient
condition for when a person can be said to misbehave. The existence of a conflict on
whether someone may be denied access to the library is in no way relevant for the issue
of whether a person misbehaves when snoring. More generally, it has been argued that
for reasoning with legal (and other normative) rules the last-link ordering is appropriate.

However, an example can be given of exactly the same form but with the legal rules
replaced by empirical generalisations, and in that case intuitions seem to favour the
weakest-link ordering:

Example 6.3.27 Let K, = { BornInScotland; FitnessLover}, Rq =

{BornInScotland =4, Scottish;
Scottish =>4, LikesWhisky;
FitnessLover =4, —Likes Whisky}.

Assume that BornInScotland <’ FitnessLover and di < ds, di < d3, d3 < do, and
consider the following arguments.

A1 BornInScotland Bi:  FitnessLover
As: Ay = Scottish Bs: By = —LikesWhisky
As: Ay = LikesWhisky

This time it seems reasonable to conclude —Likes Whisky, since the epistemic uncer-
tainty of the premise and d; of A3 should propagate to weaken As. And this is the
outcome given by the weakest-link ordering. So it could be argued that for epistemic
reasoning the weakest-link ordering is appropriate.
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6.4 Ways to use the framework

As should be clear by now, ASPIC™ is not a system but a framework for specifying
systems. ASPIC* leaves you fully free to make choices as to the logical language, the
strict and defeasible inference rules, the axioms and ordinary premises in your knowl-
edge base, and the argument preference ordering. In this section we discuss various
more or less principled ways to make your choices, and then show specific uses of
ASPIC™.

6.4.1 Choosing strict rules, axioms and defeasible rules
Domain specific strict inference rules

When designing your ASPIC™T system, you can specify domain specific strict infer-
ence rules, as illustrated by the following example (based on Example 4 of Caminada
and Amgoud 2007) in which the strict inference rules capture definitional knowledge,
namely, that bachelors are not married.®

Example 6.4.1 Let R; = {d1,ds} and Rs = {s1, s2}, where:

di = WearsRing = Married s1 = Married — —Bachelor
ds = PartyAnimal = Bachelor so = Bachelor — —Married

Finally, let I, = { WearsRing, PartyAnimal}. Consider the following arguments.

Ay WearsRing By:  PartyAnimal
Ag: A1 = Married By Bi = Bachelor
As: As — —Bachelor Bs: By — —Married

We have that A3 rebuts B3 on its subargument Bs while B3 rebuts A3 on its subargu-
ment A,. Note that As does not rebut Bs, since Bs applies a strict rule; likewise for Bo
and Ags.

Notice that in the above example, the rules s; and s, are ‘transpositions’ of each
other, and R, is ‘closed under transposition’, in the following sense:

Definition 6.4.2 [Closure under transposition] A strict rule s is a transposition of ¢,
vt = Yiffs=01, 0 i1, =Y, @it .., En — —; forsome 1 <4 < n.
An argumentation theory is closed under transposition iff for all rules r in R, the
transposition of 7 is also in R.

In general it is a good idea to ensure that your theory is closed under transposition.
Proponents of this idea argue that this follows from the intuitive meaning of a strict rule
as capturing deductive, that is, perfect inference: a strict rule ¢ — —s expresses that
if g is true, then this guarantees the truth of —s, no matter what. Hence, if we have
s, then ¢ cannot hold, otherwise we would have —s. In general, if the negation of the
consequent of a strict rule holds, then we cannot have all its antecedents, since if we had
all of them, then its consequent would hold. This is the very meaning of a strict rule.
So it is very reasonable to include in R, the transposition of a strict rule that is in R;.

®In the examples that follow we may use terms of the form s;, d; or f;, to identify strict or defeasible
inference rules or items from the knowledge base. We will assume that the d; names are those assigned
by the n function of Definition 6.3.1; sometimes we will attach these names to the = symbol. Note that
the s; and f; names have no formal meaning and are for ease of reference only.
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A second reason for ensuring closure under transposition is that it ensures satisfaction
of Caminada and Amgoud (2007)’s rationality postulates, as illustrated later in Section
6.4.2.

Strict inference rules and axioms based on deductive logics

Some find the use of domain-specific strict inference rules rather odd: why not instead
express them as material implications in £ and put them in the knowledge base as axiom
premises? These people want to reserve the strict inference rules for general patterns
of deductive inference, since they say that this is what inference rules are meant for
in logic. (Below we will see that the same issue arises with regard to the choice of
defeasible rules, but we ignore that issue for the moment). ASPIC™ allows you to do
this by basing your strict inference rules (and axioms) on a deductive logic of your
choice. You can do so by choosing a semantics for your choice of £ with an associated
monotonic notion of semantic consequence, and then filling ‘R, with rules that are
sound with respect to that semantics. For example, suppose you want it to conform to
classical logic: you want to choose a standard propositional (or first-order) language,
and you want that arguments can contain any classically valid inference step over this
language. In ASPIC* you can achieve this in two ways, a crude way and a sophisticated
way.

A crude way is to simply put all valid propositional (or first-order) inferences over
your language of choice in R;. So if you have chosen a propositional language, then
you define the content of R as follows. (where pj, denotes standard propositional-
logic consequence). For any finite S C £ and any ¢ € L:’

S — e Rsifandonly if S Fpp, ¢

In fact, with this choice of R, strict parts of an argument don’t need to be more than
one step long. For example, if rules S — ¢ and ¢ — 1) are in R, then S U {p} — ¢
will also be in Rs. Note also that using this method your strict rules will be closed
under transposition, because of the properties of classical logic. The proof is easy:
suppose p — q is in R for some p and q. Then we know that p Fpr g, so (by the
deduction theorem for classical logic) -py, p D ¢ so (by the properties of - p1,) we have
Fpr —q D —p so (by the other half of the deduction theorem) we have —q Fpr —p,
so (by choice of Rs) —q — —p € Rs.

Let us illustrate the crude approach with a variation on Example 6.4.1. We retain
the defeasible rules d; and dy but we replace the domain-specific strict rules s; and so
with a single material implication Married O —Bachelor in KC,,. Moreover, we put all
propositionally valid inferences over our language in R. Then the arguments change
as follows:

Ay: WearsRing By:  PartyAnimal

As: Ay = Married Bsy: By = Bachelor

As: Married D —Bachelor Bs:  Married D —~Bachelor
Ay Ao, A3 — —Bachelor By: By, B3 — —Married

Now Ay rebuts B4 on By while By rebuts A4 on As.
A sophisticated way to base the strict part of ASPIC* on a deductive logic of your
choice is to build an existing axiomatic system for your logic into ASPICT. You can

7 Although antecedents of rules formally are sequences of formulas, we will sometimes abuse notation
and write them as sets.
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include its axiom(s) (typically a handfull) in KC,; and its inference rule(s) (typically just
one or a few) in R,. For example, there are axiomatic systems for classical logic with
just four axioms and just one inference rule, namely, modus ponens (i.e, ¢ D ¥, p —
). With this choice of R strict parts of an argument could be very long, since in
logical axiomatic systems proofs of even trivial validities might be long. However, this
difference with the crude way is not very big, since if we want to be crude, we must, to
know whether S — ¢ is in R, first construct a propositional proof of ¢ from .S.

With the sophisticated way of building classical logic into our argumentation sys-
tem, argument A4 in our example stays the same, since modus ponens is in Rs. How-
ever, argument B4 will change, since modus tollens is not in R,. In fact, B4 will be
replaced by a sequence of strict rule applications, together being an axiomatic proof of
—Married from Married O —Bachelor and Bachelor.

Which approach is more natural? We think that the crude way is more like how peo-
ple reason: people often summarise chunks of deductive reasoning in one step. But if
you want to implement such reasoning on a computer, then the crude and sophisticated
way do not differ much.

However, note that in the sophisticated method, closure under transposition may not
hold; our example above does not contain modus tollens (that is, ¢ D ¥, —¢ — —).
But we have already argued that the contrapositive reasoning yielded by the inclusion
of transpositions is a desirable feature. Is this a problem for this method? No, since
this reasoning can also be enforced without explicitly requiring transpositions of rules.
Recall that S - ¢ was defined as ‘there exists a strict argument for ¢ with all premises
taken from .S”. Now it turns out that if - contraposes, then this is just as good as closure
of the strict rules under transposition. Contraposition of - means that if S' - ¢, then if
we replace one element s of S with —y, then —s is strictly implied:

Definition 6.4.3 [Closure under contraposition] An argumentation theory is closed un-
der contraposition iff forall S C L, s € S and ¢, if S+ ¢, then S\{s} U {—¢} - —s.

Now the point is that if - corresponds to classical provability (as we have made it by our
choice of axioms and inference rules), then - does indeed contrapose. Again, as will
be discussed in Section 6.4.2, closure under contraposition also ensures satisfaction of
rationality postulates.

We end this section by stating a quite general result on a class of logics that, if em-
bedded in ASPIC™, ensures closure of the strict rules under contraposition. In Amgoud
and Besnard (2009) the idea was introduced to base argumentation logics on so-called
Tarskian abstract logics. Very briefly, abstract logics assume just some unspecified log-
ical language £ and a consequence operator over this language, which to each subset
of L assigns a subset of L (its logical consequences). Tarski then assumed a number of
constraints on C'n, which we need not repeat here. Finally, Tarski defined a set S C £
as consistent iff Cn(S) # L.

Now Amgoud and Besnard (2009)’s idea was to define an argument as a pair (.5, p)
where S C L and p € £, where S is consistent, p € Cn(S) and S is minimal in
satisfying all these conditions. In ASPIC™ Tarski’s notion of an abstract logic can be
used to generate the strict rules, via the following constraint (for any finite 5):

S —peRsiff pe Cn(9)

8As explained above, this strictly speaking is not a rule but a scheme or rules, with meta variables
ranging over L.
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It turns out that any AT with this choice of strict rules satisfies closure under contraposi-
tion. Strictly speaking, this only holds under some assumptions on the relation between
the Cn function and ASPIC™’s negation (note that Tarski did not make any assumption
on the syntax of £), but these assumptions are quite natural. For the details we refer the
reader to Section 5.2 of Modgil and Prakken (2013).

Choosing defeasible inference rules

Let us return to the question of how to choose the defeasible rules. Can we derive them
from a logic of our choice just as we can derive the strict rules from a logic of our
choice if we want to? This is controversial. Some philosophers argue that all rule-like
structures that we use in daily life are “inference licences” and so cannot be expressed in
the logical object language. In this view, all that can be done is apply them to formulas
from L to support new formulas from £. That is, these philosophers see all defeasible
generalisations as inference rules, whether they are domain-specific or not.

Others (usually logicians) take a more standard-logic approach (e.g. Kraus et al.
(1990); Pearl (1992)). They say that all contingent knowledge should be expressed in
the object language, so they reject the idea of domain-specific defeasible inference rules
(for the same reason they don’t like domain-specific strict rules). They would introduce
a new connective into £, let us write it as ~», where they informally read p ~ ¢
as something like “If p then normally/typically/usually ¢”. They then want to give a
model-theoretic semantics for this connective just as logicians give a model-theoretic
semantics for all connectives. The main difference is that such semantics for defeasible
conditionals do not look at all models of a theory to check whether it entails a formula
(as semantics for deductive logics do) but only to a preferred class of models of the
theory (for example, all models where things are as normal as possible). They would
then add a strict inference rule S — ¢ to R just in case ¢ is true in all models of .S,
while they would add a defeasible inference rule S = ¢ to R4 just in case ¢ is true in
all preferred models of S but not in all models of S.

Now what inference rules for ~» could result from such an approach? On two
things there is consensus between logicans: modus ponens for ~» is defeasibly but
not deductively valid, so the rule ¢ ~ 9, = 1 should go into R4. There is also
consensus that contraposition for ~» is deductively invalid, so the rule ¢ ~ ¥ —
—1) ~ — should not go into R;. However, here the consensus ends. Should the
defeasible analogue of this rule go into R4 or not? Opinions differ at this point®.

Let us illustrate the difference between the two approaches with a further variation
on Example 6.4.1. Above we used the approach where all defeasible generalisations
are inference rules. We now replace the two domain-specific defeasible inference rules
dy and dy with two object-level conditionals expressed in £ and now add them to :

WearsRing ~ Married
PartyAnimal ~ Bachelor

Moreover, we add defeasible modus ponens for ~» to Rg:
Ra={p~ 1,0 =}

The arguments then change as follows (assuming the crude way of incorporating clas-
sical logic):

?See Chapter 4 of Caminada (2004) for a very readable overview of the discussion.
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Ay WearsRing By:  PartyAnimal

Ag: WearsRing ~ Married By:  PartyAnimal ~ Bachelor
As: A1, Ay = Married Bs: By, Bo = Bachelor

Ay: Married D —Bachelor By:  Married D —~Bachelor
As: Az, Ay — —Bachelor Bs: B3, By — —Married

Now Ag rebuts By on B3 while Bs rebuts As on As.

Concluding, if you want, you can base at least some of your choices concerning de-
feasible inference rules on model-theoretic semantics for nonmonotonic logics. How-
ever, it is an open question whether a model-theoretic semantics is the only criterion
by which we can choose our defeasible rules. Some have based their choice on other
criteria, since they do not primarily see defeasible rules as logical inference rules but
as principles of human cognition or rational action, so that they should be based on
foundations other than semantics. For example, John Pollock based his defeasible rea-
sons on his account of epistemology (the part of philosophy that studies how we can
obtain knowledge). Others have based their choice of defeasible reasons on the study of
argument schemes in informal argumentation theory. We give examples of both these
approaches in Section 6.4.3.

Naming defaults in first-order languages

We finally illustrate some subtleties of the naming convention for defeasible rules. If
domain-specific defeasible rules are defined over a first-order language, then the same
notational naming convention is often used as for defaults in default logic. A rule with
free variables is used as a scheme for all its ground instances, that is, for all its instances
in which the variable z is replaced by a ground term from £. Moreover, the scheme is
often given a name d(z1,...,x,), where z1, ..., x,, are all free variables that occur in
the scheme. Such a name allows the formulation of undercutters to a rule. Consider,
for example:

d(xz): Bird(z) = Flies(z)
Then schemes for undercutters can be written as follows:
u(z): Penguin(z) = —d(z)

To see how this naming convention can be used, consider the following knowledge
base:

K, = {Vz(Penguin(z) D Bird(x))}

K, = {Penguin(Tweety),Bird(Polly)}

Then two arguments can be constructed for the conclusions that Tweety and Polly can
fly (the strict rules are assumed to be all valid first-order inferences):

A1 Penguin(Tweety) B;: Bird(Polly)

Ay:  Vz(Penguin(x) D Bird(x)) By: B = Flies(Polly)
As: Ay, As — Bird(Tweety)

Ay As = Flies(Tweety)

However, only for Tweety can an undercutter be constructed:

Cy: Penguin(Tweety)
Cy: C1 = ~d(Tweety)
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The point is that d(z) is not a rule name but a rule name scheme, and only for its
instance d;(Tweety) can an undercutter be constructed. If, by contrast, the birds-fly
rule had been named with d, then applying the undercutter for Tweety would also block
the default for Polly, which is clearly undesirable.

6.4.2 Satisfying rationality postulates

We are now in a position to state under what conditions ASPIC" satisfies Caminada
and Amgoud (2007)’s four rationality postulates. These are listed below (it is helpful
to refer to concepts defined in Definition 6.3.3 when reading these postulates), adapted
to the ASPIC* framework.'”

Definition 6.4.4 [Rationality postulates for ASPIC*] Let (c-)SAF = (A,C, =) be
an ASPIC™ (c-)structured argumentation framework defined by an ASPIC* AT with
AS = (L,R,n)and K = I, U K,. Let AF be the abstract argumentation framework
corresponding to (c-)SAF and let T' € {complete, preferred, grounded, stable}. Then:

o (c-)SAF satisfies the closure under subarguments postulate iff for all T-extensions
E of AF it holds that if an argument A is in E then all subarguments of A are in
E;

e (c-)SAF satisfies the direct consistency postulate iff for all T-extensions F of AF
it holds that Conc(FE) is directly consistent;

o (c-)SAF satisfies the indirect consistency postulate iff for all T-extensions E of
AF it holds that Conc(F) is ndirectly consistent;

o (c-)SAF satisfies the strict closure postulate iff for all T-extensions E of AF it
holds that Conc(E) = Clg,(Conc(E)).

The first postulate, closure under subarguments, holds unconditionally for the present
framework.

Proposition 6.4.5 Let (args, defeat) be an abstract argumentation framework as de-
fined in Definition 6.3.16 and E any of its grounded, preferred or stable extensions.
Then

e forall A€ E: if A’ € Sub(A) then A’ € E;
e Conc(FE) =Clrs(Conc(E)).
The two consistency postulates do not hold in general.

Example 6.4.6 A simple counterexample to consistency is with two defeasible rules
di: = pand ds: = g and a strict rule p — —q, where d; < ds. Then with the weakest-
or last-link ordering the argument for —¢ does not defeat the argument for ¢ so in all
semantics we have a single extension with both arguments.

%Caminada and Amgoud (2007) also propose postulates for the intersection of extensions and their con-
clusion sets, but since their satisfaction directly follows from satisfaction of the postulates for individual
extensions, these postulates will below be ignored.
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We now discuss under which conditions the consistency postulates are satisfied.

Depending on the choices outlined in Section 6.4.1, the first requirement for sat-
isfying the consistency postulates is that your argumentation theory is closed under
transposition or contraposition. This is because if neither property is satisfied, then
since strict rule applications cannot be attacked, direct consistency may then be vio-
lated. This can be illustrated with the first version of Example 6.4.1. Suppose we only
have one strict rule, namely, s;. we cannot construct Bs, since Bs applies the now
missing rule so. We still have that A3 rebuts Bs. Suppose now that d; < ds and we
apply the last-link argument ordering. Then A3 does not defeat Bs. In fact, no argu-
ment in the example is defeated, so we end up with a single extension in all semantics,
which contains arguments for both Bachelor and —Bachelor and so violates direct and
indirect consistency.

However, with transposition this bad outcome is avoided: if we also have so, then
argument Bs can be constructed, which rebuts A3 on A5. Again applying the preference
d1 < dg with the last-link ordering, we have that Bj strictly defeats As. Again we have
a unique extension in all semantics, containing all arguments except Ao and As. This
extension does not violate consistency.

Example 6.4.7 Consider Example 6.3.6. As discussed in Example 6.3.18, if the argu-
ment ordering is such that C'3 does not defeat B, then both arguments will be in the
same extension, which thus violates consistency since the conclusions of these argu-
ments contradict each other. However, if the transposition s — —v of v — —s is added
to R, then B can be continued to an argument for —wv, which successfully rebuts Cs
on (5, excluding the consistency-violating extensions.

Some say that the above violation of consistency, before inclusion of the transposed
rule, arises because ASPIC™ forbids attacks on strictly derived conclusions. Consis-
tency would not be violated if By was allowed to attack A3 in the first version of Ex-
ample 6.4.1. However, apart from the reasons discussed in Section 6.2, there is another
reason for prohibiting attacks on strictly derived conclusions: if they are allowed, then
extensions may not be strictly closed or indirectly consistent, even if the strict rules are
closed under transposition. To see why, suppose we changed ASPIC™’s definitions to
allow attacks on strict conclusions, so that B attacks Ag, Ao attacks Bs, and As and
B3 attack each other in Example 6.4.1. Suppose also that all knowledge-base items
and all defeasible rules in the example are of equal preference, and suppose we apply
the weakest- or last-link argument ordering. Then all rebutting attacks in the example
succeed. But then the set {A;, Ay, By, B2} is admissible and is in fact both a stable
and preferred extension. But this violates the rationality postulates of strict closure
and indirect consistency. The extension contains an argument for Bachelor but not for
-~ Married, which strictly follows from it by rule so. Likewise, the extension contains
an argument for Married but not for —Bachelor, which strictly follows from it by rule
s1. So the extension is not closed under strict rule application. Moreover, the extension
is indirectly inconsistent, since its strict closure contains both Married and —~Married,
and both Bachelor and = Bachelor.

Other requirements for satisfying the consistency postulates are that the axioms /C,,
are indirectly consistent (axiom consistency) and the preference ordering is reasonable.
The rationale for requiring the former is self-evident. A reasonable argument ordering
essentially amounts to requiring that: 1) arguments that are both strict and firm are
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strictly preferred over all other arguments; 2) the strength (and implied relative prefer-
ence) of an argument is determined exclusively by the defeasible rules and/or ordinary
premises; 3) the preference ordering is acyclic, and if B < A then it must be that
B’ < A where B’ is some maximal fallible (i.e., defeasible or plausible) sub-argument
of B (for example in our running example C but not C1 is a maximal fallible argument
of C'3). We refer the reader to Modgil and Prakken (2013) for the technical definition
of a reasonable ordering; suffice to say that it has been shown that the weakest- and
last-link argument orderings of Section 6.3.4 are reasonable.

We are now in a position to state an important result proved in Modgil and Prakken
(2013) that if your (c-)SAF is well-defined, in that its arguemntation theory satisfies
axiom consistency, and transposition or contraposition, and your argument preference
ordering is reasonable, then the consistency postulates are satisfied by the ASPIC™
framework as defined in Section 6.3.

Theorem 6.4.8 Let (args, defeat) be an abstract argumentation framework correspond-
ing to a well-defined (c-)SAF and let E be any of its grounded, preferred or stable
extensions. Then

e Conc(F) is consistent;
e Clrs(Conc(F)) is consistent.

Finally, note that if you do not include any strict rules or axiom premises in your ar-
gumentation theory, then the requirement that your (c-)SAF be well defined obviously
does not apply, but it is also worth noting that the preference ordering need noft be rea-
sonable in order that all four rationality postulates be satisfied (indeed no assumptions
as to the properties of the preference ordering are required in this case).

6.4.3 Using ASPIC™" to model argument schemes

We concluded Section 6.4.1 by remarking on the use of defeasible inference rules as
principles of cognition in John Pollock’s work and as argument schemes in informal
argumentation theory. We now illustrate how both approaches can be formalised in
ASPIC* and how strict inference rules can also be accommodated when doing so.

Let us first look in more detail at John Pollock’s work. He formalised defeasible
rules for reasoning patterns involving perception, memory, induction, temporal persis-
tence and the statistical syllogism, as well as undercutters for these reasons.

In ASPIC™ his principles of perception and memory can be written as follows:

dp(z,):  Sees(z,¢) = ¢
dm(z,0): Recalls(z,¢) = ¢

In fact, these defeasible inference rules are schemes for all their ground instances (that
is, for any instance where = and ¢ are replaced by ground terms denoting a specific per-
ceiving agent and a specific perceived state of affairs). Therefore, their names d,,(x, ¢)
and d,,(z, ) as assigned by the n function are in fact also schemes for names. A
proper name is obtained by instantiating these variables by the same ground terms as
used to instantiate these variables in the scheme. Thus it becomes possible to formulate
undercutters for one instance of the scheme (say for Jan who saw John in Amsterdam)
while leaving another instance unattacked (say for Bob who saw John in Holland Park).
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Note, finally, that these schemes assume a naming convention for formulas in a first-
order language, since ¢ is a term in the antecedent while it is a well-formed formula in
the consequent. In the remainder we will leave this naming convention implicit.

