Spring School on Artificial Intelligence and Law

Invited graduate course at Central South University, Changsha 中有大學 CENTRAL SOUTH UNIVERSITY

Floris Bex, Enrico Francesconi, Bart Verheij, April 2019

Organisers: Juan Li, Minghui Xiong

Day 3 Tuesday April 16

8:30	AI, Law & Data (Floris Bex)
10:00	Break
10:30	AI & Law - Semantic Annotation of Legal Texts (Enrico Francesconi)
12:00	Break
14:30	Arguments, Scenarios and Probabilities in AI & Law (Bart Verheij)
16:00	Break
16:30	Discussion
17:30	

A Coffeehouse Conversation on the Van den Herik Test

Bart Verheij

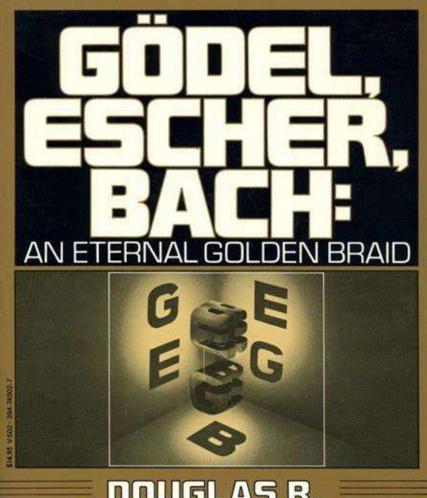
Participants in the dialogue: Chris, a lawyer; Floris, a computer scientist; Alex.

Chris: Alex, I want to thank you for suggesting that I read Van den Herik's "Kunnen computers rechtspreken?". It's a wonderful piece and certainly made me think — and think about my thinking.

Alex: Glad to hear it. Are you still as much of a skeptic about applying artificial intelligence to the law as you used to be?

Chris: You've got me wrong. I'm not against artificial intelligence; I think it's wonderful stuff — perhaps a little crazy, but why not? I simply am convinced that you AI advocates have far underestimated the minds of lawyers, and that there are things a computer will never, ever be able to do. For instance, can you imagine a computer writing a volume in the Asser series? The richness in content, the complexity of the considerations —

Alex: Rome wasn't built in a day!

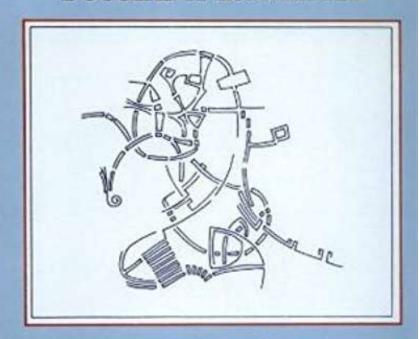

Floris: Hey, are you two going to clue me in as to what this text by Van den Herik is all about? It's only available in Dutch, you know!

Alex: It is about the question whether computers can decide legal cases. Van den Herik discusses the nature of legal decision making and the prospects of automating it. The text is Van den Herik's 1991 inaugural address, delivered upon acceptance of his position in Leiden. It also contains what might be called the Van den Herik test.

Reference:

Verheij, B. (2007). A Coffeehouse Conversation on the Van den Herik Test. Liber Amicorum ter Gelegenheid van de 60e Verjaardag van Prof.Dr. H. Jaap van den Herik, pp. 155-163. Maastricht: Maastricht ICT Competence Center.

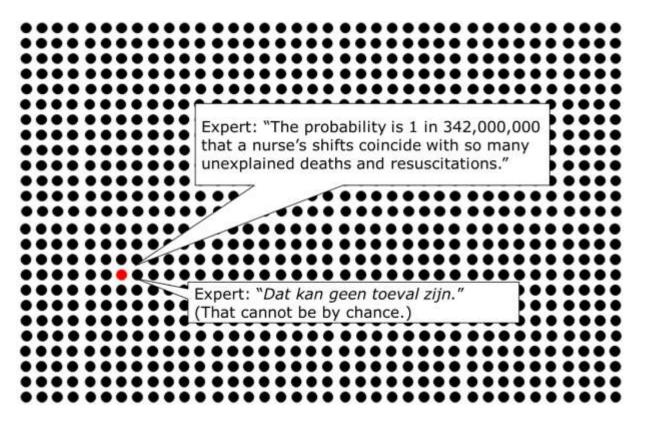
WINNER OF THE PULITZER PRIZE


DOUGLAS R. HOFSTADTER

A METAPHORICAL FUGUE ON MINDS AND MACHINES IN THE SPIRIT OF LEWIS CARROLL Copyrighted Cheering

METAMAGICAL THEMAS:

Questing for the Essence of Mind and Pattern


DOUGLAS R. HOFSTADTER

An Interlocked Collection of Literary, Scientific, and Artistic Studies

How can forensic evidence be handled effectively and safely?

Analyses of what went wrong

1. The statistical calculations were erroneous.

Wrongly combining p-values

Analyses of what went wrong

- 1. The statistical calculations were erroneous.

 Wrongly combining p-values
- 2. The statistics were erroneous.

 Biased data collection

Analyses of what went wrong

1. The statistical calculations were erroneous.
Wrongly combining p-values

2. The statistics were erroneous.

Biased data collection

3. The statistics only show that what happened is rare.

Lack of context

What makes a suspect's guilt convincing?

When the context speaks for itself.

E.g.,

- The murder weapon is found.
- Fingerprints found on the gun match the suspect's.
- The suspect has `shooting hands'.
- The suspect is a known hitman.
- The victim was a drug dealer involved in a gang war.
- **-** ...

What makes a suspect's guilt convincing?

When the context speaks for itself.

E.g.,

- The murder weaporFingerprints for
- gun match the suspect's.
- The suspr nooting hands'.
- The a known hitman.

 was a drug dealer involved in a gang

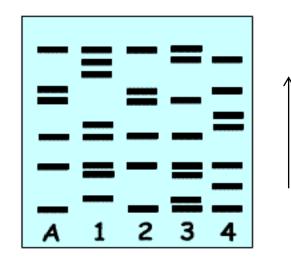
Goal:

promote rational handling of evidence in courts

Tool needed:

a normative framework

shared between experts and factfinders


DNA profiling

Successful

High information value

Scientific foundation

Precise statistical information (Random Match Probability)

DNA profiling

DNA Profile		Allele frequency from database				Genotype frequency for locus	
Locus	Alleles	Times allele observed	Size of database	Frequency		Formula	Number
CCE1DO	10	109	422	p=	0.25	2pq	0.16
CSF1PO	11	134	432	q=	0.31		0.16
TPOX	8	229	432	p=	0.53	p ²	0.28
IFUX	8	229	432	ρ-	0.55	ρ-	0.20
THO1	6	102	428	p=	0.24	2 <i>pq</i>	0.07
11101	7	64	420	q=	0.15		0.07
vWA	16	91	428	n-	0.21	p^2	0.05
	16	71	420	p=	0.21	ρ-	0.03
			profile frequency=				0.00014

Roughly 1 in 7000

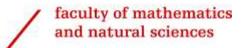
Random Match Probability

"The DNA effect"

By the success and nature of DNA the following idea has gained momentum:

Evidence is only valuable when it comes with scientifically supported statistics.

