
Chapter 6

Analyzing argumentation models
using CumulA

After the description of the argumentation model CumulA in chapter 5, we show
how CumulA can be used to analyze existing argumentation models. We start with
a discussion of distinctions that can be made between argumentation models. We
make these distinctions precise by showing their formal counterparts for CumulA’s
argumentation theories. After capturing elements of a number of existing
argumentation models in CumulA’s argumentation theories, we apply the
distinctions to these argumentation theories.

In section 1, we discuss types of arguments. In section 2, we treat argument
structure and defeat. We distinguish sentence-type, step-type and composite-type
defeat. In section 3, we consider individual and groupwise defeat. In section 4, we
characterize triggers of defeat. We distinguish inconsistency-triggered and
counterargument-triggered defeat. In section 5, we deal with directions of
argumentation. We distinguish forward, backward and bidirectional argumentation.
In section 6, we capture elements of several major argumentation models in
CumulA’s argumentation theories.1 In section 7, the distinctions made are applied
to these argumentation theories. In this way, the argumentation theories capturing
elements of existing argumentation models can be compared on formal grounds.

1 Types of arguments

Several types of arguments, that have been proposed in argumentation models, can
in CumulA (chapter 5) be distinguished by their structure.

The first type of arguments are the statements, that have trivial structure:

Statement.

                                                          
1 We stress that we give no formal relations between the argumentation models and
CumulA’s argumentation theories.
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Many argumentation models do not deal with structured arguments. For instance,
Poole’s Logical Framework for Default Reasoning (Poole, 1988)2 uses special sets
of sentences without structure. In Dung’s Argumentation Frameworks (Dung, 1993,
1995), arguments are structureless objects, that can attack each other.

The second type of arguments are the single-step arguments, which have the
simplest non-trivial structure:

Reason.
So, Conclusion.

For instance, in Propositional and First-Order Predicate Logic,3 the semantical and
proof-theoretical consequence relations, denoted as |= and |_, respectively, which
are often interpreted as arguments (e.g., Purtill , 1979; Copi, 1982), have this
structure.

The third type of arguments are the arguments that are constructed by
subordination, such as the argument:

Reason1.
So, Reason2.
So, Conclusion.

This argument structure is most common. For instance, in Lin and Shoham’s
Argument Systems (Lin and Shoham, 1989; Lin, 1993) and Vreeswijk’s Abstract
Argumentation Systems (Vreeswijk, 1991, 1993),4 arguments are explicitly
constructed by subordination. Also the proofs of several proof theories for
Propositional or First-Order Predicate Logic have this structure. Less obviously,
this structure is also at the heart of Reiter’s Default Logic (Reiter, 1980, 1987),5

Bondarenko et al.’s Assumption-Based Framework for Non-Monotonic Reasoning
(Bondarenko et al., 1993), and Loui and Chen’s Argument Game (Loui and
Chen, 1992). Pollock’s linear arguments in his Theory of Defeasible Reasoning
(1995, p. 39)6 can be regarded as having this structure.7

                                                          
2 See also chapter 4, section 4.2.
3 See, e.g., Van Dalen (1983) or Davis (1993).
4 See also chapter 4, section 5.2.
5 See also chapter 4, sections 3.1, 4.2 and 5.2.
6 See also chapter 4, section 4.2.
7 Pollock (1995, p. 39) defines linear arguments as finite sequences of sentences, each of
which is either a premise or supported by a previous member of the sequence. The structure
of linear arguments is not only ambiguous, as Pollock (1995, p. 87) notes, but is somewhat
less expressive than that of subordinated arguments, because it cannot distinguish different
occurrences of the same sentence in an argument. For instance, the arguments
{{{{A}} → B}} → C and {{{{A}} → B, A}} → C in CumulA both correspond to the linear
argument A, B, C.
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The fourth type of arguments are the arguments that are constructed by both
subordination and coordination of arguments, for instance:

Subreason11, Subreason12; Subreason21, Subreason22.
So, Conclusion.

This is the argument structure that is used in CumulA. In the argumentation theory
of Van Eemeren and Grootendorst (Van Eemeren et al., 1981, 1987), real-li fe
arguments are reconstructed and evaluated using the mentioned argument
structure.8 Van Eemeren and Grootendorst have included both subordination and
coordination in their model since both can be found in argumentative texts. In the
next section, we argue for the need of coordination, especially for defeasible
arguments because of defeat by pararallel strengthening and the accrual of reasons.

We mention a fifth type of argument structure that occurs, for instance, in
natural deduction proofs of Propositional and First-Order Predicate Logic, and in
Pollock’s Theory of Defeasible Reasoning (Pollock, 1987-1995): arguments with
suppositions. For instance, such arguments occur if the natural deduction rule of
inference →-Introduction is used in a proof or argument:

A proof of Q with suppositions in a set S ∪ {Q} can be extended to a proof of
P → Q with suppositions in the set S.

Here, a proof is considered relative to a set, the suppositions of the proof. The rule
of inference→-Introduction above shows that the set of suppositions can change.
After the introduction of P → Q, the supposition Q can be withdrawn.

If one reads ‘argument’ instead of ‘ proof’ , this rule of inference becomes a type
of argument construction, as Pollock does. To include this type of argument
construction in his argumentation model, Pollock (1995, p. 86ff .) constructs
arguments not from sentences (as in CumulA), but from sentences relative to a set
of suppositions, formally an ordered pair of a sentence and a set of sentences (P, S).
For instance, the rule of inference →-Introduction becomes: 9

An argument supporting (Q, S ∪ {Q}) can be extended to an argument
supporting (P → Q, S).

