Chapter 4

Formalizing rules:
a compar ative survey

In the dhapters 2 and 3, we have described our approach to formalizing rules:
Reason-Based Logic. In this chapter, we discussa humber of other approaches, and
compare them to ours. We focus on isaues concerning rules that arise because of
the defeasibility of arguments.t

In sedion 1, we make some general remarks on rules and their role in
argumentation. In sedion 2, we trea the dassc formalization of rules as material
conditionals, and to what extent this formalization can cope with a number of issues
related to the defeasibility of arguments. Sedion 3 continues with a discusson of
approaches to deding with the relevance of rule conditions for rule @nclusions.
We discuss approaches to deding with exceptions to rules in sedion4, and
approaches to deding with rule mnflicts in sedion 5. In sedion 6, we look at
reasoning about rules.

We wish to stressthat many of the observations in this chapter are not original .2
However, we have alded some originality by focusing on different issues instead of
on spedfic formalisms. We have seleded a number of well-known and influential
formalisms, and use them to explain general approaches to the isaues. In this way,
the goproach to formalizing rules of Reason-Based Logic is put in perspedive.

1 Rulesin argumentation
In this sdion, we explain our view on rules. We start with the relation between

rules and arguments. Some remarks on syllogistic and enthymematic aguments
foll ow. The sedion ends with a discusson of ordinary rule gplication.

1 Nute (1980 and Sanford (1989 describe other interesting topics, such as courterfactual
condtionals.

2 We have espedaly benefited from the discusdons by Haadk (1978, Prakken (1993,
chapters 5 and 7) and Makinson (1994).
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1.1 Rulesand arguments

We recdl our interpretation of rules and their relation to arguments (see &so
chapter 1, sedion 4.1 and chapter 2, sedion 1.1). As our starting point, we take
informal arguments asthey occur in pradice, e.g.,

Mary isborn in Maastricht.
So, Mary pronounces the letter g softly.
So, people can tell that Mary is from the south of the Netherlands.

We present arguments in an idedized form, with clealy distinguished steps. Each
step consists of areason and a mnclusion, as foll ows:

Reason.
So, Conclusion.

Arguments can consist of several steps. In that case, the mnclusion of one step is
the reason of the next. The example agument consists of two steps. The first step
has the reason ‘Mary is born in Maastricht’ and the conclusion ‘Mary pronounces
the letter g softly’, the second step the reason ‘Mary pronounces the letter g softly’
and the conclusion ‘People can tell that Mary is from the south of the Netherlands'.

The steps in the agument can also occur in other arguments. For instance, the
first step in the agument above dso occurs in the foll owing argument:

Mary isborn in Magstricht.
So, Mary pronounces the letter g softly.
So, people from Amsterdam may find Mary’s acceit amusing.

In other words, steps in an argument are independent of the particular argument in
which they occur. Each step can be used in an argument because there exists me
relation between the reason and the mnclusion of the step. This relation between
reason and conclusion as expressed by the agument step, iswhat we cdl arule.

Often argument steps follow a pattern. For instance, the first argument above
can be made for anyone who is born in Maastricht. We have the following
argument scheme:

Personisbornin Magstricht.
So, Person pronounces the letter g softly.
So, people can tell that Person is from the south of the Netherlands.

The steps in the agument scheme can be used in an actual argument independently
of the particular person mentioned. Person isavariable, that can befill ed in at will:
whoever the person Person is, Mary, Peter, or Fred, the scheme gives rise to an
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accetable agument. Also the relation between reason and conclusion in a step in
such an argument schemeis cdled arule, but thistimeit isarule with avariable.
There ae few things about rules of reasoning that are generally agreed upon.
However, a common starting point is that a rule has a condition and a mnclusion.
The mndition and the nclusion of a rule mrrespond to the reason and the
conclusion in an argument step, respedively. So, an argument step of the form

Reason.
So, Conclusion.

corresponds to a rule with condition Reason and conclusion Conclusion. It may
seem inconsistent terminology to use two terms, ‘reason’ and ‘condition’ for
corresponding things. However, there is a difference if the mndition of arule is
used as a reason in an argument, the reason is assumed to hold, while for the
validity of aruleit isirrelevant whether its condition holds.

12  Syllogistic and enthymematic arguments

If in introductory texts on classcd deductive logic examples of informal arguments
are given, they typicdly look as follows (e.g., Purtill, 1979 Copi, 1982 espedally
p. 235ff.):

1. Johnisathief. If Johnisathief, then he should be punished.
So, John should be punished.

2. Either Johnis married to Mary or John is married to Edith. John is married to
Mary.
So, Johnis not married to Edith.

They are used to introduce logicd connedives, such as‘If ... then ... and ‘Either ...
or ... In ordinary language, one dso finds the foll owing, closely related arguments
that do not contain these mnnedives:

1'. Johnisathief.
So, John should be punished.

2'. Johnis married to Mary.
So, Johnis not married to Edith.

These aguments result from the aguments 1 and 2 above by omitting one of the
premises. From the point of view of clasdcd logic, the first two arguments are
complete, while in the second two one of the premisesis missng. The aguments 1’
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and 2 are cdled enthymematic, in contrast with their syllogistic counterparts 1 and
2, that explicitly contain all premises (Copi, 1982 pp. 235, 253).3

In this thesis, we have given examples of arguments that resemble the syll ogistic
type of argument and of arguments that resemble the enthymematic type. This may
seam inconsistent. However, the gparent inconsistency disappeas if it is noted
that the distinction between syllogistic and enthymematic aguments only has
meaning relative to a set of rules. For instance the syllogistic aguments above ae
complete, relative to the rules (or rule schemes) Modus Ponens and Digunctive
Syllogism underlying the agument schemes:

Sate of affairs,. If State of affairs,;, then Sate of affairs,.
So, Sate of affairs,.

Either Sate of affairs, or Sate of affairs,. Sate of affairs,.
So, not State of affairs,.

Relative to these rules, we can distinguish the syllogistic aguments 1 and 2, in
which all premises are explicitly stated, and the enthymematic asguments 1’ and 2,
in which one or more premises are missng.

The example aguments 1’ and 2, that are enthymematic with resped to Modus
Ponens and Digunctive Syllogism, are syllogistic with resped to the rules that
underlie the agument schemes

Personisathief.
So, Person should be punished.

and

Person, is married to Persons.
So, Person; is not married to Person;.4

Clealy, our interpretation of rules is closely related to the warrants in
Toulmin's (1958 argument scheme.>

We have taken some dfort to state our interpretation of the notion ‘rule’ as
clealy as possble, for two reasons. First, we think that reseach on the
formalization of reasoning with defeesible aguments dould be thoroughy

3 The distinction between syllogistic and enthymematic arguments was aready made by
Aristotle (cf. Copi, 1982.

It is ometimes objeaed that the rules underlying these aguments refer to the meaning
of the phrases used. This ignores the fad that also a rule such as Modus Ponens refers to the
meaning of its phrases, namely the meaning of ‘If ..., then ...’, which as we will seeis not
uncontroversial.

