

IA Introduction

Topics:

Argumentation in Artificial Intelligence Historical Background

Goals:

Get an overview of the course and its subject matter Acquire insight about the historical background

Literature:

Van Eemeren et al. (in preparation). Sections 11.1-11-3.

IB Abstract Argumentation, Argument Structure

Topics:

Abstract Argumentation Argument Structure

Goals:

Acquire knowledge of abstract argumentation and its semantics Acquire insight into the relation between argument structure and abstract argumentation

Literature:

Van Eemeren et al. (in preparation). Sections 11.4-11.5.

Pollock's research question

How is argumentative warrant determined by the structure of the available arguments and counterarguments?

He produced a series of proposals, amongst other things driven by philosophical puzzles.

Dung 1995

'On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games' *Artificial Intelligence* journal

Pollock's research question, revisited

How is argumentative warrant determined by the structure of the available arguments and counterarguments?

Pollock's research question, revisited

How is argumentative warrant determined by the structure of the available arguments and counterarguments? of the attack relation between arguments?

- Mathematically clean

- More abstract, so simpler structure

- 1. It is connect-ree: There are no arguments α and β in A, such that α attacks β .
- 2. the arguments in A are *acceptable* with respect to A: For all arguments α in A, such that there is an argument β that attacks α , there is an argument γ in A that attacks β .

Basic properties of Dung's extensions

- A stable extension is a preferred extension, but not the other way around.
- An attack relation always has a preferred extension. Not all attack relations have a stable extension.
- An attack relation can have more than one preferred/stable extension.
- A well-founded attack relation has a unique stable extension.

Dung's grounded and complete extensions

- A set of arguments is a *complete* extension if it is an admissible set that contains all arguments of which all attackers are attacked by the set.
- A set of arguments is a (the) *grounded* extension if it is a minimal complete extension.

Dung's four semantics

Preferred Stable Complete Grounded

Labelings

Stable labeling:

An argument α is labelled "Defeated"

if and only if

There is an argument β that attacks α and that is labelled "Justified."

Labelings

- 1. Using labelings instead of sets simplifies the formal analysis and increases its transparency.
- Labelings allow a new natural idea of maximal interpretation: maximize the set of labeled nodes. → Stage extensions
- 3. Some preferred extensions are better than others. \rightarrow Semi-stable extensions

Verheij (1996). Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages.

Semi-stable semantics

A set of arguments is a *semi-stable extension* if it is an admissible set, for which the union of the set with the set of arguments attacked by it is maximal.

Notion introduced by Verheij (1996) Term coined by Caminada (2006)

Properties

- 1. Stable extensions are semi-stable.
- 2. Semi-stable extensions are preferred.
- 3. Preferred extensions are not always semi-stable.
- 4. Semi-stable extensions are not always stable.

Preferred extensions always exist, but stable extensions do not.

Do all attack graphs have a semi-stable extension? Answered negatively by Verheij (2000, 2003)

Properties

- 1. There exist attack graphs without a semi-stable extension.
- 2. Finite attack graphs always have a semi-stable extension.
- 3. An attack graph with a finite number of preferred extensions has a semi-stable extension.
- 4. An attack graph with a stable extension has a semi-stable extension.
- If an attack graph has no semi-stable extension, then there is an infinite sequence of preferred extensions with strictly increasing ranges.

DefLog	
A conditional ~> that validates Modus ponens A connective × that expresses `negation as defeat' (dialectical negation)	
pro: con: warrant: undercutter: rebutter:	$ \phi \sim > \psi \phi \sim > \times \psi \phi \sim > (\psi \sim > \chi) \phi \sim > \times (\psi \sim > \chi) ((\phi \sim > \psi) \land \phi) \sim > \times (\chi \sim > \text{not-}\psi) or \psi \sim > \times (\chi \sim > \text{not-}\psi) $

Attacking a conditional assumption

Undercutting-2 in DefLog

Passim

Side-step: Conflicting reasons