We have not included this type of argument in CumulA for two reasons. First, we
think that the intuition of an argument without suppositions is easier to grasp than
the intuition of an argument with suppositions. Whereas arguments without
suppositions can be thought of as consisting of steps that represent the support of a

                                                          
8 The terminology of Van Eemeren and Grootendorst differs from ours. Their multiple
arguments correspond to CumulA’s coordinated arguments (cf. chapter 5, note 7).
9 We paraphrase Pollock’s ‘rule of inference graph formation’ called conditionalization
(Pollock, 1995, p. 90).
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state of affairs (expressed by a sentence) by another state of affairs (expressed by
another sentence), arguments with suppositions cannot be thought of that way. This
is due to the fact that some

‘… natural deduction rules have an indirect, even quasi-metalogical character’
(Haack, 1978, p. 19).

This does of course not diminish the importance of the arguments with suppositions
based on natural deduction rules, and their role in argumentation certainly deserves
further study.

Second, arguments with suppositions behave unexpectedly if they are
defeasible, as Vreeswijk (1993, p. 185ff .) shows. He gives a technical example in
which arguments that should be undefeated nevertheless become defeated if the
rule of →-Introduction is adopted. Vreeswijk’s conclusion is that it is best to leave
arguments with suppositions out of theories of argumentation with defeasible
arguments for now until we have a better understanding of the behavior of more
simply structured defeasible arguments. Since, to the best of our knowledge, the
problems pointed out by Vreeswijk have not been solved, we have adopted the
same conclusion.

2 Argument structure and defeat

The structure of an argument can determine whether an argument is defeated. In
this section, we treat different types of structure-based defeat, as they are found in
existing argumentation models. We show how the types of defeat can be
distinguished in CumulA.

The first and simplest type of structure-based defeat is the trivial type of no
defeat at all . The prototypical examples of argumentation models that have no
defeat are the classical deductive logics, such as Propositional and First-Order
Predicate Logic. In CumulA, an argumentation theory has no defeat if it has no
defeater schemes.

The second type of structure-based defeat is sentence-type defeat. The defeat of
an argument is of sentence-type if the defeat depends on sentences occurring in the
argument. For instance, an argument

Reason.
So, Conclusion.

might be defeated because of an (undefeated) statement that denies the conclusion,
such as:

Not_conclusion.
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This is a case of sentence-type defeat: any argument containing the sentence
Conclusion is defeated if the statement Not_conclusion is undefeated. A defeater
scheme representing this in CumulA has the form

Not_conclusion [∗Conclusion].

The challenged argument scheme ∗Conclusion has any argument with conclusion
Conclusion as an instance. If any argument with conclusion Not_conclusion
challenges any argument with conclusion Conclusion, this would be represented by
the defeater scheme

∗Not_conclusion [∗Conclusion].

We say that the two mentioned defeater schemes are of sentence-type, which means
that all their argument schemes have a statement as an instance. An argumentation
theory has sentence-type defeat if it has sentence-type defeater schemes.

Argumentation models with sentence-type defeat are Poole’s Logical
Framework for Default Reasoning (Poole, 1988), and Lin and Shoham’s Argument
Systems (Lin and Shoham, 1989; Lin, 1993). Also Dung’s Argumentation
Frameworks (Dung, 1993, 1995) can be regarded as having sentence-type defeat
since all arguments are structureless.

Bondarenko et al.’s Assumption-Based Framework for Non-Monotonic
Reasoning (Bondarenko et al., 1993) describe a special kind of sentence-type
defeat, that we call assumption-type defeat. There is a special set of assumptions,
that can be used as premises of arguments. If there is an undefeated argument that
has the denial of an assumption as its conclusion, all arguments with that
assumption as a premise are defeated. A defeater scheme representing this in
CumulA has the form

∗Not_assumption [Assumption].

This defeater scheme has no consequences for arguments that do not have
Assumption as a premise, even if Assumption occurs in the argument elsewhere. A
sentence-type defeater scheme, as the one above, that has only statements as
challenged arguments, is of assumption-type. An argumentation theory has
assumption-type defeat if it has defeater schemes of assumption-type.

The third type of structure-based defeat is step-type defeat. The defeat of an
argument is of step-type if the defeat depends on a step occurring in the argument.
For instance, an argument

Reason.
So, Conclusion.
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might be defeated because there is an (undefeated) statement that does not deny the
conclusion, but undercuts the argument step (cf. chapter 5, section 3.1):

Undercutter

This is a case of step-type defeat: any argument containing the argument step
‘Reason. So, Conclusion’ is defeated if the conclusion Undercutter is justified. A
defeater scheme representing this in CumulA has the following form:

∗Undercutter [{{∗Reason}} → Conclusion].

Another example of step-type defeat is rebuttal (cf. chapter 5, section 3.2): an
argument

Reason1.
So, Conclusion.

is defeated because there is an (undefeated) argument that supports the denial of its
conclusion:

Reason2.
So, Not_conclusion.

Any argument containing the step ‘Reason1. So, Conclusion’ is defeated if an
argument containing the step ‘Reason1. So, Conclusion’ is undefeated. A defeater
scheme representing this in CumulA has the following form:

{{∗Reason2}} → Not_conclusion [{{∗Reason1}} → Conclusion]

The latter two defeater schemes are of step-type: all their argument schemes have a
single-step argument as an instance that is not of sentence-type. An argumentation
theory has step-type defeat if it has step-type defeater schemes.