Now undercutters for d,, state circumstances in which perceptions are unreliable,
while undercutters of d,, state conditions under which memories may be flawed. For
example, a well-known cause of false memories of events is that the memory is distorted
by, for instance, seeing pictures in the newspaper or watching a TV programme about
the remembered event. A general undercutter for distorted memories could be

Um(x,¢): DistortedMemory(x,¢) = —dm(x,p)
combined with information such as
Vzx, p(SeesPicturesAbout(z, ¢) D DistortedMemory(z, ¢))

Pollock’s epistemic inference schemes are in fact a subspecies of argument schemes.
The notion of an argument scheme was developed in philosophy and is currently an
important topic in the computational study of argumentation. Argument schemes are
stereotypical non-deductive patterns of reasoning, consisting of a set of premises and a
conclusion that is presumed to follow from them. Uses of argument schemes are eval-
uated in terms of critical questions specific to the scheme. An example of an epistemic
argument scheme is the scheme from the position to know (Walton, 1996, pp. 61-63):

A is in the position to know whether P is true
A asserts that P is true
P is true

Walton gives this scheme three critical questions:

1. Is Ain the position to know whether P is true?
2. Did A assert that P is true?
3. Is A an honest (trustworty, reliable) source?

A natural way to formalise reasoning with argument schemes is to regard them as de-
feasible inference rules and to regard critical questions as pointers to counterarguments.
For example, in the scheme from the position to know questions (1) and (2) point to un-
derminers (of, respectively, the first and second premise) while questions (3) points to
undercutters (the exception that the person is for some reason not credible).
Accordingly, we formalise the position to know scheme and its undercutter as fol-

lows:

dy(z,p): PositionToKnow(z,y),Says(x,p) = ¢

Uy (z,p):  —Credible(x) = —dy(z, ¥)

We will now illustrate the modelling of both Pollock’s defeasible reasons and Walton’s
argument schemes with our example from Section 6.2, focusing on a specific class of
persons who are in the position to know, namely, witnesses. In fact, witnesses always
report about what they observed in the past, so they will say something like “I remember
that I saw that John was in Holland Park”. Thus an appeal to a witness testimony
involves the use of three schemes: first the position to know scheme is used to infer
that the witness indeed remembers that he saw that John was in Holland Park, then the
memory scheme is used to infer that he indeed saw that John was in Holland Park, and
finally, the perception scheme is used to infer that John was indeed in Holland Park.
Now recall that John was a suspect in a robbery in Holland Park and that Jan testifed
that he saw John in Amsterdam on the same morning, while Jan is a friend of John.
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Suppose now we also receive information that Bob read newspaper reports about the
robbery in which a picture of John was shown. One way to model this in ASPIC™ is as
follows.

The knowledge base consists of the following facts (since we don’t want to dispute
them, we put them in XCp,):

fi:  PositionToKnow(Bob,Recalls(Bob,Sees(Bob, InHollandPark(John))))

fo: Says(Bob,Recalls(Bob,Sees(Bob, InHollandPark(John))))

fa:  SeesPicturesAbout(Bob, Sees(Bob, InHollandPark(John)))

fa: Vz,p.(SeesPicturesAbout(x, ¢) D DistortedMemory(z, ¢))

fs:  Vz.InHollandPark(z) D InLondon(x)

fe:  PositionToKnow(Jan,Recalls(Jan,Sees(Jan, InAmsterdam(John))))

f7: Says(Jan,Recalls(Jan,Sees(Jan, InAmsterdam(John))))

fs:  Friends(Jan, John)

fo:  SuspectedRobber(John)

fio: Vz,y,¢.Friends(x,y) A SuspectedRobber(y) A InvolvedIn(y, ¢) D
—Credible(z)

fi1:  InvolvedIn(John,Recalls(Jan,Sees(Jan, InAmsterdam(John))))

fi2:  Vz—(InAmsterdam(x) A InLondon(z))

Combining this with the schemes from perception, memory and position to know, we
obtain the following arguments (for reasons of space we don’t list separate lines for
arguments that just take an item from K).

As: fi1, fa = 4w Recalls(Bob, Sees(Bob, InHollandPark(John)))
Ay: A3 =g, Sees(Bob, InHollandPark(John))

As: A4 =gy InHollandPark(John)

Az7: As, fs — InLondon(John)

This argument is undercut (on A4) by the following argument applying the undercutter
for the memory scheme:

Bs:  f3, f4 — DistortedMemory(Bob, Sees(Bob, InHollandPark(.John)))
By Bs =y —dpy,(Bob, Sees(Bob, InHollandPark(John)))

Moreover, A~ is rebutted (on As) by the following argument:

Cs:  fe, f7 = aw Recalls(Jan, Sees(Jan, InAmsterdam(John)))
Cy: Cs =gy, Sees(Jan, InAmsterdam(John))

Cs:  C4 =gp InAmsterdam(John)

Cs:  C5, f5, fi2 = —InLondon(John)

This argument is also undercut, namely, on C'5 based on the undercutter of the position
to know scheme:

Ds: fs, fo, f10, fi1 — —Credible(Jan)
Dg: D5 =y —dy(Jan,Recalls(Jan, Sees(Jan, InAmsterdam(John))))

Finally, Cg is rebutted on Cj5 by the following continuation of argument Az:
Ag:  As, f5, fi2 = —InAmsterdam(John)

Ag is in turn undercut by By (on A4) and rebutted by Cg (on As).
The example is displayed in Figure 6.4.
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Figure 6.4: A formalised example

Because of the two undercutting arguments, neither of the testimony arguments are
credulously or sceptically justified in any semantics. Let us see what happens if we do
not have the two undercutters. Then we must apply preferences to the rebutting attack
of Cg on Aj and to the rebutting attack of Ag on C5. As it turns out, the same prefer-
ences have to be applied in both cases, namely, those between the three defeasible-rule
applications in the respective arguments. And this is what we intuitively want.

Finally, we note that counterarguments based on critical questions of argument
schemes may themselves apply argument schemes. For example, we may believe that
Jan and John are friends because another witness told our so. Or we may believe that
Holland Park is in London because a London taxi driver told us so (an application of
the so-called expert testimony scheme).

6.4.4 Instantiations with no defeasible rules

All that has been said so far about ways to choose the strict rules applies irrespective
of whether you also want to include defeasible rules in your argumentation system. In
fact, ASPIC™ allows you to only use strict inference rules. Principled ways to do so are
to base the strict rules on classical logic or indeed on any Tarskian consequence rela-
tion. In this way, ASPIC™ extends the classical-logic approach of Besnard and Hunter
(2009) and the abstract-logic approach of Amgoud and Besnard (2009), by providing
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guidelines for using preferences to resolve inconsistencies in classical logic or any other
underlying Tarksian logic. The use of preferences is of particular importance in such
contexts, since in these contexts the stable and preferred extensions of Dung frame-
works simply correspond to the maximal consistent subsets of the instantiating theories
(Amgoud and Besnard, 2013). One thus needs some ‘extra-logical’ means, such as
preferences, to resolve inconsistencies.

The idea is as follows. Given a set S of wif in some language £ and a Tarksian
consequence relation Cn over £ (note that classical consequence is such a Tarskian
consequence relation), we let the axioms and defeasible inference rules be empty, and
the strict rules defined as indicated in Section 6.4.1, namely, as S — p € R, iff
p € Cn(S), for any finite S C L. Furthermore, in keeping with the above mentioned
classical, and more general Tarskian Logic approaches, we assume all arguments to be
consistent and, moreover, their premise sets subset-minimal in applying their conclu-
sion.

For this special case all ASPIC™ arguments are strict, so all attacks are undermining
attacks. In Modgil and Prakken (2013) it was shown that these ASPIC* reconstructions
of Tarskian and classical approaches are equivalent to the originals if these originals use
a form of undermining attack. Moreover, the result stated in Section 6.4.1 — that any
ASPIC* AT with the strict rules derived from a Tarskian logic satisfies closure under
contraposition — then implies that without preferences these reconstructions are well-
defined and thus satisfy the rationality postulates. Moreover, if these reconstructions
are extended with a reasonable argument ordering, then this result also holds for the
case with preferences. Thus the ASPIC™ framework has in fact been used to extend
both the classical-logical approach of Besnard and Hunter (2009) and the more gen-
eral Tarskian approach of Amgoud and Besnard (2009) with preferences in a way that
satisfies all rationality postulates of Caminada and Amgoud (2007). A final result of
Modgil and Prakken (2013) is that if a thus defined classical-logic instantiation of AS-
PICtis combined with a total priority ordering <’, then one obtains a correspondence
with Brewka (1989)’s Preferred Subtheories.

6.4.5 Illustrating uses of ASPIC" with and without defeasible rules

In this section we compare respective uses of ASPICt with and without defeasible
rules in more detail. We first say more about the arguments of some that classical-
logic simulations of defeasible rules may yield counterintuitive results. Let us as-
sume a classical-logic instantiation of ASPIC* as defined in Section 6.4.4 and for-
malise natural-language generalisations ‘If P then normally ()’ as material implications
P > @ putin Kp,. The idea is that since P D () is an ordinary premise, its use as a
premise can be undermined in exceptional cases. Observe that by classical reasoning
we then have a strict argument for =) D —P. Some say that this is problematic. Con-
sider the following example: ‘Anyone who is a man usually has no beard’, so (strictly)
‘Anyone who has a beard usually is not a man’. This strikes some as counterintuitive,
since we know that virtually everyone who has a beard is a man, so the contraposition
of ‘If P then normally Q° cannot be deductively valid''.

""One way to argue why classical simulations may give counter-intuitive results is to recall that a num-
ber of researchers provide statistical semantics for defeasible inference rules. These semantics regard a
defeasible rule of the form P = () as a qualitative approximation of the statement that the conditional
probability of (), given P, is high. The laws of probability theory then tell us that this does not entail that
the conditional probability of =P, given —(@), is high. The problem with the classical-logic approach is
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A more refined classical approach is to give the material implication an extra nor-
mality condition N, which informally reads as ‘everything is normal as regards P im-
plying @°, and which is also put in /C,. The idea then is that exceptional cases give rise
to underminers of N. However, (P A N) D @ also deductively contraposes, namely, as
(=Q A N) D =P, so it seems that we still have the controversial deductive validity of
contraposition for generalisations (in the beard and men example the contraposition of
the rule with the added normality condition would read: ‘Anyone who has a beard and
all is normal regarding men and having beards, usually is not a man’ !).

So far we only discussed reasons for belief but argumentation is often about what
to do, prefer or value (what philosophers often call practical reasoning). Here too it
has been argued on philosophical grounds that reasons for doing, preferring or valu-
ing cannot be expressed in classical logic since they do not contrapose. This view
can, of course, not be based on a statistical semantics for such reasons, since statistics
only applies to reasoning about what is the case (what philosophers often call epis-
temic reasoning). Space limitations prevent us from giving more details about these
philosophical arguments.

We next illustrate two different ways to use ASPIC™ with a detailed example. Both
ways use classical logic in their strict part and use explicit preferences, but only the
second way uses defeasible inference rules. The first way instead expresses defeasible
generalisations as material implications with normality assumptions. The example will
shed further light on the issue whether empirical generalisations can be represented in
classical logic, and it will also motivate the use of axiom premises. Our example is a
well-known one from the literature on nonmonotonic logic. Suppose a defeasible rea-
soner accepts all following natural-language statements are true. For the generalisations
(1) and (2) this means that the reasoner accepts that they hold in general but that they
may have exceptions.

(1) Birds normally fly

(2) Penguins normally don’t fly

(3) All penguins are birds

(4) Penguins are abnormal birds with respect to flying
(5) Tweety is a penguin

A defeasible reasoner then wants to know what can be concluded from this informa-
tion about whether Tweety can fly. It seems uncontroversial to say that any defeasible
reasoner will conclude that Tweety can fly.

We now formalise these statements with the just-explained method to represent
empirical generalisations as material implications with explicit normality assumptions.
We use a classical-logic instantiation of ASPICT with preferences as defined above in
Section 6.4.4.

(1)  bird A —aby D canfly

(2) penguin N\ —abs D —canfly
(3) penguin D bird

4) penguin D aby

(5) penguin

Let us first add these formulas to XCp,. The idea now is that the normality assumptions of
a defeasible reasoner are expressed as additional statements —ab; and —abs, also added

then that it conflates this distinction by turning the conditional probability of () given P into the uncondi-
tional probability of P D (), which then has to be equal to the unconditional probability of =Q) D —P.
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to K. We then define the preference ordering on XC), such that all of (1-5) are strictly
preferred over any of these two assumptions and that —aby <’ —abs.

We can then construct many arguments on the issue whether Tweety can fly. Note
that {1,2,3,4,5} U {—abi, —aby} is minimally inconsistent, so if we take any single
element out, the rest can be used to build an argument against it. This means that we
can formally build arguments not just against the two normality assumptions but also
against any of (1-5) (note the similarity with the fact that, as noted above, in classical-
logic argumentation without preferences the stable and preferred extensions corespond
to maximal consistent subsets of the knowledge base). With the weakest- or last-link
ordering we do obtain the intuitive conclusion —canfly, but the fact that arguments
against any of (1-5) can be built may be regarded as somewhat odd, since we just noted
that a defeasible reasoner accepts (1-5) as given and is only interested in what follows
from them.

Let us therefore move (1-5) to the axioms /C,,, so that they cannot be attacked. Then
we have just a few arguments on the issue whether Tweety can fly: we have an argument
{1,2,3,4,5} U {—aba} — —canfly, which has one attacker, namely, {1,2,3,5} U
{—ab1} — aby. However, with the weakest- or last link principle this attacker does
not defeat it target, since we have —ab; <’ —abs. Hence —canfly is justified in any
semantics. So at first sight it would seem that the classical-logic approach enriched
with axiom premises adequately models reasoning with empirical generalisations.

However, this approach still has some things to explain, as can be illustrated by
changing our example a little: above it was given as a matter of fact that Tweety is a
penguin but in reality the particular ‘facts’ of a problem are often not simply given but
derived from information sources (sensors, testimonies, databases, the internet, and so
on). Now in reality none of these sources is fully reliable, so inferring facts from them
can only be done under the assumption that things are normal. So let us change the
example by saying that Tweety was observed to be a penguin and that animals that are
observed to be penguins normally are penguins. We change 5 to 5" and we add 6 to KC,,:

(5°) observed_as_penguin
(6)  observed_as_penguin A —abs D penguin

Moreover, we add —absz to K,. We can still build an argument that Tweety cannot
fly, namely, {1,2,3,4,5'} U{—aba, ~abs} — —canfly. However, we can also build an
attacker of this argument, namely {1,2,3,4,5,6}U{—aby, maba} — abs. We can still
obtain the intuitive outcome by preferring the assumption —abs over the assumption
—ab;. However, some have argued that this is an ad-hoc solution, since there would
be no general principle on which such a preference can be based. The heart of the
problem, they say, is the fact that the material implication satisfies contraposition, a
property which, as we just mentioned, can be argued to be too strong for defeasible
generalisations. In reality a defeasible reasoner would not even construct an argument
against penguin. As can be easily checked, the same issues arise if we put (1-4,5’,6)
in IC, while we then have our old issue back that arguments can be constructed against
any element of /Cp,.

Concluding so far, those who want to model ‘default reasoning’ in classical argu-
mentation have to explain why arguments as the one for abs can be constructed and why
it does not defeat the argument for —canfly (or alternatively, why the latter conclusion
is not justified). Moreover, if they apply the first version of this approach, by putting all
of {1,2,3,4,5',6} in K, then they also have to explain why arguments against any of
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these premises can be constructed and whether these arguments succeed as defeats.
Let us next formalise the example with domain-specific defeasible rules and with
the strict rules still corresponding to classical logic.

di:  bird = canfly

do:  penguin = —canfly

ds: observed_as_penguin = —penguin

fi: penguin D bird

far penguin D —ry

f3:  observed_as_penguin
It now does not matter whether we put the facts in IC;, or KC,, nor does it matter which
priorities we define on K, or R4. We have the following arguments:

Ajq: observed_as_penguin By Ag = —canfly

Ay Ay = penguin

As: penguin D bird

A4Z AQ, A3 = C(J/I’Lﬂy Cli A2 =
Note also that no argument can be built against the conclusion penguin. We have that
Ay and Bj rebut each other while C'; undercuts A4. Whatever the argument ordering
between A4 and Bj, we thus obtain that the conclusion —canfiy is justified in any
semantics.

Concluding, the classical modelling of this example is simpler in that it only uses
classical inference and does not have to rely on the notion of a defeasible inference
rule. On the other hand, to obtain the intuitive outcome it needs more preferences
than the modelling with defeasible rules, while the issue arises on which grounds these
preferences can be stated. Moreover, if the classical approach regards all knowledge
as fallible in principle, then it generates many more arguments than perhaps intuitively
expected, at least many more than in the modelling with defeasible rules.

6.4.6 Representing facts

ASPIC™ allows you to represent facts in various ways, each with their pros and cons.
Disputable facts ¢ can either be put as such in /C,, or as defeasible rules = ¢ with empty
antecedents. An advantage of including disputable facts in /C, is that thus ASPICT
captures classical and abstract-logic argumentation with preferences as special cases.
On the other hand, if disputable facts ¢ are represented as defeasible rules = ¢, then
the definition of the weakest- and last-link argument orderings becomes simpler, since
then only sets of defeasible rules need to be compared. In addition, this choice removes
the need for undermining attack, which simplifies the definitions of attack and defeat.

Undisputable facts p can either be put as such in /C,, or as strict rules — ¢ with
empty antecedents. This choice does not make a difference for the weakest- or last-link
argument ordering, since these orderings disregard axiom premises and strict rules.
However, a disadvantage of representing undisputable fact o as strict rules — ¢ is that
then the strict rules do not express a logic any more, so the above-mentioned theorems
on definitions of R in terms of Tarskian abstract logics do not apply any more.

6.4.7 Summary

We have seen that ASPIC™ allows you to make any choice of axioms, strict and defea-
sible rules you like. You can choose domain-specific strict and/or defeasible inference
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rules, and you can choose logical strict and/or defeasible inference rules, for any de-
ductive and/or nonmonotonic logic of your choice, good or bad. You can add logical
axioms to K, but you can also add any other information to KC,, that you don’t want
to put up for discussion. You can also base your defeasible rules on informal accounts
of argument schemes. All that ASPIC™ tells you is how arguments can be built with
your rules of choice, how they can be attacked, and how these attacks can be resolved,
given an argument ordering of your choice. Moreover, we have some theorems about
ASPIC™ that inform you about some properties of your choices.

6.5 Generalising negation in ASPIC*

The notion of an argumentation system in Section 6.3.1, assumed a language £ closed
under negation (—), where the standard classical interpretation of — licenses a sym-
metric notion of conflict based attack, so that an argument consisting of an ordinary
premise ¢ or with a defeasible top rule concluding ¢, symmetrically attacks an argu-
ment consisting of an ordinary premise —¢ or with a defeasible top rule concluding —¢.
However, the ASPIC™T framework as presented in Prakken (2010); Modgil and Prakken
(2013), accommodates a more general notion of conflict, by defining an argumentation
system to additionally include a function ~ that, for any wff ¢) € L, specifies the set of
wif’s that are in conflict with ¢). With this idea, which is taken from assumption-based
argumentation (Bondarenko et al., 1997; Dung et al., 2009), one can define both an
asymmetric and symmetric notion of conflict-based attack. More formally:

Definition 6.5.1 ~ is a function from £ to 2%, such that:

e pisacontraryof if o € P, €5 ;
e o is a contradictory of 1 (denoted by ‘¢ = —1’),if o € 1), € B ;
e cach ¢ € L has at least one contradictory.

Note that classical negation is now a special case of the symmetric contradictory
relation: o € J iff « is of the form —f3 or 3 is of the form -« (i.e., for any wif a,
a and —« are contradictories). Modgil and Prakken (2013) then redefine Definition
6.3.3’s notion of direct consistency so that a set S is directly consistent iff # 1), ¢ €
S such that 1) € @. Also, Conc(A) € B (Conc(A) € n(r)) replaces Conc(A) = —¢
(Conc(A) = —n(r)) in Definition 6.3.10’s definition of attacks.

With this, one can reconstruct assumption-based argumentation (ABA) in ASPIC™,
since as noted above, AB A also generalises the notion of conflict through the use of a
~ function. Indeed, this reconstruction is formally shown in Prakken (2010), in which
assumption premises were distinguished from ordinary premises, and used to model
ABA assumptions. However, one can do without such specialised premises, and model
assumptions as ordinary premises. So, to summarise, an ASPIC " reconstruction of ABA
will have empty sets of defeasible rules and axiom premises, and consist of ordinary
premises and strict rules (respectively corresponding to the assumptions and rules in an
ABA theory). Then, for every ordinary premise «, one specifies that:

1. there is a 8 in £ such that ( is a contrary or contradictory of «

2. « is not the conclusion of a strict inference rule (corresponding to so called ‘flat’
ABA theories)
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Then, without the use of preference relation, a correspondence can be shown be-
tween ABA and ASPIC™. Note that by reconstructing ABA in ASPIC™, one can then
identify conditions under which ABA satisfies rationality postulates (by requiring, for
instance, that the strict rules are closed under transposition). For example, consider the
ASPIC*reconstruction of an ABA theory consisting of strict rules a — p and b — —p,
and ordinary premises (assumptions) {a, b} such that a and —a are contradictories, and
b and —b are contradictories. Consistency is violated since one can construct a sin-
gle preferred (and grounded) extension containing arguments A = [a;a — p| and B =
[b; b — —p], neither of which attack each other. However with the additional transposi-
tions p — —b and —p — —a, then extending A and B yields A’ = [a;a — p;p — —b]
and B’ = [b;b — —p;—p — —al. A’ and B’ respectively attack B and A. So the set
of arguments {A, B} is no longer admissible (neither A or B can defend against these
attacks).

The rationale for these more general notions of conflict and attack is two-fold.
Firstly, one can for pragmatic reasons state that two formulae are in conflict, rather than
requiring that one implies the negation of another; for example, assuming a predicate
language with the binary ‘<’ relation, one can state that any two formulae of the form
«a < [ and 8 < « are contradictories. Secondly, the ~ function allows for an asym-
metric notion of negation. This in turn is required for modelling negation as failure
(as in logic programming). Using the negation as failure symbol ~ (also called ‘weak’
negation, in contrast to the ‘strong’ negation symbol —), then ~ « denotes the negation
of o under the assumption that « is not provable (i.e., the negation of « is assumed in
the absence of evidence to the contrary). It is not then meaningful to assert that such an
assumption brings into question (and so initiates an attack on) the evidence whose very
absence is required to make the assumption in the first place. In other words, if A is
an argument consisting of the premise ~ «, and B concludes « (the contrary of ~ «),
then B attacks A, but not vice versa. Furthermore, since the very construction of A
is invalidated by evidence to the contrary, i.e., B, then such attacks succeed as defeats
independently of preferences.