5 Toumin's argument scheme has recently inspired several reseachers (cf., eg.,
Bench-Capon, 1995.
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grounded in intuitions, simply becaise that reseach is inspired by the intuitive
diff erences between adual reasoning and, for instance, deductive reasoning. Thisis
in line with our general method o research (chapter 1, sedion 7)

Seoond, different intuiti ons can cause much confusion. Therefore, we stressthat
our interpretation of rules differs from several other interpretations in the literature,
such asrules of inference, material conditionals, or default rules. Indeed, thereisno
single, generaly accepted interpretation of the notion ‘rule’. In fad, a significant
part of the reseach on defeasible reasoning can be regarded as a seach for the
meaning, or, better, for diff erent meanings of the notion ‘rule’.

1.3 Ordinary rule application

In any interpretation of rules, they can in some sense be gplied: if there isarule,
the condition of which holds, the @mnclusion of the rule follows. Here ‘holds' and
‘follows can be interpreted in many ways, for instance & ‘be true', ‘be derivable’,
or ‘be justified by an argument’. The latter interpretation will be our intuitive
guideline in this chapter.

Since we will be deding with several different formalisms, a notational
convention is useful. If the conclusion Conclusion follows from the asaumptions
Assumption;, Assumptiony, ..., Assumption,, we write:

Assumptions, Assumptiony, ..., Assumption,  Conclusion

Our guiding interpretation of this notation is as follows: assuming Assumption,
Assumption,, ..., Assumption,, the @nclusion Conclusion is justified (by some
argument).

Using this notation, ordinary rule gplication is denoted as foll ows:

Rule, Condition |~ Conclusion

Here Rule denotes that there is a valid rule that has Condition as its condition and
Conclusion asits conclusion.

In First-Order Predicae Logic (see e.g., Van Dalen (1983 or Davis (1993),
there is an obvious candidate to formali ze rules, namely the material conditional .6
A rule with condition Condition and conclusion Conclusion can be represented as
the material conditional Condition — Conclusion, and ordinary rule gplicaion can
be interpreted in two well-known (and equivalent) ways, namely semanticdly and
proof-theoreticdly:

If Condition — Conclusion and Condition are true, then Conclusion is true.
From Condition - Conclusion and Condition, Conclusion is derivable.

6 The material conditional is often caled the material implication. Sanford (1989, joining
Quine, explains why thisis uncareful use of language.
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These ae usually formally represented as foll ows:

Condition - Conclusion, Condition | Conclusion
Condition — Conclusion, Condition |- Conclusion

In our notational convention, both become:
Condition — Conclusion, Condition |~ Conclusion

We dtress that the symbol |~ does not give preference to a semanticdly or a
syntadicdly defined consequencerelation.

In the chapters 2 and 3, we discussed another candidate to formalize rules,
namely the rule of Reason-Based Logic. In comparison with the complexity of the
rule of Reason-Based Logic, the material conditional is attradively simple.
Therefore animportant question arises. Why is the material conditional approach to
rules unsatisfadory? That is the subjed of the next sedion.

2 Rulesasmaterial conditionals

In this ®dion, we discuss the material conditional approach to rules. First we
discussthe relevance of rule nditions for rule conclusions and the paradoxes of
the material conditional. Then we discussthe behavior of the material conditional
with resped to exceptions and conflicts. The sedion ends with a discusgon of the
problems of the material conditional related to reasoning about rules.

21 Relevance and the paradoxes of the material conditional

If we formalize rules as material conditionals, the first problems that we encounter
concern the relevance of the aondition for the conclusion.
Therule of our example above, that al owed the agument steps of the scheme

Personisbornin Magstricht.
So, Person pronounces the letter g softly.

shows the relevance of the cndition of a rule for its conclusion. The fad that
someone is born in Maastricht is relevant for the fad that someone pronounces the
letter g softly, in the sense that under normal circumstances the second follows
because the first holds. This relevance is a @mnsequence of the way the world is:
people born in Maastricht, normally pronounce the letter g softly. As a result, the
demand of the relevance of a rule’'s condition for its conclusion is in principle a
matter of the domain theory.

For instance, a domain theory that contains a rule with condition ‘The sky is
blue' and conclusion ‘Amsterdam is the caital of the Netherlands' does not med
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the relevance demand. However, the relevance demand is not only a matter of the
domain theory, but also of the dlowed inferences. We show this using the material
conditional as an example. It turns out that material conditionals have properties
that are not in line with the relevance demand.

For instance if we asame that Mary is not born in Magstricht, the material
conditional with condition Mary_is_born_in_Maastricht and conclusion
Mary_pronounces_the_letter_g_softly foll ows:

—Mary_is_born_in_Maastricht i Mary_is_born_in_Maastricht —
Mary_pronounces_the_letter_g_softly

In fad, any material conditional with condition Mary_is_born_in_Maastricht
foll ows, for instance:

= Mary_is_born_in_Maastricht i~ Mary_is_born_in_Maastricht —
- Mary_pronounces_the_letter_g_softly

= Mary_is_born_in_Maastricht i Mary_is_born_in_Maastricht —
There_is_life_on_Mars

= Mary_is_born_in_Maastricht i~ Mary_is_born_in_Maastricht —
- Mary_is_born_in_Maastricht

The examples have been chosen in such a way that the enditions of the material
conditionals beaome deaeasingy relevant for their conclusions. Interpreted as
rules that give rise to accetable aguments, these material conditionals become
increasingly absurd. For instance in our interpretation, the last example reads as
follows. Asauming that Mary is not born in Magstricht, there is a rule that makes
the agument

Mary isborn in Magstricht.
So, Mary isnot born in Magastricht.

accetable.
These examples are due to the first of the following so-cdled paradoxes of the
materia conditional (cf., e.g., Haadk, 1978 p. 37):

-ARA-B
B~A-B
A -B)OB - A)

Examples of the second are;

Mary_pronounces_the_letter_g_softly ~ Mary_is_born_in_Amsterdam -
Mary_pronounces_the_letter_g_softly
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Mary_pronounces_the_letter_g_softly ~ There_is_life_on_Mars -
Mary_pronounces_the_letter_g_softly

Interpreting the latter, we find: asauiming that Mary pronounces the letter g softly,
thereis arule that makes the agument

Thereislife on Mars.
So, Mary pronounces the letter g softly.

accetable.
An example of the third paradox is:

k (There_is_life_on_Mars - Mary_pronounces_the_letter_g_softly) O
(Mary_pronounces_the_letter_g_softly — There_is_life_on_Mars)

Interpreting this, we find that there is either arule that makes the agument

Thereislife on Mars.
So, Mary pronounces the letter g softly.

acceptable, or arule that makes the agument

Mary pronounces the letter g softly.
So, thereislife on Mars.

accetable.