The fourth type of structure-based defeat is composite-type defeat. We speak of
composite-type defeat if the defeat of an argument depends on a composite
structure occurring in the argument. In chapter 5, sections 3.3 and 3.4, we discussed
two kinds of composite-type defeat: defeat by sequential weakening and defeat by
parallel strengthening. We recall that in defeat by sequential weakening an
argument is defeated because it ends in some sequence of steps. A defeater scheme
representing that any argument ending with the two-step sequence ‘Reason. So,
Conclusion1. So, Conclusion2’ is always defeated has the following form:

 [{{{{∗Reason}} → Conclusion1}} → Conclusion2]



Section 2: Argument structure and defeat 7

In defeat by parallel strengthening an argument is defeated because some argument
that has narrowings (chapter 5, section 2.4) is undefeated. A defeater representing
that any argument in which two reasons Reason1 and Reason2 support the
conclusion Conclusion defeats any argument in which the reason Reason3 supports
Not_conclusion has the following form:

{{∗Reason1}, {∗Reason2}} → Conclusion [{{∗Reason3}} → Not_conclusion]

The latter two defeaters are of composite-type, meaning that they are neither of
sentence-type nor of step-type.10 An argumentation theory has composite-type
defeat if it has composite-type defeater schemes.

Most existing argumentation models do not have composite-type defeat. An
exception is Vreeswijk’s Abstract Argumentation Systems (Vreeswijk, 1991,
1993). In Vreeswijk’s formalism defeat depends on a conclusive force relation on
full arguments. However, since Vreeswijk only uses subordination to construct
composite arguments and no coordination, his formalism only can model defeat by
sequential weakening and not defeat by parallel strengthening.

Defeat by parallel strengthening requires the coordination of arguments. It is
based on the natural idea of accrual of reasons:11 A conclusion can be better
supported if there are more independent reasons for it. Although several people
have made the point that reasons can accrue,12 it remains controversial.

For instance, Pollock (1991a, 1995, pp. 101-102) explicitly argues against
accrual. He thinks accrual is a natural idea, but then gives an example that makes
him doubt that reasons accrue. The example goes as follows. If someone testifies
that the president of Slobovia has been assassinated, that is a reason that the
president is assassinated. Accrual would imply that testimonies of different people
make the fact that the president is assassinated more credible. Pollock points out
that this does not generally hold and depends on contingent facts. For instance, if
testimonies are indeed independent, they make the president’s assassination more
credible. However, the testimonies are not necessarily independent: we can imagine
a community in which people only confirm each other’s lies. In that case, more
reasons based on testimonies do not give increasing support to the president’s
assassination: more than one testimony would even make the assassination
unjustified.13

                                                          
10 Defeater schemes of composite-type should not be confused with compound defeater
schemes. Compound defeater schemes are defeater schemes that contain more than one
challenging or more than one challenged argument scheme (chapter 5, sections 3.5 and 3.7).
See also the next section on individual and groupwise defeat.
11 Pollock (1991, p. 51) uses this terminology.
12 Chronologically: Naess (1978) in argumentation theory, Hage (1991) in legal reasoning,
Pinkas (1991) in neural computing, Brewka and Gordon (1994) and Gabbay (1994,
pp. 196-198) in formal logic, Visser (1995, p. 177) in AI and law.
13 A similar, more realistic, example is the following, by Henry Prakken. John likes to walk
if it is Sunday. John does not like to walk if it is either hot or raining. If it is either hot or
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As a solution, Pollock proposes that different independent reasons for a
conclusion are subsumed in a new composite reason. In our opinion, this approach
probably can be made to work - Pollock does not give details. However, the
example does not necessitate Pollock’s approach, while the approach does throw
away the intuitively attractive idea of accrual of reasons. Both in chapter 2 on
Reason-Based Logic and in chapter 5 on CumulA, we have presented formalisms
that capture accrual and still can deal with examples such as Pollock’s. For
instance, Pollock’s example is captured in CumulA by the following compound
defeater scheme:

[{{∗Testimony1}, {∗Testimony2}} → Assassination]

Moreover, properties characteristic for accrual, such as the property that if a
narrowing of an argument is undefeated, the argument itself is undefeated
(chapter  5, section 4.1), and the property that, if the pros outweigh the cons,
additional pros do not change the balance (chapter 2, section 5), can easily be
overlooked.

3 Individual and groupwise defeat

The defeat of an argument often depends on other arguments. Mostly the defeat of
an argument depends on one other argument, but not always. In this section, we
distinguish argumentation models by the number of arguments that determine
defeat.