To accommodate the notion of contrary, and attacks on contraries succeeding as de-
feats independently of preferences, we further modify Definition 6.3.10 to distinguish
the special cases where Conc(A) is a contrary of ¢, in which case we say that A con-
trary rebuts B and A contrary undermines B, and then modify Definition 6.3.12 so
that:

e A successfully rebuts B if A contrary rebuts B, or A rebuts B on B and A £ B'.

e A successfully undermines B if A contrary undermines B, or A undermines B
on¢and A £ ¢.

Following on from the discussion in Section 6.4.2, one can then show (Modgil and
Prakken, 2013) that with the additional notion of contrary, satisfaction of the four ratio-
nality postulates not only requires that the argument theory satisfy axiom consistency,
and transposition or contraposition, but also that it is well formed in the following sense:

Definition 6.5.2 An argumentation theory is well-formed if the following holds: if ¢ is
a contrary of ¢ then 1) ¢ IC,, and 1 is not the consequent of a strict rule.

To illustrate the use of negation as failure, suppose you want your arguments to be
built from a propositional language that includes both — and ~. One could then define
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L as a language of propositional literals, composed from a set of propositional atoms
{a,b,c,...} and the symbols — and ~. Then:

e « is a strong literal if o is a propositional atom or of the form —3 where [ is a
propositional atom (strong negation cannot be nested).

e «is a wif of L, if « is a strong literal or of the form ~ [ where 3 is a strong
literal (weak negation cannot be nested).

Then o € fiff (1) « is of the form —3 or 3 is of the form —a; or (2) 3 is of the
form ~ « (i.e., for any wif o, @ and -« are contradictories and « is a contrary of ~ «).
Finally, for any ~ « that is in the antecedent of a strict or defeasible inference rule, one
is required to include ~ « in the ordinary premises.

Consider now Example 6.3.6, where we now have that v € ~u, and we replace
the rule dy : w = v with dj: ~ u = v, and add ~ u to the ordinary premises:
Kp = {~ u,s,u,x}. Then, the arguments C3 and D, are now replaced by arguments
C% and D)) each of which contain the sub-argument E : ~ u (instead of C : u). Then
C' : u contrary undermines, and so defeats, C’é and Dﬁl on ~ u.

We finally note that according to Toni (2014) the philosophy behind ABA is to
translate preferences and defeasible rules into ABA rules plus ABA assumptions, so
that rebutting and undercutting attack and the application of preferences all reduce to
premise attack. The idea of this is to keep the formal theory simpler and to make
the technical machinery of ABA available for other approaches. We agree that this
approach has its merits but note that it is an open question whether ASPIC™ can in its
full generality be translated into ABA. Also, as we noted above, we claim that there is
also some merit in having a theory with explicit notions of rebutting and undercutting
attack and preference application, namely, if the aim is to formalise modes of reasoning
in a way that corresponds with human modes of reasoning and debate.

6.6 Self-defeat

In Chapter 4, Section 4.2 we said that a proper analysis of self-defeating arguments must
make the structure of arguments explicit. Now that we have done so, we can explain
why this is needed. In the present framework two types of self-defeating arguments
are possible: serial self-defeat occurs when an argument defeats one of its earlier steps,
while parallel self-defeat occurs when the contradictory conclusions of two or more
arguments are taken as the premises for L. It turns out that parallel self-defeating can
cause problems if argumentation systems are not carefully defined, particularly if they
include standard propositional logic.
The following example explains why serial self-defeat does not cause problems.

Example 6.6.1 Consider the following version of the argument scheme from witness
testimony plus an undercutter in case the witness is incredible:

dw(x, p): Says(z, p) = ¢
Uy (x,): Incredible(x) — —dy(z, )

Now suppose that KC), contains Says(John, “Incredible(John)”). Then we have

Ai1:  Says(John, “Incredible(John)”)
As: Ay = Incredible(John)
Asz: Ay — —dy(John, “Incredible(John)”)
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Argument As is self-defeating since it undercuts itself on As. In both preferred and
grounded semantics there is a unique extension £ = { A1 }. Arguably this is the desired
outcome, since suppose witness John also says something completely unrelated, say,
‘the suspect stabbed the victim with a knife’ if the self-defeating argument A3 were
overruled, the argument that can be constructed for ‘the suspect stabbed the victim with
a knife’ would be justified since all its defeaters are overruled, while yet it is based on
a statement of a witness who says of himself that he is incredible.

The following abstract example illustrates the problems that can be caused by parallel
self-defeat.

Example 6.6.2 Let R; = {p = ¢; r = —¢; t = s} and K = {p,r,t} while R,
consists of all propositionally valid inferences. Then:

Ai:p As: A1 = q
Bi:r By: By = q
CliAQ,BQ—>J_ 021 Cl—>—|8
Dyt Dy D1 = s

Here a problem arises since s can be any formula, so any defeasible argument unrelated
to As or By, such as D, can, depending on the argument ordering, be rebutted by
Cs. Clearly, this is extremely harmful, since the existence of just a single case of
mutual rebutting defeat, which is very common, could trivialise the system. In fact, of
the semantics defined by Dung (1995) this is only a problem for grounded semantics.
Since all preferred/stable extensions contain either As or Bs, argument C5 is not in
any of these extensions so Ds is in these extensions. However, if neither of Ay and
By strictly defeats the other, then neither of them is in the grounded extension so that
extension does not defend D5 against C'y and therefore does not contain Ds.

(Actually, if examples of parallel ‘self-defeat’ are translated into a Dung-style abstract
argumentation framework, there are no abstract self-defeating arguments. Nevertheless,
intuitively, this is a case of self-defeat, which is why it is discussed in this section.)

Current research on tackling these issues has made some progress. Wu (2012)
proves for the special case with £ a propositional or first-order language with a classical
interpretation and with a simple argument ordering that if the set of all conclusions of an
argument is required to be indirectly consistent, the above problems do not arise while
all results on the rationality postulates still hold. Note that with this requirement, the
argument C in Example 6.6.2 cannot be constructed. Moreover, Grooters and Prakken
(2016) prove for the more general case with any reasonable argument ordering that the
problems can avoided by imposing two additional constraints on the construction of
arguments: (1) strict rules can only be applied to classically consistent sets of formulas,
and (2) strict rules cannot be chained. This also rules out C'; in Example 6.6.2 and,
moreover, rules out other problematic examples. Note that Grooters and Prakken (2016)
do not adopt Wu (2012)’s constraint that the set of all conclusions of an argument should
be consistent.

In conclusion, there are good reasons to believe that the two types of self-defeating
arguments should be treated differently: while arguments based on parallel self-defeat
should always be overruled, arguments with serial self-defeat should retain their force
to prevent other arguments from being justified or defensible.
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6.7 Conclusion

In this chapter we presented ASPIC™, a framework for structured argumentation based
on two ideas: that conflicts between arguments are sometimes resolved with explicit
preferences, and that arguments are built with two kinds of inference rules: strict, or
deductive rules, which logically entail their conclusion, and defeasible rules, which
only create a presumption in favour of their conclusion. The second idea implies that
ASPIC™ does not primarily see argumentation as inconsistency handling in a given
‘base’ logic: conflicts between arguments may not only arise from the inconsistency of
a knowledge base but also from the defeasibility of the reasoning steps in an argument.

ASPIC™ is not a system but a framework for specifying systems. A main objective
is to identify conditions under which instantiations of ASPIC+ satisfy logical consis-
tency and closure properties. We first discussed ASPIC™’s philosophical underpin-
nings. We then illustrated the main definitions with examples and we presented some
more and less principled ways to instantiate the framework. We also briefly discussed
how ASPIC™ captures several other approaches as special cases. As we saw above,
the ASPIC* framework can be instantiated in many different ways. We have already
discussed some of these ways and their properties. We hope that in due course more
‘best practices’ in using ASPICT will emerge.

Finally, three implementations are available online of instantiations of ASPIC™ with
domain-specific inference rules and with rule priorities:

e Mark Snaith’s TOAST (http://www.arg.dundee.ac.uk/toast/);
e Wietske Visser’s EPR (http://www.wietskevisser.nl/research/epr/);

e Matthew South’s implementation based on a prototype by Gerard Vreeswijk
(http://aspic.cossac.org/).

6.8 Exercises

In the following exercises an argument ordering is called simple if it holds that A < B
iff A is plausible or defeasible while B is strict and firm, and A ~ B otherwise.

EXERCISE 6.8.1 Consider the following argumentation theory with:

Rs={p,g—r, t = —di},
Ry ={

di:p=gq,

do: s = t,

ds: u = v,

d4: v = —|t}
ICP = {p,S,U}

With orderings < on Rq and <" on KC,, such that dy < d4, d3 < d and u <’ s.

1. Verify the status of r according to preferred semantics, assuming the weakest-link
ordering on arguments.

2. Answer the same question assuming the last-link ordering on arguments.
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EXERCISE 6.8.2 Consider an argumentation system in which R consists of all valid
propositional and first-order inferences from finite sets, and with as knowledge base
K, ={Vx(Pz D> Qx)}
Kp ={Pa,Vz(Qx O Rx)}

1. Construct a consistent argument A for Ra.
2. Identify Prem(A), Conc(A), Sub(A), DefRules(A) and TopRule(A).

3. What is in terms of Definition 6.3.7 the type of this argument?

EXERCISE 6.8.3 Consider the following argumentation theory with a simple argu-
ment ordering and:

‘R s consists of all valid inferences of propositional logic from finite sets;
Ry =A{
D,q=T,
rvs=t,
U= v,
w = —u}
Kn= {_‘<q A U)}
Ky = {p,q,u,w} Evaluate the following questions relative to the c-SAF induced by
this example.

1. Verify the status of ¢ according to grounded semantics, assuming the weakest-link
ordering on arguments.

2. Assume now the following preference orderings < on R4 and <" on KC;;:
w=wu<u=v
g<'u
w<"u
Verify how the answer to question (1) changes for the elitist last-link ordering.

3. Answer the same question for the elitist weakest-link ordering.

EXERCISE 6.8.4 Consider the following argumentation theory with:

‘R s consists of all valid propositional inferences from finite sets,
Ry ={
di:p=q,
do: p,q =,
d3: s = t}
Kp = {p,s,(gnr) Dt}

With an ordering < on Ry such that d3 < d; and dy < ds. Evaluate the following
questions relative to the c-SAF induced by this example.

1. Verify the status of ¢ and —t¢ according to preferred semantics, assuming the last-
link ordering on arguments.
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2. Specity the following for all arguments X that you constructed in your answer:
Prem(X), Conc(X), Sub(X), DefRules(X), LastDefRules(X)and TopRule(X).

EXERCISE 6.8.5 Consider Example 6.6.1.
1. Explain why E = {A;} is the only grounded and preferred extension.

2. Extend the example with the argument based on John’s testimony about the sus-
pect and verify its status in grounded and preferred semantics.

EXERCISE 6.8.6 Consider the following example of a civil legal case. Assume that
in a medical malpractice case, a doctor is liable for compensation if the patient was
injured because of the doctor’s negligence, and that if a patient is injured in a non-risky
operation, this is negligence. We also have that an appendicitis operation generally
is a non-risky operation but that operations on patients with bad blood circulation are
generally risky. Assume finally, that a given patient was injured in an appendicitis
operation and that two medical tests gave contradicting results on whether the patient
had bad blood circulation. One way to represent this is with the following facts and
domain-specific defeasible rules: Ry = K, = &, Rq = {r1-r6} while IC;, = {fi-fa}.

r1:  injury, negligence = compensation fir injury

ro:  injury, — risky operation = negligence fa:  appendicitis
r3:  appendicitis = — riskyOperation fs:  medicalTest]
r4:  badCirculation = riskyOperation fa: medicalTest2

r5.  medicalTlest] = badCirculation
re.  medicalTlest2 = — badCirculation

1. Construct all arguments on the basis of this argumentation theory and their attack
relations.

2. Specify the following for all arguments X: Prem(X), Conc(X), Sub(X ), DefRules(X)
and TopRule(X).

3. Suppose that 3 < r4 and r5 < 7g. Determine the defeat relations with the elitist
last-link ordering.

4. Determine the grounded extension of the SAF defined by the above argumen-
tation theory and the argument ordering induced by the preference relation of

(b).
5. Determine the preferred extension(s).

6. Move f3 and f4 from KC,, to KC,, and assume also that f4 <’ f3. Answer again
questions (b-d) but now for the elitist weakest-link ordering.

EXERCISE 6.8.7 Give the abstract argumentation framework corresponding to Fig-
ure 6.4.

EXERCISE 6.8.8 Consider the following, equally strong defaults

1. Persons born in The Netherlands are typically Dutch.
2. Persons with a Norwegian name are typically Norwegian.
3. Persons who are Dutch or Norwegian typically like ice skating.
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and the following facts:

4. Brigt Rykkje was born in the Netherlands
5. Brigt Rykkje has a Norwegian name.
6. Nobody is both Dutch and Norwegian.

Evaluate the following questions relative to the c-SAF induced by this example.

1. Translate this information into an argumentation theory of which R consists of
all valid propositional and first-order inferences from finite sets and R4 consists
of the defeasible inference scheme for ~» from Section 6.4.1.

2. Assume that the argument ordering is determined by the last-link principle. We
want to know whether Brigt Rykkje likes ice skating. Construct all arguments
that are relevant for this proposition and determine whether the conclusion that
Brigt Rykkje likes ice skating is justified in grounded semantics.

3. Answer the same question for preferred semantics.
4. Answer the same question for f-justification in preferred semantics.

EXERCISE 6.8.9 Formalise the example of Exercise 4.8.12 as an argumentation the-
ory with domain-specific defeasible rules in a way that satisfies your intuitions about
this example.

EXERCISE 6.8.10 Let S be a set of strict rules and let Cl,(S) be defined as the
smallest set such that:

e S CCly(S), and

e If s € Cly,(S) and ¢ is a transposition of s then t € Cly,(5).
Let Rs ={p = q¢;p — r;p,r — s}.

1. Determine Clyy(Ry).

2. Determine whether with C'ly,(R;) it holds that {p} F s.

3. Determine whether with Cl;,(R;) it holds that {—s} - —p.

EXERCISE 6.8.11 Let R, = {p — q; ~¢ — r; r — —p; -r — q; p — —r} and let
~ correspond to classical negation.

1. Is an argumentation theory with R closed under transposition?
2. Is an argumentation theory with R s closed under contraposition?

EXERCISE 6.8.12 !> Let (£, ~, R, n) be an argumentation system where:

e [ is a language of propositional literals, composed from a set of propositional
atoms {a,b,c,...} and the symbols = and ~ respectively denoting strong and
weak negation (i.e., negation as failure). « is a strong literal if v is a propositional
atom or of the form —5 where § is a propositional atom (strong negation cannot
be nested). o is a wff of L, if « is a strong literal or of the form ~ 5 where (3 is
a strong literal (weak negation cannot be nested).

12 Adapted from S. Modgil & H. Prakken, A general account of argumentation with preferences. Artifi-
cial Intelligence 195 (2013): 361-397.
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e o € Biff (1) v is of the form —f3 or 3 is of the form —cy; or (2) /3 is of the form
~ « (i.e., for any wff o, o and —« are contradictories and « is a contrary of ~ «).

e Ro={t.q = p}Ra={~s=tir=qa=p}
o n(~s=1t)=di,n(r=q)=dy,nla=p)=ds
Furthermore, KC is the knowledge base such that K,, = @ and K, = {a,r, —-r, ~ s}.
1. Construct all arguments on the basis of this argumentation theory.
2. Determine the attack relations.

3. Assume that the argument ordering < is defined in terms of preorderings < on
defeasible rules and <’ on ordinary premises. Assume that r = ¢ < a = p (i.e.,
dy < dy)and —r <’ r;—a &' r; ~ s < —r. Determine the defeat relations with
the elitist last link ordering.

4. Add the transpositions of ¢,q — —p to Rs. Which new arguments, attacks and
defeats are now generated?

EXERCISE 6.8.13 Consider the same language £ as in Exercise 6.8.12 but let now
Rs = {~a — b}, Rg = {b =4, 7¢; =4, ¢; ¢ =4, a} (here the names of the
defaults are attached to =), K,, = @ and K, = {~ a}. Finally, assume a partial
preorder < on R, such that that do < d; and d; < ds.

1. Determine the arguments and their attack relations.
2. Determine which attacks succeed as defeats with the elitist last-link ordering.
3. Determine the grounded extension of the resulting abstract argumentation theory.

4. Determine the preferred extension(s) of this abstract argumentation theory.

EXERCISE 6.8.14 Consider the argumentation theory of Example 6.6.2.
1. Verity the status of argument Dy for s in grounded semantics.

2. Verify the status of argument Dy for s in preferred semantics.

EXERCISE 6.8.15 Consider an argumentation theory in which R ; consists of all valid
propositional inferences from finite sets, Rg = K,, = @ and K, =

{—ab D —guilty,
murder D guilty,
murder,

—ab}.

Consider a variant of ASPIC™ in which all arguments are consistent and in which strict
rules cannot be chained.

1. Verify whether guilty is justified according to grounded semantics, assuming a
simple argument ordering.
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2. Then specify a partial preorder on kC,, such that with the elitist weakest-link ar-
gument ordering guilty is justified according to grounded semantics.

3. Alternatively to (b), move one or more formulas from KC,, to KC;, such that guilty
becomes justified as a result of the change.






Chapter 7

Dynamics of argumentation

7.1 Introduction

In this chapter aspects of the dynamics of argumentation are discussed while abstracting
from the procedural context in which argumentation takes place. For example, when
discussing methods for extending or revising argumentation frameworks, we disregard
the question whether such a change is allowed according to the rules of debate (for
example, whether certain types of evidence are admissible or whether claims made
earlier can be retracted). The procedural aspects of argumentation are discussed in
Chapter 8.

The study of information dynamics in argumentation concerns the nature and effects
of change operations on a given argumentation state. This work is motivated by several
application scenario’s, such as:

o Adjudication dialogues like in legal procedure, where two adversaries aim to
persuade an adjudicator of the dispute (judge or jury).

e Debates in parliament or similar bodies that have to vote on proposals, where
members try to persuade each other to vote for or against the various proposals.

e Any individual or group of individuals interested in a debate and wanting to eval-
uate it from his/her/their point of view.

In dynamic contexts, adding new arguments clearly makes sense but adding attacks only
seems to make sense when these attacks involve at least one new argument. Deleting
attacks makes sense when interpreted as applying preferences to decide that a given
attack relation does not succeed as defeat. Finally, deleting arguments makes sense
in contexts where elements of arguments can be retracted by a participant or can be
rejected by an adjudicator without stating a counterargument. An example of rejection
by an adjudicator is in legal dialogues, where a judge can, for example, reject a factual
premise since it has not been sufficiently backed by evidence and must therefore be
ignored by the rules of legal procedure.

Most current work on argumentation dynamics concerns abstract argumentation. In
particular the following operations on abstract argumentation frameworks have been
studied:! addition or deletion of (sets of) arguments (e.g. Baumann (2012); Baumann

ITo be consistent with the literature, we will in this chapter rename the defeat relations of the reader of
this course to attack relations.
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and Brewka (2010); Cayrol et al. (2010)) and addition or deletion of (sets of) attack
relations (e.g. Modgil (2006); Baroni et al. (2011); Bisquert et al. (2013)). This work
then studies preservation and enforcement properties. Preservation is about the extent
to which the current status of arguments is preserved under change, while enforcement
concerns the extent to which desirable outcomes can or will be obtained by changing a
framework.

This current work about abstract argumentation disregards the structure of argu-
ments and the nature of their conflicts, which is a serious limitation. For example,
abstract models of argumentation dynamics do not recognise that some arguments are
not attackable (such as deductive arguments with certain premises) or that some attacks
cannot be deleted (for example between arguments that were determined to be equally
strong), or that the deletion of one argument implies the deletion of other arguments
(when the deleted argument is a subargument of another), or that the deletion or addi-
tion of one attack implies the deletion or addition of other attacks (for example attacking
an argument implies that all continuations of that argument with further inferences are
also attacked). All this means that formal results on preservation and enforceability
of outcomes are only relevant for very specific cases and do not cover many realistic
situations in argumentation.

Accordingly, the purpose of this chapter is twofold:

1. to introduce the current research on the dynamics of argumentation;

2. to warn against naive work at the abstract level.

7.2 Work on enforcement properties

We first briefly discuss work on enforcement. The study of enforcement concerns con-
texts where new arguments and possibly new attacks involving new arguments can be
added. This is motivated by applications in which one agent wants to persuade another
agent. All current work on enforcement is in abstract argumentation. Baumann and
Brewka (2010) define expansions of argumentation frameworks as follows.

Definition 7.2.1 [Expansions] An abstract argumentation framework AF’ = is a ex-
pansion of an abstract argumentation framework AF = (A, C) iff AF' = (AUA’,CUC")
for some nonempty A’ disjoint from .4, such that for all A, B: if (4, B) € C’ then
AeAorBe A.

Given the definition of expansions, it can for any argument A € A for a given seman-
tics be studied whether there exist expansions in which this argument is in some or all
extensions. For grounded or preferred semantics the answer is (for non-selfdefeating
arguments) trivially ’yes’, since one can always add unattacked attackers of any at-
tacker of A. Note that this implicitly assumes that any argument can be attacked. This
assumption is not satisfied by ASPIC*, in which strict-and-firm arguments cannot be
attacked. This again shows that the structure of arguments and the nature of attack is
important when study the dynamics of argumentation.

A more interesting issue here is the degree of controversiality of a change. This
could, for instance, be defined in terms of a minimality ordering on changes, comparing
the number of changes needed or subset relations between changes needed to enforce
different arguments. Even more interesting would be to define the degree to which a
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change agrees or disagrees with the arguments that the agent to be persuaded has uttered
in the debate. But this requires a full modelling of the dialogical context.

The enforcement question is somewhat more interesting for enforcement of sets of
arguments. For example, if S C A is not conflict-free, then clearly no extension of any
expansion will contain S. The same holds for sets in which an argument A indirectly
attacks an argument B in that there is an attack path from A to B of odd length.

Baumann and Brewka (2010) remark that including also deletions of arguments and
attacks in the model would trivialize the enforcement problem, since one could then just
delete everything and add the wanted arguments without any attacks. However, both the
structure of arguments and the dialogical context are relevant here. There are dialogue
systems for argumentation in which a claim or an argument’s premise can be challenged
and in which such a challenge can be answered with a further argument. For example:

claim p

why p

p since q
One way to look at this dialogue is that initially a premise argument p is stated and
that after the challenge of p this premise argument is replaced with an argument ¢ = p
where its subargument ¢ is a new premise argument. In a dialogical context and with
structured argumentation this is a meaningful and non-arbitrary constructive operation,
but a the abstract level it turns into an arbitrary destructive one, deleting one argument
and replacing it with two other arguments.