The examples dow that the material conditional does not behave well with
regard to relevance Even if we ae caeful and assume only material conditionals
which have conditions that are relevant for their conclusions, we obtain many other
material conditionals for free which ladk that property. This has been recognized
for long, and is generally considered a drawbadk of the formalizaion of rules as
material conditionals. For instance the paradoxes of the material conditional led
C.1. Lewis to the definition of the strict conditional (that turned out to have similar
paradoxes of its own),” and Anderson and Belnap to the development of their logic
of relevance8

Some gproaches to deding with relevance ae discussed in sedion 3.

7 Cf. Haak (1978 p. 37) and Sanford (1989 p. 68ff.).
8 Cf. Haak (1978 p. 37, p. 198f.) and Sanford (1989 p. 129f.).
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2.2  Exceptionstorules

Another source of problems for the material conditional are exceptionsto rules. We
have drealy seen several examples of exceptions in the previous chapters (chapter
1, sedion 4.1, chapter 2, sedion 1.2, chapter 3, sedion 5).

There ae two intuitive requirements for reasoning with rules with exceptions:

STANDARD CASE
If there is a rule the mndition of which holds, then the rule’s conclusion
follows.

EXCEPTION CASE
If there is a rule the condition of which holds, and there is an exception to the
rule, then the rule’s conclusion does not foll ow.®

If we model rules as material conditionals, we get the foll owing:

STANDARD CASE

Condition, Condition - Conclusion |~ Conclusion
EXCEPTION CASE

Condition, Condition - Conclusion, Exception [~Conclusion

The latter isclealy fase. We recdl the property cdled monotonicity:

If Assumptions ~ Conclusion,
then Assumptions, More_assumptions |~ Conclusion.

It follows immediately that a reasoning formalism that meets the two requirements
above canot be monotonic. Since First-Order Predicae Logic is monotonic, we
conclude that reasoning with rules with exceptions cannot be represented in it.

It may at first seam strange, but the requirement in the standard case, makes
reasoning with rules with exceptions nonmonotonic, and not the requirement in the
exception case. In the standard case, one jumps to the conclusion of the rule, while
there might be an exception. It would be more caeful to add the asaumption that
thereis no exception, as foll ows:

CAREFUL STANDARD CASE
If there is a rule the condition of which holds, and there is no exception, then
the rule’ s conclusion foll ows.

Clealy, this careful requirement does not lead to nonmonotonicity. For instance,
the deductive cmnsequencerelation of Reason-Based Logic (chapter 2, beginning of

9 Of course, the rule's conclusion can hdd, as aresult of other information.
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sedion 6) is careful in this ense. However, as we drealy discussed there, this
caefulnessleads to awedk notion of consequence
Other approaches to deding with exceptions to rules are discussed in sedion 4.

2.3 Ruleconflicts

A third source of problems for the formalization of rules as material conditionals
are rule mnflicts. We have dready seen several examples in the previous chapters
(chapter 1, sedion 4.2, chapter 2, sedion 1.3, chapter 3, sedion 6). We mention
two types of unwanted behavior of the material conditi onal.

The first type of unwanted behavior is that, if there is a cnflict of material
conditionals, i.e., their conclusions are incompatible and their conditions stisfied,
anything follows. Formally,

Condition;, Condition,, Condition; — Conclusion, Condition, — -~ Conclusion
Anything

For instance, interpreting rules as material conditionals, we find: if thieves are
punishable, minor first offenders are not punishable, and Johnis a minor thief, then
Fermat’s theorem is true. This easy way of settling Fermat’s theorem is of course
useless $nce we car aso conclude that it is false. Clealy, this behavior of the
material conditional is unwanted if one accets the eistence of rule anflicts.
Intuitively, a onflict of rules sould not lead to a ntradiction from which
anything foll ows. We have the foll owing intuiti ve property:

RULE CONFLICT
If there ae rules with incompatible cnclusions, the mnditions of which hold,
no contradiction foll ows.

The second type of unwanted behavior of the material conditional occurs even if
the anditions of rules with incompatible conclusions are not satisfied. We have the
following:

Condition; — Conclusion, Condition, — =~ Conclusion |~ Condition, —
- Conditiony

For instance, if thieves are punishable and minor first off enders are not, then minor
first offenders are not thieves. It would be very nice for governments if simply
announcing that minor first offenders are not punishable would have this effed.
Intuitively, it is unwanted that rules with incompatible @nclusions lead to other
rules, as naively as above. The property is related to the property of the so-cdled
contraposition of the material conditional:

Condition — Conclusion | ~Conclusion — = Condition
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This property can easily lead to strange results. For instance, if we have that
suspeds are presumed innocent, do we dso have that those who are not presumed
innocent are not susped?

Both types of unwanted behavior show that rules easily allow for too many
conclusions. First, we saw that a cnflict of rules sould not leal to a contradiction;
seond, that a rule should not lead to its contrapasiti on.

This is oppdsite to the situation in the cae of exceptions, where we saw that
rules smetimes all ow too few conclusions: in the standard case, we want to jump
to a onclusion, even if there might be an exception.

In Figure 1, the tension between too few and too many conclusions is siggested.
The set of dtrict conclusions that follow from a set of assumptions is often
considered too small. As aresult, one wantsto enlarge that set by all owing tentative
conclusions. On the other hand, if one enlarges the set too much, the boundary of
consistency is crossed.19 Sincethisis also unwanted, one wants to constrain the set
of tentative @nclusions, in order to maintain consistency.

\ Boundary of consistency

Tentative conclusions?

Strict conclusions

Figure 1: The tension between too few and too many conclusions

As the figure shows, an acceptable set of tentative mnclusions that follow from a
set of asaumptions includes the set of strict conclusions, and is included in some
consistent set.

Other approaches to dedingwith rule cnflicts are discussed in sedion 5.

10 The figure suggests that there is a dea, unique, boundxry of consistency. This is of
course not the cae: there can be many different maxiconsistent sets. However, this is
unesential for what the figure atemptsto depict.
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24  Reasoning about rules

As a fourth source of problems for formalizing rules as material conditionals, we

discussreasoning about rules. We distinguish two types of reasoning about rules:

reasoning with rules as conclusions, and reasoning that involves fads about rules.11
Asaume that we mnsider the aguments

It israiningand | did not bringarain coat.
So, my clothes get wet.

and

My clothes get wet.
So, | will fed uncomfortable.

to be accetable. It seans reasonable to conclude that aso the agument

It israiningand | did not bringarain coat.
So, | will fed uncomfortable.

is acceptable. As a result, the following argument, in terms of the rules that give
rise to these aguments, is accetable:

‘Ifitisrainingand | did not bringarain coat, my clothes get wet’ isavalid rule.

‘If my clothes get wet, | fed uncomfortable’ isavalid rule.

So, ‘If itisrainingand | did not bringarain coat, | will fed uncomfortable’ isa
validrule.

This argument is an example of reasoning about rules, in which the onclusion of
the agument is a rule. Other examples have fads about rules as their conclusion.
There can be an argument concerning exceptions, e.g.,

Johnisdriving on a German highway.
So, there is an exception to the rule ‘If John drives faster than 120 kil ometers
per hour, he can be fined'.

or priority relations between rules, e.g.,

John krows Mary well.

