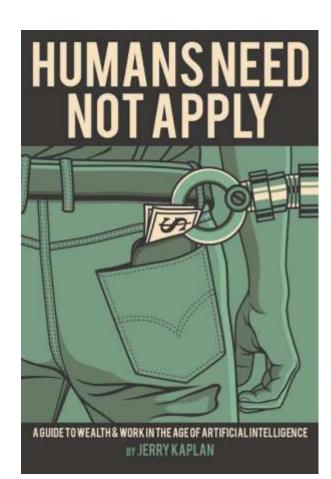
Spring School on Artificial Intelligence and Law

Invited graduate course at Central South University, Changsha

Floris Bex, Enrico Francesconi, Bart Verheij, April 2019

Organisers: Juan Li, Minghui Xiong



Day 1 Sunday April 14

- 8:30 Introduction to AI & Law (Bart Verheij)
- 10:00 Break
- 10:30 AI & Law Semantic Web, Open Data and AI in the Legal Domain (Enrico Francesconi)
- 12:00 Break
- 14:30 Evidence, Stories and Arguments in AI & Law (Floris Bex)
- 16:00 Break
- 16:30 Discussion
- 17:30

http://www.ai.rug.nl/~verheij/ssail2019/

INDEPENDENT HIGH-LEVEL EXPERT GROUP ON ARTIFICIAL INTELLIGENCE

SET UP BY THE EUROPEAN COMMISSION

ETHICS GUIDELINES FOR TRUSTWORTHY AI

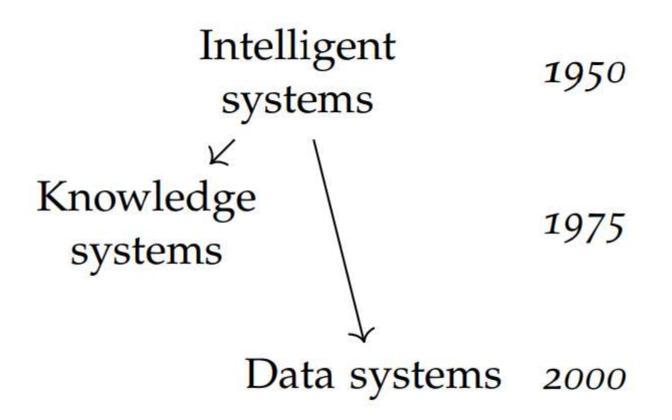
Published this week

Human agency and oversight Technical robustness and safety Privacy and data governance Transparency Diversity, non-discrimination and fairness Societal and environmental well-being Accountability

Artificial intelligence

Specialized artificial intelligence Exists and is often in use. Tax administration, photo classification

General artificial intelligence


Does not exist. There is a natural variant of general intelligence.

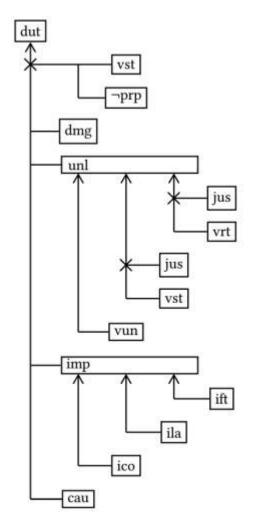
Understand books, biking in a busy street

Superior artificial intelligence

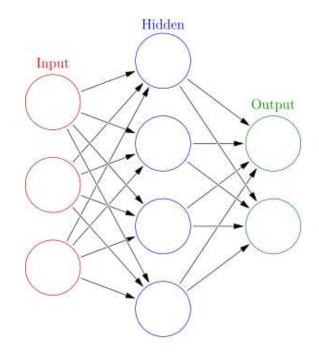
Does not exist. By definition there is no natural variant.

Speculative: Automatic invention, robot uprise

Knowledge systems


Art. 6:162.1 BW (Dutch civil code)

A person who commits an unlawful act toward another which can be imputed to him, must repair the damage which the other person suffers as a consequence thereof.


IF damages

- AND unlawful
- AND imputable
- AND causal-connection
- THEN duty-to-repair

```
dmg \wedge unl \wedge imp \wedge cau \leadsto dut
```


Data systems

The two faces of Artificial Intelligence

Expert systems Business rules Open data IBM's Deep Blue Complex structure

Knowledge tech

Foundation: logic

Explainability

Adaptive systems Machine learning Big data IBM's Watson Adaptive structure

Data tech Foundation: probability theory

Scalability

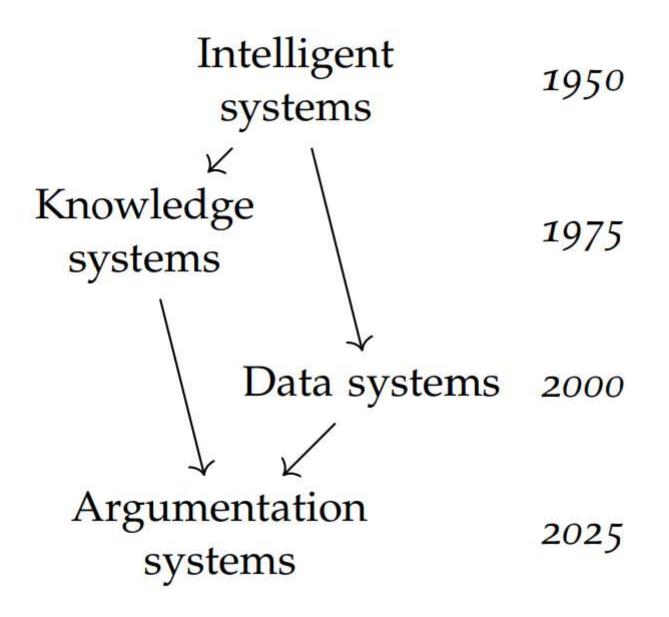
Realizing the **dreams** and countering the **concerns** connected to AI require the same innovation:

the development of argumentation technology

The law leads the way

Argumentation systems are systems that can conduct a critical discussion in which hypotheses can be constructed, tested and evaluated on the basis of reasonable arguments.