7.3 Work on preservation properties

The first work on preservation properties concerned so-called resolution semantics.
Here the focus is on deleting attack relations as a way to express a preference of one
argument over another: that an attack from A on B is deleted means that A is regarded
as inferior to B so that A’s attack on B does not succeed as defeat. This idea was intro-
duced for abstract argumentation by Modgil (2006) and further developed by Baroni et
al. (2011).

7.3.1 Abstract argumentation

Given an abstract argumentation framework AF = (A, C) (where A is a set of argu-
ments and C a binary attack relation on A), a resolution AF’ = (A, (') is such that C’
replaces one or more symmetric attacks in C by an asymmetric relation in C’. More
precisely:

Definition 7.3.1 [Resolutions] An argumentation framework AF”’ = (A,C’) is a reso-
lution of an argumentation framework AF' = (A, C) iff for all arguments A and B:

1. If (A,B) € Cand (B, A) ¢ Cor A = B, then (A, B) € C’;
2. If (A,B) e Cand (B,A) € Cand A # Bthen (A,B) € C'or (B, A) € C';
3. If (A, B) € C' then (A, B) € C.

A resolution AF" = (A,C') is partial if there exist A, B € A such that A # B and
(A,B) € C'and (B, A) € C'; otherwise a resolution is full.



116 Dynamics of argumentation

Then properties can be studied concerning the relations between the original status of
an argument and its status in some or all resolutions. We will discuss some of these
properties for grounded and preferred semantics.

Property 7.3.2 [Left to Right Sceptical] If X is a justified argument of AF = (A, C, <
), then X is a justified argument of every full resolution AF’ = (A,C, =X") of AF.

This property holds for grounded semantics but not for preferred semantics. For a
counterexample for preferred semantics let A = {A, B} such that A attacks A and A
and B attack each other. Then the unique preferred extension is { B} but there exists
a resolution with an empty preferred extension, namely, when the attack of B on A is
deleted.

Property 7.3.3 [Right to Left Sceptical] If X is a justified argument of every full
resolution AF" = (A,C, =) of AF = (A,C, =), then X is a justified argument of AF.

This property holds for preferred semantics but not for grounded semantics. For
a counterexample for grounded semantics let A = {A, B,C, D} such that A and B
attack each other, both A and B attack C and C attacks D. Then there are two full
resolutions: one in which the attack of A on B is deleted and one in which the attack
of B on A is deleted. The first resolution yields the grounded extension { B, D} while
the second resolution yields the grounded extension { A, D}. So D is justified in all full
resolutions. However, the initial grounded extension is empty.

Other preservation properties can be formulated by replacing one or both occur-
rences of ‘justified’ with ‘defensible’ and/or replacing occurrences of ‘all’ with ‘some’.
For example:

Property 7.3.4 [Left to Right Credulous to Justified] If X is a defensible argument
of AF = (A,C,=), then X is a justified argument of some full resolution AF’ =
(A,C,=") of AF.

This property does not hold for grounded semantics. The counterexample to Right
to Left Sceptical also holds here.

7.3.2 Structured argumentation

When resolutions are intended to model the outcome of preference arguments, then
the above-defined abstract study of resolutions has limited applicability (cf. Modgil
and Prakken (2012)). Firstly, one must also account for the resolution of asymmetric
attacks, since many argumentation formalisms, including ASPIC™, apply preferences
to deny the success of asymmetric attacks as defeats. Furthermore, some formalisms
apply preferences so that both attacks in a symmetric attack fail to succeed as defeats.
Third, sometimes resolutions of symmetric attacks are impossible; for example when
two symmetrically attacking arguments are assigned equal strength.

Resolutions can also be impossible for another reason: preference relations have
properties, so the addition of preferences to resolve one attack may imply further pref-
erences and thereby make resolutions based on conflicting preferences impossible. Fi-
nally, resolutions are impossible if some attacks succeed irrespective of preferences
(e.g., undercutters or contrary-underminers in ASPIC™).
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Such subtleties can only be fully appreciated in a setting where the structure of ar-
guments and the nature of attack and the use of preference to define defeats is made
explicit. To this end Modgil and Prakken (2012) study resolutions in the ASPIC*
framework. They are interested in the case where given a (c—)SAF A =(A,C, <) and
its defined defeat relation, what is the relationship, under different semantics, between
the justified arguments of A and the justified arguments of A" = (A, C, <’), where A’ is
a resolution of A obtained by extending’ < to the preference relation <’. They assume
that the preference relation on arguments is a partial preorder, that is, transitive and
reflexive.

Definition 7.3.5 Let < be a partial preorder over a set I". Then <’ extends < iff <C=<’
andVX,Y €', X <Y implies X <’ Y.

Let A = (A,C, <) be a SAF. Then A’ = (A, C, <') preference-extends A iff <" extends
=.

To motivate the definition of extends, recall that < is a partial preorder. Thus it does not
suffice to define extends in terms of the condition X < Y implies X <’ Y alone. To see
why, suppose X < Y and Y < X, which implies X = Y’; that is they are effectively
assigned the same strength. Hence, it might be that <’ preserves the strict preferences in
<,but X A Y and Y £ X. But we certainly want to preserve the assignment of equal
strength to X and Y. On the other hand, it does not suffice to define extends in terms of
the condition <C =" alone. This is because given only X <Y andso X <Y, we want
that this strict preference be preserved in the extended argument ordering. However, if
X <Y and Y =’ X, then this strict preference would not be preserved.

It is straightforward to then show that if (A, C, <’) preference-extends (A, C, <),
and D’ and D are the defeat relations respectively defined by <’ and <, then D’ C D.

Now the notion of a preference-based resolution can be defined:

Definition 7.3.6 Let A’ = (A,C, =) be a SAF that preference-extends A = (A,C, <),
and let D’ and D be defeat relations respectively defined by <" and <. Then

e A’ is a preference-based resolution of A ifft D' C D.

o A’ is afull preference-based resolution of A iff A’ is a preference-based resolu-
tion of A and there exists no preference-based resolution A” = (A, C, <") with
induced defeat relations D" such that D" C D'.

Below we will assume that the argument ordering < is an elitist weakest- or last-link
ordering induced by partial preorders < on R, and <" on K,. Moreover, we will
only consider preference-based resolutions that extend < and <’ in the sense of Defini-
tion 7.3.5.

Next the preservation properties for preference-based resolutions are restated as
follows:

Property 7.3.7 [Left to Right Sceptical] If X is a justified argument of A = (A,
then X is a justified argument of every full preference-based resolution A’ = (A,
of A.

),

IA IA

Property 7.3.8 [Right to Left Sceptical] If X is a justified argument of every full
preference-based resolution A’ = (A,C, =X") of A = (A,C, <), then X is a justified
argument of A.
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The grounded extension fails Right to Left Sceptical. Consider the following counterex-
ample:

Example 7.3.9 Let (£, ,R,n) be an argumentation system where:

e L[ is a language of propositional literals, composed from a set of propositional
atoms {p, q,r, s, ...} and the symbols — and ~ respectively denoting strong and
weak negation (i.e., negation as failure). « is a strong literal if « is a propositional
atom or of the form —3 where [ is a propositional atom. « is a wit of £, if « is
a strong literal or of the form ~ 3 where (3 is a strong literal.

e For any wff o, o and —« are contradictories and « is a contrary of ~ a.

*Rs =0, Ra={-q=pp=q~p~qg=ri~r=shad-q=p<
p=>qgand p=qg< gq=p(e,q=p~<p=q) and 2 ==,

e K is the knowledge base K,, = &, K, = {-p, ¢, ~ p,~ ¢}, and <" = ~.

Figure 7.1-a) shows the induced arguments and defeats. Note the attacks on R and .S
are contrary attacks and so are preference independent, and since « is a contrary of
~ «, the arguments [~ p| and [~ ¢| do not attack and so defeat P and () respectively.
Figures 7.1-b) and 7.1-c) show the two possible preference-based resolutions, obtained
respectively by extending <’ to include —¢ <’ =p (andso P < P', P < Q, Q' < Q)
and -p <’ =g (andso P' < P,Q < P, @ < Q). Argument S is in the grounded
extension of both resolutions, but not in the grounded extension of Figure 7.1-a).

P Q
Q
Crip=aD ®
(R ©
:
(R) (’)
s ‘ © ©
a) b) c)
Figure 7.1: b) and c) are the two preference-based resolutions of a)

For finitary frameworks Left to Right Sceptical is by Modgil and Prakken (2012)
proven to hold. Preferred semantics still fails Left to Right Sceptical but now it also
fails Right to Left Sceptical: a counterexample is given in Modgil and Prakken (2012).
We will not give it here but only remark that it is due to the fact that some preferences
entail other preferences by the properties of partial preorders, so that not all resolutions
that are possible in abstract resolution semantics as defined in Modgil (2006); Baroni
et al. (2011) are possible in preference-based resolution semantics. This shows that the
nature of attack and defeat is relevant when defining resolution semantics.
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7.4 Exercises

EXERCISE 7.4.1 Consider an AF such that A and B defeat each other, B defeats C
and C defeats A.

1. Is B justified in preferred semantics?

2. Is B justified in all full resolutions in preferred semantics?

EXERCISE 7.4.2 Consider again Exercise 4.8.11(a,b,e) from the reader Common-
sense Reasoning and Argumentation.

1. Is D is justified in some and/or in all full resolutions in grounded semantics?

2. Is D is justified in some and/or in all full resolutions in preferred semantics?

EXERCISE 7.4.3 Give examples in ASPIC™ of the three types of situations men-
tioned in the first paragraph of Section 7.3.2.

EXERCISE 7.4.4 Consider again Example 6.8.1 from the reader Commonsense Rea-
soning and Argumentation. Does the status of r change in some resolutions? Answer
this question both for the elitist weakest- and for the elitist last-link ordering.

EXERCISE 74.5 let Ry = K,, = @, let R, consist of all valid propositional infer-
ences from finite sets and let I, = {p, ¢, ~(p A ¢}. Assume that p <’ =(p A ¢) and
p <’ q and apply the elitist weakest link ordering.

1. Is the argument A = —(p A ¢) justified in grounded semantics?

2. Is the argument A = —(p A q) justified in all full preference-based resolutions in
grounded semantics?






Chapter 8

Dialogue systems for agent
interaction with argumentation

This chapter is about formal dialogue systems for agent interaction with argumentation.
The main focus is on so-called persuasion dialogues, in which two or more participants
try to resolve a difference of opinion by arguing about the tenability of one or more
claims or arguments, each trying to persuade the other participants to adopt their point
of view. Dialogue systems for persuasion regulate what utterances the participants
can make and under which conditions they can make them, what the effects of their
utterances are on their propositional commitments, when a dialogue terminates and
what the outcome of a dialogue is. Good dialogue systems regulate all this in such a
way that conflicts of view can be resolved in a way that is both fair and effective.

The term ‘persuasion dialogue’ was introduced into argumentation theory by Dou-
glas Walton (Walton, 1984) as part of his influential classification of dialogues into six
types according to their goal (see also e.g. Walton and Krabbe (1995)). While persua-
sion aims to resolve a difference of opinion, negotiation tries to resolve a conflict of
interest by reaching a deal, information seeking aims at transferring information, de-
liberation wants to reach a decision on a course of action, inquiry is aimed at “growth
of knowledge and agreement” and quarrel is the verbal substitute of a fight. This clas-
sification is not meant to be exhaustive and leaves room for dialogues of mixed type,
such as a negotiation that can shift to an embedded persuasion if the negotiating agents
disagree about a relevant matter of fact.

The modern study of formal dialogue systems for persuasion probably started with
two publications by Charles Hamblin (Hamblin, 1970, 1971). Initially, the topic was
studied only within philosophical logic and argumentation theory. From the early
nineteen nineties the study of persuasion dialogues was taken up in several fields of
computer science. In Artificial Intelligence logical models of commonsense reason-
ing have been extended with formal models of persuasion dialogue as a way to deal
with resource-bounded reasoning. In artificial intelligence & law interest in dialogue
systems arose when researchers realised that legal reasoning is bound not only by the
rules of logic and rational inference but also by those of fair and effective procedure.
Persuasion was here seen as an appropriate model of legal procedures. Finally, in the
field of multi-agent systems dialogue systems have been incorporated into models of
rational agent interaction. To fulfill their own or joint goals, intelligent agents often
need to interact with other agents. When they pursue joint goals, the typical modes
of interaction are information seeking and deliberation and when they self-interestedly
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pursue their own goals, they often interact by way of negotiation. In all these cases
the dialogue can shift to persuasion. For example, in information-seeking a conflict of
opinion could arise on the credibility of a source of information, in deliberation the par-
ticipants may disagree about likely effects of plans or actions and in negotiation they
may disagree about the reasons why a proposal is in one’s interest; also, in all three
cases the participants may disagree about relevant factual matters.

To delineate the precise scope of this chapter, it is useful to discuss what is the
subject matter of dialogue systems. According to Carlson (Carlson, 1983) dialogue
systems define the principles of coherent dialogue. In his words, whereas logic defines
the conditions under which a proposition is true, dialogue systems define the conditions
under which an utterance is appropriate. And the leading principle here is that an ut-
terance is appropriate if it furthers the goal of the dialogue in which it is made. So, for
instance, an utterance in a persuasion should contribute to the resolution of the conflict
of opinion that triggered the persuasion, and an utterance in a negotiation should con-
tribute to reaching agreement on a reallocation of scarce resources. Thus according to
Carlson the principles governing the meaning and use of utterances should not be de-
fined at the level of individual speech acts but at the level of the dialogue in which the
utterance is made. Carlson therefore proposes a game-theoretic approach to dialogues,
in which speech acts are viewed as moves in a game and rules for their appropriateness
are formulated as rules of the game. Virtually all work on formal dialogue systems
for persuasion follows this approach and therefore the discussion in this chapter will
assume a game format of dialogue systems. It should be noted that the term dialogue
system as used in this chapter only covers the rules of the game, i.e., which moves
are allowed; it does not cover principles for playing the game well, i.e., strategies and
heuristics for the individual players. Of course, the latter are also important in the study
of dialogue, but they will be treated as being external to dialogue systems and instead
of aspects of models of dialogue participants.

This chapter is organised as follows. First in Section 8.1 an example persuasion dia-
logue will be presented, to give a feel for what persuasion dialogues are and to provide
material for illustration and comparison in the subsequent discussions. Then in Sec-
tion 8.2 a formal framework for specifying dialogue game systems is proposed, which
in Section 8.3 is instantiated for persuasion dialogues (paying attention to several alter-
native ways to instantiate the general framework). Then in Section 8.4 two particular
dialogue systems for persuasion are discussed. Exercises can be found at the end of the
chapter.

8.1 An example persuasion dialogue

The following example persuasion dialogue exhibits some typical features of persua-
sion and will be used in this chapter to illustrate different degrees of expressiveness and
strictness of the various persuasion systems.

Paul: My car is safe. (making a claim)

Olga: Why is your car safe? (asking grounds for a claim)

Paul: Since it has an airbag, (offering grounds for a claim)

Olga: That is true, (conceding a claim) but this does not make your car safe. (stating
a counterclaim)

Paul: Why does that not make my care safe? (asking grounds for a claim)
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Olga: Since the newspapers recently reported on airbags expanding without cause.
(stating a counterargument by providing grounds for the counterclaim)

Paul: Yes, that is what the newspapers say (conceding a claim) but that does not prove
anything, since newspaper reports are very unreliable sources of technological infor-
mation. (undercutting a counterargument)

Olga: Still your car is still not safe, since its maximum speed is very high. (alternative
counterargument)

Paul: OK, I was wrong that my car is safe.

This dialogue illustrates several features of persuasion dialogues.

e Participants in a persuasion dialogue not only exchange arguments and coun-
terarguments but also express various propositional attitudes, such as claiming,
challenging, conceding or retracting a proposition.

o As for arguments and counterarguments it illustrates the following features.

— An argument is sometimes attacked by constructing an argument for the
opposite conclusion (as in Olga’s two counterarguments) but sometimes by
saying that in the given circumstances the premises of the argument do not
support its conclusion (as in Paul’s counterargument). This is the distinction
between rebutting and undercutting counterarguments.

— Counterarguments are sometimes stated at once (as in Paul’s undercutter
and Olga’s last move) and are sometimes introduced by making a counter-
claim (as in Olga’s second and third move).

— Natural-language arguments sometimes leave elements implicit. For ex-
ample, Paul’s second move arguably leaves a commonsense generalisation
‘Cars with airbags usually are safe’ implicit.

o As for the structure of dialogues, the example illustrates the following features.

— The participants may return to earlier choices and move alternative replies:
in her last move Olga states an alternative counterargument after she sees
that Paul had a strong counterattack on her first counterargument. Note that
she could also have moved the alternative counterargument immediately
after her first, to leave Paul with two attacks to counter.

— The participants may postpone their replies, sometimes even indefinitely:
by providing her second argument why Paul’s car is not safe, Olga post-
pones her reply to Paul’s counterattack on her first argument for this claim;
if Paul fails to successfully attack her second argument, such a reply might
become superfluous.

8.2 Elements of dialogue systems

In this section a formal specification is proposed of the common elements of dialogue
systems. To summarise, dialogue systems have a dialogue goal and at least two par-
ticipants, who can have various roles. Dialogue systems have two languages, a topic
language and a communication language. Sometimes, dialogues take place in a context
of fixed and undisputable knowledge. Typical examples of contexts are the relevant
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laws in a legal dispute or a system description in a dialogue about a diagnostic prob-
lem. The heart of a dialogue system is formed by a protocol, specifying the allowed
moves at each point in a dialogue, the effect rules, specifying the effects of utterances
on the participants’ commitments, and the outcome rules, defining the outcome of a
dialogue. Two kinds of protocol rules are sometimes separately defined, viz. turntaking
and termination rules.

Let us now specify these elements more formally. In the rest of this chapter this
specification will be used when describing systems from the literature; in consequence,
their appearance in this text may differ from their original presentation. As for notation,
the complement © of a formula ¢ is - if ¢ is a positive formula and ) if ¢ is a
negative formula —). (Note that the argument games of Chapter 5 are a special case of
the following definitions).

Definition 8.2.1 (Dialogue systems) A dialogue system is a tuple of the following ele-
ments.

e A topic language L, closed under classical negation.

o A communication language L., consisting of a set of speech acts with a content.

The set of dialogues, denoted by M=, is the set of all sequences from L., and
the set of finite dialogues, denoted by M <, is the set of all finite sequences
from L.. For any dialogue d = my, ..., My, ..., the subsequence my, ..., m; is
denoted with d;.

e A dialogue purpose.

e A set A of participants (or ‘players’) and a set R of roles, defined as disjoint
subsets of A. A participant ¢ may or may not have a, possibly inconsistent,
belief base ¥, C L;, which may or may not change during a dialogue. Further-
more, each participant has a, possibly empty set of commitments C, C L, which
usually changes during a dialogue.

o A context K C L, containing the knowledge that is presupposed and must be
respected during a dialogue. The context is assumed consistent and remains the
same throughout a dialogue.

e A logic L for L;, which may or may not be monotonic and which may or may
not be argument-based.

o A set of effect rules C' for L., specifying for each utterance ¢ € L. its effects on
the commitments of the participants. These rules are specified as functions

- Cq: M= — Pow(Ly)

e A protocol Pr for L., specifying the allowed (or ‘legal’) moves at each stage of
a dialogue. Formally, A protocol on L, is a function Pr with domain the context
plus a nonempty subset D of M <*° taking subsets of L. as values. That is:

— Pr: Pow(Ly) x D — Pow(L,)
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such that D C M<°°. The elements of D are called the legal finite dialogues.
The elements of Pr(K,d) are called the moves allowed after d given K. If d is
a legal dialogue and Pr(K,d) = @, then d is said to be a terminated dialogue.
Pr must satisfy the following condition: for all finite dialogues d and moves m,
de€ Dandm € Pr(K,d)iffd,m € D.

It is useful (although not strictly necessary) to explicitly distinguish elements of
a protocol that regulate turntaking and termination:

— A turntaking function is a function 7" : D x Pow(L;) — Pow(A). A turn
of a dialogue is defined as a maximal sequence of moves in the dialogue in
which the same player is to move. Note that 7" can designate more than one
player as to-move next.

— Termination is above defined as the case where no move is legal. Accord-
ingly, an explicit definition of termination should specify the conditions
under which Pr returns the empty set.

e Outcome rules O, defining the outcome of a dialogue given a context. For in-
stance, in negotiation the outcome is an allocation of resources, in deliberation
it is a decision on a course of action, and in persuasion dialogue it is a winner
and a loser of the persuasion dialogue. The outcome must be defined for termi-
nated dialogues and may be defined for nonterminated ones; in the latter case the
outcome rules capture an ‘anytime’ outcome notion.

Note that no relations are assumed between a participant’s commitments and belief
base. Commitments are an agent’s publicly declared points of view about a proposition,
which may or may not agree or coincide with the agent’s internal beliefs. For instance,
an accused in a criminal trial may very well publicly defend his innocence while he
knows he is guilty.

Definition 8.2.2 (Some protocol types)

e A protocol has a public semantics iff the set of legal moves is always independent
from the agents’ belief bases.

e A protocol is context-independent if the set of legal moves and the outcome is
always independent of the context, so if Pr(K,d) = Pr(@,d) and O (d) =
0% (d) for all K and d. For context-independent protocols the context will be
omitted as an argument of Pr.

e A protocol Pr is fully deterministic if Pr always returns a singleton or the empty
set. It is deterministic in L. if the set of moves returned by Pr at most differ in
their content but not in their speech act type.

e A protocol is unique-move if the turn shifts after each move; it is multiple-move
otherwise.

Paul and Olga (ct’d): The protocol in our running example clearly is multiple-move.
As explained in the introduction, participants in a dialogue can have strategies and

heuristics for playing the dialogue, given their individual dialogue goal. The notion of

a strategy for a participant a can be defined in the game-theoretical sense, as a function
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from the set of all finite legal dialogues in which a is to move into L.. A strategy for a
is a winning strategy if in every dialogue played in accord with the strategy a realises
his dialogue goal (for instance, winning in persuasion). Heuristics generalise strategies
in two ways: they may leave the choice for some dialogues undefined and they may
specify more than one move as a choice option. More formally:

Definition 8.2.3 Let D,, a subset of D, be the set of all dialogues where a is to move,
and let D/ be a subset of D,. Then a strategy and a heuristic for a are defined as
functions s, and h, as follows.

e s,: D, — L,

e h,: D), — Pow(L,)

8.3 Persuasion

Let us now become more precise about persuasion. In Walton and Krabbe (1995) per-
suasion dialogues are defined as dialogues where the goal of the dialogue is to resolve a
conflict of points of view between at least two participants by verbal means. A point of
view with respect to a proposition can be positive (for), negative (against) or doubtful.
The participant’s individual aim is to persuade the other participant(s) to take over its
point of view. According to Walton & Krabbe a conflict of points of view is resolved
if all parties share the same point of view on the proposition that is the topic of the
conflict.