Alex hardly knows Mary.

So, the rule ‘If John says Mary is nice, then Mary isnice prevails over the rule
‘If Alex saysMary is not nice then Mary isnot nice in case of a mnflict.

11 wewill | ater see(sedtion 6) that in Reason-Based Logic this distinction dsappeas.
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If rules are formalized as material conditionals, the first type of reasoning about
rules, in which a rule occurs as a @nclusion, can apparently be dedt with. For
instance, the first example we gave orresponds to the following property of
material conditionals, cdled transiti vity:

A-B,B-CHA-C

However, this can hardly be considered as reasoning about rules, since it is not
based on information about the particular rules involved. Transitivity is a property
that holds for general material conditionals, and does not depend on any particular
information for particular material conditionals.

Moreover, rules do not aways have the property of transtivity. A
counterexample is the foll owing. Asaume we have the two argument schemes:

Person livesin Curaca.
So, Person is Dutch.

and

Person is Dutch.
So, Person livesin Europe.

Even if these aguments are accetable, the agument scheme

Person livesin Curaca.
So, Person livesin Europe.

need not be accetable, since Curaca is in the Caribbean region, and not in
Europe. The fad that the property of transitivity does not hold for the agumentsin
this case is the result of the faa that the rule ‘If someone is Dutch, he lives in
Europe’ can have exceptions. Since material conditionals have the property of
trangitivity, the rules underlying the example aguments cannot be formalized as
material conditionals.

For the other type of reasoning about rules, involving fads about rules (e.g.,
about exceptions, conflicts or priorities), modeling rules as a material conditional is
clealy inadequate, sincethis would require that it is possble to expressfads about
material conditionals in the objed language. This is not possble in standard First-
Order Predicate Logic.

Other approacies to deding with reasoning about rules are discussed in
sedion 6.
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3 Relevance

In order to avoid the problems of the material conditional with regard to relevance,
a speda syntadic form should be used, reserved for the representation of rules. In
thisway, it is possble to spedfy the properties of rules from scratch.

We discussthree gproaches that follow thisidea The first is to fixate the set of
rules. The second isto tred rules as gedal sentences. The third is to trea rules as
spedal objeds.

3.1 Fixating a set of rules

As an example of the first type of approach, in which the set of rulesis fixated, we
discussReiter’s Default Logic (Reiter, 1980 1987). We start with a summary of his
definiti ons.

Reiter's Default Logic uses the language of First-Order Predicae Logic; for
simplicity we use that of Propasitional Logic here. The essumptions are encoded as
a pair of sets (F, A), where F is a set of sentences and A is a set of default rules.
Such apair of sets (F, A) iscdled atheory.

A default rule has the form

a: B, Bz Bl Y,

where a, 1, B2, ---,Bn, and y are sentences. Here a is the prerequisite of the default
rule, B4, B2, ---, Bn @e the justificaions of the rule, and y is the mnsequent of the
default rule. Representing a rule @& a default rule, the cndition of a rule
corresponds to the prerequisite of a default rule, and the conclusion of arule to the
consequent of the default rule. The role of the justificaions of a default rule is
discussed in sedion 4.2.

An extension of atheory (F, A) isaset of sentencesE, suchthat E=E, 0 E; O
E, 0 E; 0 ...,where

Ey,=F, and
Ei.1=Th(E) O { y|thereisana : By, B2, ...,Bn/ YO A, such that a O E;, and
forall j: -B; O E} for anyi =012

The definition of the E; depends on E. Intuitively, the definition of an extension
makes use of E as an advance guess of the mnsequences of a theory (F, A), and
then chedks whether this guesscan be gradualy constructed using the default rules
in A starting from the fixed information F.13

12 For a set of sentences S, Th(S) denctes the set of logicad consequences of S in
Propasitional Logic.

13 The same technique was used in the definition o the nonmondonic consequence
relation d Reason-Based Logic (chapter 2, sedion 6).
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Thereisan equivaent fix-point definition of extensions: E isan extension if E =
I"(E), where the operator I" is defined as follows. Let S be aset of sentences. Then
I(S) isthesmallest set I of sentences, such that:

FOT,and
r=Th(r), and
Foral a: By, Bz ....Bn/yOA: Ifa Ol andforal j: =3;0S, thenyOT.

(For dl S, thereis asmallest set with these three properties: it is the intersedion of
all setsfor which the properties hold.)

Not all default theories (F, A) have an extension, and if a default theory has an
extension, it is not necessrily unique. A sentence that is an element of all
extensions of a default theory is sid to follow skeptically from the theory; a
sentencethat is an element of (at least) one of the extensions foll ows credulously.

Reiter's darting point is the incompleteness of the information that we have
about the world. He proposes to use default rules as ‘rules for extending an
underlying incomplete first-order theory’. Apparently, he thinks of (default) rules as
spedal rules of inference, separate from the other available information. This is
refleded in the formalism proposed. A default theory is defined as the combination
of two sets: a set of first-order sentences, representing ordinary, but incomplete
information about the world, and separately a set of default rules, representing
information to extend the incomplete information about the world. Reiter then
defines extensions of a default theory as sts of first-order sentences.

We return to our discusson of relevance Formalizing rules as Reiter’s default
rules, it is clea that the problems of the material conditional with regard to
relevance ae solved. Since extensions cannot contain default rules, no default rule
can be the mnsequence of a default theory. As a result, if a default rule has
condition that are not considered relevant for their conclusions, it is only a flaw of
the default theory.

This is of course a cude way of solving the problems of relevance The
‘advantage’ is at the same time one of the main drawbads of Reiter's Default
Logic: there ae no provisions whatsoever to represent relations between rules, or
to reason about rules (see 4so sedion 6).

3.2 Rulesas special sentences

The second approad is less crude than the first, and treds rules as gedal
sentences. The logicd languege is extended with a spedal connedive to represent
rules, as in conditional logics, as for instance defined by Anderson and
Belnap,14 Nute (1980 1994 and Delgrande (1988. After extending the language
with a rule-representing connedive, e.g., >, the properties of the mnredive ae

14 see eg., Haak (1978 p. 198f.) and Sanford (1989 p. 129f.).
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spedfied on the meta-level by axioms and rules of inference Some of them
might be:

FA>A
A>C,B>CK(AOB)>C
A>B,(AOB)>CKA>C

The choice of such axioms and rules of inferenceis a delicate matter (which led to
a large amount of reseach), and highly depends on which interpretation of rules
one hasin mind. For instance,

A>BHAOC>B

should hold for strict rules, but not for rules that can have exceptions.