First, the defeat of an argument can depend only on itself, and not on any other
argument. We call this self-defeat. For instance, an argument that has a
contradiction as its conclusion often is considered defeated, for instance in Lin and
Shoham’s Argument Systems (Lin and Shoham, 1989; Lin, 1993). In CumulA, this
could be represented by a defeater scheme of the following form:

[∗Contradiction]

Another example is an argument that is defeated because it contains some sequence
of steps, as in defeat by sequential weakening (chapter 5, section 3.3). If an
argumentation theory has defeater schemes, the instances of which have no
challenging and one challenged argument, we say the argumentation theory has
self-defeat.
                                                                                                                                     
raining on Sunday, he does not like to walk. If it is hot and raining on Sunday, he likes to
walk. The diff iculty is here that the reasons ‘I t is hot’ and ‘I t is raining’ together are
apparantly weaker, in contrast with the principle of accrual. Since we choose to keep the
intuitively attractive principle of accrual, we propose to deal with this example by
considering ‘I t is hot and raining’ as a new reason, and not only as the coordination of two
reasons.
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Second, the defeat of an argument can depend on one other undefeated
argument. We call this simple defeat. Examples are arguments that are defeated by
an undercutter or by a rebutter, as distinguished in Pollock’s Theory of Defeasible
Reasoning (Pollock, 1987-1995). In CumulA, defeat by an undercutter or rebutter
is represented by defeater schemes, such as the following two:

∗Undercutter [{{∗Reason}} → Conclusion]
{{∗Reason2}} → Not_conclusion [{{∗Reason1}} → Conclusion]

Both defeater schemes are simple since their instances have at most one
challenging and at most one challenged argument (chapter 5, section 3.7). If an
argumentation theory has simple defeater schemes, we say it has simple defeat.

Third, the defeat of an argument can depend on more than one undefeated
argument. We call this left-compound defeat (because of the form of the
corresponding defeater schemes). An example is an argument that is defeated
because its conclusion conflicts with the conclusion of other arguments, as for
instance in Poole’s Logical Framework for Default Reasoning (Poole, 1988) and
Lin and Shoham’s Argument Systems (Lin and Shoham, 1989; Lin, 1993). If
Conclusion1, … Conclusionn-1 and Conclusionn are conflicting, this can in CumulA
be represented by a defeater scheme of the following form:

∗Conclusion1, …, ∗Conclusionn-1 [∗Conclusionn]

This defeater scheme is left-compound since its instances have more than one
challenging argument (chapter 5, section 3.7). If an argumentation theory has left-
compound defeater schemes, we say it has left-compound defeat.

Fourth, the defeat of an argument can depend on other defeated arguments. We
call this right-compound defeat. An example is an argument that is defeated
together with other arguments because their conclusions are conflicting, as the
collective defeat of arguments in Pollock’s Theory of Defeasible Reasoning
(Pollock, 1987-1995). If Conclusion1, … Conclusionn-1 and Conclusionn are
conflicting, this can in CumulA be represented by a defeater scheme of the
following form:

[∗Conclusion1, …, ∗Conclusionn-1, ∗Conclusionn]

This defeater is right-compound since its instances have more than one challenged
argument (chapter 5, section 3.7). If an argumentation theory has right-compound
defeater schemes, we say it has right-compound defeat.
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4 Tr iggers of defeat

Argumentation models can differ in the way the defeat of arguments is triggered.
Two triggers of defeat can be distinguished: inconsistency and counterarguments.
We call the resulting types of defeat inconsistency-triggered and counterargument-
triggered defeat, respectively.14

Inconsistency-triggered defeat has the longest tradition and is related to the
early work on nonmonotonic reasoning. Its basic intuition is that the defeat of
arguments is at heart the maintenance of the consistency of argument conclusions.
Many variants have been proposed. For instance, one of a (minimal) set of
arguments with conflicting arguments can be considered defeated, as in Poole’s
Logical Framework for Default Reasoning (Poole, 1988) and Lin and Shoham’s
Argument Systems (Lin and Shoham, 1989; Lin, 1993). If Conclusion1, …
Conclusionn-1 and Conclusionn are conflicting, this can in CumulA be represented
by n (left-compound) defeater schemes of the following form:

∗Conclusion1, …, ∗Conclusioni-1, ∗Conclusioni+1, …, ∗Conclusionn

[∗Conclusioni]

This leads to indeterministic defeat since each of these defeaters represents an
arbitrary choice of a defeated argument (chapter 5, section 3.5).15 In Vreeswijk’s
Abstract Argumentation Systems (Vreeswijk, 1991, 1993), the choice of a defeated
argument is restricted by a conclusive force relation: an argument in a minimal set
of arguments with conflicting conclusions cannot be considered defeated if it has
stronger conclusive force than one of the other arguments in the set.

If an argumentation theory has defeater schemes the instances of which consist
of arguments with conflicting conclusions (with respect to some appropriate sense
of inconsistency), we say the argumentation theory has inconsistency-triggered
defeat.

Counterargument-triggered defeat is based on another intuition: defeat is the
result of arguments challenging other arguments. The purest version of
counterargument-triggered defeat is Dung’s formalism of Argumentation
Frameworks (Dung, 1993, 1995). Dung studies a binary attack relation between
arguments. In CumulA, his attacks can be represented as defeaters of the following
form:

Argument1 [Argument2]

                                                          
14 The distinction between inconsistency-triggered and counterargument-triggered defeat
corresponds to Verheij ’s (1995a, b) distinction between indirect and direct defeat.
15 As a result, indeterministic defeat leads to multiple extensions, as in many models of
nonmonotonic reasoning. Cf. the overviews by Ginsberg (1987), Lukaszewicz (1990) and
Gabbay et al. (1994b). See also chapter 5, section 6.2.
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Attacks are represented as defeaters and not as defeater schemes since Dung treats
arguments as structureless objects. As a result his arguments correspond to
statements in CumulA. If an argumentation theory has defeater schemes the
instances of which do not consist of arguments with conflicting conclusions (with
respect to some appropriate sense of inconsistency), we say the argumentation
theory has counterargument-triggered defeat. Clearly, general argumentation
theories in CumulA have counterargument-based defeat.