Walton & Krabbe distinguish disputes as a subtype of persuasion dialogues where
two parties disagree about a single proposition ¢, such that at the start of the dialogue
one party has a positive () and the other party a negative (—() point of view towards the
proposition. Walton & Krabbe then extend this notion to conflicts of contrary opinions,
where the participants have a positive point of view on, respectively, ¢ and v such that

= (e AY).

8.3.1 Defining persuasion

Dialogue systems for persuasion can be formally defined as a particular class of instan-
tiations of the general framework.

Definition 8.3.1 (dialogue systems for persuasion) A dialogue system for persuasion
is defined as any dialogue system with at least the following instantiations of Defini-
tion 8.2.1.

e The dialogue purpose is resolution of a conflict of opinion about one or more
propositions, called the topics T C L;. This dialogue purpose gives rise to the
following participant roles and outcome rules.

e The participants can have the following roles. To start with, prop(t) C A, the
proponents of topic t, is the (nonempty) set of all participants with a positive point
of view towards t. Likewise, opp(t) C A, the opponents of t, is the (nonempty)
set of all participants with a doubtful point of view toward a topic t. Together,
the proponents and opponents of ¢ are called the adversaries with respect to ¢.
For any ¢, the sets prop(t) and opp(t) are disjoint but do not necessarily jointly
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exhaust A. The remaining participants, if any, are the third parties with respect
to ¢, assumed to be neutral towards .

Note that this allows that a participant is a proponent of both ¢ and —¢ or has
a positive attitude towards ¢ and a doubtful attitude towards a topic ¢’ that is
logically equivalent to ¢. Since protocols can deal with such situations in various
ways, this should not be excluded by definition.

e The Outcome rules of systems for persuasion dialogues define for a dialogue d,
context K and topic t the winners and losers of d with respect to topic t. More
precisely, O consists of two partial functions w and :

- w: D x Pow(Ly) x L; — Pow(A)

—1:D x Pow(Ly) X L — Pow(A)
such that they are defined at least for all terminated dialogues but only for those
t that are a topic of d. These functions will be written as w/ (d) and I/ (d) or,
if there is no danger for confusion, as wy(d) and l;(d). They further satisfy the
following conditions for arbitrary but fixed context K:

- wi(d) Nl(d) =@

- w(d) =@ iff l;(d) = @

- if | A | = 2, then wy(d) and [;(d) are at most singletons

e Next, to make sense of the notions of proponent and opponent, their commit-
ments at the start of a dialogue should not conflict with their points of view.

— Ifa € prop(t) thent & C, ()
— Ifa € opp(t) thent & C,(D)

o Finally, in persuasion at most one side in a dialogue gives up, i.e.,

= wy(d) S prop(t) or wy(d) S opp(t) ; and
- If a € w(d) then

x if a € prop(t) then t € Cy(d)

* if a € opp(t) thent & Cy(d)

These conditions ensure that a winner did not change its point of view. Note that
the only-ifs of the two latter winning conditions do not hold in general. This will
be explained further below when the distinction between pure persuasion and
conflict resolution is made. Note also that these conditions make that two-person
persuasion dialogues are zero-sum games. Perhaps this is the main feature that
sets persuasion apart from information seeking, deliberation and inquiry.

Some further distinctions can be made. With respect to outcomes, a distinction can
be made between so-called pure persuasion and conflict resolution. The outcome of
pure persuasion dialogues is fully determined by the participants’ points of view and
commitments:
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Definition 8.3.2 (types of persuasion systems)

e A dialogue system is for pure persuasion iff for any terminated dialogue d it
holds that a € wy(d) iff

— either a € prop(t) and t € Cy (d) for all ' € prop(d) U opp(d)
—ora€ opp(t)andt & Cu(d) forall ' € prop(d) U opp(d)

e Otherwise, it is for conflict resolution.

In addition, pure persuasion dialogues are assumed to terminate as soon as the right-
hand-side conjuncts of one of these two winning conditions hold.

Paul and Olga (ct’d): In our running example, if the dialogue is regulated by a protocol
for pure persuasion, it terminates after Paul’s retraction.

In conflict resolution dialogues the outcome is not fully determined by the partici-
pant’s points of view and commitments. In other words, in such dialogues it is possible
that, for instance, a proponent of ¢ loses the dialogue about ¢ even if at termination he
is still committed to (. A typical example is legal procedure, where a third party can
determine the outcome of the case. For instance, a crime suspect can be convicted even
if he maintains his innocence throughout the case.

If the win and loss functions are defined on all legal dialogues instead of on termi-
nated dialogues only, then another distinction can be made: a protocol is immediate-
response if the turn shifts just in case the speaker is the ‘current’ winner and if it then
shifts to a ‘current’ loser.

8.3.2 Common elements of most persuasion systems

As for the communication language and commitment rules, some common elements
can be found throughout the literature. We list the most common speech acts, with their
informal meaning and the various ways they are named in the literature.!

e claim o (assert, statement, ...). The speaker asserts that ¢ is the case.

e why ¢ (challenge, deny, question, ...) The speaker challenges that ¢ is the case
and asks for reasons why it would be the case.

e concede o (accept, admit, ...). The speaker admits that ¢ is the case.

e retract ¢ (withdraw, no commitment, ..) The speaker declares that he is not
committed (any more) to . Retractions are ‘really’ retractions if the speaker
is committed to the retracted proposition, otherwise it is a mere declaration of
non-commitment (for example, in reply to a question).

e © since S (argue, argument, ...) The speaker provides reasons why ¢ is the
case. Some protocols do not have this move but require instead that reasons be
provided by a claim o or claim S move in reply to a why 1 move (where S is a
set of propositions). Also, in some systems the reasons provided for ¢ can have
structure, for example, of a proof three or a deduction.

"To make this chapter more uniform, the present terminology will be used even if the original publica-
tion of a system uses different terms.
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e question @ (...) The speaker asks another participant’s opinion on whether ¢ is
the case.

Paul and Olga (ct’d): In this communication language our example from Section 8.1
can be more formally displayed as follows:

Py claim safe

Oo: why safe

Pj: safe since airbag

Oy: concede airbag

Os: claim — safe

Ps: why — safe

O7: — safe since newspaper: “explode”
Py: concede newspaper: “explode”

Py: so what since — newspapers reliable
O19: — safe since high max. speed
Pj1: retract safe

As for the commitment rules, the following ones seem to be uncontroversial and can
be found throughout the literature. (Below pl denotes the speaker of the move and s
denotes the speech act performed in the move; effects on the other parties’ commitments
are only specified when a change is effected.)

o If s(m) = claim(y) then Cyy(d, m) = Cyy(d) U {¢}

o If s(m) = why(y) then Cyy(d, m) = Cyy(d)

o If 5(m) = concede(p) then Cyy(d, m) = Cyy(d) U {¢}
o If s(m) = retract(p) then Cyy(d, m) = Cy(d) — {io}
o If s(m) = ¢ since S then Cy(d,m) D Cpi(d) U S

The rule for since uses D since such a move may commit to more than just the premises
of the moved argument. For instance, in Prakken (2005) the move also commits to ¢,
since arguments can also be moved as counterarguments instead of as replies to chal-
lenges of a claim. And in some systems that allow incomplete arguments, such as Wal-
ton and Krabbe (1995), the move also commits the speaker to the material implication
S = .

Paul and Olga (ct’d): According to these rules, the commitment sets of Paul and Olga
at the end of the example dialogue are

- Cp(dy1) 2 {airbag, newspaper: “explode”, — newspapers reliable }
- Co(di1) 2 {— safe, airbag, newspaper: “explode”, high max. speed}

8.3.3 Further instantiations: some features, design choices and issues

In this section some further general features of persuasion systems are discussed, as
well as some design choices and related issues.
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Table 8.1: Locutions and typical replies

Locutions | Replies

claim ¢ why @, claim @, concede ¢

why @ @ since S (alternatively: claim S), retract ¢
concede

retract @

psince S | why ¥ (¢ € S), concede ) (¢ € S), ¢’ since S
question @ | claim @, claim @, retract ¢

Dialectical obligations

Sometimes the expectancies created by commitments are called “(dialectical) obliga-
tions”. For instance, in some sense committing oneself to a proposition requires the
speaker to support the proposition with an argument when it is challenged or else re-
tract it. However, this can be called an obligation only in a loose sense. Some protocols
allow that under certain conditions a challenge can be ignored, such as when an answer
would be irrelevant, or when an answer can be postponed since it may become irrele-
vant because of some other way of continuing the dialogue. Strictly speaking the only
dialectical obligation that a participant has is making an allowed move when it is one’s
turn.

On the other hand, it still seems useful to systematise the loose sense of dialectical
obligation. One way in which this can be done is by listing the typical replies to speech
acts. Table 8.1 lists the typical replies of the common speech acts listed above. This
table more or less sums up the ‘dialectical obligations’ imposed by persuasion systems
in the literature (but individual systems may deviate).

Paul and Olga (ct’d): In terms of this table our running example can now be displayed
as in Figure 8.1, where the boxes stand for moves and the links for reply relations.

A table like the above one induces another distinction between dialogue protocols.

Definition 8.3.3 A dialogue protocol is unigue-reply if at most one reply to a move is
allowed throughout a dialogue; otherwise it is multiple-reply.

Of course, this distinction can be made fully precise only for systems that formally
incorporate the notion of replies.

Paul and Olga (ct’d): The protocol governing our running example is multiple-reply,
as illustrated by the various branches in Figure 8.1.

Types of protocol rules

According to their subject matter, several types of protocol rules can be distinguished.
Some rules regulate a participant’s consistency. This can be about dialogical consis-
tency, such as a rule that each move must leave the speaker’s commitments consistent
or a rule that upon demand a speaker must resolve such an inconsistency. Or it can
be about a participant’s internal consistency, such as the use of so-called assertion and
acceptance attitudes (see Sections 8.3.3 and 8.4.1 below). For instance, a protocol rule
could say that a participant may claim or accept a proposition only if his belief base
contains a justified argument for the claim.
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Py : claim safe

Oa: wiy safe

Ps: safe since airtbag | | P11: retract safe
P
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(4 concede aithag ‘ | Osz: claim not safe | ‘ O1q: not safe since high max. speed

Fg: why not safe

O~ not safe since newspaper: “explode™

N

Fg: concede newspaper: explode | Py so what since newspapers unreliable

Figure 8.1: Reply structure of the example dialogue.

Other rules are about dialogical coherence, such as the rules that require a non-
initial move to be an appropriate reply to some earlier move (see e.g. the table above).

Yet other rules are about the dialogical structure, such as the termination rules and
the rules that make the protocol a unique- or multiple move protocol, a unique- or
-multiple reply protocol, or an immediate- or non-immediate-response protocol.

Assertion and acceptance attitudes

Sometimes so-called ‘assertion and acceptance attitudes’ are incorporated into persua-
sion protocols, which specify how an agent must choose between various otherwise
legal moves given the information that the agent has available. We discuss the attitudes
defined in Parsons e al. (2003), generalising them to any argument-based logic. In par-
ticular, we define them relative to an implicitly assumed argumentation theory AT as
defined in Chapter 6, assuming that each argument has a conclusion, and also assuming
a preference ordering on arguments. The idea is that AT contains all arguments that can
be constructed on the basis of the information with which an agent reasons internally.

Definition 8.3.4 (Assertion and acceptance attitudes) An agent can have one of the



132 Dialogue systems for agent interaction with argumentation

following three assertion attitudes.

e A confident agent can assert any proposition for which he can construct an argu-
ment.

e A careful agent can assert any proposition p for which he can construct an argu-
ment and cannot construct a stronger argument for —p?.

o A thoughtful agent can assert any proposition for which he can construct a justi-
fied argument.

An agent can have one of the following three acceptance attitudes.

o A credulous agent can accept any proposition for which he can construct an ar-
gument.

e A cautious agent can accept any proposition p for which he can construct an
argument and cannot construct a stronger argument for —p.

o A skeptical agent can accept any proposition for which he can construct a justified
argument.

It can be debated whether such attitudes must be part of a protocol or of a partici-
pant’s heuristics. According to one approach, a dialogue protocol should only enforce
coherence of dialogues; according to another approach, it should also enforce rational-
ity of the agents engaged in a dialogue. The second approach allows protocol rules to
refer to an agent’s internal belief base and therefore such protocols do not have a public
semantics (in the sense defined above in Section 8.2). The first approach does not allow
such protocol rules and instead studies assertion and acceptance attitudes as an aspect
of dialogical behaviour of agents.

Roles of commitments

Commitments can serve several purposes in dialogue systems (though particular sys-
tems may not use all of them). One role is in enforcing a participant’s dialogical con-
sistency, for instance, by requiring him to keep his commitments consistent at all times
or to make them consistent upon demand. Another role is to enlarge the hearer’s means
to construct arguments. For instance, in Parsons et al. (2003)’s use of assertion and
acceptance attitudes, they are applied relative to the agents’ internal beliefs plus the
other participant’s commitments (see further Section 8.4.1 below). A third role of com-
mitments is to determine termination and outcome of a dialogue, such as in the above
definition of pure persuasion. For example, in two-party pure persuasion the proponent
wins as soon as the opponent concedes his main claim while the opponent wins as soon
as the proponent has retracted his main claim. Finally, commitments can determine
certain ‘dialectical obligations’, as in a protocol rule that a participant’s commitments
must be consistent, or in a protocol rule that a commitment must be supported with an
argument when it is challenged.

2Here —p is a contradictory of p in the sense of Definition 6.3.1
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The role of the logic

The logic of most philosophical persuasion-dialogue systems is monotonic (usually
standard propositional logic), while of most Al & Law and MAS-systems it is non-
monotonic. The logic of a persuasion-dialogue system can serve several purposes
(though again particular systems may not use all of them). Firstly, it can be used in
determining consistency of a participant’s commitments. For this purpose a monotonic
logic must be used. Secondly, it can be used to determine whether the reasons given
by a participant for a challenged proposition indeed imply the proposition. When the
logic is monotonic, the sense of ‘imply’ is obvious; when the logic is nonmonotonic,
‘imply’ means ‘being an argument’ in argument-based logics and (roughly) ‘being a
nonmonotonic consequence from the premises alone’ in other nonmonotonic logics.
Not all protocols require the reasons to be ‘valid’ in these senses. For instance, Walton
and Krabbe (1995) allow the moving of incomplete arguments (but this still commits
the speaker to the material implication premises — conclusion).

Note that this second use of a nonmonotonic logic does not yet exploit the non-
monotonic aspects of the logic. In argument-based terms, it only focuses on how argu-
ments can be constructed, not on how they can be attacked by counterarguments. This
is different in a third use of the logic, viz. to determine whether a participant respects
his assertion or acceptance attitude: as we have just seen, most of these attitudes are
defined in terms of counterarguments and/or defeasible consequence.

However, even if the full power of a nonmonotonic logic is used, it is still possible
to distinguish between internal and external use of the logic. In Parsons et al. (2003)
the nonmonotonic aspects of their (argument-based) logic are only used in verifying
compliance with the assertion and acceptance attitudes; as we will see in Section 8.4.1,
no other protocol rule refers to the notion of a counterargument. In particular, there
is no rule allowing the attack of a moved argument by a counterargument. Also, the
logic is not used in defining the outcome of a dialogue. Consequently, (if the attitudes
are regarded as heuristics and therefore external to a dialogue system), in these systems
defeasible argumentation takes place only within an agent and not between agents. By
contrast, in the system of Prakken (2005)(See Section 8.4.2) the moving of counterar-
guments in dialogues is allowed.

One external use of argumentation logics is to formulate dialogical notions of sound-
ness and completeness. For example:

e A protocol is sound if whenever at termination p is accepted, p is justified by the
participants’ joint knowledge bases.

e A protocol is weakly complete if whenever p is justified by the participants’ joint
knowledge bases, there is a legal dialogue at which at termination p is accepted.

e A protocol is strongly complete if whenever p is justified by the participants’ joint
knowledge bases, all legal dialogues terminate with acceptance of p.

Similar notions can be defined relative to the joint theory constructed during a dia-
logue, while the notions can also be made conditional on particular agent strategies and
heuristics.
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8.4 Two systems

To illustrate the general discussion and some of the main design options, now two
persuasion protocols will be discussed and applied to our running example.

8.4.1 Parsons, Wooldridge & Amgoud (2003)

In a series of papers Parsons, Wooldridge & Amgoud have developed an approach to
specify dialogue systems for various types of dialogues. We base our discussion on
Parsons et al. (2003), focusing on their system for persuasion dialogue.

The system is for dialogues between two players called White (/) and Black (B)
on a single topic. The player who starts a dialogue is its proponent and the other player
must, depending on her acceptance attitude, declare at her first move whether she is
negative or doubtful towards the topic or wants to concede it. Dialogues have no context
but the participants have their own, possibly inconsistent belief base >.. The players are
assumed to adopt an assertion and an acceptance attitude, which they must respect
throughout the dialogue. The attitudes are defined relative to their internal belief base
(which remains constant throughout a dialogue) plus the commitment set of the other
player (which may vary during a dialogue). The communication language L. consists
of claims, challenges, and concessions; it has no explicit reply structure but the protocol
largely conforms to Table 8.1. Claims can concern both individual propositions and sets
of propositions.

The logic of £, is in fact a special case of the ASPIC framework of Chapter 6 (as
shown by Modgil and Prakken (2013)). The language L, is that of propositional logic.
Arguments are classical proofs from consistent premises, which in ASPIC can be mod-
elled by having only strict inference rules, namely, all valid propositional inferences.
Arguments can be attacked by undermining them. Defeat relations between counterar-
guments are defined in terms of a priority relation on the premises of both the attacking
and the attacked argument, applying the weakest-link principle. Defeasible inference is
then defined with grounded semantics. PWA formally define the logic as follows:

Definition 8.4.1 (PWA argumentation logic) Let 3. be a finite set of propositional for-
mulas ordered by a total preference ordering <. This ordering induces a partitioning of
Y into sets X1, ..., X, such that for all p; € X; and p; € XJ; such that i < j we have
that p; < p;, that is, p; is preferred over p;. The preference level of a nonempty subset
H of ¥, written as Level(H ), is the number of the highest numbered ¥,, which has a
member in H.

An argument is a pair A = (H, h) where H C ¥ and h € L, such that:

1. H is consistent; and
2. Ht h;and
3. no proper subset of H satisfies (1) and (2).

H is called the support of A, written H = Support(A) and h is the conclusion of A,
written as h = Conc(A).

An argument A; defeats an argument Ay if Conc(A;) = —h for some h € Support(As)
and Level(Support(Asz)) £ Level(Support(Ayr)).

The dialectical status of arguments is defined with grounded semantics.
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In dialogues, arguments cannot be moved as such but only implicitly as claim S
replies to challenges of another claim ¢, such that S'is consistent and .S - ¢. The logic
is used to verify this condition and whether the players comply with their assertion and
acceptance attitudes. The logic is not used externally. Finally, the commitment rules
are standard and commitments are only used to enlarge the player’s belief base with the
other player’s commitments; they are not used to constrain move legality or to define
the dialogue’s outcome.

The use of preferences involves some subtleties when applied to verify an assertion
or acceptance attitude. As noted above, at any stage in a dialogue an agent a must
reason with his own belief base X, plus the commitments Cz(d) that the other party
has in d. So W must define a total ordering on Xy U Cp(d) while B must define a
total ordering on X5 U Cyy(d). In practice these orderings may well be different but
Parsons et al. (2003) still assume that the players agree on the ordering. This may be
justified by regarding the ordering on which the players agree as composed from their
individual orderings. Several ways exist to define an overall preference ordering in
terms of individual orderings (for example, p; is overall preferred to p; just in case both
players prefer p; to p;, otherwise p; and p; are equal) but below we will abstract from
such ways and simply assume that there is a unique ordering on which the agents agree.

We now present the formal definition of the persuasion protocol, which in fact de-
fines a state transition diagram.

Definition 8.4.2 (PWA persuasion protocol) A move is legal iff it does not repeat a
move of the same player, and satisfies the following procedure:

1. W claims ¢ (assuming W’s assertion attitude allows it).

2. B concedes g if its acceptance attitude allows, if not B claims —¢ if
its assertion attitude allows it, or otherwise challenges .

3. If B claims —¢, then goto 2 with the roles of the players reversed and
— in place of .

4. If B has challenged, then:

(a) W claims S, an argument for (;
(b) Goto 2 for each s € S in turn.

5. B concedes ¢ if its acceptance attitude allows, or the dialogue termi-
nates.

Dialogues ferminate as specified in condition 5, or when the move required by the
procedure cannot be made, or when the player-to-move has conceded all claims made
by the hearer.

No explicit win and loss functions are defined, but the possible outcomes are defined in
terms of the propositions claimed by one player and conceded by the other.

To comment on this protocol, note first that in (4b) it is ambiguous in the case where
S contains more than one premise, since it is unclear whether the turn shifts as soon as
the first premise has been replied to or not. In the latter case, the protocol is multi-move,
since a player may reply to each premise in turn. However, for simplicity we will below
assume that the turn shifts after the first reply to a claim S move; in this interpretation
the protocol is unique move, except that after one premise is conceded, the next premise
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may immediately be replied to. Also, in both interpretations the protocol is unique-
reply except that each element of a claim S move can be separately challenged or
conceded. The protocol is deterministic in £, but not fully deterministic, since if a
player can construct more than one argument for a challenged claim, he has a choice
which argument to play. Finally, the semantics of the protocol is not public, since
agents have to comply with their assertion and acceptance attitudes, and these are partly
defined in terms of their internal beliefs.
Let us first consider some simple dialogues that fit this protocol.

Example 8.4.3 First, let Xy = {p} and ¥p = &. Then the only legal dialogue is:
e Wy: claim p, By: concede p.

Bj is B’s only legal move, whatever its acceptance attitude, since after W, B must
reason from ¥ U Cyy(d1) = {p} so that B can construct the trivial argument ({p}, p).
Here the dialogue terminates.

This example illustrates that the fact that the players must reason with the commitments
of the other player makes that they can learn from each other. However, the following
example illustrates that the same mechanism sometimes makes them learn too easily.

Example 8.4.4 Assume Xy = {q,q D p} and ¥ = {—q}, where all formulas are of
the same preference level.

e Wy: claim p.

Now whatever her acceptance attitude, B has to concede p since she can construct
the trivial argument ({p}, p) for p while she can construct no argument for —p. Yet
B has a defeater for W’s only argument for p, namely, ({—q¢}, —g), which defeats
({g,q D p},p). So even though p is not justified on the basis of the agents’ joint
knowledge, W7 can win a dialogue about p.

This example thus illustrates that if the players have to reason with the other player’s
commitments, one player can sometimes ‘force’ an opinion onto the other player by
simply making a claim. A possible solution to this problem is to restrict the information
with which agent reason to their internal belief bases plus their own commitments. The
following example illustrates another reason why this may be better.