This approach has the alvantage that it is possble to represent not only rules,
but also certain relations between them, namely those that can be expressed using
other connedives of the logicd languege, asin (A > B) O(B > C)) - (B > C). Of
course, the akiioms and rules of inference that guide this reasoning must be chosen
caefully, in order to mee the demand of relevance For instance, a rule of
inference such as

A>BHA - B

could lea to the same unwanted results as with the material conditional, and would
therefore probably be abad choice However, by carefully choosing axioms and
rules of inference it is in this approach in principle possble to ded with the
problems of relevance

3.3 Rulesas special objects

The third approach is to tred rules as gpedal objeds, and is used in Reason-Based
Logic (chapter 2). Just as in the previous approad, rules can be represented in the
logicd language. In Reason-Based Logic, they have the form:

rule(condition, conclusion)

However, there is an important diff erence with the previous approach: rules are not
treded as sntences in the language, but as terms, since rules are mnsidered as
spedal objeds. The properties of these rules-as-objeds can be represented as

sentences of the logicd language. For instance, the validity of aruleis expressed as

Valid(rule(condition, conclusion))
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RBL rules aso have properties that are spedfied on the meta-level (described in
chapter 2, sedion 4). For instance, an excluded rule the condition of which is
satisfied is not appliceble:

Condition, Excluded(rule(condition, conclusion), fact, state_of_affairs) i~
- Applicable(rule(condition, conclusion), fact, state_of_affairs)1®

Nevertheless in comparison with the nditional logic approad, the properties
spedfied on the meta-level leave much room for the spedficéaion of the rule
properties in the logicd language. We @me badk to this in sedion 6, where we
discussreasoning about rules.

In Reason-Based Logic this approach has been chosen, becaise we regard many
of the properties of rules as part of the domain theory. This has the advantage that it
is posshle to represent different types of rules with different properties. For
instance, the properties of strict rules are dealy different from those of rules that
can have exceptions. In Reason-Based Logic, such properties can flexibly be
represented in the domain theory. For instance, a domain theory can be such that
the relevance of the rule's condition for its conclusion is implied by the rule's
validity. In general, high demands are made on the domain theory.

An alternative gproach to represent types of rules with different properties
would be to use different syntadic structures for ead type of rules. Since the
properties are then represented at the meta-level (as discussed in sedion 3.2), this
approach is alittl e lessflexible then the gproach discussed here.

4 Exceptionstorules

In this sdion, we discussapproaches to deding with rules with exceptions. We do
this in two parts. First, we discuss different approaches to the representation of
exceptions. Second, we discuss approaches to deding with exceptions and
defeasible reasoning.

4.1  Representing exceptions
We discussthree gproaches to the representation of exceptions to rules. The first

uses negative rule anditions. The second uses identifiers of rules and a speda
predicate. The third treasrules as eda objeds.

15 Recdl that there is a translation from sentences (e.g., Condition) to terms (e.g.,
condition), as described in chapter 2, sedion 43.
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Negative rule conditions

The first approad to the representation of an exception is as an additiona negative
conditi on of a material conditional, as foll ows:

Condition
O - Exception
- Conclusion

There ae two drawbadks with representing exceptions as negative mnditions. The
first isthat an additional exception would require a diange of the rule itself:

Condition
O - Exception
O - Exception’
- Conclusion

The second drawbadk is that there is no formal difference between the condition of
arule and its exceptions. For instance, the material conditi onal

AO-BO-C - D

can represent a rule with condition A, conclusion D, and exceptions B and C, but
also arule with condition A 0-B, conclusion D, and exception C.

Both drawbadks conflict with the intuition that a rule is charaderized by its
condition and conclusion. What we would like is a system in which the existence of
an additional exceptionto aruleis smply an additional fad about that rule.

Rule identifiers and exception predicates

The secnd approadc to the representation of exceptions lves this disadvantage.
It is charaderized by the use of rule identifiers and a spedal purpose predicate.16 A
rule is represented as a material conditional, but has an extra condition to represent
that it has no exception, for instance & foll ows:

(O Condition O -Exception(identifier) . Conclusion

Different rules $ould have different identifiers. Exceptions can now be represented
asfollows:

16 The use of exception pedicaes gems from the ealy days of the reseach on
nonmonaonic logics. Prakken (1993, p. 84ff.) gives an extensive overview of different
variants of thistedhnique, in different logica formalisms.
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(+) Exception - Exception(identifier)

In this representation, an additional exception does not require a tange of (), but
can be represented as an additional asaumption:

Exception’ -~ Exception(identifier)

If such amaterial conditional representing an exception isitself arule that can have
exceptions, this can easily be represented by giving it its own identifier and
exception clause. For instance, the material conditional (+) becomes:

Exception 0 - Exception(identifier2) - Exception(identifier)

The problem with this approach to the representation of exceptions is that it is
rather ad hoc. The meaning of ‘rule and ‘exception’ are unclea and
underspedfied. For instance, is a material conditional of the form (O a rule? But
then, what does the identifier of the rule refer to? Maybe the identifier is the rule?
Does - Exception(identifier) imply that there is a rule with the identifier identifier?
Taking these questions <erioudy, we arive & the third approach to the
representation of exceptions.

Rules as special objects

The third approach to the representation of exceptions is to trea rules as peda
objeds that can have properties. One of the properties of arule can be that there is
an exception to the rule. So, the eistence of an exception to arule is considered as
a fad about the rule. Additional exceptions do not change the rule itself, but are
simply represented as additional fads about the rule.

This approach to the representation of exceptions is used in Reason-Based
Logic (chapter 2). We discussed the structure of rules and several types of fads
concerning rules. Rules have a ondition and a @nclusion:

rule(condition, conclusion)
Rules can be valid, applicable and excluded, and can apply:

Valid(rule(condition, conclusion))

Applicable(rule(condition, conclusion), fact, state_of_affairs)
Excluded(rule(condition, conclusion), fact, state_of_affairs)
Applies(rule(condition, conclusion), fact, state_of_affairs)

The general properties of rules are defined by the relations that hold between these
(and ather) types of fads. The properties of rules (or classs of rules) are spedfied
in the logicd language. In contrast with the previous approach using rule
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identifiers, in this approac it is made explicit what is meant by ‘rule’ and by
‘exception’ .17

4.2  Exceptionsand nonmonotonicity

Attempts to ded with nonmonotonic reasoning have bemme a vast field of
reseach. Here we focus on rules with exceptions, and discussthree gproaches.18
The first is based on maxiconsistent sets. The second uses default rules. The third
uses counterarguments.

Maxiconsistent sets

The first approach is based on maxiconsistent sets, as for instance used in Podle's
Logica Framework for Default Reasoning (Podle, 1988.1° We start by giving a
brief overview of the definiti ons we need.

Pode's framework uses the language of First-Order Predicate Logic; for
simplicity we use that of Propasitional Logic. Asaimptions are encoded in atheory,
defined as a pair of sets (F, A), where F and A are both sets of sentences. F
represents the strict asaumptions, A the default assumptions. An extension of (F, A)
is the set of conseguences of a maximal scenario, where ascenario is a cnsistent
set F O D with D a subset of A.

A theory (F, A) has one or several extensions. Just as in Reiter’s Default Logic
(Reiter, 1980 1987, a credulous and a skeptical consequence notion can be
defined.