The two faces of Artificial Intelligence


Expert systems **Business** rules Open data IBM's Deep Blue

Explainability

Adaptive system Machine le Big d ...son

Data tech Foundation: probability theory

Scalability

The law can be enhanced by artificial intelligence Access to justice, efficient justice

The law can be enhanced by artificial intelligence Access to justice, efficient justice

Artificial intelligence can be enhanced by the law Ethical AI, explanatory AI

Artificial intelligence and Law

Legal artificial intelligence

Artificial intelligence and Law

ICAIL conferences since 1987 (biennially)

Next edition June 2019 Montreal

iaail.org

JURIX conferences since 1988 (annually)

Next edition December 2019 Madrid jurix.nl

Artificial Intelligence and Law journal since 1992

Springer

link.springer.com/journal/10506

Machines can decide legal cases (?)

Deciding legal cases consists of applying the law. The law consists of rules and cases. Machines can apply rules and following cases.

THEREFORE:

Machines can decide legal cases.

Maar edelachtbare, u drinkt toch ook wel eens een glaasje? But, Your Honour, you sometimes have a drink too, haven't you?

Some hard questions

Deciding legal cases consists of applying the law.

- -> Is applying the law sufficient for deciding cases?
- -> How does one apply the law?
- The law consists of rules and cases.
 - -> Does it?
 - -> Where are they?
- Machines can apply rules and follow cases.
 - -> Can they?

THEREFORE:

Machines can decide legal cases.

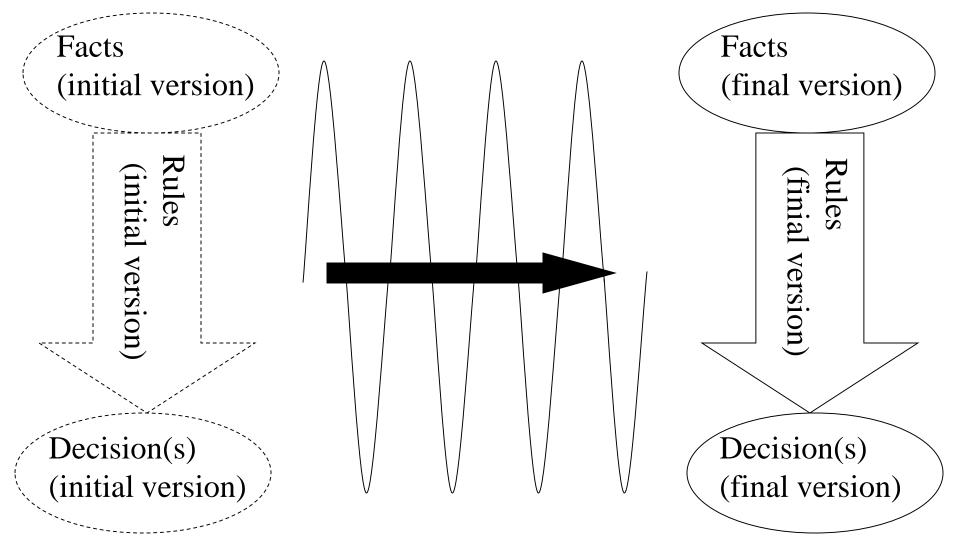
-> Well, I don't know!

Working hypothesis:

Deciding legal cases can be automated.

Research agenda:

Find out how!


Law and artificial intelligence

The tension in the law between *legal security* on the one hand and *justice* on the other is related to the *gof-ai* vs. *new-ai* dichotomy.

The former are *top-down* and focus on *explicit knowledge* (rules, logic), the latter are *bottom-up* and use *implicit knowledge* (discretion, case analogy, learning, self-organisation).

The law has a long history of struggling with this tension and developed pragmatic approaches.

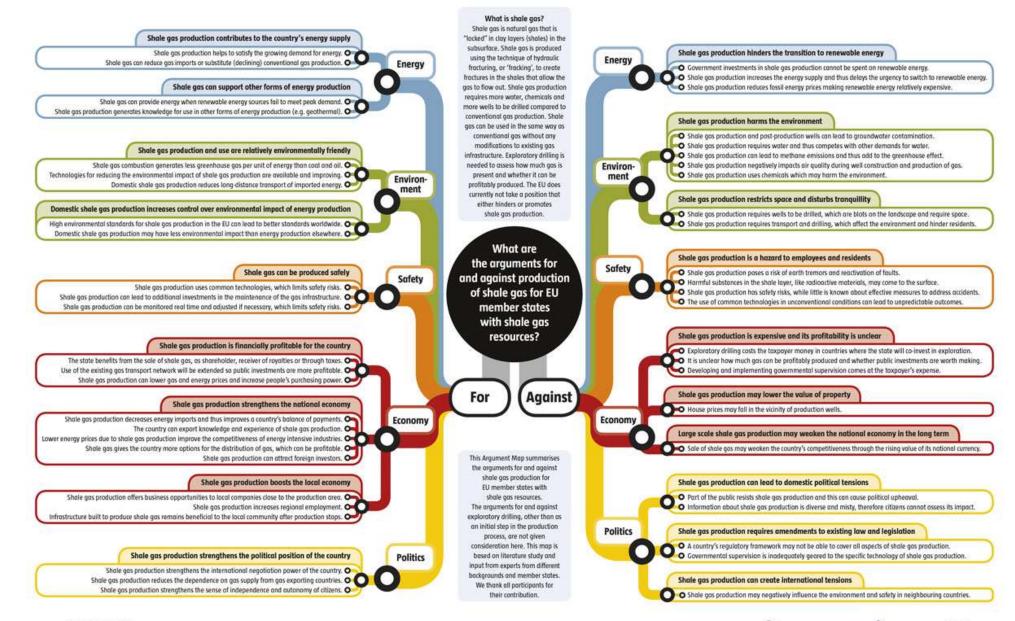
Theory construction

Argumentation

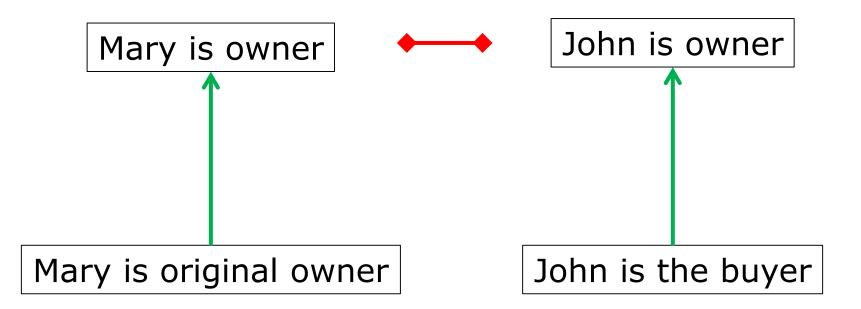
Argumentation

is an interactive social process aimed at the balancing of different positions and interests.