In a way, counterargument-triggered defeat is more general than inconsistency-
triggered defeat. Whereas inconsistency-triggered defeat can naturally be captured
as a special case of counterargument-based defeat (as in the examples above), not
all counterargument-triggered defeat can as naturally be captured as a special case
of inconsistency-triggered defeat.

The distinction between inconsistency-triggered and counterargument-based
defeat can be recognized if one considers rebutting and undercutting defeat.
Rebutting defeat is by its nature an example of inconsistency-triggered defeat, but
can as we have seen naturally be captured in the defeater schemes CumulA, which
has counterargument-triggered defeat. Undercutting defeat is by its nature an
example of counterargument-triggered defeat, and can naturally be captured in
CumulA’s defeater schemes, but not as naturally in inconsistency-triggered defeat.

For instance, Vreeswijk (1993, pp. 51-53) claims that it is possible to
incorporate undercutting defeat in his Abstract Argumentation Systems, which have
inconsistency-triggered defeat. However, in order to incorporate undercutting
defeat, Vreeswijk has to adapt his argumentation model, as follows. He introduces
a defeasible conditional > in his language. In a case of undercutting defeat,
Vreeswijk forces an inconsistency between the conditional and its negation. The
use of defeasible conditionals is a fine approach to undercutting defeat, and is very
similar to the approach of Reason-Based Logic (chapter 2), but requires an
adaptation of the formalism. Moreover, Vreeswijk hinges on two thoughts: he
incorporates undercutting defeat using defeasible conditionals and rebutting defeat
using argument defeat. However, we have seen that it is possible to capture both
undercutting and rebutting defeat using defeasible conditionals (as for instance in
Reason-Based Logic), and using argument defeat (as for instance in CumulA).

5 Directions of argumentation

Argumentation models can differ in the direction of argumentation they describe.
We distinguish static, forward, backward and bidirectional argumentation.

Static argumentation occurs in argumentation models that do not treat
argumentation as a process. No sequences of stages are considered, but only stages
that are in some sense maximal. The extensions of Reiter’s Default Logic (Reiter,
1980, 1987) and Poole’s Logical Framework for Default Reasoning (Poole, 1988)
can be regarded as such special stages.
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Forward argumentation is the most common among existing argumentation
models. Argumentation starts from a fixed set of premises. Arguments are
constructed by adding forward steps. In forward argumentation, the goal is to find
conclusions supported by arguments with given premises. For instance, Lin and
Shoham’s Argument Systems (Lin and Shoham, 1989; Lin, 1993), Vreeswijk’s
Abstract Argumentation Systems (Vreeswijk, 1991, 1993) and Bondarenko et al.’s
Assumption-Based Framework for Non-Monotonic Reasoning (Bondarenko et al.,
1993) are models of forward argumentation. In CumulA, forward argumentation
means that a line of argumentation only contains stages with premises in a fixed set.

Backward argumentation is less common. Argumentation starts from a set of
conclusions. Arguments are constructed by adding backward steps. In backward
argumentation, the goal is to find premises for arguments supporting given
conclusions. For instance, Loui and Chen’s Argument Game (Loui and
Chen, 1992)16 is a model with backward argumentation. In CumulA, backward
argumentation means that a line of argumentation only contains stages with
conclusions in a fixed set.

Bidirectional argumentation is the natural generalization of forward and
backward argumentation. Argumentation does not start form a fixed set of premises
or conclusions. Arguments are both forwardly and backwardly constructed. In
bidirectional argumentation, the goal is neither only to find conclusions nor only to
find premises, but a mixture of both. Except for CumulA, we know of no
argumentation model of bidirectional argumentation.17

6 Captur ing elements of argumentation models in CumulA

In the previous sections, we have discussed several ways to distinguish
argumentation models. We explained how these distinctions can be made for
CumulA argumentation theories. To be able to use the distinctions to compare
existing argumentation models, we show how elements of a number of major
argumentation models can be captured in argumentation theories of CumulA. We
stress that we do not give formal relations between argumentation models and
CumulA’s argumentation theories. The presented argumentation theories capturing
elements of existing argumentation models are meant to ill ustrate CumulA and our
views on other argumentation models, and not to show strict formal relations.

Our selection of argumentation models is influenced by our focus, as made
explicit by the CumulA model. Each selected argumentation model has been
influential, or shows a specific characteristic of argumentation that falls within our
focus. We have selected Propositional Logic, Poole’s Logical Framework for

                                                          
16 Recently, a variant of Loui and Chen’s Argument Game has been implemented by Kang.
17 Pollock (1995, p. 153) describes forward and backward argumentation in another sense:
he keeps both allowed premises and desired conclusions fixed. In bidirectional
argumentation in our sense, neither premises nor conclusions are fixed.
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Default Reasoning (Poole, 1988), Lin and Shoham’s Argument Systems (Lin and
Shoham, 1989; Lin, 1993), Reiter’s Default Logic (Reiter, 1980, 1987), Pollock’s
Theory of Defeasible Reasoning (Pollock, 1987-1995), Vreeswijk’s Abstract
Argumentation Systems (Vreeswijk, 1991, 1993), Bondarenko et al.’s Assumption-
Based Framework for Non-Monotonic Reasoning (Bondarenko et al., 1993),
Dung’s Argumentation Frameworks (Dung, 1993, 1995), and Loui and Chen’s
Argument Game (Loui and Chen, 1992).18

We do not discuss all argumentation models in full detail , but capture elements
that fall within our focus in CumulA. Some acquaintance with the discussed
argumentation models is assumed.