(Cf. the CSI effect; http://en.wikipedia.org/wiki/CSI effect)


Proof With and Without Probabilities

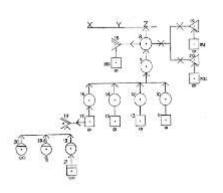
Bart Verheij

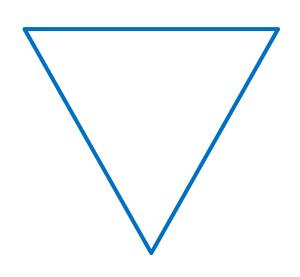
Institute of Artificial Intelligence and Cognitive Engineering

www.ai.rug.nl/~verheij

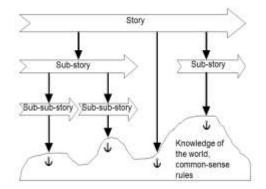
Goal:

promote rational handling of evidence in courts


Tool needed:


a normative framework

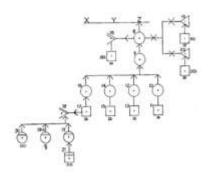
shared between experts and factfinders

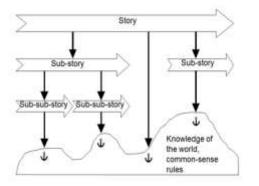

Three normative frameworks

Arguments

Scenarios

Probabilities


$$\frac{p(H|E)}{p(not-H|E)} = \frac{p(E|H)}{p(E|not-H)} \cdot \frac{p(H)}{p(not-H)}$$


Posterior odds = Likelihood ratio · Prior odds

Three normative frameworks

$$\frac{p(H|E)}{p(not-H|E)} = \frac{p(E|H)}{p(E|not-H)} \cdot \frac{p(H)}{p(not-H)}$$

Posterior odds = Likelihood ratio · Prior odds

Probabilities

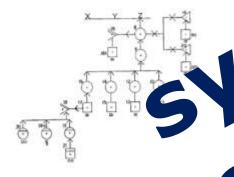
E.g., follow the calculus, don't transpose conditional probabilities, don't forget prior probabilities

Argumentation

E.g., take all arguments into account, both pro and con, assess strength and relative strength, avoid fallacies

Scenarios

E.g., consider alternative scenarios, assess plausibility and coherence, consider which evidence is explained or contradicted


Three normative frameworks

$$\frac{p(H|E)}{p(not-H|E)} = \frac{p(E|H)}{p(E|not-H)} \cdot \frac{p(H)}{p(not-H)}$$

Posterior odds = Likelihood ratio · Prior odds

Probabilities

E.g., follow the language, don't transpose conditional or babilities, don't transpose probabilities

Sub-story Sub-story Sub-story Knowledge of the world, common-sense rules

Irsumentatio

E.g., toke a arguments into account, both pro a d con, assess strength and relative strength, avoid fallacies

Scenarios

E.g., consider alternative scenarios, assess plausibility and coherence, consider which evidence is explained or contradicted

EVIDENTIAL REASONING Chapter for the Handbook of Legal Reasoning

Marcello Di Bello & Bart Verheij - April 19, 2017

CONTENTS

1	Sett	ing the stage	3
	1.1	Eyewitness testimony	3
	1.2	DNA Evidence	4
	1.3		6
2	Thr	ee normative frameworks	6
	2.1	Arguments	7
	2.2	Probabilities	8
	2.3	Scenarios	8
3	Con	flicting evidence	9
	3.1	Arguments	9
	3.2		12
	3.3	Probabilities	14
4	Evic	dential value	16
	4.1	Probability	16
	4.2	Arguments	19
	4.3		21
5	Coh	erently interpreting the evidence	24
	5.1	Scenarios	24
	5.2		26
	5.3	Probability	29
		- The state of the	

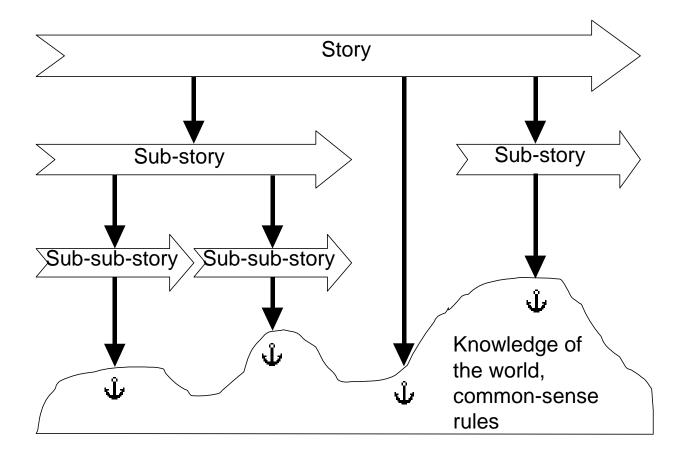
Conflicting evidence

Arguments Three kinds of attack can be distinguished: rebutting, undercutting and undermining. Three kinds of support can be distinguished: multiple, subordinated and coordinated. Arguments can involve complex structures of supporting and attacking reasons.

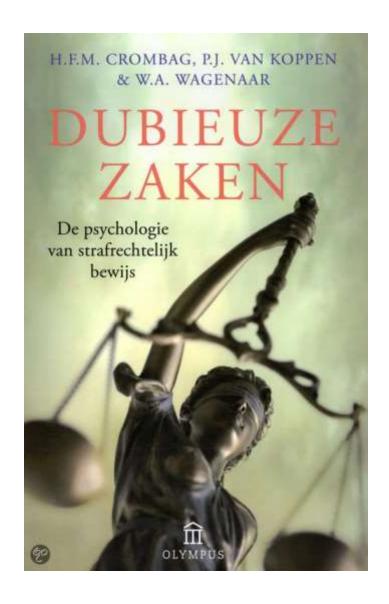
Scenarios There may be conflicting scenarios about what has happened. Evidence can be explained by one scenario, but not by another. Scenarios can be contradicted by evidence.