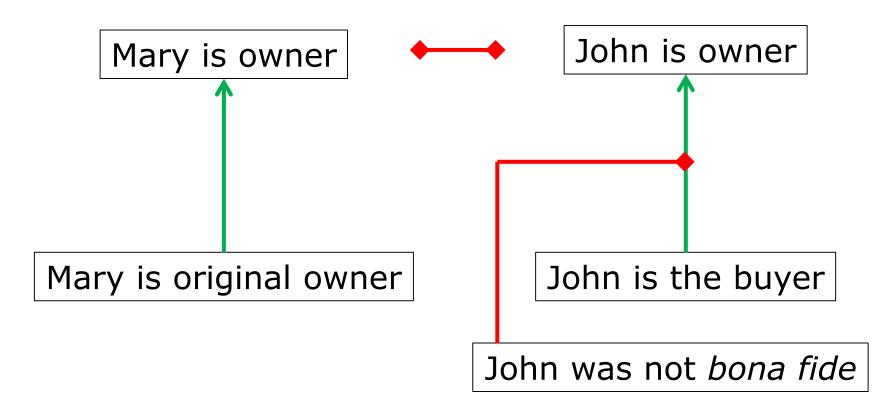
Authored by: Frans H. van Eemeren Bart Garssen Erik C. W. Krabbe A. Francisca Snoeck Henkemans Bart Verheij Jean H. M. Wagemans

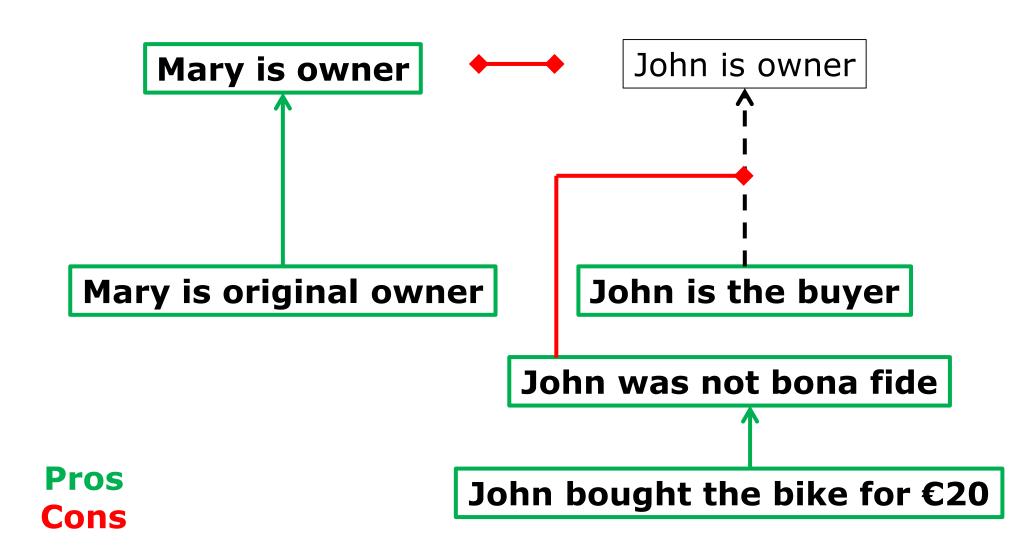

Frans H. van Eemeren Bart Garssen - Erik C.W. Krabbe A. Francisca Snoeck Henkemans Bart Verheij - Jean H.M. Wagemans