6.1 Propositional Logic

We have selected Propositional Logic as an example of an argumentation model
without defeat. An argumentation theory capturing elements of Propositional Logic
in CumulA can be defined as follows:

Language = LPL, the language of Propositional Logic.
Rules = {{Sentence1, …, Sentencen} → Sentencen+1 |

Sentence1, …, Sentencen |=PL Sentencen+1} ,
where |=PL denotes the consequence relation of Propositional Logic.

DefeaterSchemes = ∅.

The rules of the argumentation theory correspond to logical consequence in
Propositional Logic. There are no defeater schemes.

Mostly only single-step arguments are considered, although proof theories for
Propositional Logic can be interpreted as descriptions of subordinated arguments
from a restricted set of rules. Accounts of Propositional Logic normally do not
describe a counterpart of our lines of argumentation. Only maximal sets of
conclusions from a set of premises are considered. These are similar to CumulA’s
forward extensions (restricted to single-step arguments).

This example shows that it is not necessary to explicitly distinguish classes of
strict and defeasible arguments, as is done in many argumentation models, e.g. in
Lin and Shoham’s Argument Systems (Lin and Shoham, 1989; Lin, 1993) and
Vreeswijk’s Abstract Argumentation Systems (Vreeswijk, 1991, 1993). If required,

                                                          
18 Obvious omissions are the models of Nute (1988), Geffner and Pearl (1992), Simari and
Loui (1992), Gordon (1993a, 1993b, 1995), Lodder and Herczog (1995), extending the
work of Hage et al. (1994), and Prakken and Sartor (1996). All describe significant
research, relevant for argumentation, but with a focus different from CumulA’s. Nute
focuses on a Prolog implementation, Geffner and Pearl on integration of argumentation and
the so-called ε-semantics, Simari and Loui on the mathematics of argumentation and
specificity, Gordon on dialogue in legal argumentation, Lodder and Herczog on dialogues
and commitment, and Prakken and Sartor on defeasible priorities.
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an argumentation theory can incorporate a set of arguments that cannot be defeated
because the theory does not have defeater schemes that could cause their defeat.19

6.2 Poole’s Logical Framework for Default Reasoning

We have selected Poole’s Logical Framework for Default Reasoning since it is the
purest example of consistency maintenance. An argumentation theory capturing
elements of Poole’s Framework in CumulA can be defined as follows:

Language = LPL, the language of Propositional Logic.
Rules = {{Sentence1, …, Sentencen} → Sentencen+1 |

Sentence1, …, Sentencen |=PL Sentencen+1} ,
where |=PL denotes the consequence relation of Propositional Logic.

DefeaterSchemes = {Sentence1, …, Sentencen-1 [Sentencen] |
Sentence1, …, Sentencen-1, Sentencen |=PL ⊥} ,

where ⊥ denotes contradiction in Propositional Logic.

The rules correspond to ordinary logical consequence in Propositional Logic, as in
the argumentation theory for Propositional Logic above. The defeater schemes say
that an argument is challenged by other arguments if the argument’s conclusion is
inconsistent with the conclusions of the other arguments.

In Poole’s Framework, only single-step arguments are considered. Poole’s
Framework does not contain a counterpart of our lines of argumentation. Poole’s
extensions are similar to CumulA’s forward extensions.

6.3 Lin and Shoham’s Argument Systems

Lin and Shoham’s Argument Systems are related to Poole’s Logical Framework for
Default Reasoning, since both deal mainly with consistency maintenance. We have
selected Lin and Shoham’s Argument Systems, since in this argumentation model it
is recognized that the defeat of arguments can be studied independent of the
specific language and argument rules, and that for the study of argument defeat it is
useful to consider special sets of structured arguments, such as sets of arguments
closed under initials.

An argumentation theory capturing elements of Lin and Shoham’s Argument
Systems in CumulA can be defined as follows:

Language = Atoms ∪ ¬Atoms,
where Atoms is any set and ¬Atoms is the set {¬Atom | Atom is an element
of Atoms} (disjoint from Atoms).

Rules is any set of rules of the language.

                                                          
19 If moreover strict arguments always should defeat defeasible arguments in case of a
conflict, additional defeaters are required.
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DefeaterSchemes = {∗Atom [∗¬Atom], ∗¬Atom [∗Atom] | Atom is an element
of Atoms}.

Lin and Shoham abstract from the language used. It is a set of sentences closed
under negation. The set of rules is arbitrary. The defeater schemes represent that an
argument challenges another if it has opposite conclusion.

Lin and Shoham consider subordinated arguments, and forward lines of
argumentation.

6.4 Reiter’s Default Logic

Reiter’s Default Logic is selected since it rightly remains influential. It should be
regarded as an argumentation model avant la lettre. An argumentation theory
capturing elements of Reiter’s Default Logic in CumulA can be defined as follows:

Language = LPL, the language of Propositional Logic.
Rules ⊇ {{Sentence1, …, Sentencen} → Sentencen+1 |

Sentence1, …, Sentencen |=PL Sentencen+1} ,
where |=PL denotes the consequence relation of Propositional Logic.