Example 8.4.5 Consider next Xy = {¢,q D p} and ¥ = {—p}, where gand ¢ D p
are preferred over —p. Let W be thoughtful and skeptical and B careful. Then:

o Wy: claim p.

Since B must now reason with p, the continuation depends on the preference level of
p. In fact, the protocol turns out to be problematic here. Since the players agree on
the preference ordering, it seems reasonable to give p the same level as the level of the
support of the strongest argument that can be constructed for p. However, the problem
is that at this point in the dialogue B does not know which arguments W can construct
for p. Let us sidestep this problem for the moment and let us first assume that p is
preferred over —p. Then B must concede p whatever her acceptance attitude is. If,
by contrast —p is preferred over p, then a credulous agent must still concede p but a
cautious and skeptical agent must instead proceed by claiming —p:
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e By: claim —p.

Now W must apply clause (2) of the protocol, with ¢ = —p. Note that W' must now
reason with Xy U {—p}. He finds that he cannot accept —p since his counterargument
({g,¢ D p},p) is acceptable since it is preferred over its only attacker ({—p,q D
p}, 7q). Therefore, clause (2) requires him to assert p. However, the non-repetition
rule makes this impossible, so that the dialogue terminates without agreement.

This example also illustrates that even if a proposition is defeasibly implied by
Yw U Xp, it may not be agreed upon by the players (note that p is justified on the
basis of this information). In fact, it also illustrates that sometimes there are no legal
dialogues that agree upon such an implied proposition.

Paul and Olga (ct’d): Finally, our running example can be modelled in this approach
as follows. Let us give Paul and Olga the following beliefs:

Yy = {airbag, airbag D safe, ~(newspaper D — safe)}
Y. p = {newspaper, high-speed, newspaper D — safe, high-speed D — safe}

(Note that Paul’s undercutter must now be formalised as the negation of Olga’s material
implication.) Assume that all these propositions are equally preferred. We must also
make some assumptions on the players’ assertion and acceptance attitudes. Let us first
assume that Paul is thoughtful and skeptical while Olga is careful and cautious, and that
they only reason with their own beliefs and commitments.

Py claim safe Osq: claim — safe

Olga could not challenge Paul’s main claim as in the example’s orginal version, since
she can construct an argument for the opposite claim ‘— safe’, while she cannot con-
struct an argument for ‘safe’. So she had to make a counterclaim. Now since players
may not repeat moves, Paul cannot make the move required by the protocol and his as-
sertion attitude, namely, claiming ‘safe’, so the dialogue terminates without agreement.

Let us now assume that the players must also reason with each others commitments.
Then the dialogue evolves as follows:

Pi: claim safe Os9: concede safe

Olga has to concede, since she can use Paul’s commitment to construct the trivial ar-
gument ({safe}, safe), while her own argument for ‘- safe’ is not stronger. So here
the dialogue terminates with agreement on ‘safe’, even though this proposition is not
acceptable on the basis of the players’ joint beliefs.

So far, neither of the players could develop their arguments. To change this, assume
now that Olga is also thoughtful and skeptical, and that the players reason with each
others commitments. Then:

Pi: claim safe Oy: why safe

Olga could not concede, nor could she state her argument for — safe since it is not
preferred over its attacker ({safe},safe). So she had to challenge.

Ps: claim {airbag, airbag D safe}

Now Olga can create a (trivial) argument for ‘airbag’ by using Paul’s commitments, but
she can also create an argument for its negation by using her own beliefs. Neither of
these arguments is acceptable, so she must challenge again. Likewise for the second
premise, SO:
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Oy4: why airbag
Ps: claim {airbag} Og: why airbag D safe
P;: claim {airbag D safe}

Here the nonrepetition rule makes the dialogue terminate without agreement. Note
that only Paul could develop his arguments. To give Olga a chance to develop her
arguments, let us make her careful and skeptical while the players still reason with each
others commitments. Then:

Py: claim safe Os: claim — safe

In the new dialogue state Paul’s argument for ‘safe’ is not acceptable any more, since it
is not preferred over its attacker ({— safe}, — safe). So he must challenge.

Ps: why — safe Oy: claim {newspaper, newspaper D — safe }

Although Paul can construct an argument for Olga’s first premise, namely,
({—(newspaper D — safe’}, safe), it is not acceptable since it is not preferred over
its attacker based on Olga’s second premise. So he must challenge.

Ps: why newspaper Og: claim {newspaper }

Olga had to reply with a (trivial) argument for her first premise, after which Paul cannot
repeat his challenge, so here the nonrepetition rule again makes the dialogue terminate
without agreement. In this dialogue only Olga could develop her arguments (although
she could not state her second counterargument).

In conclusion, the PWA persuasion protocol leaves little room for choice and ex-
ploring alternatives. Also, it induces one-sided dialogues in that at most one side can
develop their arguments for a certain issue. The above examples also suggest that if a
claim is accepted, it is accepted in the first ‘round’ of moves (but this should be for-
mally verified). On the other hand, the strictness of the protocol induces short dialogues
which are guaranteed to terminate, which is good for efficiency reasons. Also, without
the requirement to respect the assertion and acceptance attitudes the protocol would be
much more liberal while still enforcing some coherence.

8.4.2 Prakken (2005)

In Prakken (2005) a framework for specifying two-party persuasion dialogues about a
single dialogue topic is presented, which is then instantiated with some example proto-
cols. The participants have proponent and opponent role, and their beliefs are irrelevant
to the protocols. Dialogues have no context. The framework largely abstracts from
the communication language, except for an explicit reply structure. It also largely ab-
stracts from the logical language and the logic, except that the logic is assumed to
conform to the format of the framework of this reader’s Chapter 6 with Dung (1995)’s
grounded semantics. The logic is used to verify whether a moved argument is logi-
cally constructible, to allow for explicit counterarguments, and to verify whether these
arguments defeat their targets.

A main motivation of the framework is to ensure focus of dialogues while yet al-
lowing for freedom to move alternative replies and to postpone replies. This is achieved
with two main features of the framework. Firstly, an explicit reply structure on L, is
assumed, where each move either attacks or surrenders to its target. An example L.
of this format is displayed in Table 8.2. This enables the second feature of the frame-
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Table 8.2: An example L. in Prakken’s framework

Acts Attacks Surrenders

claim ¢ why ¢ concede

argue A why ¢ (p € Prem(A)) concede ¢ (p € Prem(A))
argue B (B defeats A) concede ¢ (¢ = Conc(A))
why ¢ argue A (¢ = Conc(A)) | retract

concede
retract ¢

work, namely, an ‘any-time’ notion of winning that is defined in terms of a notion of
dialogical status of moves.

Accordingly, particular communication languages must satisfy the following for-
mat.

Definition 8.4.6 (Dialogues) The set L. of moves is defined as N x {P,O} x L. x N,
where the four elements of a move m are denoted by, respectively:

e id(m), the identifier of the move,
e pl(m), the player of the move,
e s(m), the speech act performed in the move,

e t(m), the target of the move.

When t(m) = id(m') we say that m replies to m’ in d and that m’ is the target of
m in d. Abusing notation we sometimes let ¢(m) denote a move instead of just its
identifier. When s(m) is an attacking (surrendering) reply to s(m') we also say that m
is an attacking (surrendering) reply to m/'.

All protocols are further assumed to satisfy the following basic conditions for all
moves m; and all legal finite dialogues d. Note that these protocol rules only state
necessary conditions for legality of moves; they can be completed in many ways with
further conditions.

If m € Pr(d), then:
Ry t(m) = 0iff m = m;.
Ry: If t(m) # 0 then t(m) = i for some m; preceding m in d.
R3: pl(m) € T(d).?
Ry: If t(m) # 0 then s(m) is a reply to s(¢(m)) according to L.
Rs: If m replies to m/, then pl(m) # pl(m').
Rg: If there is an m/ in d such that ¢(m) = t(m') then s(m) # s(m’).

R7: For any m’ € d that surrenders to ¢(m), m is not an attacking counterpart of m/’.

3Recall that T'(d) denotes the player(s) whose turn it is to move in d.
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Rg: If d = dy then s(m) is of the form claim ¢ or argue A.

Ry gives the first move a ‘dummy’ target; together with 25 it says that all moves except
the first reply to some earlier move in the dialogue. Rule R3 says that the player of a
move must be to move according to the turntaking function. R4 says that a replying
move must pick the reply to its target from Table 8.2. R5 says that a player can only re-
ply to the other player’s moves. Rg makes sure that a new reply to the same target has a
different content. Rule R7 says that once a move is surrendered, it may not be attacked
any more (an attacking counterpart of a surrendering move is any attacking move that
replies to the same target as the surrendering move). Finally, Rg says that each dia-
logue begins with a claim or argument. The claim or conclusion of the argument is the
dialogue’s topic.

To define the dialogical status of a move first the notion of a surrendered move must
be defined. A complication here is that surrendering to a premise of an argument does
not yet mean that the argument is surrendered, since if the argument is defeasible; it
can still be attacked with a counterargument even if all of its premises are conceded.
Therefore, the notion of a surrendered move is defined as follows.

Definition 8.4.7 A move m in a dialogue d is surrendered in d iff
e if m is an argue A move then it has a concede ¢ reply in d, where ¢ = Conc(A);
e else m has a surrendering reply in d.

The dialogical status of a move is now recursively defined as follows, exploiting
the reply structure of dialogues.

Definition 8.4.8 [Dialogical status of moves] All attacking moves in a finite dialogue
d are either in or out in d. Such a move m is in iff

1. m is surrendered in d; or else
2. all attacking replies to m are out

Otherwise m is out.

We can now define an ‘anytime’ outcome function for dialogues (whether or not they
are terminated).

Definition 8.4.9 [The current winner of a dialogue]

e The status of the initial move m; of a dialogue d is in favour of P(O) and against
O(P) iff my is in (our) in d. We also say that m; favours, or is against p.

e wi(d) = p (i.e., player p currently wins dialogue d on topic t) iff m4 of d favours
p. Furthermore, l;(d) = p iff w(d) = p.

The framework defined thus far allows for a structural notion of relevance that en-
sures focus while yet leaving the desired degree of freedom: a move is relevant just in
case making its target out would make the speaker the current winner.

Definition 8.4.10 [Relevance] An attacking move in a dialogue d is relevant iff it
changes the dialogical status of d’s initial move. A surrendering move is relevant iff
its attacking counterparts are relevant.
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Note that, if not surrendered, an irrelevant target can become relevant again later
in a dialogue, viz. if a player returns to a dialogue branch from which s/he has earlier
retreated.

To illustrate these definitions, consider Figure 8.2 (where + means in and - means
out). The dialogue tree on the left is the situation after P;. The tree in the middle shows
the dialogical status of the moves when O has continued after P; with Og, replying to
Ps: this move does not affect the status of Pp, so Osg is irrelevant. Finally, the tree on
the right shows the situation where O has instead continued after P; with Og, replying
to P;: then the status of P has changed, so Og is relevant.

PL" PL* PL"
N - B
02 02 02
P3 - p7 * P3- p7t P3- P7 -
/ \ /+ \ / \ -Fes
o4~ 06" 04 06" o4” o6’ 08 |
ps * P5 ps *
1’771\\
1 O8 I
\¥774/
O8isirrelevant 08’ isrelevant

Figure 8.2: Dialogical status and relevance.

As for dialogue structure, the framework allows for all kinds of protocols. The
instantiations presented in Prakken (2005) are all multi-move and multi-reply. One of
them has the communication language of Table 8.2 and has one additional protocol rule,
viz. that each move be relevant, while the turn shifts as soon as the player-to-move has
succeeded in becoming the current winner. Protocols with this protocol and turntaking
rule are called protocols for relevant dialogue. Together, these rules imply that each
turn consists of zero or more surrenders followed by one attacker. Within these limits
postponement of replies is allowed, sometimes even indefinitely.

We next discuss some examples in terms of a logic within the framework of Chap-
ter 6 combined with grounded semantics. The connective ~» is governed by defeasible
modus ponens as in Section 6.4.1 above. We assume that the logic supports arguments
about preferences, so that the definition of an overall preference ordering on the basis
of the players’ individual preferences is in fact the result of the dialogue. The example
below should speak for itself so no formal definitions about the logic will be given.
Consider two agents with the following belief bases (rule connectives are tagged with
a rule name, which is needed to express rule priorities in the object language)

Yp={q,q~r D, NS ~opy 71 > 12}
Yo = {r,r ~, p}.

Then the following is a legal dialogue:*

*From now on we will, when the internal structure of the reasoning within an argument does not matter,
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e Pi: claim p, O1: why p, Ps: p since q,q ~ p, Os: concede q ~ p, Os: why q.

At this point P has four allowed moves, viz. retracting p, retracting ¢, giving an argu-
ment for g or giving a second argument for p. Note that the set of allowed moves is not
constrained by P’s belief base. If the dialogue terminates here since P withdraws from
it then O has won since P; is out.

The dialogue may also evolve as follows. The first three moves are as above and
then:

o Oy: —p since r,1 ~> —p
P3:ry > ry since q,s,q N\ s~ 11 > 19

Ps is a priority argument which in the underlying logic makes P; strictly defeat Oy
(note that the fact that s is not in P’s own knowledge base does not make the move
illegal). At this point, P; is in; the opponent has various allowed moves, viz. chal-
lenging or conceding any premise of P, or P53, moving a counterargument to P5 or a
second counterargument to P, conceding one of these two arguments, and conceding
P’s initial claim.

This example shows that the participants have much more freedom in this system
than in the one of Parsons ef al. (2003). The downside of this is that dialogues can
be much longer, and that the participants can prevent losing by simply continuing to
challenge premises of arguments of the other participant. One way to tackle such ‘“fili-
bustering’ is to introduce a context; another way is to introduce a third party who may
reverse the burden of proof after a challenge: the challenger of  then has to provide an
argument for .

Another drawback of Prakken’s approach is that not all dialogues that can be found
in natural language conform to an explicit reply structure. For instance, in legal cross-
examination dialogues the purpose of the cross-examiner is to reveal an inconsistency
in the testimony of a witness. Typically, questions by cross-examiners do not indicate
from the start what they are aiming at, as in

Witness: Suspect was at home with me that day.

Prosecutor: Are you a student?

Witness: Yes.

Prosecutor: Was that day during summer holiday?

Witness: Yes.

Prosecutor: Aren’t all students away during summer holiday?

Paul and Olga (ct’d): Let us finally model our running example in this protocol. Fig-
ure 8.3 displays the dialogue tree, where moves within solid boxes are in and moves
within dotted boxes are out. As can be easily checked, this formalisation captures all
aspects of our original version, except that arguments have to be complete and that
counterarguments cannot be introduced by a counterclaim. (But other instantiations of
the framework may be possible without these limitations.)

8.5 Conclusion

In this chapter we have discussed two systems for persuasion dialogue in terms of a
formal specification of the main elements of such systems. In the literature a number of

write argue A moves as @ since S, where ¢ is A’s conclusion and S are A’s premises.
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- Py: claim safe -

s why safe

- P3: safe since airbag - - Py: retract safe -
e g

| Pr: so what since newspapers unreliable |

Figure 8.3: The example dialogue in Prakken’s approach.

interesting dialogue-game protocols for persuasion have been proposed, some of which
have been applied in insightful case studies or applications. However, a consensus on
many issues is stil lacking. As a consequence, there is still little work on formally relat-
ing the various systems or on a general framework for designing persuasion protocols,
and a formal metatheory of systems is still in its early stages. These are some of the
main issues that should be tackled in future research. Some other issues are the study
of strategies and heuristics for individual participants and how these interact with the
protocols to yield certain properties of dialogues, a similar study of varying degrees of
cooperativeness of participants, and the integration of persuasion systems with systems
for other types of dialogues. Perhaps the main challenge in tackling all these issues
is how to reconcile the need for flexibility and expressiveness with the aim to enforce
coherent dialogues. The answer to this challenge may well vary with the nature of the
context and application domain, and a precise description of the grounds for such vari-
ations would provide important insights in how dialogue systems for persuasion can be
applied.

8.6 Exercises

EXERCISE 8.6.1 Show in detail how the argument games of Chapter 5 instantiate
Definition 8.2.1.

EXERCISE 8.6.2 Define disputes as a subtype of persuasion dialogues in terms of
Definition 8.3.1.
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8.6.1 On Parsons, Wooldridge & Amgoud (2003)

EXERCISE 8.6.3 Let Xy = {¢,q D p} and X5 = {—p,q D p}. Let the preference
ordering < on formulas be:

¥ ={q}
Yo = {p,—p,~(¢ D p)}
¥3={qDp}

Finally, assume that both players are thoughtful and skeptical and that these attitudes
are verified relative to the speaker’s beliefs and the hearer’s commitments.

1. What is the dialectical status of p, =p and ¢ D p on the basis of Xy U X5 and
<?

2. Produce all legal dialogues on topic p. Determine the commitment sets of the
players at termination. Are these sets consistent? And what is for each player the
dialectical status of p and —p on the basis of their internal beliefs plus their own
commitments?

3. Assume now that the assertion and acceptance attitudes are verified relative to
the speaker’s beliefs and his own commitments, and answer again the previous
question.

EXERCISE 8.6.4 Let Xy = {q,q D p} and ¥ = {¢q D p} and let all formulas be of
the same preference level. Assume that W is thoughtful and cautious while B is careful
and skeptical and that both players reason with their own beliefs only.

1. Produce all legal dialogues on topic p.

2. Think of an acceptance attitude that allows a player to learn from the other agent
but that avoids the problems as illustrated by Example 8.4.4.

EXERCISE 8.6.5 Let Xy = {p,p D ¢q,q¢ D r} and ¥p = {s,s D —¢q}. Letall
formulas be of the same preference level. Assume that W is thoughtful and cautious
while B is careful and skeptical and that both players reason with their own beliefs and
commitments. Assume finally that the players also apply the attitude that you defined
in your answer to Exercise 8.6.4(2). Produce all legal dialogues on topic 7 if clause
(4b) of the PWA protocol is applied in a depth-first fashion, i.e., if after each response
to an element from .S the other player may first respond to that response before the first
player responds to the next element from S.

EXERCISE 8.6.6 Assume both players are thoughtful and skeptical.

1. Assume that these attitudes are verified relative to the speaker’s beliefs and the
hearer’s commitments. Prove or refute:

If W and B agree on preference ordering < and at termination of
dialogue d on topic ¢ both Cyy (d) & t and Cp(d) F ¢, then ¢ is justified
on the basis of Xy U X5 and <.

2. Assume now that the assertion and acceptance attitudes are verified relative to the
speaker’s beliefs and commitments, and that the players also apply the attitude
that you defined in your answer to Exercise 8.6.4(2). Answer the same question.
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8.6.2 On Prakken (2005)

EXERCISE 8.6.7 Prove that for each finite dialogue d there is a unique dialogical
status assignment. Give a counterexample for infinite dialogues. (Hint: use results
stated in Chapter 4.)

EXERCISE 8.6.8 Explain that a reply to a surrendered move is never relevant.

EXERCISE 8.6.9 Answer the following questions about Figure 8.3.
1. What are the relevant targets for O after Pr?
2. What are the relevant targets for P after Og?

3. Assume at Py that P does not retract safe but instead moves another argument
for safe in reply to Oy. What are then the relevant targets for O after Py?

EXERCISE 8.6.10 Assume an instance of the dialogue framework of Prakken (2005)
with the same argumentation logic as the dialogue system of Parsons, Wooldridge &
Amgoud, with the communication language of Table 8.2, and with a protocol for rele-
vant dialogue. Give a terminated dialogue starting with claim ¢ and won by O in which
at least three different arguments constructible from the knowledge base ¥ = {p,p D
q,r,r D —p} are moved, where all formulas are of equal preference.






Chapter 9

Answers to exercises from
Chapters 3-7

9.1 Answer to exercise Chapter 3

EXERCISE 3.2.1
1. B and D are justified. B is reinstated by D.

2. A,C and F are justified. No argument is reinstated by D, since D is not justified.
A and C are reinstated by F.

9.2 Answers to exercises Chapter 4

EXERCISE 4.8.1

(a): C is justified since it has no defeaters. B is not justified, since it is defeated
by a justified argument, viz. by C. Therefefore, A is justified, since its only defeater,
which is B, is not justified.

(b): The status of A and B cannot be determined: A is justified if and only if its only
defeater, which is B, is not justifed. But B is not justified just in case A, which is its
only defeater, is justified. Thus we enter a loop. And since the status of C' depends on
the status of its only defeater, which is B, the status of C' cannot be determined either.

EXERCISE 4.8.2 Consider an arbitrary argument A. By assumption, there is an argu-
ment B such that B defeats A. So A € F(©) iff there is a C' € @ such that C' defeats
B. However, no such C exists, so A ¢ F(&). Since A was chosen arbitrarily, we can
conclude that no argument is in F'(&). O.

EXERCISE 4.8.3
a: b: C: d:
FY=g F'=g F'=g F'=g
F' = {A} Fl=r" Fl={C} Fl={A E}
F? ={A, D} F?={C,B} F?={AEC}

F3:F2 F3:F2 F3:F2
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The grounded extensions are the fixed points of these sequences.
So the grounded extension is { A, D}.

EXERCISE 4.8.4

1. To show that F(X) = G?(X), for every set of arguments X, it turns out that
it is easier to show that the complements of the two sets are equal. This has to
do with quantifying over arguments. Thus, suppose = ¢ G?(X). By definition
of G this means that there exists a y € G(X) defeating z, i.e., x + y. Since
y € G(X), the argument y is not defeated by a member of X. Hence y shows
that x ¢ F(X). Conversely, suppose that x ¢ F'(X). Then z is defeated by a y
that is not defeated by a z € X. Thus z is defeated by a y € G(X), and hence

z ¢ G2(X).

2. The result that (7 is anti-monotonic follows from the fact that, if an argument is
not defeated by a member of B, then it surely cannot be defeated by a member
of any subset A C B.

3. Suppose A C B. Since G is anti-monotonic, it follows that G(B) C G(A).
Again by anti-monotonicity of G, we obtain G?(A) C G2(B), which is equal to
the expression F'(A) C F(B).

4. If {Gi}izo with G =Def 9 and G; =Def G(Gi_l), then in particular
G() g Gl and G(] Q GQ. (9.1)

Now apply the anti-monotonicity of G to (9.1) repeatedly, to obtain the chain of
inclusions desired.

EXERCISE 4.8.5

- (a): justified: A, D; overruled: B, C; defensible: none.

- (b): justified: none; overruled: none; defensible: all.

- (¢): justified: B, C'; overruled: A, D; defensible: none.

- (d): justified: A, C, F; overruled: B, D; defensible: none.