Handbook of Argumentation Theory

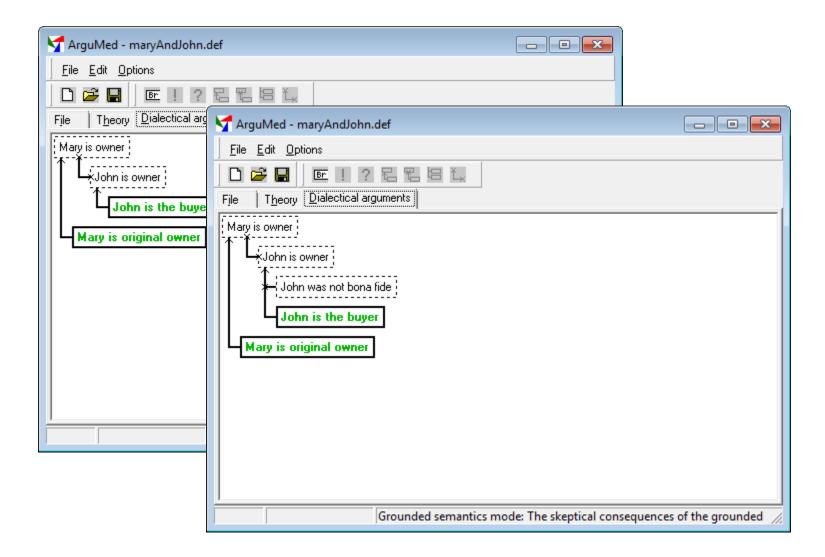

D SpringerReference

Chapter 11: Argumentation and Artificial Intelligence

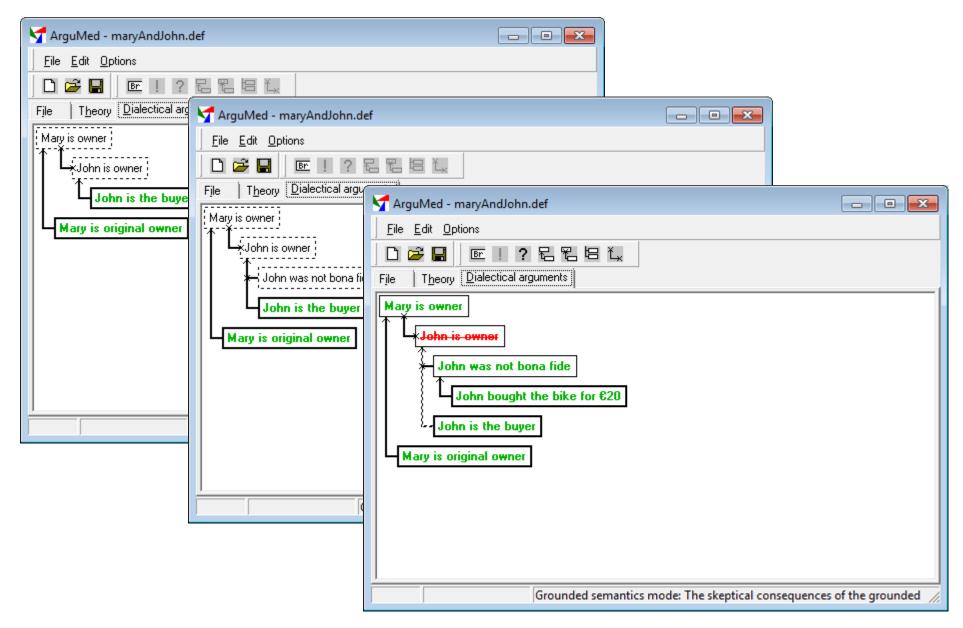

ARGUMENT MAP SHALE GAS PRODUCTION IN EU MEMBER STATES


TNO innovation for life

Pros Cons



Pros Cons



Y ArguMed - maryAndJohn.def	- • •
<u>File Edit Options</u>	
D 🗃 🖬 🛛 🖭 2 🗄 🖫 🗄 🔛	
File Theory Dialectical arguments	
Mary is owner John is the buyer Mary is original owner	
Grounded semantics mode: The skeptical consequences	of the grounded 🏼 🎢

Verheij, B. (2005). *Virtual Arguments. On the Design of Argument Assistants for Lawyers and Other Arguers.* T.M.C. Asser Press, The Hague.

Verheij, B. (2005). *Virtual Arguments. On the Design of Argument Assistants for Lawyers and Other Arguers.* T.M.C. Asser Press, The Hague.

Verheij, B. (2005). *Virtual Arguments. On the Design of Argument Assistants for Lawyers and Other Arguers.* T.M.C. Asser Press, The Hague.

现在我们着手目前案例中最后的信息片段,其仍未被整合进该 论证中:第二个先例更切中要点,并且被一个更具体的规则所解 释。⁽⁷⁾该规则解释了先例2,即伴有并发症的数处肋骨损伤构成严 重身体伤害,所产生的作用是使先例1的规则(即数处肋骨损伤不 构成严重身体伤害)为非击败的。先例2的规则之所以能做到这点 是因为它更加具体。在图4.13 中表示了此结论。最后,通过理由 69 "被告人对被害人造成严重身体伤害"证成结论"被告人将被处以 最高8年的监禁"。

?+被告	人将被处以最高8年监禁
~?+致	人严重身体伤害将被处以最高8年监禁
41+	根据荷兰刑法典第302条,致人严重身体伤害将被处以最高8年监禁
?+被	告人对被害人造成严重身体伤害。
-1	◆10位酒吧客人的证言:被告人卷入了这起斗毁
1.1	◆被告人的证言。我没有卷入这起斗殴
7.4.7	◆ 数处肋骨损伤不构成严重身体伤害
4	! ◆规则"数处肋骨损伤不构成严重身体伤害"解释了先例1
+1	+ 解释先例2的规则比解释先例1的规则更具体
-?	◆数处肋骨损伤且伴有并发症构成严重身体伤害
	!+规则"数处肋骨损伤且伴有并发症构成严重身体伤害"解释了先例2
41+	医院报告。被害人有数处肋骨损伤,且伴有并发症。

图 4.13 对底切命题展开攻击

图 4.14 表示了基于先例推理的一个转化。它阐明先例 2 比先 例 1 更切中要点。该论证可通过证成为何出现这种情形而得到进一 步延伸:理由可能是,与先例 1 相比先例 2 与当前案例有更多共同 因素,因为先例 2 涉及伴有并发症的肋骨损伤情景,而并发症是一 个相关因素。

图 4.16 编辑论辩材料

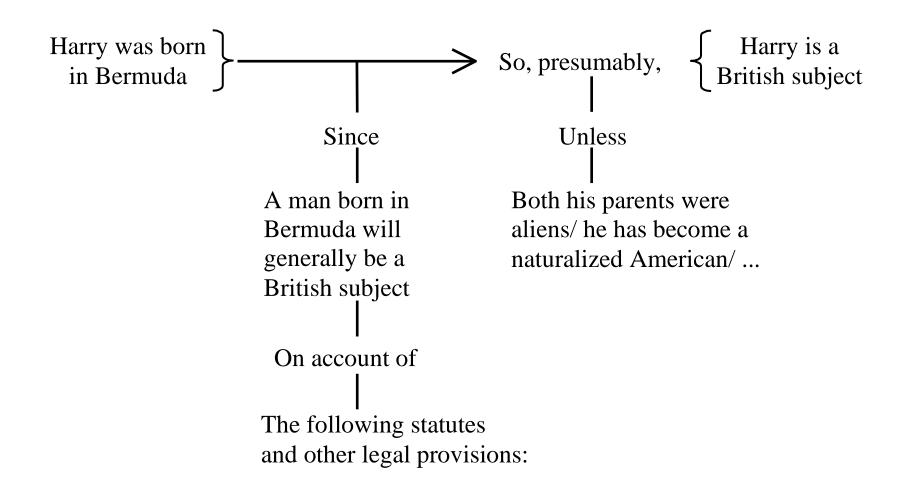

71 新近添加了一个工具栏(图4.17)。通过点击其中某个按键可制定 论证活动。该工具栏对语境敏感:某些按键允许活动关联于现行命题,仅这些按键能被点击。例如,当现行命题为争议时,则"设为 争议"(Set as issue)按键不能被点击,而"设为假定"(Set as assumption)按键是可点击的。有按键用于添加基本命题、设置命题 为假定或争议、支持或攻击命题和添加合取支。请注意 ArguMed

图 4.17 使用工具栏

^{〔7〕}更多关于形式建模法律领域中基于案例推理的细节,读者可参考如阿什利 (Ashley, 1990)和罗斯(Roth, 2003)的工作。另参见第3章的注释6。

Toulmin's model

Reiter's logic for default reasoning

Birds fly

BIRD(x) : M FLY(x) / FLY(x)

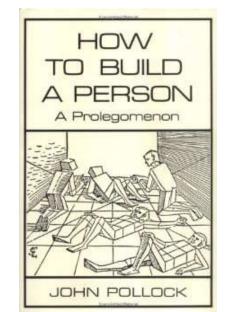
A penguin does not fly $PENGUIN(x) \rightarrow \neg FLY(x)$

FLY(t) **follows from** BIRD(t)

FLY(t) does not follow from BIRD(t), PENGUIN(t)

Defeasible reasoning

In 1987, John Pollock published the paper 'Defeasible reasoning' in the *Cognitive Science* journal.