Probabilities Support can be characterized as "probability increase" or "positive likelihood ratio". Attack can be characterized as "probability decrease" or "negative likelihood ratio". The conflict between two pieces of evidence can be described probabilistically.

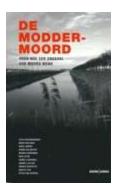
Evidential value

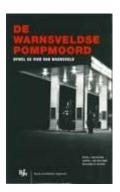

Probabilities The incremental evidential value is measured by probabilistic change. The overall evidential value is measured by the overall conditional probability. The use of evidence with high incremental evidential value has complications.

Arguments The reasons used can be conclusive or defeasible. Arguments can be evaluated by asking critical questions. It can be subject to debate whether a reason supports or attacks a conclusion.


Scenarios Scenarios can be plausible and logically consistent. The more evidence a scenario can explain, the better. The more pieces of evidence a scenario is consistent with, the

Introduction **Hybrid models**AI & Law


Anchored narratives


Crombag, H.F.M., van Koppen, P.J., and Wagenaar, W.A. (1992, 1994), *Dubieuze Zaken: De Psychologie van Strafrechtelijk Bewijs. (Dubious Cases. The Psychology of Criminal Evidence.)* (Amsterdam: Contact).

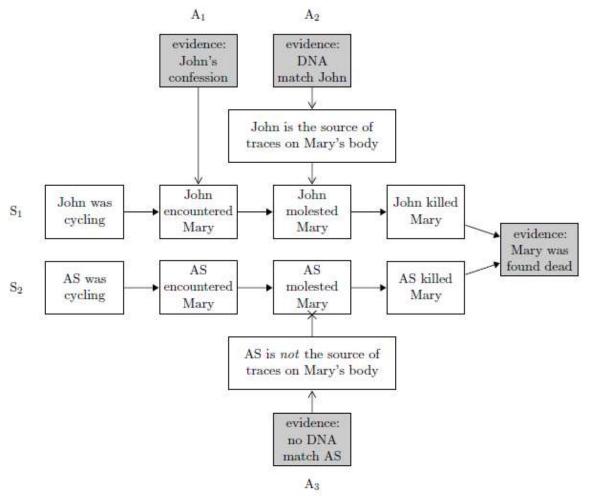
Ten universal rules of evidence

- 1. The prosecution must present at least **one well-shaped narrative**.
- 2. The prosecution must present a limited set of well-shaped narratives.
- 3. **Essential components** of the narrative must be **anchored**.
- 4. **Anchors** for different components of the charge **should be independent** of each other.
- 5. The trier of fact should give **reasons for the decision** by specifying the narrative and the accompanying anchoring.
- 6. A fact-finder's decision as to the level of analysis of the evidence should be explained through an articulation of the general beliefs used as anchors.
- 7. There should be **no competing story** with equally good or better anchoring.
- 8. There should be **no falsifications of the** indictment's **narrative** and nested sub-narratives.
- 9. There should be **no anchoring onto obviously false beliefs**.
- 10. The indictment and the verdict should contain the same narrative.

Wagenaar, W.A., van Koppen, P.J., and Crombag, H.F.M. (1993), *Anchored Narratives. The Psychology of Criminal Evidence* (London: Harvester Wheatsheaf).

Anchored narratives

ANT can be regarded as a mixed approach, with story-based and argument-based elements.


Verheij, B. (2000). Dialectical Argumentation as a Heuristic for Courtroom Decision Making. *Rationality, Information and Progress in Law and Psychology. Liber Amicorum Hans F. Crombag* (eds. van Koppen, P.J., & Roos, N.), 203-226. Maastricht: Metajuridica Publications.

Ten universal rules of evidence

- 1. The prosecution must present at least **one well-shaped narrative**.
- 2. The prosecution must present a limited set of well-shaped narratives.
- 3. **Essential components** of the narrative must be **anchored**.
- 4. **Anchors** for different components of the charge **should be independent** of each other.
- 5. The trier of fact should give **reasons for the decision** by specifying the narrative and the accompanying anchoring.
- 6. A fact-finder's decision as to the level of analysis of the evidence should be explained through an articulation of the general beliefs used as anchors.
- 7. There should be **no competing story** with equally good or better anchoring.
- 8. There should be **no falsifications of the** indictment's **narrative** and **nested sub-narratives**.
- 9. There should be **no anchoring onto obviously false beliefs**.
- 10. The indictment and the verdict should contain the same narrative.

Wagenaar, W.A., van Koppen, P.J., and Crombag, H.F.M. (1993), *Anchored Narratives. The Psychology of Criminal Evidence* (London: Harvester Wheatsheaf).