EXERCISE 4.8.6

=

Consider any stable extension E, and consider first any argument A not defeated by
E. Then A € E. Consider next any argument B defeated by F. Then, since E is
conflict-free, B ¢ E. So E = {A | Ais not defeated by £'}.00

<~

Let E = {A | Ais not defeated by E'}. Clearly, E is conflict-free. Furthermore, for all
A,if A ¢ F, then F defeats A. So F is a stable extension.O

EXERCISE 4.8.7
e Example 4.1.3: There is just one status assignment, which is maximal:
- 51 = ({Aa C}v {B})

e Example 4.1.4: There are three status assignments:
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- 51 =(2,9)
- S = ({4}, {B})
- 53 = ({B}. {4}

Only S2 and S3 are maximal.
e Example 4.3.8: There is just one status assignment, which is maximal:
- 51 =(2,9)
EXERCISE 4.8.8

1. Consider any A € Out. Then there is a B € In defeating A. But also B € In/,
sothat A € Out’. So Out C Out'.

2. Consider any argument C such that C & In but C € In’.
(i) Since C' ¢ In, there exists a B ¢ Out such that B defeats C'.
(ii) Consider next any such B that defeats C' and is not in Out. Any such B must
be in Out’, otherwise C' would not be in In/'.
Hence (from i and ii) there exists an argument that is in Out’ but not in Out.
Together with (1) this gives us that Qut is a proper subset of Out’.

EXERCISE 4.8.9

- A is defensible iff is in in some but not all preferred status assignments, and A
is overruled if A is out in all preferred status assignments. This leaves open that
there are arguments that neither justified, nor defensible, nor overruled. Cf. Ex-
ample 4.3.8.

- A is defensible iff is in in some but not all preferred status assignments, and A is
overruled if there is no status assignment in which A is in. With this definition all
arguments are either justified, Xor defensible, Xor overruled.

EXERCISE 4.8.10: The empty set, which is maximally admissible.

EXERCISE 4.8.11

1. (a) Preferred: {A, D}, also stable.
(b) Preferred: {B, D, E'}, also stable; { A, E'}, also stable.
(c) Preferred: @, no stable extensions.
(d) Preferred: {A, C, E'}, also stable.

(e) (with slightly detailed explanation)
(1) Preferred extensions:

_E,={A,B,D}
- By ={C}

(2) Stable extensions. Both /7 and Es are also stable extensions, since both
sets defeat all arguments outside them. Furthermore, by Proposition 4.4.1
there are no other stable extensions.

2. (a) for preferred and stable semantics: A, D justified, B, C overruled.
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(b) for preferred and stable semantics: F justified, C' overruled, A, B, D de-
fensible.

(c) for preferred semantics: neither is justified, defensible or overruled. For
stable semantics: all are both justified and overruled.

(d) For preferred and stable semantics: A, C, F justified, B, D overruled.

(e) For preferred and stable semantics: all defensible

EXERCISE 4.8.12: The grounded extension is empty, while there are two preferred
extensions, viz. { B, D} and { A, C'}. Note that one preferred extension concludes that
Larry is rich, while the other concludes that Larry is not rich, so in bothsemantics no
conclusion about Larry’s richness is justified. Yet it may be argued that the conclusion
that Larry is not rich is the intuitively justified conclusion, since all arguments for the
opposite conclusion have a strict defeater. Anyone who adopts this analysis, will have
to conclude that this example presents a problem for both grounded and preferred se-
mantics. However, see Exercise 6.8.9 for a solution when the structure of arguments is

made explicit.

EXERCISE 4.8.13

1. AF(As3) contains five arguments:

-A=0
_.B=>

1
o Q
Il
<Kgfss ]
‘ﬁﬁ\m

J
iS]

The defeat graph is as follows:

A CB
\ Ei)
C CD 7
There is no stable extension, while there is one preferred extension, viz. {A, C'}.

2. Since it recognizes that A and C should come out as justified, since they have no

defeaters.
EXERCISE 4.8.14
1.

_ b d cb

(a) A_E)accl\ a%

(b)
- B= ff? e:_.‘—bc\la
-C==0a
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(c) Yes, for instance of {A}. Note that A defeats both B and C. Another
admissible set is { A, A"}, where
_
S A=

Note that A’ also defeats both B and C.

(d) Yes, by (c) and the fact that every admissible set is contained in a preferred
extension (see the proof of Proposition 4.3.13).

(e) No: the grounded extension is empty, since there is no undefeated argu-
ment. In particular, A’ is defeated by C.

EXERCISE 4.8.15

Suppose A is finite and failed. Then In(A) U Out(A) # @, so ¢ € In(A) for some
¢ € Out(A). But then A defeats A.

9.3 Exercises Chapter 5

EXERCISE 5.5.1

1. The defeat graph is:

2. We are asked to list all strategies of P an O. There are two strategies for P (“7”
indicates an unfortunate move, “{” indicates the move that leads to a loss for the

other party):
Strategy 1 for P Strategy 2 for P
(responding to D with F' (responding to DD with F
and winning) and losing)
P A P A
O1: B Oy D O B Oy: D
o
b C Py F b C Py E[?]
Oy G [1]

There are two strategies for O:
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Strategy 1 for O (responding to A with B and losing)
Pi: A =— O1: B =— P: C[1]
Strategy 2 for O (responding to A with D and losing)

Py E[?] == 02 G

P A=— 01D

Py Fi
EXERCISE 5.5.2
SN
A B
NS
1.
C
.’// \\\
» A_ B
Ay Ay Ajg Ay As
3.
EXERCISE 5.5.3

(1a) P has winning strategies for A and D, but not for B:

- A winning strategy for A consists of putting forward A, after which O cannot respond
because A has no defeaters.

- A winning strategy for B does not exist, because O can reply to B with A, after which
P cannot move.

- A winning strategy for D is simple: put forward D; the only responses to D are B
and C, which can both be countered with A, after which O cannot move.

(3) We make the comparison for the proof of A in graph (a):

F'=g
F' = {4}
F? ={A, D}

Compared to a won dialogue on D, the order of stating A and D is reversed. With
F', we start with the undefeated arguments and at each iteration add the arguments rein-
stated by the arguments added at the previous iteration. In a dialectical proof, P starts
with an argument from F? where 7 may be greater than 1, and at each next turn P moves
an argument from F*~! that can reinstate the argument of the previous move.
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A B D E
!\ } !
¥ N ¥ !
B D A A c
b : I
A A B D B
Vo
D B A
B

Figure 9.1: P’s winning strategies (first attempt)

EXERCISE 5.5.4 The argument A == & @cAd %}’ is not provably justified, since O

a’ ¢
can reply with C' = =%, Eb after wich P has no strictly defeating reply.
EXERCISE 5.5.5 P successively moves Ay, As, ..., Asi—1, A2;11, ... and O succes-
sively moves Ag, Ay, ..., Agi, Agiya, ... so they wil never repeat their own argument.
And P always uses ‘odd’ arguments while O always uses ‘even’ arguments, so they
will never repeat each other’s argument. Finally, since the defeat chain is infinite, they
will always have a new move.

EXERCISE 5.5.6 The simplest example is with two arguments A and B such that
A defeats itself and there are no other defeat relations. B is provable since O has no
reply if P starts with B, but this argumentation framework has no stable extensions.

EXERCISE 5.5.7

(la): All arguments except argument C' are provable. Figure 9.1 contains a first at-
tempt to display the winning strategies for P. However, these trees are not yet strate-
gies, since they do not contain all possible backtracking replies of O as children of a
P move. (Note that a strategy is not a tree of dispute lines but a tree of disputes, so
that a next move in a branch of a strategy may well reply not to the previous move but
to an earlier move in the branch.) So the correct winning strategy for A is a lot more
complex.

Let us illustrate this with a simpler example, viz. the graph of Exercise 4.8.11(a). At
first sight, a winning strategy for D would look as in Figure 9.2. However, the correct
winning strategy is as displayed in Figure 9.3 (where the replied-to move is indicated
between brackets).

(1b): We show that D is not provable. In general, to show that an argument is not
provable, it suffices to show one strategy for O in which P cannot win. Here, such a
strategy is the one in which O replies to D with A; then P’s only legal reply is B, to
which O replies with C and P has run out of moves, so O wins.
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P D
/N
0.:B 0}:C
T A

Py A Py A

Figure 9.2: P’s seeming winning strategy for D in 4.8.11(a)

AN

O(P): B O1(P): C
T A
Py(0Oq): A Pj(0}): A
T A
Oq(Pr): C O4(Py): B
T A

P3(09): A P3(0;): A
Figure 9.3: P’s correct winning strategy for D in 4.8.11(a)

9.4 Exercises Chapter 6

EXERCISE 6.8.1.
1. The following argument for  can be constructed.

All p
Ay A1 =g
A32 Al,AQ — T

We verify the status of r with the G-game. Argument A3 has one defeater,
namely the following undercutter of As.

Bli S

BQI Bl =1

Bg: BQ — —|d1

Argument B3 has one attacker, rebutting B3 on Ba:

Cli u
CQI Cl =
C3: Cy= —t

We are in case (4) of Definition 6.3.24. First, since u <’ s, we have that
Prem,(Cs3)<g1; Premy(B2). Next, By uses one defeasible rule, namely, do, while
C3 uses two defeasible rules, namely, ds and d4. Since d3 < ds we have that
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DefRules(C3) <13 DefRules(Bs). So C5 < Ba, so By strictly defeats Cs and
Cs5 does not defeat Bs. Hence the proponent has no winning strategy for As
in the G-game, so r is not justified. Moreover, Bs is justified since it has no
defeaters, so As is overruled, which also makes r overruled, since there are no
other arguments for r.

2. Now r is justified. First, since both arguments are defeasible, the premise order-
ing is now irrelevant. Next, since arguments By and C'3 are now compared on ds
and dy and since dy < dy, we have LastDefRules(Bs)<g1iLastDefRules(Cs).
So B2 < ('3 and (5 strictly defeats both By and Bs. Moreover, there are no de-
featers of C's, so the proponent now has a winning strategy for As in the G-game.

EXERCISE 6.8.2

1. The following argument for Ra can be created.

Ap: Vx(Px D Qx)
As: Pa

As: Al, Ay — Qa
Ay Vz(Qx D Rx)
A53 A3, A4 — Ra

2. Prem(A) = {Pa,Vz(Pz D Qz),Vz(Qx D Rx)}
Conc(A) = Ra
Sub(A) = {Al, AQ, A3, A4, A5}
DefRules(A) = &
TopRule(A) = Qa,Vz(Qx D Rx) — Ra

3. The argument is strict and plausible.
EXERCISE 6.8.3.
1. We again use the GG-game. The following argument for ¢ can be created.

Ali p

A ¢

A32 Al,AQ =T
Ay A3 —rVs
A52 A4 =1

As has one attacker, namely, the following underminer on A,:

Bi: u
By: Bi=wv
Bs: —(gAw)

B42 BQ,Bg — q

Since the argument ordering is simple, we have that As =~ By, so B4 success-
fully undermines A5 on A and thus defeats As. Argument By in turn has two
attackers. Firstly, B4 is undermined by the following argument for —u:

Cli w
Cg: 01:>ﬁu
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Again since the argument ordering is simple, Cs successfully undermines By
on By, so Cs strictly defeats By. (Note that this is strict defeat since B4 does
not even attack C5.) However, we also have that B; rebuts C5 and since the
argument ordering is simple, we have that B; defeats C, so the opponent can
reply to C with By. Then the game ends with a win by the opponent, since we
have C5 =~ Bj so there is no strict defeater of Bj.

The proponent can also strictly defeat B4 with the following rebuttal of Bs:

Di: q
Dy —(qgAwv)
D31 Dl,DQ —

However, then the opponent can repeat B, defeating D3 on D;, and again the
game ends with a win by the opponent. Since the proponent has no other options,
he has no winning strategy for A5, so A5 and ¢ are not justified.

To see whether A5 is defensible or overruled, note that the only defeater of Aj is
B, but the proponent does not have a winning strategy for By: it is defeated by
(s, which has no strict defeater. Hence By is not justified, so A5 is defensible,
which makes ¢ defensible also.

2. t is now justified, since argument B, does not defeat argument As, so A5 has no
defeaters. To see this, observe that LastDefRules(Az) = @ while LastDefRules(By) =
{u = v} # &, so LastDefRules(By) <g1; LastDefRules(As), so By < As.

3. Now ¢ is not justified. Note that Prem,(As) = {¢q} while Prem,(B4) = {u} and
since ¢ <" u we have that Prem;,(A2) <g1; Prem,(By). Then despite the fact that
DefRules(By) <g1; DefRules(Az) we have that By £ Aj, so By defeats A,
and thus By also defeats As.

Next we have to verify whether any attack on B, succeeds as defeat. Con-
sider first Co. We have that Prem,(C2) = {w} while Prem,(B;) = {u} and
w <’ u, so we have that Prem,(C3) <g1; Prem,(B;). Moreover, we have that
DefRules(B;) = & and DefRules(Cy) = {w = —u} so DefRules(C2) <g1i
DefRules(Bj). So Cy < Bj so C; does not defeat B;.

Consider next D3. We have that DefRules(Bs) = {u = v} and DefRules(D3) =
@, so DefRules(By)<g1;DefRules(Ds3). However, we also have that Prem,(D3) =
{q} while Prem,(B,) = {u} and ¢ <’ u, so we also have that Prem,(Ds) <g1;
Prem,(By). Since both By and D3 are neither strict nor firm, we have to apply
clause (3) of Definition 6.3.24. But then D3 £ B4 and By £ D3, so D3 and
B, defeat each other. Then the proponent cannot move D3 in reply to By in the
G-game.

But then the proponent has no legal reply to By in the G-game, so the proponent
does not have a winning strategy for As.

EXERCISE 6.8.4.
1. The following argument for £ can be created.

Ali S
AQI Al =1
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A is rebutted by the following argument for —t:

Bli p

By By =gq

B32 Bl,BQ =T
By: By,Bs —>qAr
Bs: (gAT) Dt
B6: B4,B5 — it

(Note that since Bg is strict, A9 does not in turn rebut Bg.) We have that
LastDefRules(Az) = {d3} while LastDefRules(Bs) = {d1, ds2}. Since da <
d3 we have that LastDefRules(Bg) <g1; LastDefRules(As), so Bg < As.
Hence Bg does not defeat As. Since A has no other defeaters, we can concude
at this point that A5 will be in in all preferred status assignments, which makes it
justified. Then ¢ is a justified conclusion.

It is interesting to verify the status of argument Bg for —¢. Since the present
argumentation theory is well defined, it is to be expected that this conclusion is
not justified. This turns out to be indeed the case. First of all, A, can be extended
to a rebuttal of Bs:

As: (gNr) Dt

Ay Az, A3 = =(gA)
As: p

Ag: A5 =g

A7: A4,A6 — T

We have that LastDefRules(A7) = {di,ds} while LastDefRules(B3) =
{d1,d>}. Since < is transitive we have do < d; so {d1,d2} <g1i {d1,ds} and
Bs < Az7. Hence A7 successfully rebuts and thus strictly defeats Bs. But then
A7 also defeats By, B and Bg.

Yet another relevant argument can be constructed, which starts in the same way
as Ar:

As: (gAr)D—t

Ay: Ag, Az — —|(q/\7")
As: p

Ag: A5 = q

Ag: A5,A6 =T

Ag: A4,A8 — q

Ag rebuts B (and not vice versa). We have LastDefRules(Ag) = {da,d3}
while LastDefRules(By) = {d;}. Since dy < d;j so Ag < Bg we have that Ag
does not defeat By. Since Ag = By we also have that Ag does not defeat Ag.
Finally, A7 rebuts Ag. Recall that LastDefRules(A7) = {d;,ds}; moreover,
LastDefRules(Ag) = {d2} and we have seen that {da} <g1; {d1,ds} so Ag <
Az, for which reason A7 strictly defeats As.

Now to evaluate the status of the arguments, A7 and all its subarguments can be
made in since they have no defeaters. Since Ay strictly defeats Ag and thus also
Ay, the latter two arguments can be made out. Moreover since Ay strictly defeats



158 Answers to exercises from Chapters 3-7

B3 and thus also By, Bjs and Bg, the latter four arguments can also be made
out. No alternative status assignments are possible, while moreover the present
assignment is complete. So Bg is out in all preferred status assigments, which
makes —t an overruled conclusion.

2. e Prem(A;) = {s}, Conc(A;) = s, Sub(A;) = {A1}, DefRules(A;) = @
and TopRule(A;) = undefined.

e Prem(As) = {s}, Conc(Ag) = t, Sub(Az) = {A1, A2}, DefRules(Ay) =
{d3}, LastDefRules(As) = {d3} and TopRule(A3) = ds.

e Prem(A3) = {(gAr) D —t}, Conc(Asz) = (¢Ar) D —t, Sub(Az) = {43},
DefRules(As3) = @ and TopRule(A3) = undefined.

e Prem(A4) = {s,(¢ A1) D —t}, Conc(As) = —(¢ A7), Sub(Ay) =
{A1, Ay, A3, Ay}, DefRules(Ay) = {ds3}, LastDefRules(A4y) = {d3}
and TopRule(Ay4) = (¢ A7) D =t t — =(qgAT).

e Prem(A;) = {p}, Conc(45) = p, Sub(As) = {As5}, DefRules(45) = &
and TopRule(As) = undefined.

e Prem(Ag) = {p}, Conc(Ag) = ¢, Sub(Ag) = {As, A}, DefRules(A4s) =
{d1}, LastDefRules(Ag) = {d1} and TopRule(As) = d;.

e Prem(A7) = {s,p, (g/\r) D —t}, Conc(Ay) = —r, Sub(Ar) = {A1, A2, As,
Ay, As, A, A7}, DefRules(A7) = {di,ds}, LastDefRules(Ay) = {d1,ds}
and TopRule(A7) = =(g A1),q — .

. Prem(Ag) = {p}, Conc(Ag) =r, Sub(Ag) = {Al, As, Ag, Ay, As, Ag, Ag},
DefRules(Ag) = {di,d2}, LastDefRules(Ag) = {d2} and TopRule(Ag) =
da.

e Prem(Ag) = {s,p, (qAr) D —t}, Conc(Ag) = g, Sub(Ay) = {41, A2, A3,
Ay, As, Ag, Ag, Ao}, DefRules(Ag) = {d1,d2,ds}, LastDefRules(Ay) =
{da,d3} and TopRule(Ag) = =(q¢ A7), = —q.

° Bl, BQ, Bg equal A5, AG, Ag.

e Prem(B;) = {p}, Conc(B4) = q A r, Sub(By) = {Bi, Ba, B3, B4},
DefRules(B4) = {di,d2}, LastDefRules(By) = {d1, d2} and TopRule(B,) =
qg, " DgANT.

e By equals As.

e Prem(Bg) = {p, (¢Ar) D —it}, Conc(Bg) = —t, Sub(Bg) = { By, B, B3,
By, Bs, BG}, DefRules(BG) = {dl, dg}, LastDefRules(B6) = {dl, dg}
and TopRule(Bg) = g AT, (g A1) Dt — —t.

EXERCISE 6.8.5.

1. Tt can be verified that there is no status assignment that assigns a status to Ay or
As.

Firstly, to make As in, its defeater A3 must be out. To make Ag out, one of its
defeaters must be in. However, the only defeater of Ag is Ajs itself (by under-
cutting its subargument As) and A3 cannot be both in and out. So A, cannot be
made in.

Next, to make Ao out, it must have a defeater that is in. Its only defeater is As.
To make As in, all its defeaters must be out. However, A3 defeats itself and A3
cannot be both in and out. So A, cannot be made out.
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So there is only one preferred status assignment, in which A; is in, since A; has
no defeaters. Moreover, this set is also the grounded extension.

2. Add Says(John, “StabbedWithKnife(Suspect, Victim)”) to K. Then the
following argument can be constructed:

Bi:  Says(John, “StabbedWithKnife(Suspect, Victim)”)
By:  StabbedWithKnife(Suspect, Victim)

This argument is undercut by As. Since, as we have seen, no status assign-
ment assigns a status to As, argument Bs cannot have a status either. Then
E = {Ay, By} is the only preferred and grounded extension of the extended
argumentation framework. Then according to preferred semantics B is neither
justified, nor defensible, nor overruled while according to grounded semantics it
is defensible.

EXERCISE 6.8.6.

1. We have the following arguments:

Ay injury By:  medicalTestsl

Ao:  appendicitis Bs:  Bi = badCirculation
As: Ay = = riskyOperation Bs: By = riskyOperation
Ay Ay, A3 = negligence

As: Ay, Ay = compensation C1:  medicalTests2

Cy:  Ch1 = — badCirculation

Their attack relations are shown in Figure 9.4.

/ N\ o)

( 2\ ) [t 2 ) c2)
( (

\__/ \__/ \_/

N\ TN

\/ B1 ) (c1)

_/ NI

Figure 9.4: Abstract attack graph

2. e Prem(A;) = {f1},Conc(A;) = injury, Sub(A;) = {A1}, DefRules(A4;) =
@ and TopRule(A;) = undefined.
e Prem(As) = {f2}, Conc(As) = appendicitis, Sub(Ag) = { A2}, DefRules(As) =
@ and TopRule(Ay) = undefined.
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e Prem(As) = {f2}, Conc(As) = —riskyOperation, Sub(As) = { Az, A3},
DefRules(As) = {r3} and TopRule(A3) = r3.

e Prem(Ay) = {f1, fo}, Conc(Ay) = negligence, Sub(A4) = {A1, Ag, As, As},
DefRules(Ay) = {ro, 73} and TopRule(Ay) = 7.

e Prem(As) = {f1, fa}, Conc(As) = compensation, Sub(As) = {A1, A2, Az, Ay, As},
DefRules(As) = {r1,r2,73} and TopRule(As5) = 1.

e Prem(Bj) = {f3},Conc(B1) = medicalTests1,Sub(By) = {B1},DefRules(B;) =
@ and TopRule(B;) = undefined.

e Prem(B3) = {f3}, Conc(B2) = badCirculation, Sub(B2) = {B1, B2},
DefRules(B3y) = {75} and TopRule(Bs3) = 5.

e Prem(Bs) = {f3}, Conc(B3) = riskyOperation, Sub(B3) = {B1, B2, Bs},
DefRules(B3) = {r4,r5} and TopRule(B3) = r4.

e Prem(CY) = {fa}, Conc(C1) = medicalTests2, Sub(C1) = {C1}, DefRules(C}) =
@ and TopRule(C) = undefined.

e Prem(Cy) = {f4}, Conc(Ca) = —badCirculation, Sub(Cy) = {C1, Ca},
DefRules(C2) = {r¢} and TopRule(Cs) = 7¢.

3. We have that LastDefRules(A3) = {73} while LastDefRules(Bs3) = {r4}
and since r3 < r4 we have that LastDefRules(Aj3) <g1; LastDefRules(B3),
so A3 < B3, so By strictly defeats As.

Moreover, we have that LastDefRules(B2) = {r5} while LastDefRules(Cs) =
{re} and since 5 < r¢ we have that LastDefRules(B2)<g;LastDefRules(Cy),
s0 Ba < (9, so (Y strictly defeats Bs.