What in AI is called "non-monotonic reasoning" coincides with the philosophical notion of "defeasible reasoning".

Pollock on argument defeat

- (2.2) P is a prima facie reason for S to believe Q if and only if P is a reason for S to believe Q and there is an R such that R is logically consistent with P but (P & R) is not a reason for S to believe Q.
- (2.3) R is a *defeater* for P as a prima facie reason for Q if and only if P is a reason for S to believe Q and R is logically consistent with P but (P & R) is not a reason for S to believe Q.

Pollock on argument defeat

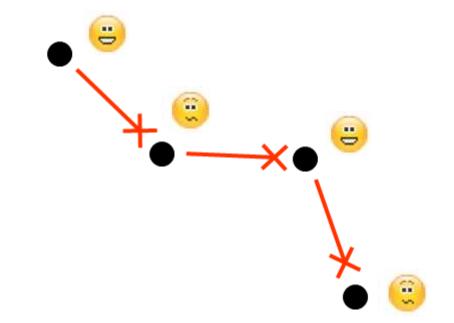
(2.4) R is a *rebutting defeater* for P as a prima facie reason for Q if and only if R is a defeater and R is a reason for believing ~Q.

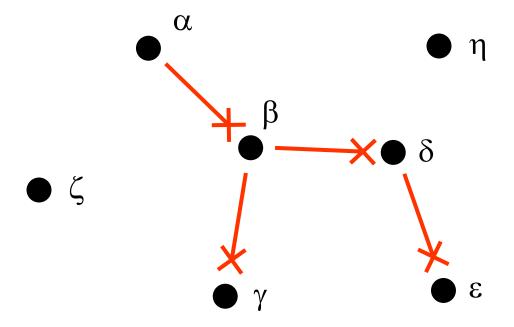
(2.5) R is an *undercutting defeater* for P as a prima facie reason for S to believe Q if and only if R is a defeater and R is a reason for denying that P wouldn't be true unless Q were true.

Pollock's red light example


The object is red The object is illuminated by a red light The object looks red

Undercutting defeat

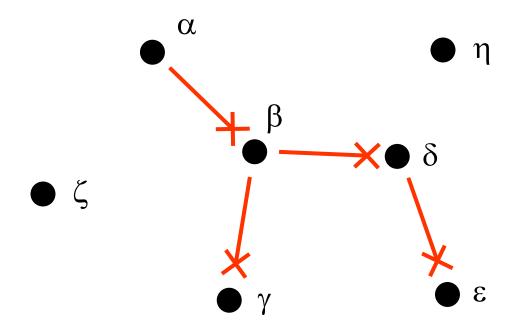




Dung's admissible sets

Admissible, e.g.: $\{\alpha, \gamma\}, \{\alpha, \gamma, \delta, \zeta, \eta\}$ Not admissible, e.g.: $\{\alpha, \beta\}, \{\gamma\}$

Dung's admissible sets

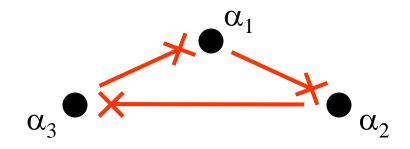

A set of arguments A is admissible if

- 1. it is *conflict-free*: There are no arguments α and β in A, such that α attacks β .
- 2. the arguments in A are *acceptable* with respect to A: For all arguments α in A, such that there is an argument β that attacks α , there is an argument γ in A that attacks β .

Dung's preferred and stable extensions

An admissible set of arguments is a *preferred extension* if it is an admissible set that is maximal with respect to set inclusion.

A conflict-free set of arguments is a *stable extension* if all arguments that are not in the set are attacked by an argument in the set.


Preferred and stable extension: { α , γ , δ , ζ , η }

Even-length attack cycles

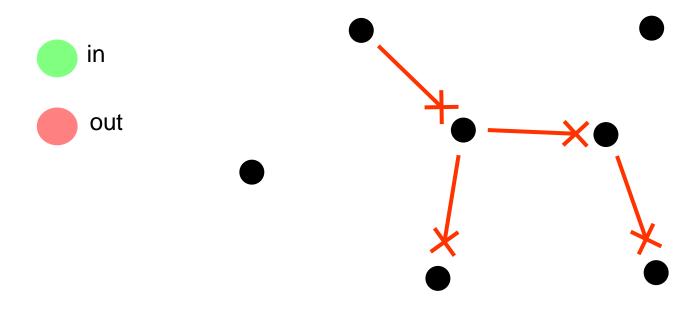
Preferred and stable extensions: $\{\alpha\}, \{\beta\}$

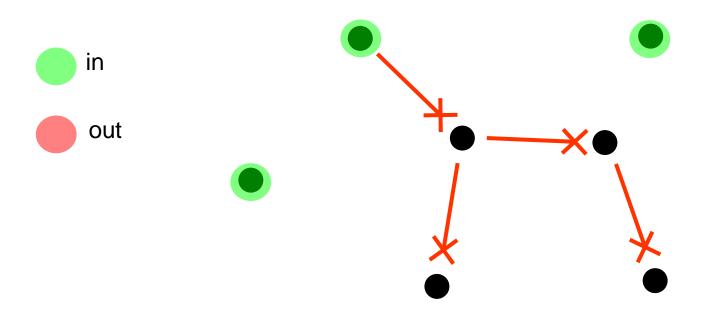
Odd-length attack cycles

Preferred extensions: \varnothing (the empty set)Stable extensions:none

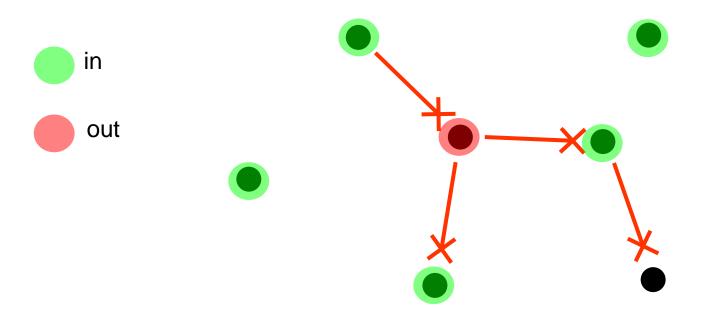
Basic properties of Dung's extensions

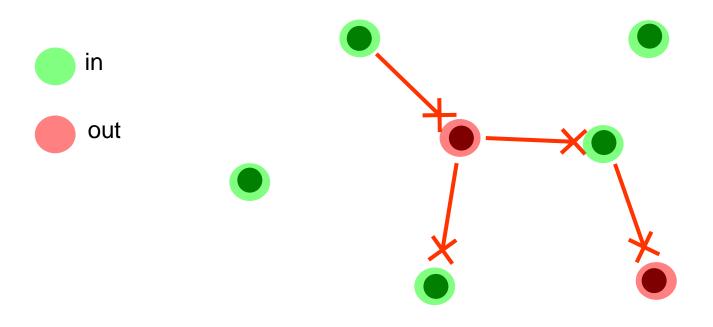
- A stable extension is a preferred extension, but not the other way around.
- An attack relation always has a preferred extension. Not all attack relations have a stable extension.
- An attack relation can have more than one preferred/stable extension.
- A well-founded attack relation has a unique stable extension.