DefeaterSchemes ⊆
{∗¬Justification [{ {∗Condition1, …, ∗Conditionn}} → Conclusion] |

{Condition1, …, Conditionn} → Conclusion is an element of Rules} .20

For convenience, we restricted the language to Propositional Logic. The set of rules
is a superset of the set of rules corresponding to ordinary logical consequence. As
in Default Logic, rules have so-called justifications. A rule can only be used if its
justification is not denied. This leads to defeater schemes of a special form: an
argument justifying the negation of a justification of some rule challenges an
argument that ends with a step corresponding to the rule. So, a default Condition1,
…, Conditionn : Justification1, …, Justificationm / Conclusion of Default Logic
corresponds to a rule {Condition1, …, Conditionn} → Conclusion in Rules and
defeater schemes ∗¬Justificationi [{ {∗Condition1, …, ∗Conditionn}} → Conclusion],
for i = 1 to m, in DefeaterSchemes. (So, defaults that only differ in their
justifications are not distinguished.)

Reiter’s Default Logic implicitly describes subordinated arguments and no
forward lines of argumentation. Reiter’s extensions are similar to CumulA’s
forward extensions.

                                                          
20 Lin and Shoham (Lin and Shoham, 1989; Lin, 1993) and Dung (1995) show how
Reiter’s (1980, 1987) Default Logic can be translated to their argumentation models. In
contrast with us, they also prove formal relations.
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6.5 Pollock’s Theory of Defeasible Reasoning

Pollock’s Theory of Defeasible Reasoning is probably the most worked-out
argumentation model. It has been developed and adapted since 1987. An
argumentation theory capturing elements of Pollock’s theory in CumulA can be
defined as follows:

Language = LPL, the language of Propositional Logic.
Rules ⊇ {{Sentence1, …, Sentencen} → Sentencen+1 |

Sentence1, …, Sentencen |=PL Sentencen+1} ,
where |=PL denotes the consequence relation of Propositional Logic.

CollectiveDefeat ⊆ DefeaterSchemes ⊆ Undercutters ∪ Rebutters ∪
CollectiveDefeat,

where
CollectiveDefeat =

{[{∗Subreason11, …, ∗Subreasonn1} → Conclusion1, …,
{∗Subreason1m, …, ∗Subreasonnm} → Conclusionm] |

Conclusion1, …, Conclusionn is minimally inconsistent} ,
Undercutters =

{∗Conclusion1 [{∗Subreason1, …, ∗Subreasonn} → Conclusion2]},
and

Rebutters =
{{∗Subreason11, …, ∗Subreasonn1} → Conclusion1

[{∗Subreason12, …, ∗Subreasonn2} → Conclusion2] |
Conclusion1, Conclusion2 |=PL ⊥}.

Again, the set of rules is a superset of the rules corresponding to ordinary logical
consequence. The defeater schemes are of three forms: those representing
collective defeat (restricted to arguments with inconsistent conclusions),
undercutting defeat, and rebutting defeat (see chapter 5, section 3.5, 3.1, and 3.2,
respectively). Since Pollock uses collective defeat as a general means to preserve
consistency, the set of defeater schemes is a superset of the set of defeater schemes
representing collective defeat.

Pollock describes subordinated arguments and forward lines of argumentation.

6.6 Vreeswijk’s Abstract Argumentation Systems

Vreeswijk’s Abstract Argumentation Systems have been selected since Vreeswijk’s
argumentation model has influenced the development of CumulA (see chapter 5).
Vreeswijk’s model can be regarded as a refinement of Lin and Shoham’s Argument
Systems. An argumentation theory capturing elements of Vreeswijk’s Abstract
Argumentation Systems in CumulA can be defined as follows:

Language is any set, containing ⊥, denoting contradiction.
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Rules is any set of rules in the language.
DefeaterSchemes ⊆ {Argument1, …, Argumentn-1 [Argumentn] |

There is a rule {Conclusion(Argument1), …, Conclusion(Argumentn)} → ⊥}.

Just as Lin and Shoham’s Argument Systems and CumulA, Vreeswijk’s model is
independent of a specific language; Vreeswijk’s language only contains a special
element denoting contradiction. The set of rules is arbitrary. The defeater schemes
of Vreeswijk’s model represent that an argument is challenged by other arguments,
if the argument’s conclusion is inconsistent with the conclusions of the other
arguments. The defeater schemes resemble those of the theory capturing elements
of Lin and Shoham’s Argument Systems. However, there are three differences.
First, Vreeswijk notion of inconsistency is somewhat more general than Lin and
Shoham’s since it includes inconsistency of more than two arguments. Second, only
a subset of the defeater schemes is used. Which defeater schemes are selected
depends on Vreeswijk’s conclusive force relation, included in each Abstract
Argumentation System, in the following way: for arguments Argument1, …,
Argumentn, such that there is a rule {Conclusion(Argument1), …,
Conclusion(Argumentn)} → ⊥, the fact that for some i, 1 ≤ i ≤ n, Argumenti has less
conclusive force than Argumentn implies that Argument1, …, Argumentn-1

[Argumentn] is not in DefeaterSchemes.21 Third, the defeater schemes
corresponding to Vreeswijk’s model are of composite-type, whereas those of Lin
and Shoham’s model are of sentence-type. This is the result of the fact that
Vreeswijk’s conclusive force relation is a relation between full arguments.

Vreeswijk’s model describes subordinated arguments and forward lines of
argumentation.