Arguments and scenarios

Connecting arguments and scenarios: a hybrid theory

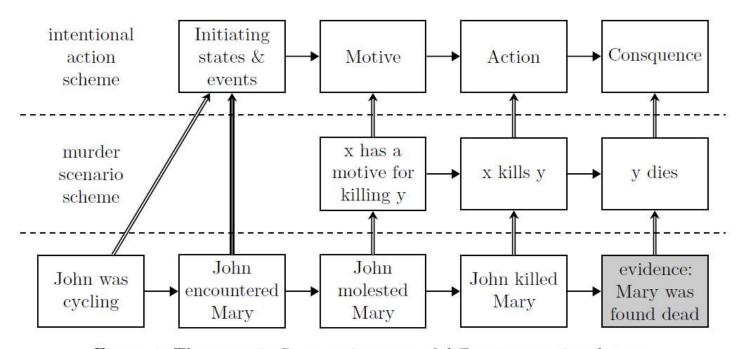


Figure 4: The scenario S_1 as an instance of different scenario schemes

Bex 2009 dissertation

Bayesian networks

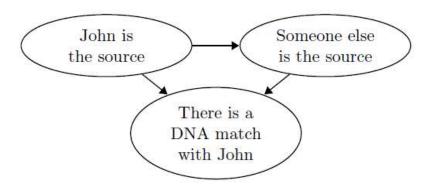
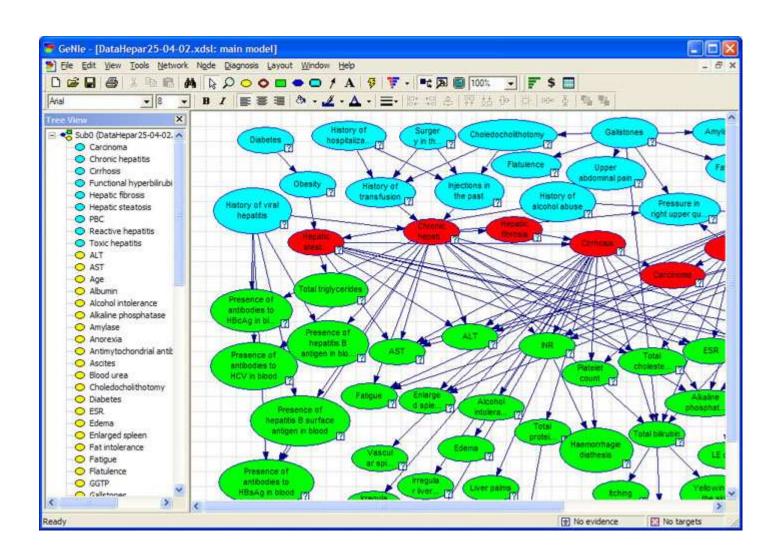


Figure 5: A Bayesian network structure with dependency relations

John is the source


John is the source = false	8000/8001
John is the source $=$ true	1/8001

Someone else is the source

John is the source	false	true	
Someone else is the source = false	0	1	
Someone else is the source $=$ true	1	0	

DNA match

John is the source	false		true	
Someone else	false	true	false	true
DNA match = false	0.5*	$1 - 0.66 \cdot 10^{-21}$	0	0.5*
DNA match = true	0.5*	$0.66 \cdot 10^{-21}$	1	0.5*

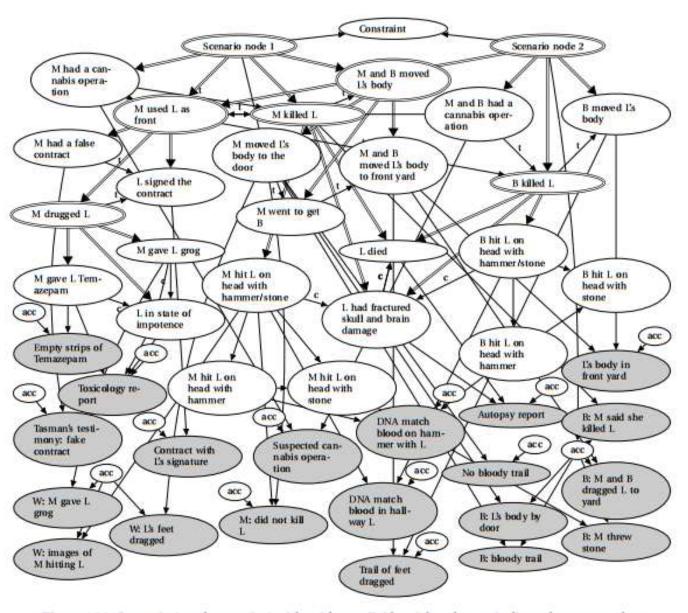


Figure 4.11: Scenario 1 and scenario 2 with evidence. Evidential nodes are indicated as grey nodes.

94

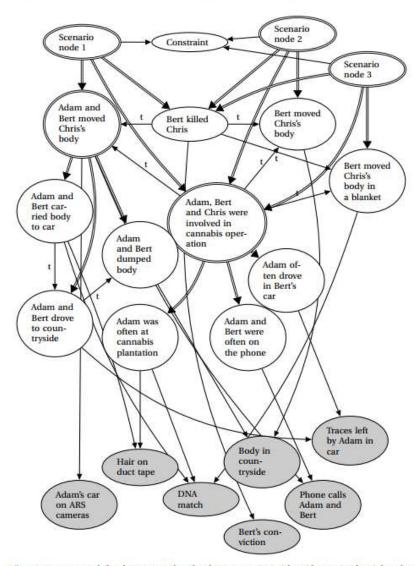


Figure 6.5: A network for the case study: The three scenarios with evidence. Evidential nodes are indicated as grey nodes.

Vlek 2016 dissertation

Scenarios in the network:

- Scenario 1 (prior probability: 0.001, posterior probability: 0.5296):

Scenario: Bert killed Chris, and Adam, Bert and Chris were involved in cannabis operation. Then Adam and Bert moved Chris's body.

Adam, Bert and Chris were involved in cannabis operation: Adam was often at cannabis location and Adam and Bert were often on the phone and Adam often drove in Bert's car.

Adam and Bert moved Chris's body: Adam and Bert carried body to car. Then Adam and Bert drove to countryside. Then Adam and Bert dumped body.

- Scenario 2 (prior probability: 0.001, posterior probability: 0.1180):

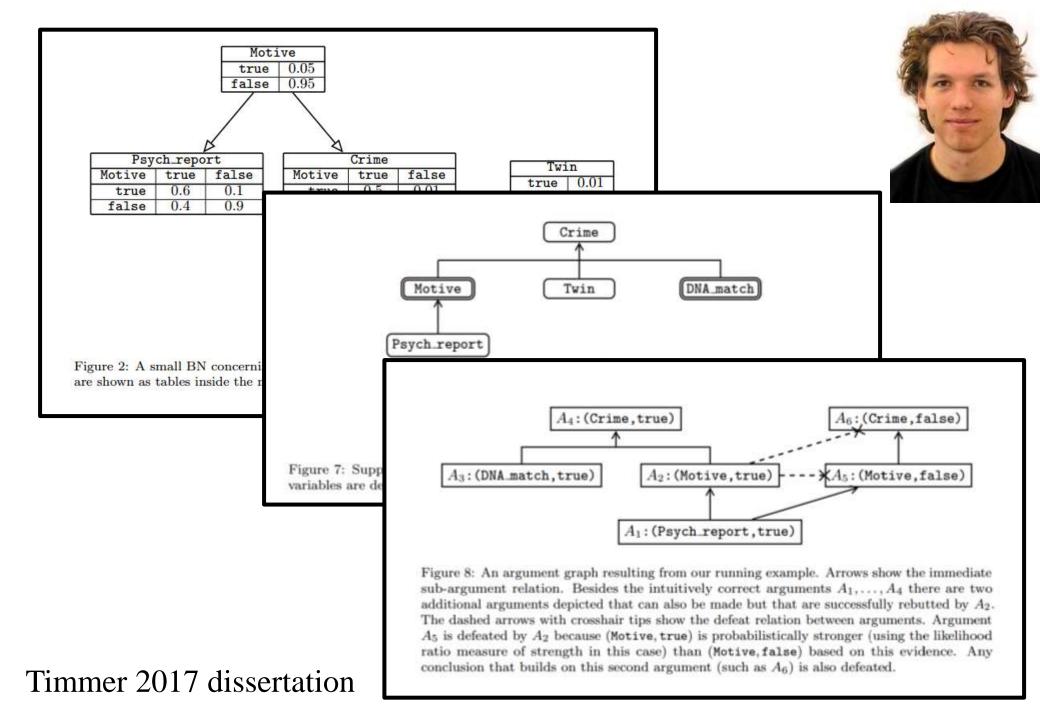
Scenario: Bert killed Chris, and Adam, Bert and Chris were involved in cannabis operation. Then Bert moved Chris's body.