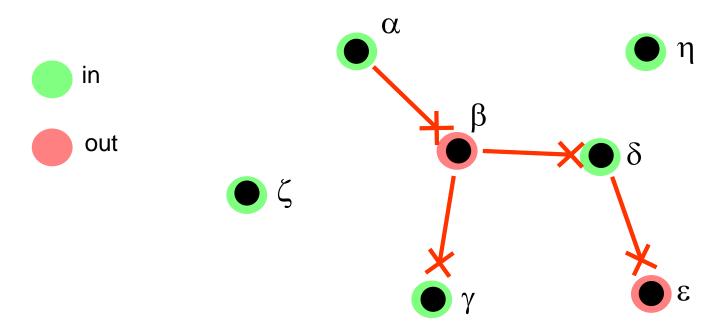

Dung's grounded and complete extensions

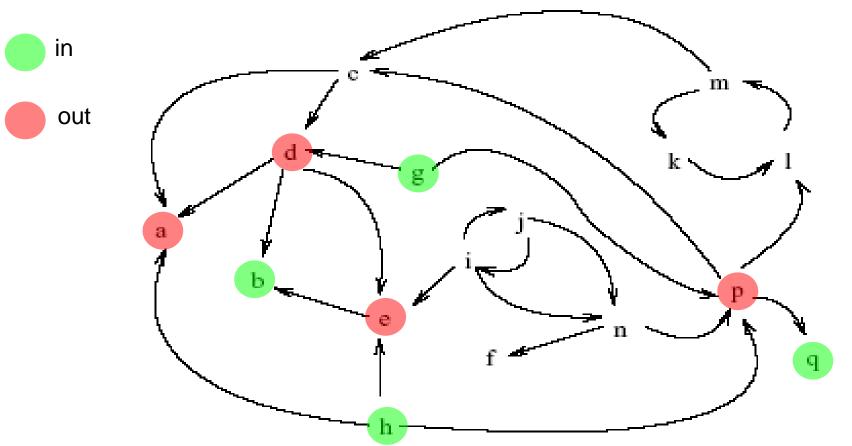

A set of arguments is a *complete* extension if it is an admissible set that contains all arguments of which all attackers are attacked by the set.

A set of arguments is a (the) *grounded* extension if it is a minimal complete extension.

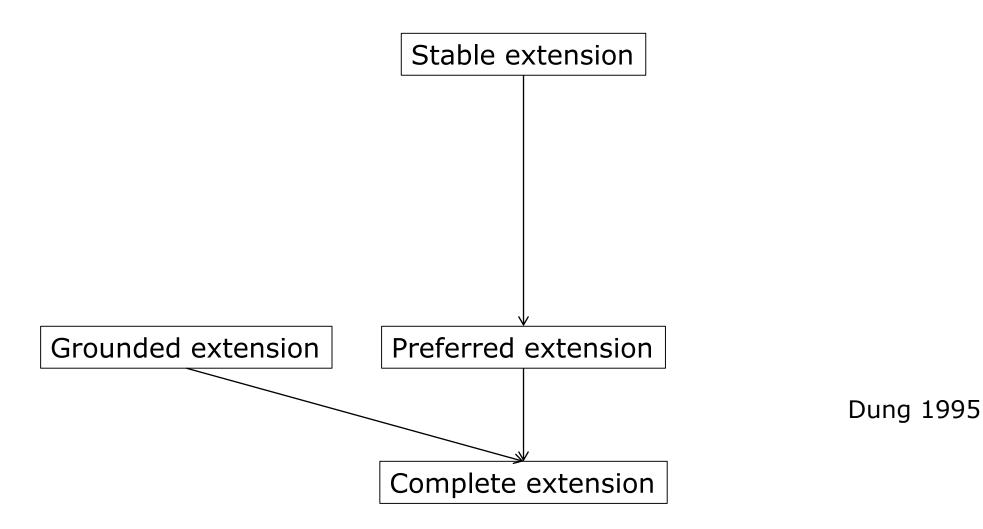

Computing a grounded extension


- 1. Label all nodes without attackers or with all attackers labeled <u>out</u> as <u>in</u>.
- 2. Label all nodes with an <u>in</u> attacker as <u>out</u>.
- 3. Go to 1 if changes were made; else stop.

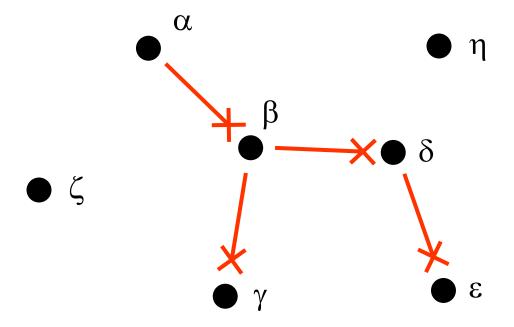




Preferred, stable, grounded extension: $\{\alpha, \gamma, \delta, \zeta, \eta\}$


An Example Abstract Argument System

Note: arrows indicate attack



That's it! By the way: there is no stable extension. (Why? And is there a preferred extension?)