6.7 Bondarenko et al.’ s Assumption-Based Framework

Bondarenko et al.’s Assumption-Based Framework for Non-Monotonic Reasoning
have been selected since the formalism has a specific type of defeat, that is worth
distinguishing: assumption-type defeat. An argumentation theory capturing this
specific element of Bondarenko et al.’s Assumption-Based Framework in CumulA
can be defined as follows:

Language = Atoms ∪ ¬Atoms,
where Atoms is any set and ¬Atoms is the set {¬Atom | Atom is an element
of Atoms} (disjoint from Atoms).

Rules is any set of rules in the language.
DefeaterSchemes ⊆ {∗Atom [¬Atom], ∗¬Atom [Atom] | Atom is an element

of Atoms}.

                                                          
21 It could be interesting to establish formal connections between properties of a
conclusive force relation and those of the corresponding set of defeater schemes.
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This theory is related to the one capturing elements of Lin and Shoham’s Argument
Systems. The language is a set closed under negation and the set of rules is
arbitrary. However, the defeater schemes differ subtly from those in the theory
capturing elements of Lin and Shoham’s, in two ways. First, the challenged
arguments in the instances of the defeater schemes are statements. As a result,
argument defeat of a non-statement argument is always indirect (see chapter 5,
sections 4.3 and 4.4), because of the defeat of a premise of the argument. The
defeater schemes are of assumption-type (see section 2). Second, not all defeater
schemes of the given form need to be included in the argumentation theory. If
∗Atom [¬Atom] (or ∗¬Atom [Atom]) is included, ¬Atom (or Atom, respectively) is
called an assumption of the theory. Intuitively, an assumption can be the premise of
an undefeated argument, unless its negation is justified.

Bondarenko et al.’s model implicitly describes subordinated arguments and
forward lines of argumentation.

6.8 Dung’s Argumentation Frameworks

Dung’s Argumentation Frameworks have been selected since Dung has brought the
abstract study of argumentation and defeat to its extreme. Dung notices that the
basis of defeat is the attack relation between arguments. As a result, he focuses on
that relation, independent of the structure of the arguments involved. This is an
important step towards a better understanding of argumentation and defeat.

An argumentation theory capturing elements of Dung’s Argumentation
Frameworks in CumulA can be defined as follows:

Language is any set.
Rules = ∅.
DefeaterSchemes ⊆ {Statement1 [Statement2]}

As Lin and Shoham’s Argument Systems, Vreeswijk’s Abstract Argumentation
Systems and CumulA, Dung’s model is independent of a specific language.
Moreover, Dung abstracts from the structure of arguments. As a result, the set of
rules is empty. The defeater schemes - actually defeaters - are all simple defeaters.

Dung considers unstructured arguments, corresponding to CumulA’s
statements, and no lines of argumentation. Verheij (1996a) investigates the formal
relations between Dung’s model and the stages approach of CumulA.

6.9 Loui and Chen’s Argument Game

Loui and Chen’s Argument Game has been selected since it shows a characteristic
of argumentation not found in any of the other discussed argumentation models:
backward argumentation. The Argument Game is a two-player card game, designed
as a model of argumentation. One of the players tries to justify a conclusion by
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means of an undefeated argument, the other tries to challenge the argument. As a
result, the conclusion is fixed, while the premises vary throughout the game.

An argumentation theory capturing elements of Loui and Chen’s Argument
Game in CumulA can be defined as follows:

Language = Atoms ∪ ¬Atoms,
where Atoms is any set and ¬Atoms is the set {¬Atom | Atom is an element
of Atoms} (disjoint from Atoms).

Rules is any set of rules in the language.
DefeaterSchemes ⊆ {∗Atom [∗¬Atom], ∗¬Atom [∗Atom] | Atom is an element

of Atoms}

Surprisingly, this argumentation theory is the same as the one capturing elements of
Lin and Shoham’s Argument Systems. This shows that the underlying notions of
argument and defeat are the same in both models. However, argumentation is
different in both models, since Loui and Chen consider backward lines of
argumentation. Moreover, other differences between the models have disappeared,
since we only focus on the underlying model of argumentation, and have therefore
abstracted from the game elements of the Argument Game, such as bidding and the
different roles of the players.

The arguments of Loui and Chen’s Argument Game are constructed by
subordination. The game models backward lines of argumentation with a single
fixed conclusion.

7 A compar ison of argumentation models

After capturing elements of several argumentation models as argumentation
theories in CumulA in the previous section, we now apply the distinctions
discussed in the sections 1 to 5 to those argumentation theories. An overview is
given in table 1. The table shows differences and similarities.

We have shown the generality of CumulA by capturing elements of selected
argumentation models in CumulA. Previously, Lin and Shoham (Lin and
Shoham, 1989; Lin, 1993) and Dung (1995) have captured other selections of
argumentation models in their formalisms. We stress that, in contrast with us, they
have also proven formal relations.

Lin (1993) has also classified formalisms of nonmonotonic reasoning, using a
distinction based on intuition. He distinguished two classes, namely sentence-based
and argument-based formalisms. His distinction seems to be close to our distinction
of sentence-type and composite-type defeat. Interestingly, in a footnote, Lin (1993,
note 1, p. 254) remarks that Default Logic (Reiter, 1980) should probably be
classified in both categories. We are able to clarify the position of Default Logic by
classifying it in the intermediate class of step-type defeat.
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Table 1: A comparison of argumentation models
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Since we focused on the argumentation theories capturing elements of
argumentation models in CumulA, we were able to establish a number of
distinctions on formal grounds in contrast with Lin’s distinction based on intuition.
As a result, we have shown similarities and differences between the argumentation
models.
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