Adam, Bert and Chris were involved in cannabis operation: Adam was often at cannabis location and Adam and Bert were often on the phone and Adam often drove in Bert's car.

Scenario 3 (prior probability: 0.001, posterior probability: 0.2913):

Scenario: Bert killed Chris, and Adam, Bert and Chris were involved in cannabis operation. Then Bert moved Chris's body in a blanket.

Adam, Bert and Chris were involved in cannabis operation: Adam was often at cannabis location and Adam and Bert were often on the phone and Adam often drove in Bert's car.


Scenario quality

- Scenario 1 is complete and consistent. It contains the supported implausible element Bert killed Chris.
- Scenario 2 is complete and consistent. It contains the supported implausible element Bert killed Chris.
- Scenario 3 is complete and consistent. It contains the supported implausible element Bert killed Chris.

· Evidence related to each scenario

- Evidence for and against scenario 1:
 - Adam's car not on ARS cameras: weak evidence to attack scenario 1.
 - DNA match: moderate evidence to support scenario 1.
 - * Hair on duct tape: moderate evidence to support scenario 1.
 - * Bert's conviction: moderate evidence to support scenario 1.
 - Body in countryside: strong evidence to support scenario 1.
 - * Phone calls Adam and Bert: weak evidence to support scenario 1.
 - * Traces of Adam in car: weak evidence to support scenario 1.
 - * All evidence combined: strong evidence to support scenario 1.
- Evidence for and against scenario 2:
 - * Adam's car not on ARS cameras: weak evidence to attack scenario 2.
 - DNA match: moderate evidence to support scenario 2.

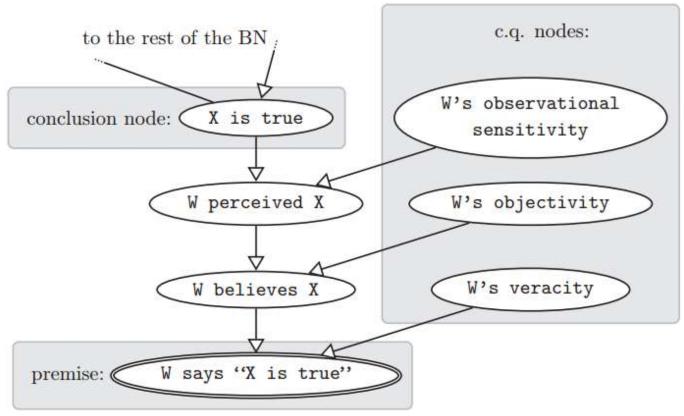


Figure 5.7: Modelling critical questions as a chain of exceptions.

Timmer 2017 dissertation

NWO Forensic Science project

- A method to incorporate argument schemes in a Bayesian Network (Timmer, 2017; Timmer et al., 2015a);
- An algorithm to extract argumentative information from a Bayesian Network modeling hypotheses and evidence (Timmer, 2017; Timmer et al., 2016);
- A method to manually design a Bayesian Network incorporating hypothetical scenarios and the available evidence (Vlek, 2016; Vlek et al., 2014);
- A method to generate a structured explanatory text of a Bayesian Network modeled according to this method (Vlek, 2016; Vlek et al., 2016);
- A case study testing the design method (Vlek, 2016; Vlek et al., 2014);
- A case study testing the explanation method (Vlek, 2016).

Bayesian Network modeling with idioms

Strengths

Explicit complex model (allows for discussion)
Correct calculations (supported by software)
Systematic, reusable (idioms)

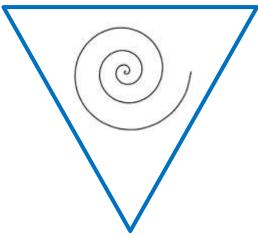
Issues

Design (numbers, dependencies, compositionality of idioms)
Interpretation (formal versus material meaning)

Goal:

promote rational handling of evidence in courts

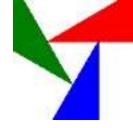
Tool needed:


a normative framework

shared between experts and factfinders

Scenarios

Arguments

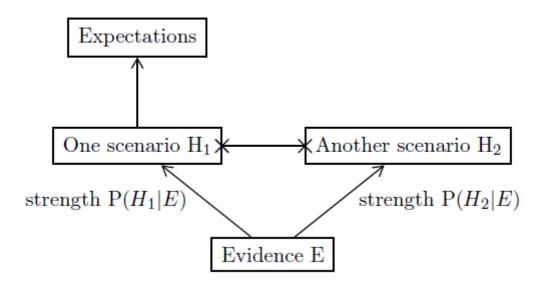


Probabilities

Verheij, B. (2017). Proof With and Without Probabilities. Correct Evidential Reasoning with Presumptive Arguments, Coherent Hypotheses and Degrees of Uncertainty. *Artificial Intelligence and Law* 25 (1), 127-154. http://dx.doi.org/10.1007/s10506-017-9199-4

Integrating the three perspectives

- They are just three different ways of speaking about the same things, each emphasising some specific aspects
- There is no need to idolize any
- There is no need to demonize any



Hypothesis

There exists an integrated perspective on arguments, scenarios and probabilities as normative tools for evidential reasoning in which each has its natural and transparent place.

Arguments, scenarios and probabilities

Verheij, B. (2014). To Catch a Thief With and Without Numbers: Arguments, Scenarios and Probabilities in Evidential Reasoning. *Law, Probability and Risk*, 13, 307-325.