The other attack relations succeed as defeats. The resulting defeat relations are
shown in Figure 9.5.

o
N

®

Figure 9.5: Abstract argumentation theory with grounded and unique preferred la-
belling

4. Figure 9.5 shows the grounded labelling: the arguments that are in are coloured
gray, the arguments that are out are coloured white. The grounded extension
consists of all arguments that are labelled in.
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5. Since the abstract argumentation theory depicted in Figure 9.5 is finite and has
no cycles, all semantics give the same result. So the grounded extension is also
the unique preferred (and stable) extension.

6. We now also have that Prem,(A3) = @ while Prem,(B3) = {f3} so we have
that Prem,(B3) <g1; Prem,(A3). Then we have that A3 A B3 and B3 A A3 so
Asz and Bs now defeat each other.

Moreover, we now also have that Prem,(Bz) = { f3} while Prem,(C2) = {f4},
so since fi <’ f3, we have that Prem,(C5) <g1; Prem,(Bsy). Then we have that
By A Cs and Cs A By so By and Cy now also defeat each other. So the defeat
relations now equal the attack relations as displayed in Figure 9.4. Then there are
three preferred labellings: the original one displayed in Figure 9.5 and two new
ones displayed in, respectively Figure 9.6 and Figure 9.7. The two new preferred
extensions consist, respectively, of the sets of argument labelled in in these two
preferred labellings.

The grounded labelling now makes A1, Ao, By and C in and the remaining ar-
guments undecided. So the grounded extension is { A1, A, By, C1}.

& Bz

®

Figure 9.6: Abstract argumentation theory with a second preferred labelling
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®

Figure 9.7: Abstract argumentation theory with a third preferred labelling

EXERCISE 6.8.7: see Figure 9.8.

N TN o) (o) (o)
%) &) v & >
™ (n2) (B1) 82) (01) (02) (p3) (Da)
OO ) = ) () () (=)
Figure 9.8: Abstract argumentation theory for Figure 6.4
EXERCISE 6.8.8

1. KCp consists of:

Vz(BornInNL(z) ~» Dutch(x))

Vz(NorwegianName(x) ~» Norwegian(z))

Vz((Dutch(z) V Norwegian(x)) ~» LikesIceSkating(x))
BorninNL(b)

NorwegianName(b)

Vz—(Dutch(z) A Norwegian(x))

The following relevant arguments can be constructed:
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Ali
A22
Agi
A42
A5Z
AGI
A7:
Asi

BorninNL(b)

Va (BornInNL(x) ~» Dutch(x))

A — BornInNL(b) ~» Dutch(b)

Ay, A3 = Dutch(b)

Ay — Dutch(b) V Norwegian(b)

Va((Dutch(x) V Norwegian(z)) ~ LikesIceSkating(x))
Ag — (Dutch(b) V Norwegian(b)) ~» LikesIceSkating(b)
As, A7 = LikesIceSkating(b)

BorninNL(b)

Vx (BornInNL(z) ~» Dutch(zx))
By — BornInNL(b) ~ Dutch(b)
By, Bs = Dutch(b)
Vx—(Dutch(z) A Norwegian(z))
By, Bs — —Norwegian(b)

NorwegianName(b)

Vz (NorwegianName(z) ~» Norwegian(x))

Cy — NorwegianName(b) ~» Norwegian(b)

C4,C3 = Norwegian(b)

C4 — Dutch(b) V Norwegian(b)

Vz((Dutch(z) V Norwegian(x)) ~ LikesIceSkating(x))
Cs — (Dutch(b) V Norwegian(b)) ~ LikesIceSkating(b)
C5,C7 = LikesIceSkating(b)

NorwegianName(b)

Va (NorwegianName(x) ~» Norwegian(x))
Dy — NorwegianName(b) ~» Norwegian(b)
Dy, D3 = Norwegian(b)

Vz—(Dutch(z) A Norwegian(x))

Dy, D5 — —|Dutch(b)

(If the example is formalised in a propositional language, then the steps A7 and
C'7 must be omitted.)

2. Note first that if no preference relation is specified, it does not hold. Then the
relevant defeat relations are as follows:

Bg defeats C4 and thus also Cs — Cg
Dg defeats B, and thus also By and Bg
D¢ defeats A4 and thus also A5 — Ag
Bg defeats D4 and thus also D5 and Dg

Let us first concentrate on Bg and Dg. Since they defeat each other and have no
other defeaters, it is possible to assign no status to them. Then in the grounded
status assignments they have no status. But then the same holds for the argu-
ments defeated by one of them. This includes Ag and Cg. Hence the conclusion
LikesIceSkating(b) only has defensible arguments and is therefore itself de-
fensible.
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(The same answer in terms of the fixpoint definition: Since Bg and Dg defeat
each other and have no other defeaters, they are in no F". But then the arguments
defeated by one of them also are in no F". )

3. Let us again first concentrate on Bg and Dg. Argument Bg can be made in by
making Dg out and vice versa. Then there is a preferred status assignment in
which Bg is in and Dg is out. In this status assignment also Cy — Cyg are out and
Ay — Ag are in. So an argument for the conclusion LikesIceSkating(b) is in,
namely, Ag. Conversely, there is also a preferred status assignment in which Dg
is in and Bg is out. In this status assignment also Ay — Ag are out and C7 — C§
are in. So again an argument for the conclusion LikesIceSkating(b) is in but
this time it is not Ag but Cs. So both Ag and Cy are defensible, so the conclusion
LikesIceSkating(b) is also defensible.

4. Since both preferred extensions contain an argument for the conclusion
LikesIceSkating(b), this conclusion is f-justified, even though there is no jus-
tified argument for it.

EXERCISE 6.8.9 The following formalisation is based on the intuition that the conclu-
sion that Larry is not rich is justified. The undercutters in the example are based on the
principle that statistical defaults about subclasses have priority over statistical defaults
about superclasses.

'R s consists of all valid propositional and first-order inferences.

‘R4 consists of:

dy. Lawyer(z) = Rich(z)

dy. LivesInHollywood(x) = Rich(x)
ds. PublicDefender(z) = — Rich(z)
d4. RentsinHollywood(x) = — Rich(x)
ds. PublicDefender(x) = —d;i(x)

dg. RentsinHollywood(x) = —da(x)

KCpp consists of

p1. PublicDefender(L)
p2. RentsInHollywood(L)

K., consists of

ni. Vz(PublicDefender(z) D Lawyer(x))
ny. Vz(RentsInHollywood(x) D LivesInHollywood(z))

The following relevant arguments can be constructed:

Ay: PublicDefender(L)

Ag:  Va(PublicDefender(z) D Lawyer(z))
A32 Al, A2 — Lawyer(L)

Ay Az = RiCh(L)

B;: PublicDefender(L)
Bs: BljﬁRiCh(L)
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Cli
022
C3Z
042

Dll
Dg:

Ell
Egi

Fli
FQI

RentsInHollywood(L)

Vz(RentsInHollywood(z) D LivesInHollywood(x))
C4,Cy — LivesInHollywood(L)

C5 = Rich(L)

RentsInHollywood(L)
By = —Rich(L)

PublicDefender(L)
FE = ﬂdl (L)

RentsInHollywood(L)
F1 = —\dg(L)

Let us apply preferred semantics (but in grounded semantics the outcome is the same).
Note first that F5 undercuts A4 and Fy undercuts Cy. Moreover, neither Fy nor Fy
has a defeater, so both of them are in all preferred extensions. But then A4 and C} are
not in any preferred extension, so that Bs and D> are in all these extensions. So the
conclusion —Rich(L) is justified.
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EXERCISE 6.8.10.
1. Cliyp(Rs) = RsU{—q— —p; —r — —p; p,—s = —r; r,—s — —p}.
2. Yes.

3. No.

EXERCISE 6.8.11. The point of this exercise is that closure under contraposition does
not imply closure under transposition.

1. No: R contains p — ¢ but not ~q — —p.
2. Yes. We have:

{p} - qand {~q}F —p

{p} F—rand {r} F —p

{-r}F qgand {—q} Fr
{—¢}Frand{-r}tFgq

So an argumentation theory with R satisfies contraposition.

EXERCISE 6.8.12.

1. The arguments (shown in Figure 9.9, with their conclusions at the bottom) are:

A =a,
A=A = p,
By =~ s,
Bi=B; =t,
By =,

By =By =g,
B=B,,
By — —p,
C =[]

2. Brebuts A on A, C' undermines B and B, on By, and C and B undermine each
other. Note that A does not rebut B since B has a strict top rule.

3. We have that LastDefRules(B) = {d;,d2} and LastDefRules(A) = {ds}
and since dy < d3, we have that LastDefRules(B) <g1; LastDefRules(A).
So B does not defeat A. Moreover, we have that Prem,(C) = {-r} while
Prem,(By) = {r} and =r <’ r, so we also have that Prem,() <g1; Prem,(B>).
So C' < Bs so By strictly defeats C.

4. The transpositions are p,t — —q and p, ¢ — —t. This yields two new arguments:

D=A, B = —q,



Answers to Exercises Chapter 6 167

%

Figure 9.9: ASPIC™ arguments and their conclusions, with dashed and solid lines re-
spectively representing application of defeasible and strict inference rules.

E=A B, = —t.

D rebuts B, while E rebuts Bj.

We have that LastDefRules(D) = {d;,ds} and LastDefRules(B)) = {ds}
and since do < d3, we have that LastDefRules(B)) <g1; LastDefRules(D).
So D strictly defeats BY.

Moreover, we have that LastDefRules(F) = {d2, d3} and LastDefRules(B]) =
{d1} and since dy &£ d2 and d; £ dy and dy &£ ds, we have that these sets are
incomparable in the <gp; ordering. So £ and Bi defeat each other.

EXERCISE 6.8.13.

1. The arguments are

Ali ~ Q

AQI A1 —b
As: Ay = —c
Bi: =>c¢

By: Bi=a

Argument Bs contrary-undermines A, Ao and A3 on A;. Argument As rebuts
B and B> on Bj. Finally, B; rebuts As on As.

2. The attack of By on Ay, Ay and Aj succeeds since contrary undermining is a
preference-independent form of attack. Moreover, we have that DefRules(B;) =
{d2} and DefRules(As) = {d;} and since d2 < d1, we have that DefRules(B1)<g11
DefRules(As3), so By < As. So Aj strictly defeats By and Bs.

3. The grounded extension is empty, since there are no undefeated arguments.

4. There are two preferred extensions: the first is {41, A2, A3} while the second is
{Bi, Ba}.
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EXERCISE 6.8.14.

1. 5 rebuts Dy and not vice versa. Since both arguments use defeasible rules and
no preference relations hold between them, C5 successfully rebuts and therefore
defeats Ds. Argument C5 in turn has two defeaters: its subarguments As and
By defeat each other and thus also defeat C';. Since there are no undefeated
arguments that defeat As or B, none of As, Bo, Cs and D> are in the grounded
extension. (In terms of status assignments: it is possible to give none of them
a status so in the grounded extension, which maximises undecidedness, none
of them have a status.) However, none of these arguments are defeated by an
argument that is in the grounded extension, so they are all defensible.

2. Note that A can be made in if By is made out and vice versa. Then at least
one preferred status assignment makes Ao in and Bs out, since such assignments
minimise undecidedness. But since A, defeats Co, this assignment also makes
C5 out. But then it makes D5 in, since its only defeater is Cs. Conversely, a
second preferred status assignment makes Bs in and As out so it also makes Cs
out and Dy in. Since there are no other preferred status assignments, in all such
assigments C is out and D> is in. But then C is overruled and D5 is justified.

EXERCISE 6.8.15.

1. No. We explain this with the G-game. There is an argument for guilty, namely

A = murder, murder D guilty — guilty.

Argument A has two strict defeaters, namely:
B = —ab, —ab D —guilty, murder O guilty — —murder

C = —ab,—ab D —guilty, murder — —(murder O guilty)

Since k), is minimally inconsistent (i.e., taking any element out makes C,, con-
sistent), both B and C have underminers on any of their premises: these under-
miners can be formed by replacing the attacked premise with the remaining one.
Since the argument ordering is simple, all these undermining attacks succeed as
defeats. For example, B is defeated on —ab by

D = murder, —ab D —guilty, murder O guilty — ab

In the same way, any further argument moved in a G-game has defeaters, so
the proponent does not have a winning strategy for A.

2. Any argument ordering in which ab is inferior to all other formulas in /C, will
do, since then neither B not C' defeats A, so the proponent wins the G-game after
moving A.

3. Move all formulas except ab to IC,,. Then argument A has no attackers since all
its premises are necessary.
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9.5 Exercises Chapter 7

Exercise 7.4.1:

1. Yes, since there is just one preferred extension, namely, { B}.

2. No. if the attack from B to A is deleted, then the preferred extension is empty.
Exercise 7.4.2:

1. In (a) D is justified in all full resolutions. One full resolution deletes the attack
from B to C' and another full resolution deletes the attack from C to B. In both
cases the grounded extension is {A, D}.

In (b) D is justified in some but not all full resolutions. Any full resolution which
deletes the attack from A to D makes D a member of the grounded extension.
But a full resolution that deletes the attacks from D to A and B to A makes
instead A a member of the grounded extension.

In (e) D is also justified in some but not all full resolutions. If the attack from C'
to B is deleted, then D is in the grounded extension but if the attack from B to
C is deleted then instead C' is in the grounded extension.

2. All answers are the same for preferred semantics.
Exercise 7.4.3:

LletRs ={p = —q}, Rg = K, = Fand £, = {q}. Then A = p — —q
asymmetrically attacks B = q. With the elitist last- or weakest- link ordering,
the resolution that adds p <’ g deletes this attack.

2. Let (£, ~,R,n) be an argumentation system where:

e [ is a language of propositional literals, composed from a set of proposi-
tional atoms {a, b, c, ...} and the symbols — and ~ respectively denoting
strong and weak negation (i.e., negation as failure). « is a strong literal if «
is a propositional atom or of the form — where (3 is a propositional atom.
«is a wif of L, if « is a strong literal or of the form ~ £ where [ is a strong
literal.

e For any wff o, o and —« are contradictories and « is a contrary of ~ a.

e Ry =0, Rqg ={-c= —b;a,b= c}, and < = = (since partial preorders
are reflexive < =~ denotes {r < r|r € R4})

KC is the knowledge base such that K,, = &, K, = {a,b, ~c}, K, = &, and <" =
{a <" —c <’ b}.

We obtain arguments X = [-¢;—c¢ = —b] and Y = [a;b;a,b = ¢]. Then X
attacks Y on Y’ = [b], and Y attacks X on X' = [—¢]. Then the elitist weakest
and last link principles give that X < Y" and Y < X’. Hence neither X or YV’
defeat each other.

3. Consider any theory with IC,, = {p, =p} and p ~ —p. Then the arguments p and
—p defeat each other and no preference extension can change this.
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Exercise 7.4.4: Nothing changes. With the elitist last-link ordering the attack of B3 on
Aj is preference independent. Moreover, only the preference between dy and ds is rel-
evant for the conflict between By and C'5 and we already have that do < d4. With elitist
weakest-link two comparisons are relevant. The first is between {d2} and {d3, d4} and
here there are three strict preference relations between the three elements, which a pref-
erence extension cannot change. The second comparison is between u and s, between
which a strict preference already exists.

Exercise 7.4.5:

1. Yes. A is undermined by B = p,q — (p A ¢q). We have Prem,(A) = {-(pAq)}
while Prem,(B) = {p, ¢} and since p <’ =(p A ¢) but the relation between ¢
and —(p A q) is undefined, we have that Prem,(B) <g1; Prem,(A). So B < A,
so B does not defeat A. Since A has no other defeaters, B is in the grounded
extension.

Note that we have the following orderings between the various premise sets:

{p,q} <es {~(pAq)}
{r} <mi{g,~(pNa)}
=P AN @)} <ei {q}

2. There are three ways to extend <: with ¢ < =(p A ¢q), with =(p A q) <’ g and
with ¢ & —(p A ¢). In all three cases the above orderings between the various
premise sets does not change. So the set D of defeat relations does not change,
so there exists no full preference-based resolution. So the answer is "yes’.

9.6 Exercises Chapter 8

EXERCISE 8.6.1
e Topic language: arguments without structure.
e Communication language: utterances of arguments.
e Dialogue purpose: test the dialectical status of an argument.

e Participants: proponent and opponent. Both have knowledge of the same set of
arguments and the same defeat relation. (More precisely, we assume that both
have a knowledge base that gives rise to exactly this set of arguments.) They
have no commitments.

e Logic: skeptical reasoning in grounded semantics the G-game, creduloous rea-
soning in preferred semantics for the P-game.

e Effect rules: none.

e Protocol: Definition 5.2.1(1) for the GG-game and Definition 5.3.7(1) for the P-
game.

e Outcome rules: Protocol: Definition 5.2.1(2) for the G-game and Definition 5.3.7(2)
for the P-game.
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EXERCISE 8.6.2

The elements of Definition 8.3.1 must be instantiated as follows (elements for which
any instantiation is allowed are not listed):

e Dialogue purpose: 1" consists of two propositions ¢ and —t.

e Participants: two players, one of whom is proponent of £ and opponent of —¢ and
the other is proponent of —¢ and opponent of ¢.

EXERCISE 8.6.3

1. - pis overruled. It has one argument, viz. A; = ({g,q D p}, p), which has two
attackers, viz. Ay = ({-p,q D p},~q) and A3 = ({q,p},~(¢ D p)), and As
makes A; overruled as follows. We have Level({q,q D p}) > Level({q, —p}),
so Aj defeatsA;. Next, A3 has two attackers, viz. A; and As. We already saw
that As is preferred over A; and, moreover, A3 is also preferred over As, so As
strictly defeats both A; and As. Since A3 has no other attackers, As is justified
and A is overruled.

- —p is justified. The argument A4 = ({—p}, —p) has one attacker, viz. A;, but
Level({q,q D p}) > Level({—p}), so A; does not defeat Ay.

- ¢ D pisoverruled. It has one argument, viz. A5 = ({g D p}, ¢ D p), which has
one attacker, viz. A3. We have Level({q D p}) > Level({—p, q}), so As strictly
defeats As. Since we saw under (1) that A3 has no defeaters, A5 is overruled.

2. There is just one legal dialogue, viz.

Wit claim p Bi:whyp
Wa: claim {q,q D p} Bs: concede q; Bs: claim —(q D p)
Wy: concede —(q D p)

Let us explain why. At his first move, W must reason with ¥y, which contains
a justified argument for p (it has no attackers on the basis of Xy). Then B at
her first move must reason with X5 U {p}. Then B cannot concede p: although
she can construct an argument for p, viz. Ag = ({p},p), it is not justified: B
can construct A4 = ({—p}, —p), which defeats Ag and is not defeated by other
arguments on the basis of ¥ U {p}. Can B claim —p? No, since her only
argument for —p is A4, which is defeated by Ag and since these arguments have
no other attackers on the basis of ¥ 5 U {p}, they are both defensible on the basis
of ¥p U {p}. So B must challenge p. After W’s reply with W5 the information
with which B must reason is X3 U{p, ¢, ¢ D p}. On this basis B’s only argument
for =g is A2 = ({-p,q D p}, ~q) but we have Level({q}) < Level({—p,q D
p}) so Ag is overruled on the basis of X5 U {p, q,q D p}. So B must concede g.
However, she has a justified argument against W5’s second premise, viz. As, so
she must claim its negation. Then W must reason with Xy U {—(¢ D p)}: this
supports a trivial argument for ¢ O p but since ¢ D p < —(¢ D p) we have that
W must concede and the dialogue terminates.

At termination, the commitment sets are:

Cw(ds) = {p,q,q D p,—(¢ D p)}, which is inconsistent;
Cg(ds) = {g, (¢ D p)}, which is consistent.
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On the basis of Xy U Cyy(dg) we have that p and —p are defensible because of
the arguments Ag and Ag = ({—(¢ D p)}, —p). Since p and —(q D p) are at the
same preference level, both arguments defeat each other and since they have no
other defeaters, they are defensible.

On the basis of X3 UCp(dg) we have that —p is justified since it has two justified
arguments A4 and Asg.

In sum, even though on the basis of the players’ joint beliefs p is overruled and
—p is justified, the players do not reach agreement on p.

3. The only legal dialogue now is
Wit claim p By: claim —p

Here the dialogue terminates since W cannot repeat claim p. At termination W
is committed to p and B to —p. These sets are both internally consistent and
consistent with the agents’ own beliefs. Finally, p is justified on the basis of
Yw U Cyw (d2) while —p is justified on the basis of X5 U Cp(ds).

EXERCISE 8.6.4

1. The only legal dialogue is

Wit claim p Bi:whyp
Wa: claim {q,q D p} Bs: why q
Ws: claim q

This dialogue terminates without agreement, so B has learned nothing from W.

2. Any player can accept a proposition ¢ after a claim {} move of the other player
that was moved after a why ¢ move, provided that the player cannot construct an
argument for —.

EXERCISE 8.6.5 Assuming the above answer to 8.6.4(2), the only legal dialogue is

W1 claim r Bi:whyr

Wa: claim {p,p D q,q D r} Bs: why p

Ws: claim {p} Bs: concede p, By: claim —(p D q)
Wy: claimp D q Bs: whyp D q

Ws: claim {p D q} Bg: concede g O 1

This exercise illustrates a number of subtle features of the PWA protocol. Note first
that black could make his counterclaim only after first conceding p! Next, at B black
could not claim —(p D ¢) even though that is allowed by her assertion attitude, since
this claim repeats B,. So black had to challenge'. Finally, the reason why black must
concede ¢ D p is that she has a justified argument for it with premises {s, s D —q},
which implies not only —¢q but also ¢ D r for any 7!

EXERCISE 8.6.6

"When read literally, PWA’s termination condition “when the move required by the procedure cannot
be made” implies that the dialogue terminates here, but we read it as meaning that only the ‘sub-dialogue’
about the first premise of W5 terminates and the dialogue then continues about the second premise.
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1. A counterexample is Example 8.4.4.

2. A counterexample is Xy = {p,p D ¢q,r} and X = {r D —p}, with topic ¢ and
all formulas of the same preference level. The only legal dialogue on ¢ is:

Wit claim q Bi: why q

Wa: claim {p,p D ¢} Bs: why p

Ws: claim {p} Bgs: concede p, By: why p D q
Wa: claim {p D q} Bs: concede {p D q}

Cw(dg) F q and Cp(dy) F ¢ but g is not justified on the basis of Xy U Xp
because of the counterargument ({r,r D —p}, —p).

EXERCISE 8.6.7. This follows from result (2) of Section 4.4 of the reader, which
implies that finite defeat graphs without cycles have a unique status assignments. (Note
that dialogue trees have no such cycles through their reply relations.)

EXERCISE 8.6.8. A surrendered move is in by definition regardless of its other replies,
so a new reply can never change any dialogical status.

EXERCISE 8.6.9
1. P, Py and Py
2. Oy and Og
3. P, Py

EXERCISE 8.6.10 For example:

Py = claim q

O1 =whyq

Py, =g sincep,p D q
Oy = —p since r,r D —p
Py = —(r D —p) since p,r
O3 =whyr

Py = retract q

or alternatively

P; =whyr

O3z = r since r

Py = retract q

There are other examples.
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