Maxiconsistent sets can be used to ded with reasoning with exceptions. For
simplicity, we use asimple representation of rules here. A rule and its exception
clauseis represented as the foll owing material conditi onal:

(1) Condition O - Exception(identifier) - Conclusion.

(Below the number (1) is used to refer to this material conditional.) Rules are
elements of the strict assumptions F, and dfferent rules sould have different
identifiers. As default assumptions, we have that rules have no exceptions.
Formally thisis achieved by including asaumptions of the foll owing form:

- Exception(identifier)

17 |n ReaonBased Logic, there ae even different ways of representing exceptions, as
discussed in chapter 3, sedion &

18 Many of the observations in this ®dion rave been made before (cf., eg.
Prakken, 19933). Seencte 2.

19 Wwe stressthat we only use the maxiconsistent sets of Poole's framework (1988 here,
and not hisway to ded with rules, described in the same paper.
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in the default information A, for all identifiers identifier corresponding to a rule
ocaurring in F. In the following, if F = {Assy, Assy, ..., Assy}, A is as above, and
Concy, Concy, ..., and Concn, are dements of al extensions of the theory (F, A), we
write:

Ass1, AsSy, ..., Ass,  Concy, Concy, ..., Concny

Exceptions can now be represented by an exception rule in the strict information, as
foll ows:

(2) Exception — Exception(identifier).

If there is no exception, the default assumption that there is no exception does not
lead to a contradiction, so we have

Condition, (1), (2)  Conclusion, ~Exception(identifier)
In the case of an exception, the exception rule (2) gives the following:
Condition, Exception, (1), (2) ~ Exception(identifier)

Since - Exception(identifier) does not follow, the cnclusion of the rule does not
follow, in other words:

Condition, Exception, (1), (2) #~Conclusion

Since this corresponds to the two intuitive regquirements STANDARD CASE and
EXCEPTION CASE discussed in sedion 2.2, everything seeams to work out fine.

However, a problem arises if there ae exceptions to the exception rule itself.
Exceptions to exceptions are a @mmon phenomenon. In such a cae the onclusion
of the rule should follow in spite of the exception. We ald a third intuitive
requirement

EXCEPTION-TO-EXCEPTION CASE
If there is a rule the condition of which holds, there is an exception to the rule,
and there is an exception to the exception, then the rule’s conclusion foll ows.

In order to med this requirement, we need to represent exceptions to the exception

rule. Therefore the exception rule (2) above is replaceal by the following rule, that

can have exceptions:

(3) Exception O-Exception(identifier2) — Exception(identifier).

Furthermore we have an exception to the exception:
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(4) Exception_to_exception - Exception(identifier2).

Since there is only one etension containing -Exception(identifier) and
Exception(identifier2), we obtain the corred behavior in case of an exception to an
exception:

Condition, Exception, Exception_to_exception, (1), (3), (4) i~ Conclusion

Unexpededly, we have lost the arred behavior in the exception case: the
theory (F, A) with F = {Condition, Exception, (1), (3), (4)} and A as above
has two extensions. One extension contains both Exception(identifier) and
- Exception(identifier2), as desired. The other contains -Exception(identifier), and
Conclusion, but remains slent about whether the exception rule is applicable: it
contains neither - Exception(identifier2) nor Exception(identifier2). It should be
noted that in an extension containing - Exception(identifier) the inclusion of
- Exception(identifier2) is blocked since that would give a inconsistency
with (3). The exception rule (3) just demands that an extension that contains
Exception, can only contain one of the sentences -Exception(identifier) and
- Exception(identifier2). This demand is met in both extensions.

What iswrongisthat the seand extension does not contain the faa that thereis
no exception to the rule with identifier identifier2, only in order to maintain
consistency. The first extension contains the fad that there is an exception to the
rule identifier because there is an exception. Intuitively, we want that the goplication
of arule can only be blocked by explicit information in the extension.

Default rules

The second approach that we discussuses Reiter’s (1980 1987) default rules. We

use the definitions discussd in sedion 3.1. Default rules have, apart from a

condition and a mnclusion, a justificaion. This justification is used to block the

application of arulein case it follows that there is an exception. We do not have to

asaime by default that thereis no exception to arule, asin the previous approach.
Rules are represented as default rules as follows:

(5) Condition : ~Exception(identifier) / Conclusion

Again it isasumed that diff erent rules have diff erent identifiers. An exception rule
isrepresented as:

(6) Exception : =Exception(identifier2) / Exception(identifier)
An exception-to-exception ruleis represented as:

(7) Exception_to_exception : =Exception(identifier3) / Exception(identifier2)
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It turns out that the representation of rules and exceptions in this way meds the
requirements, including that of the exception-to-exception case. To see the
difference with the maxiconsistent set approadh, we look what happens in the
exception case that was problematic there.

We start with the default theory (F, A), where F = { Condition, Exception} and
A= {(5), (6), (7)}. We propose two sets of sentences E and E* as guesss for
extensions. They correspond to the two extensions in the maxiconsistent set

approach:

E = Th(F O { Exception(identifier)} )20
E* = Th(F O {-Exception(identifier2), Conclusion})

The set E isindead an extension, sincewe have:

Ey,=F, and
E; = Th(F O { Exception(identifier)}) = E, and
E =Ey, forali>1.

and therefore E = Di E;, asrequired. But the set E* is not an extension. We have:

E*o=F, and
*, = Th(F O {Conclusion}), and
E*, =E* forali> 1

As aresult Di E*, = E*1, which is a proper subset of E*. Since no information in
the ssaumptions supparts that there is no exception to the rule identifier2, the
sentence - Exception(identifier2) cannot be an element of an extension.

We mnclude that this approach using default rules can adequately ded with the
threerequirements for reasoning with rules with exceptions.

Counterarguments

The third approach that we discussuses counterarguments. We base the discusson
here on Pollock’s Theory of Defeasible Reasoning (19871995. We start by giving
adescription of some of his definiti ons, adapted to suit our neels.

An argumentation theory is a pair of sets (Args, Defs), such that Defs is a set of
pairs of elements of Args. The dements of Args are cdl ed arguments, the dements
of Defs defeaters. If (a, B) is an element of Defs, the agument a is sid to defeat
the agument 3. Poll ock then defines levels, as follows:

20 Here Th(S) denates the deductive closure of S, i.e., the set of al deductive mnsequences
of S.
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e All argumentsarein at level 0.
e Anargument isin at level n + 1if and only if it isin at level 0 and it is not
defeaed by any argument that isin at level n.

An argument is ultimately undefeated if and only if thereisalevel such that it isin
at that level and at all higher levels. An argument is ultimately defeated if and only
if thereisalevel such that it isout at all higher levels. An argument is provisionally
defeated if and only if it is neither ultimately undefeaed nor ultimately defeaed.