Definition 1. (Case models) A case model is a pair (C, \geq) with finite $C \subseteq L$, such that the following hold, for all φ , ψ and $\chi \in C$:

- 1. $\not\models \neg \varphi$;
- 2. If $\not\models \varphi \leftrightarrow \psi$, then $\models \neg(\varphi \land \psi)$;
- 3. If $\models \varphi \leftrightarrow \psi$, then $\varphi = \psi$;
- 4. $\varphi \geq \psi$ or $\psi \geq \varphi$;
- 5. If $\varphi \geq \psi$ and $\psi \geq \chi$, then $\varphi \geq \chi$.

Case models are `with and without numbers' in a precise sense:

- the ordering can be derived from a numeric representation;
- it is without numbers since an ordering is a qualitative relation.

Proof With and Without Probabilities

Correct Evidential Reasoning with Presumptive Arguments, Coherent Hypotheses and Degrees of Uncertainty

Bart Verheij

Received: date / Accepted: date

Abstract Evidential reasoning is hard, and errors can lead to miscarriages of justice with serious consequences. Analytic methods for the correct handling of evidence come in different styles, typically focusing on one of three tools: arguments, scenarios or probabilities. Recent research used Bayesian Networks for connecting arguments, scenarios, and probabilities. Well-known issues with Bayesian Networks were encountered: More numbers are needed than are available, and there is a risk of misinterpretation of the graph underlying the Bayesian Network, for instance as a causal model. The formalism presented here models presumptive arguments about coherent hypotheses that are compared in terms of their strength. No choice is needed between qualitative or quantitative analytic styles, since the formalism can be interpreted with and without numbers. The formalism is applied to key concepts in argumentative, scenario and probabilistic analyses of evidential reasoning, and is illustrated with a fictional crime investigation example based on Alfred Hitchcock's film 'To Catch A Thief'.

Verheij, B. (2017). Proof With and Without Probabilities. Correct Evidential Reasoning with Presumptive Arguments, Coherent Hypotheses and Degrees of Uncertainty. *Artificial Intelligence and Law* 25 (1), 127-154. http://dx.doi.org/10.1007/s10506-017-9199-4.

One interpretation of the evidence

Another interpretation of the evidence

 $p(H_1|E)$ $p(H_2|E)$

Evidence

Proof With and Without Probabilities

An argumentation theory that connects

- presumptive arguments,
- coherent hypotheses, and
- degrees of uncertainty
 using classical logic and standard probability theory.

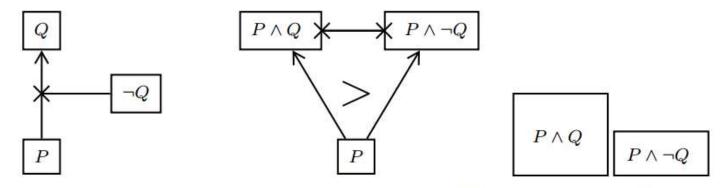


Fig. 1 General idea: an argument with a counterargument (left); arguments for conflicting cases and their comparison (middle); cases and their comparitive value (right)

- Patients have reported a sexual assault by their doctor (patients).
- The DNA of a trace of semen found on one patient is compared with the DNA in a blood sample taken from the doctor. There is no match (¬dna-match).
- The doctor had implanted a drain into his arm, filled with someone else's blood (implant).

By patients, we presume dna-match and guilt patients ~> dna-match \land guilt

We find ¬dna-match, so now we presume ¬guilt patients ∧ ¬dna-match ~> ¬guilt

We find implant, so we presume, in fact conclude, guilt

patients $\land \neg dna-match \land implant \sim> guilt$ patients $\land \neg dna-match \land implant => guilt$

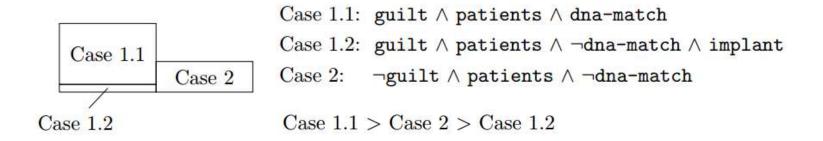
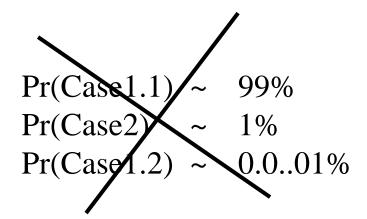


Figure 2: Case model for the example

$$Pr(Case 1.1) = 3/(3+2+1) = 50\%$$

 $Pr(Case 2) = 2/(3+2+1) \sim 33\%$
 $Pr(Case 1.2) = 1/(3+2+1) \sim 17\%$


$$\pi > e > 1$$

$$Pr(Case 1.1) = \pi/(\pi+e+1) \sim 46\%$$

 $Pr(Case 2) = e/(\pi+e+1) \sim 40\%$
 $Pr(Case 1.2) = 1/(\pi+e+1) \sim 14\%$

very high > low > extremely small

```
Pr(Case1.1) ~ 99%
```

very high > low > extremely small

(It seems that we don't need the numbers)

Kinds of argument validity

Coherent arguments

$$(C, \geq) \models (\varphi, \psi)$$
 if and only if $\exists \omega \in C : \omega \models \varphi \land \psi$.

Conclusive arguments

$$(C, \geq) \models \varphi \Rightarrow \psi$$
 if and only if $\exists \omega \in C : \omega \models \varphi \land \psi$ and $\forall \omega \in C : \text{if } \omega \models \varphi$, then $\omega \models \varphi \land \psi$.

Presumptively valid arguments

$$(C, \geq) \models \varphi \leadsto \psi \text{ if and only if } \exists \omega \in C$$
:

- 1. $\omega \models \varphi \wedge \psi$; and
- 2. $\forall \omega' \in C : \text{if } \omega' \models \varphi, \text{ then } \omega \geq \omega'.$

Arguments Scenarios

Probabilities

Coherence p>0

Presumptive validity Plausible p maximal, p> t

Conclusive Beyond a p=1 reasonable

doubt

Three kinds of validity

Coherent arguments

$$p(\psi \mid \varphi) > 0$$

$$(C, \geq) \models (\varphi, \psi)$$
 if and only if $\exists \omega \in C : \omega \models \varphi \land \psi$.