Abstract argumentation semantics (1995)

Dung's admissible sets

Admissible, e.g.: $\{\alpha, \gamma\}, \{\alpha, \gamma, \delta, \zeta, \eta\}$ Not admissible, e.g.: $\{\alpha, \beta\}, \{\gamma\}$

Stages, e.g.: β (γ), α (β) γ, α (β) γ δ (ε) ζ η Non-stages, e.g.: β γ, β (δ ε)

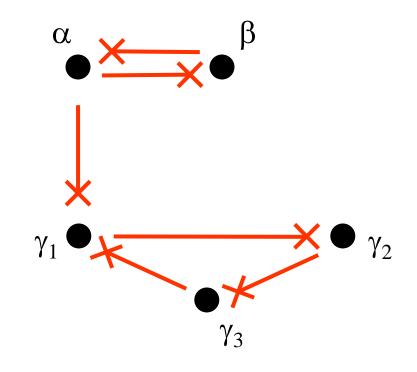
Labelings

- 1. A labeling (*J*, *D*) has *justified defeat* if for all elements *Arg* of *D* there is an element in *J* that attacks *Arg*.
- 2. A labeling (*J*, *D*) is *closed* if all arguments that are attacked by an argument in *J* are in *D*.
- 3. A conflict-free labeling (*J*, *D*) is *attack-complete* if all attackers of arguments in *J* are in *D*.
- 4. A conflict-free labeling (*J*, *D*) is *defense-complete* if all arguments of which all attackers are in *D* are in *J*.

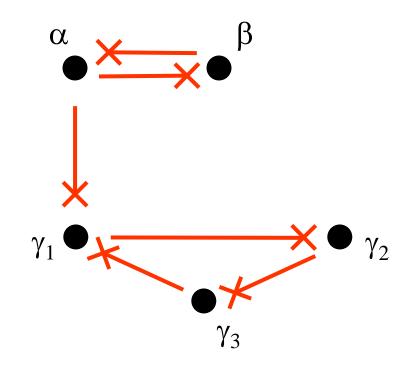
Some properties

Let J be a set of arguments and D be the set of arguments attacked by the arguments in J. Then the following properties obtain:

- 1. J is conflict-free if and only if (J, D) is a conflict-free labeling.
- 2. *J* is admissible if and only if (*J*, *D*) is an attack-complete stage.
- 3. *J* is a complete extension if and only if (*J*, *D*) is a complete stage.
- 4. *J* is a preferred extension if and only if (*J*, *D*) is an attack-complete stage with maximal set of justified arguments.
- 5. J is a stable extension if and only if (J, D) is a labeling with no unlabeled arguments.


Remarks on labelings

- 1. Using labelings can be used to define settheoretic notions, but also inspire new ones.
- 2. Labelings allow a new natural idea of maximal interpretation: maximize the set of labeled nodes.
- 3. Some preferred extensions are better than others, in the sense that they label more nodes. \rightarrow Semi-stable extensions


Semi-stable semantics

A set of arguments is a *semi-stable extension* if it is an admissible set, for which the union of the set with the set of arguments attacked by it is maximal.

> Notion introduced by Verheij (1996) Term coined by Caminada (2006)

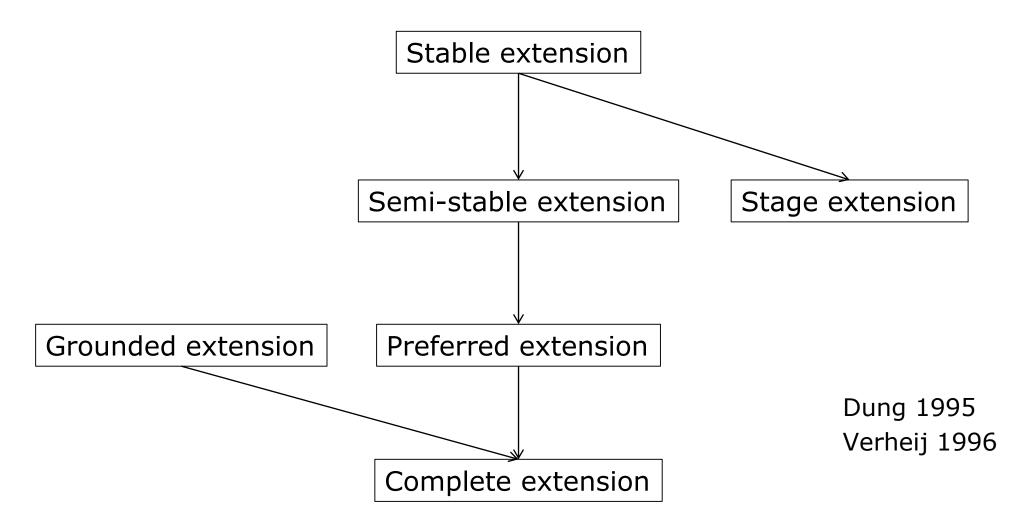
Preferred extensions: $\{\alpha, \gamma_2\}, \{\beta\}$ Semi-stable extension: $\{\alpha, \gamma_2\}$ Stable extension: $\{\alpha, \gamma_2\}$

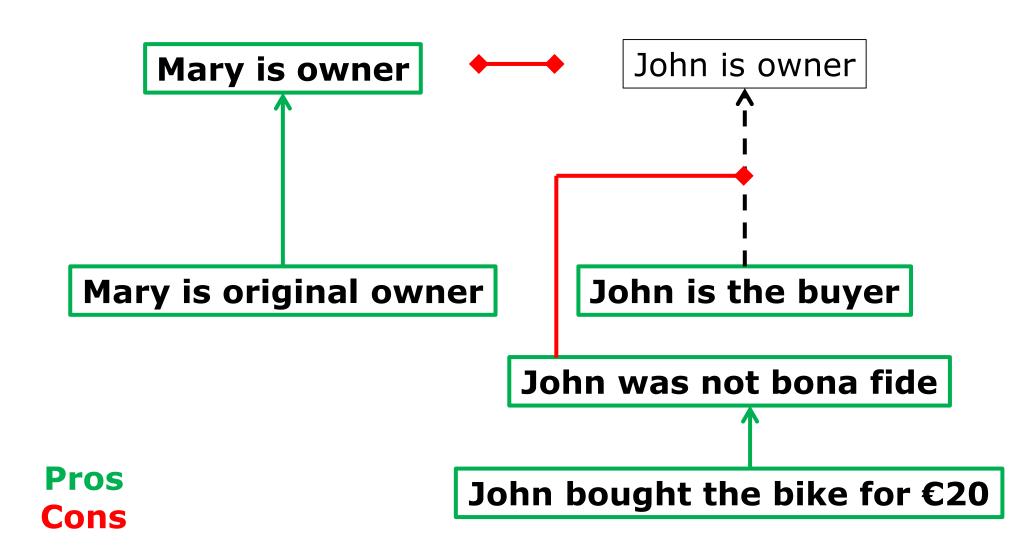
Preferred labelings: Semi-stable labeling: Stable labeling:

 $\begin{array}{c} \alpha \ (\beta \ \gamma_1) \ \gamma_2 \ (\gamma_3), \ (\alpha) \ \beta \\ \alpha \ (\beta \ \gamma_1) \ \gamma_2 \ (\gamma_3) \\ \alpha \ (\beta \ \gamma_1) \ \gamma_2 \ (\gamma_3) \end{array}$

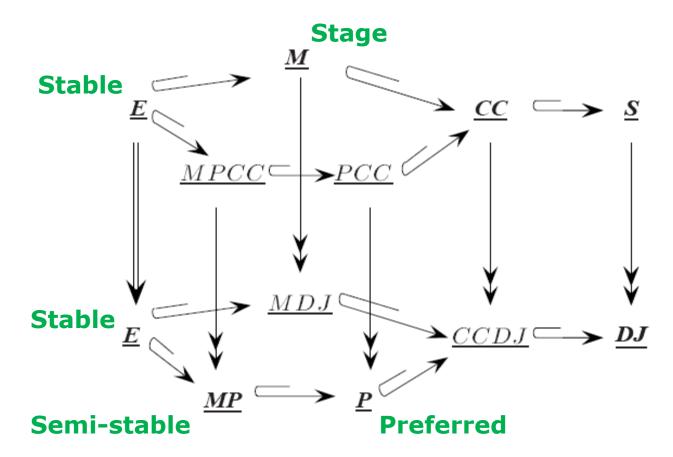
Properties

- 1. Stable extensions are semi-stable.
- 2. Semi-stable extensions are preferred.
- 3. Preferred extensions are not always semi-stable.
- 4. Semi-stable extensions are not always stable.


Preferred extensions always exist, but stable extensions do not.


Do all attack graphs have a semi-stable extension? Answered negatively by Verheij (2000, 2003)

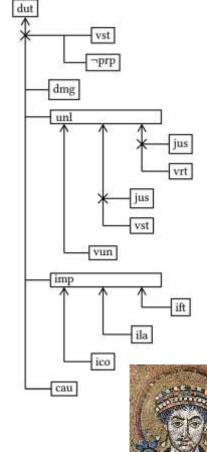
Properties


- 1. There exist attack graphs without a semi-stable extension.
- 2. Finite attack graphs always have a semi-stable extension.
- 3. An attack graph with a finite number of preferred extensions has a semi-stable extension.
- 4. An attack graph with a stable extension has a semi-stable extension.
- 5. If an attack graph has no semi-stable extension, then there is an infinite sequence of preferred extensions with strictly increasing ranges.

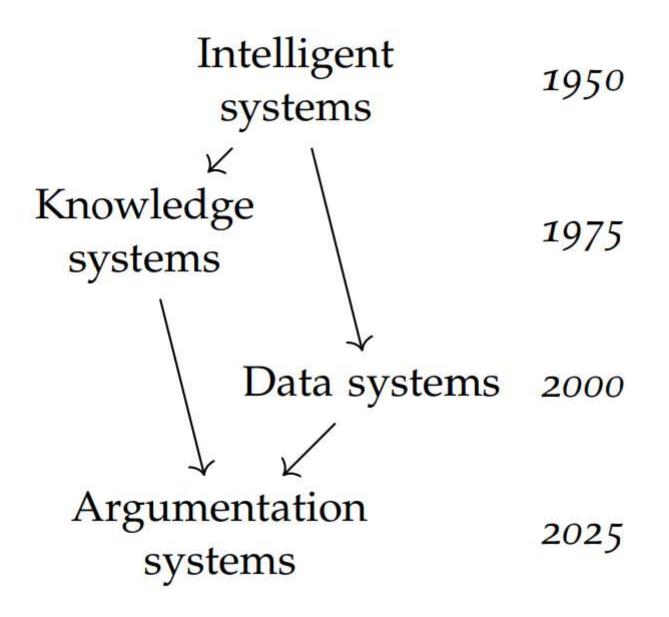
Abstract argumentation semantics (1996)

Argumentation semantics (2003)

DefLog Verheij 2003


AI & Law

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	¬dut	¬dut	¬dut	dut	¬dut	¬dut	⊸dut								
-dmg	dmg ¬unl	dmg unl	dmg ¬unl	dmg ¬unl	dmg unl										
		−imp	imp			imp									
		0-036-0	¬cau	cau			cau								
	¬vrt			vrt	vrt	vrt	¬vrt	¬vrt	¬vrt	¬vrt	¬vrt	¬vrt	vrt	¬vrt	
	¬vst			¬vst	¬vst	¬vst	vst	vst	vst	¬vst	¬vst	¬vst	¬vst	vst	vst
	¬vun			¬vun	¬vun	¬vun	¬vun	¬vun	¬vun	vun	vun	vun			
		−ift		ift	−ift	−ift	ift	−ift	−ift	ift	¬ift	⊸ift			
		−ila		−ila	ila	−ila	−ila	ila	ila	−ila	ila	−ila			
		−ico		¬ico	−ico	ico	−ico	-ico	ico	-ico	-ico	ico			
				−jus	−jus	jus	−jus	−jus	−jus	−jus	−jus	jus	jus	jus	
				prp	prp	prp									¬prp


 $1>2>3>4>5\sim 6\sim 7\sim 8\sim 9\sim 10\sim 11\sim 12\sim 13>14\sim 15\sim 16$

Data

Knowledge

Readings

- Verheij, B. (2018). Arguments for Good Artificial Intelligence. Groningen: University of Groningen. www.ai.rug.nl/~verheij/oratie/
- van Eemeren, F.H., & Verheij, B. (2018). Argumentation Theory in Formal and Computational Perspective. *Handbook of Formal Argumentation* (eds. Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L.), 3-73. London: College Publications.

www.ai.rug.nl/~verheij/publications/hofa2018ch1.htm

- Verheij, B. (1996). Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages. NAIC'96. Proceedings of the Eighth Dutch Conference on Artificial Intelligence (eds. Meyer, J.J., & Van der Gaag, L.C.), 357-368. Utrecht: Universiteit Utrecht. www.ai.rug.nl/~verheij/publications/cd96.htm
- Verheij, B. (2007). A Labeling Approach to the Computation of Credulous Acceptance in Argumentation. *IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007* (ed. Veloso, M.M.), 623-628. www.ai.rug.nl/~verheij/publications/ijcai2007.htm