Pollock’s Theory of Defeasible Reasoning can be used to represent reasoning
with rules with exceptions as foll ows.21 We define atheory of reasoning as a pair
of sets (Facts, Rules), where Facts are dements of some language L and Rules
have the form Condition — Conclusion, where Condition and Conclusion are
elements of the language. It is asaumed that the language L contains identifiers for
the rulesin Rules, and has a predicate to represent exceptions. For instance, the fact
that there is an exception to the rule Condition - Conclusion with identifier id,
might be expressed as foll ows:

Exception(id)

For a theory of reasoning (Facts, Rules), we can define an argumentation theory
(Args, Defs), as follows. The set Args consists of al fads and al loopfree dains
of rules garting from the fads. The set Defs consists of pairs of arguments (a, ),
such that the agument a ends with Exception(id), where id is the identifier of arule
in the agument 3.

As an example, we ssume that the set Rules consists of the following three
rules, with identifiersidy, id2 and id3, respedively:

Condition —» Conclusion
Exception - Exception(idl1)
Exception_to_exception — Exception(id2)

We discuss what happens in the standard, the exception and the exception-to-
exception case. In the standard case, the set of fads only contains Condition. In that
case, the only arguments are Condition and Condition - Conclusion, and thereis no
defeder. As a result, both arguments are in a al levels, and are ultimately
undefeded.

In the exception case, the set of fads consists of Condition and Exception. There
are two new arguments, namely Exception and Exception - Exception(id1). Now
there is one defedaer, namely (Exception - Exception(idl), Condition -
Conclusion). We have:

21 Herewe do nd follow Poll ock.
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The aguments Condition, Condition - Conclusion, Exception and Exception -
Exception(idl) arein at level 0.

The aguments Condition, Exception and Exception - Exception(id1) arein at
level 1, and at al higher levels.

So, the aguments Condition, Exception and Exception - Exception(idl) are
ultimately undefeaed, and the agument Condition — Conclusion is ultimately
defeaed. The latter argument is of course defeaed by the agument Exception -
Exception(id1).

In the exception-to-exception case, the set of fads consists of
Condition, Exception and Exception_to_exception. The new arguments are
Exception_to_exception and Exception_to_exception - Exception(id2). The new
defeder is (Exception_to_exception -  Exception(id2), Exception -
Exception(id1)). We have:

The aguments Condition, Condition - Conclusion, Exception, Exception -
Exception(id1), Exception_to_exception and Exception_to_exception -
Exception(id2) arein at level 0.

The aguments Condition, Exception, Exception_to_exception and
Exception_to_exception - Exception(id2) arein at level 1.

The aguments Condition, Condition — Conclusion, Exception,
Exception_to_exception and Exception_to_exception - Exception(id2) are
inatlevel 2, and at al higher levels.

So, all arguments are ultimately undefeaed, except the agument Exception -
Exception(id1), that is ultimately defeaed. The latter argument is defeaed by the
argument Exception_to_exception - Exception(id2).

5 Ruleconflicts

In this sdion, we discussapproaches to deding with rule mnflicts. We do thisin
two parts. First, we discuss different approaches to the representation of conflict
resolving information. Second, we discussapproaches to deding with conflicts and
consistency maintenance

5.1 Representing conflict resolving information

We start with a discusson of approaches to the representation of conflict resolving
information. We distinguish three types of conflicts: conflicts of pairs of rules,
bipdar multiple conflicts, and general multiple nflicts. For ead type of conflict,
we discussa mrresponding type of conflict resolving information: rule priorities,
weighing, and general conflict resolution, respedively.



26 Chapter 4: Formalizing rules. a mmparative survey

Conflicts of pairs of rulesand rule priorities

The simplest, and most common, type of rule conflict is the conflict of two rules:
there ae two rules with oppaite mnclusions and the anditions of both rules are
satisfied.

If there is a @nflict of a pair of rules, often one of the rules prevail s over the
other. We have seen several examples in chapter 3, sedion 6.1. As aresult of such
priority information, the wnflict is resolved. The prevailing rule leads to its
conclusion, while the other rule does not. Clealy, the cnflict of rules leads to a
spedal type of exception to the non-prevaili ng rule. As a result, rule priorities can
be represented using the techniques already discussed in sedion 4.1 on representing
exceptions.

Asaume that we have two rules with incompatible mnclusions represented as
the following two material conditionals:

Condition; 00~ Exception(identifier1) — Conclusion
Condition, 00 - Exception(identifierz) - —Conclusion

Asaime moreover that the first prevails over the other. This priority information
can now be represented as foll ows:

Condition; 0 - Exception(identifier;) — Exception(identifierz)

Abbreviating Condition; O -~ Exception(identifier;) as Applicable(identifier)) (for i = 1
or 2), we obtain the foll owing sentence

Applicable(identifier:) — Exception(identifierz)
It may be tempting to represent the priority information as the foll owing sentence
Applicable(identifier;) — - Applicable(identifierz)

However, thisis an incorred representation, since this sntenceis ymmetric in the
two rules, asits equivalent

- Applicable(identifier;) O - Applicable(identifier,)
clealy shows.
Bipolar multiple conflicts and weighing
The seoond type of rule @nflict that we discussare bipolar multiple conflicts: two

groups of rules have egual conclusionsin ead group, but incompatible mnclusions
aaossthe groups, whil e the conditi ons of the rules are satisfied.
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For instance, the following material conditi onals represent a bipolar conflict of
agroup of nrulesand agroup of mrules (where n and m are natural numbers):

Conditiony; O~ Exception(identifier;;) - Conclusion

Condition:, O~ Exception(identifier;) - Conclusion
Condition,; 00 - Exception(identifier,;) - —~Conclusion

Conditionzm O -~ Exception(identifierom) - —~Conclusion

We have seen examples in which such a onflict cannot be resolved by priority
information on pairs of rules, but by priority information on groups of rules
(chapter 2, sedion 1.3; chapter 3, sedion 4).

The priority technique used for pairwise cnflicts can be extended to the case of
bipolar multiple cnflicts. For instance, if the first group of n rules above prevails
over the second group of m rules, this can be represented as foll ows:

Applicable(identifiery1) O... O Applicable(identifiersn) — Exception(identifierzy) O
... JException(identifierzm)

In Reason-Based Logic (chapter 2), a representation similar to this one is possble.
However, Reason-Based Logic provides a second way of representation, using the
weighing of reasons. The priority of the first group of rules over the second is
represented as the fad that the reasons that result from the first group of rules
outweigh the reasons from the second group:

Outweighs({conditionyy, ..., conditionin},
{conditionyy, ..., conditionzm},
conclusion)

The two techniques am to lead to similar results. However, there is a technicd
difference. The two expressons representing conflict resolving information are not
equivalent, because the weighing expresgon only helps to resolve the cnflict if
there is no ather rule with conclusion -~ conclusion (cf. the relations between fads
described in chapter 2, sedion 5), whil e the generalized priority expresson helpsto
resolve the conflict also in that case. The use of the weighing expresson refleds
the intuiti on that the bipolar multiple conflict should only be resolved if al rules of
the losing side, i.e., those with conclusion - conclusion, have been considered. In
the more famili ar terminology of reasons, the weighing information only should
have dfed if al counterreasons have been considered.