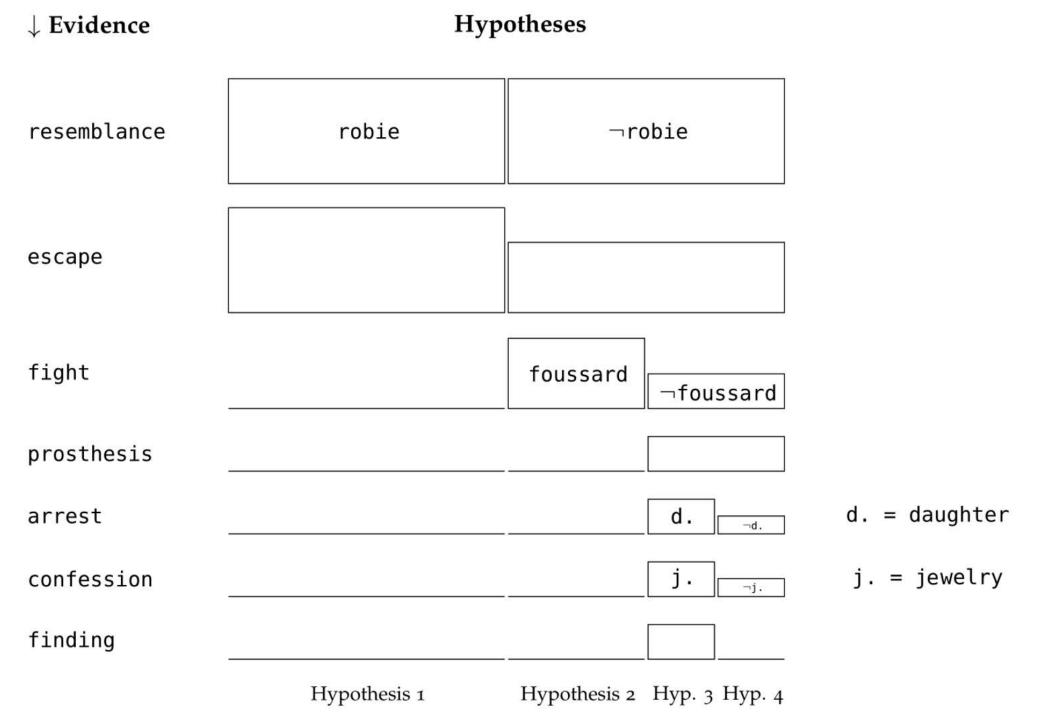
Presumptive arguments

$$(C, \geq) \models \varphi \leadsto \psi$$
 if and only if $\exists \omega \in C$:

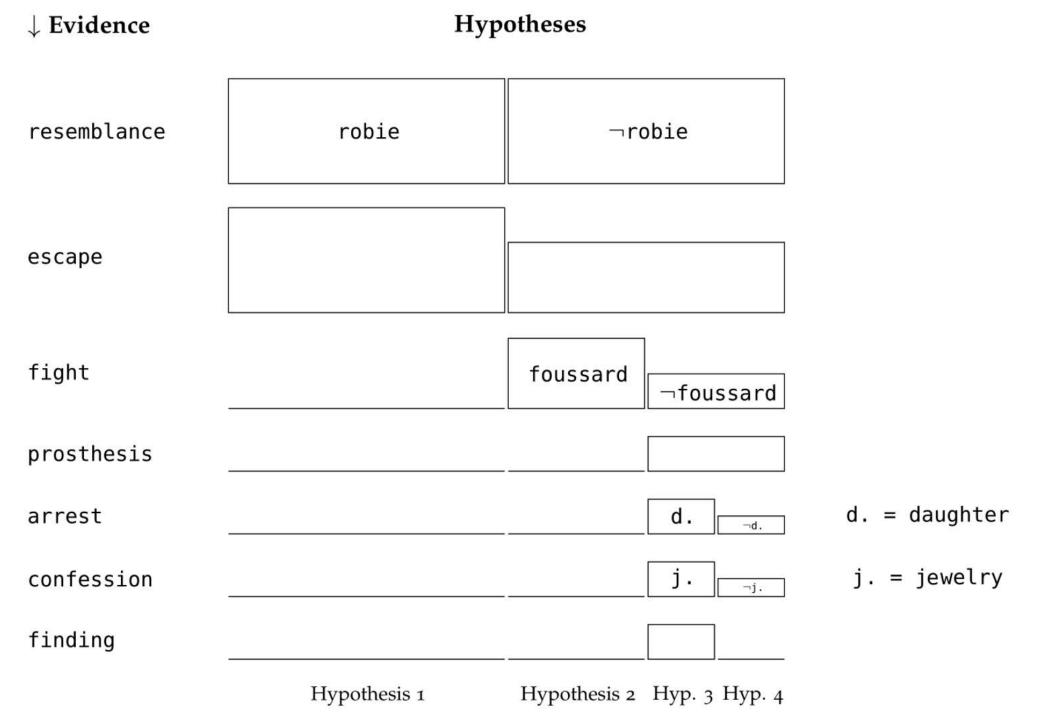
$$p(\psi \mid \varphi) > t$$

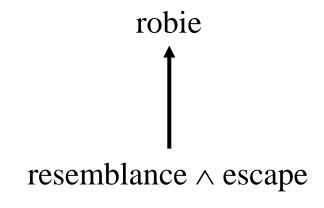
- 1. $\omega \models \varphi \wedge \psi$; and
- 2. $\forall \omega' \in C : \text{if } \omega' \models \varphi, \text{ then } \omega \geq \omega'.$

Conclusive arguments

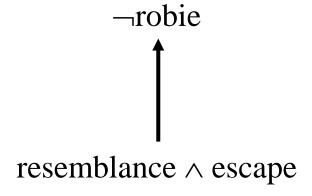

$$p(\psi \mid \varphi) = 1$$

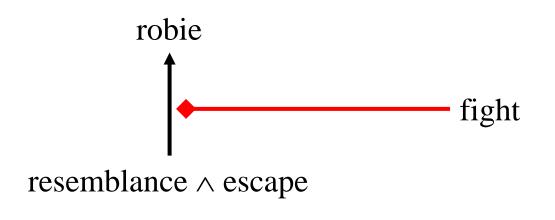
$$(C, \geq) \models \varphi \Rightarrow \psi$$
 if and only if $\exists \omega \in C : \omega \models \varphi \land \psi$ and $\forall \omega \in C : \text{if } \omega \models \varphi$, then $\omega \models \varphi \land \psi$.



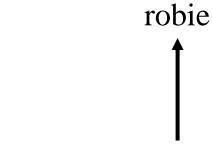


Block 1: Robie indeed was the thief

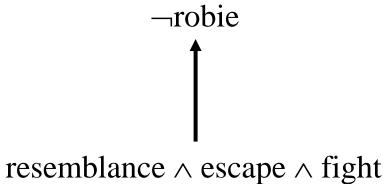

Block 3: Resistance friend Foussard's daughter was the thief



coherent, presumptive, not conclusive



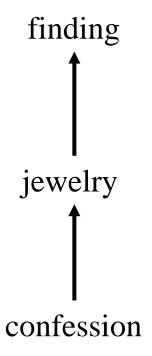
coherent, not presumptive, not conclusive



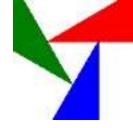
defeating, rebutting

not coherent, not presumptive, not conclusive

resemblance \land escape \land fight


coherent, presumptive, conclusive

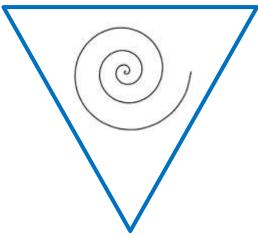
 \neg robie $\land \neg$ fousard \land daughter \land jewelry


 $resemblance \land escape \land fight \land prosthesis \land arrest \land confession \land finding$

coherent, presumptive, conclusive

coherent, presumptive, not conclusive

coherent, presumptive, not conclusive


Hypothesis

There exists an integrated perspective on arguments, scenarios and probabilities as normative tools for evidential reasoning in which each has its natural and transparent place.

Scenarios

Arguments

Probabilities

Verheij, B. (2017). Proof With and Without Probabilities. Correct Evidential Reasoning with Presumptive Arguments, Coherent Hypotheses and Degrees of Uncertainty. *Artificial Intelligence and Law* 25 (1), 127-154. http://dx.doi.org/10.1007/s10506-017-9199-4

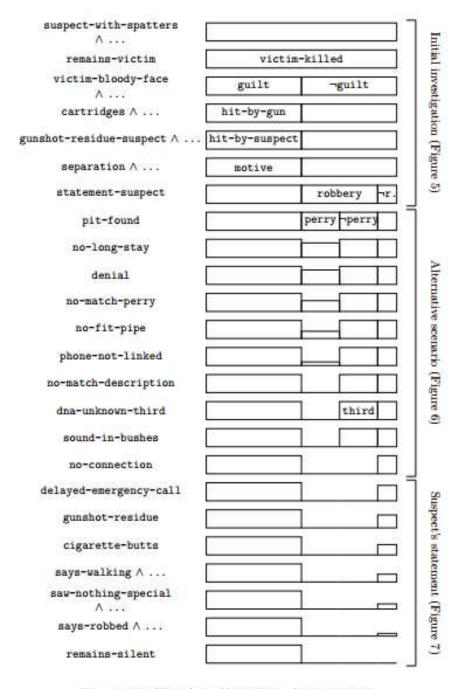
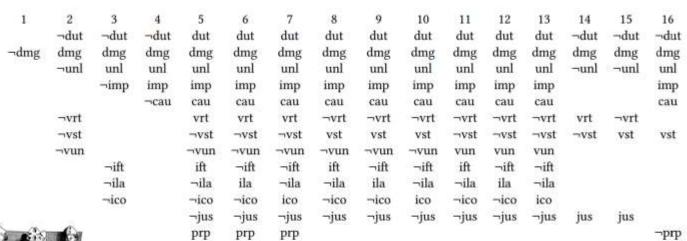
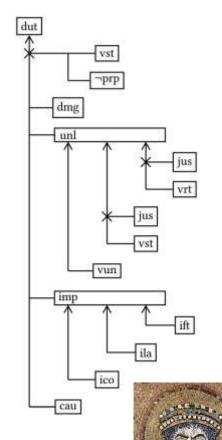


Figure 10: The Appellate Court's reasoning


Introduction
Hybrid models
AI & Law

Artificial intelligence and Law



Legal artificial intelligence

Artificial Intelligence and Law

 $1 > 2 > 3 > 4 > 5 \sim 6 \sim 7 \sim 8 \sim 9 \sim 10 \sim 11 \sim 12 \sim 13 > 14 \sim 15 \sim 16$

Knowledge

Data

The two faces of Artificial Intelligence

Expert systems
Business rules
Open data
IBM's Deep Blue
Complex structure

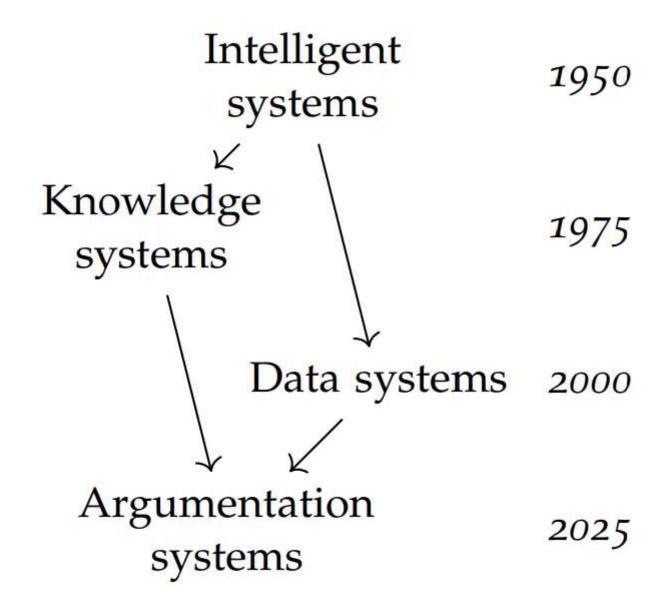
Adaptive system

Machine le

Big d

Lson

Lytive structure


Knowled For

Explainability

Data tech

Foundation: probability theory

Scalability

Readings

- Verheij, B. (2018). Arguments for Good Artificial Intelligence. Groningen: University of Groningen. www.ai.rug.nl/~verheij/oratie/
- Verheij, B. (2017a). Proof With and Without Probabilities. Correct Evidential Reasoning with Presumptive Arguments, Coherent Hypotheses and Degrees of Uncertainty. Artificial Intelligence and Law 25 (1), 127-154.

 www.ai.rug.nl/~verheij/publications/ail2017.htm
- Verheij, B., Bex, F. J., Timmer, S., Vlek, C., Meyer, J. J., Renooij, S., & Prakken, H. (2016). Arguments, Scenarios and Probabilities: Connections Between Three Normative Frameworks for Evidential Reasoning. Law, Probability & Risk 15, 35-70.

www.ai.rug.nl/~verheij/publications/lpr2016.htm