As aresult, the explicit representation of the weighing of reasons as in Reason-
Based Logic seams to be doser to the examples of acaua of reeasons, that led to
the distinction of bipolar rule nflicts.
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General multiple conflicts and general conflict resolution

As athird type of rule mnflict, we discussgenera rule @nflicts: thereisagroup of
rules with incompatible mnclusions, the mnditions of which are satisfied. For
instance, we might have:

Condition; 00 - Exception(identifier1) — Conclusion,

Condition, 00 - Exception(identifier,) - Conclusion,
= (Conclusiony O... O Conclusiony)

We have seen two spedal cases of resolutions of such a general rule conflict:

1. One of the rules might prevail over another.
2. A subgroup o rules might prevail over another subgroup of rules with
incompatible conclusion.

The most general type of conflict resolution would require the representation of the
prevalence of any subgroup over any other subgroup, formally:

Prevails({identifier1, ..., identifierin},
{identifierzy, ..., identifieram})

We do not know a formalism in which this is explicitly done, athough it is a
natural generalizaion of the two discussed representation techniques, i.e., using
exceptions and using weighing, to the case of general multiple anflicts.

5.2  Conflictsand consistency maintenance

Since there is not always sufficient information to resolve rule cnflicts, many
techniques have been propaosed to prevent the unwanted effeds of contradiction by
means of consistency maintenance. Here we discussthreesuch techniques. We start
with Reiter's normal and semi-normal default rules (Reiter, 1980 1987, then we
discussVreeswijk’s use of conclusive force (Vreeswijk, 1991, 1993, and we finish
with Pollock’s coll edive defea (Pollock, 1987).

Normal and semi-normal default rules

The first approach to consistency maintenance in case of rule @nflicts that we
discuss are the normal and semi-normal default rules of Reiter's Default Logic
(Reiter, 1980 1987). In sedion 4.2, we dready discussed how default rules (Reiter,
1980 1987 can be used to represent rules with exceptions. There, a rule was
represented as a default of the foll owing form:
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Condition : =Exception(identifier) / Conclusion

If two default rules of thisform are in conflict, there is no extension. An example is
the theory (F, A) defined as foll ows:

F = { Condition1, Conditiony}
A = {Condition; : =Exception(identifier;) / Conclusion,
Condition. : =Exception(identifierz) / = Conclusion}

As aresult, using the skepticd conseguence relation of Default Logic, everything
follows from such a theory. This behavior resembles the behavior of an
inconsistency in classcd logic.

There is another type of default rule that can never give rise to this behavior:
default rules of thistype ae cdled normal default rules, and have the form

Condition : Conclusion / Conclusion.

Informally, a default rule leals to its conclusion if its condition is stisfied, unless
that would lead to an inconsistency. Normal defaults have the nice formal property
that atheory that only contains normal default rules always has an extension.

Reiter (1980 1987 clamed that normal default rules were sufficient in
pradice However, as was arealy noted by Reiter and Criscuolo (1981, 1987,
normal default rules are not aways sifficient. We saw above that non-normal
default rules are needed to represent rules with exceptions.

In order to cach the benefits of both, a cmmbined form can be used, as follows:

Condition : =Exception(identifier), Conclusion / Conclusion

Default rules that have their conclusion as one of their justificaions are cdled
semi-normal. Informally, a default rule of this form leads to its conclusion if its
condition is sttisfied, unless Exception(identifier) or -Conclusion would also
foll ow.

Two conflicting rules will now give rise to two extensions. For instance, the
theory (F, A) with

F = { Condition1, Conditiony}
A = {Condition; : =Exception(identifier;), Conclusion / Conclusion,
Condition. : =Exception(identifierz), = Conclusion / = Conclusion}

has two extensions E; and E»:

E; = Th({ Condition;, Condition, Conclusion})
E, = Th({ Condition;, Conditionz, = Conclusion})
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In ead extension, only one of the rules has led to its conclusion. Intuitively, the
two extensions can arise because there ae two orders in which the defaults can be
used: first drawing the mnclusion of rule identifier; blocks using rule identifier.,
while first drawing the conclusion of identifier, blocks using rule identifier;.

However, a theory with only semi-normal default rules does not always have an
extension, as the theory (F, A) with

F = {Condition;, Condition,, Conditions}

A = {Condition; : ~Exception(idy), Exception(idz) / Exception(idy),
Condition; : = Exception(idz), Exception(ids) / Exception(ids),
Conditions : =Exception(ids), Exception(id.) / Exception(id.)}

shows.
Conclusive force

The semnd approach to consistency maintenance in case of conflicts that we
discuss is Vreeswijk’'s use of the anclusive force of arguments. We give a
simplified overview of some definitions of Vreeswijk's (1991 1993 Abstrad
Argumentation Systems.

Vreeswijk starts with the definition of an argumentation system as a triple
(Language, Rules, <). Here Language is any set containing a speda element 0O,
denoting contradiction. This st is cdled the language of the agumentation system.
The set Rules is a set of rules, that have the form Condition, ..., Condition, -
Conclusion. The conclusive force relation < is a strict order on arguments, that are
treelike chains of rules.

He proceads with the definition of defeasible entail ment and extensions, which
uses the notion of conflict. A set of arguments Arguments is in conflict with an
argument Argument (relative to a set Assumptions 0O Language), if Argument and
elements of Arguments are parts of a larger argument with conclusion O and with
premises in the set Assumptions. A relation | between sets of sentences of the
language and arguments is cdled a defeasible entailment relation if the following
holds for all setsFacts 0 Language and arguments Argument:

Assumptions ~ Argument if and only if one of the following tolds:
1. Argument isan element of Assumptions
2. Argument has the form Argument, ..., Argument, — Conclusion, and for
every set of arguments Arguments, such that Assumptions ~ Argument’ for
al elements Argument’ of Arguments, we have:
If Arguments isin conflict with Argument (relative to Assumptions),
then there is a Argument’ in Arguments, such that Argument’ < Argument.

(This is not a definition of the relation ~ by reaursion on arguments, since ~
appeas on both sides of the ‘if and only if' . Such a definition would be unexpeded
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since i~ is nonmonotonic.) An extension of a set Assumptions is then defined as a
set of arguments Arguments, such that Arguments = { Argument | Assumptions |~
Argument} .

How can Vreeswijk’s formalism be used to maintain consistency in case of rule
conflicts? In Vreeswijk’s formali sm, conflicts of rules occur as conflicts of the final
steps of arguments. Informally, Vreeswijk’s definition hes the result that such
conflicts between arguments are resolved by ‘throwing away’ one agument that is
involved in the conflict.

To choose an argument, the mnclusive force relation is used: an argument
cannot be thrown away if it is gronger than any of the other arguments involved in
the onflict. Since there can still remain more than one agument that can be
chosen, multiple extensions can arise.

Collective defeat

As a third approach to consistency maintenance in case of rule anflicts, we
mention Poll ock’s coll edive defea (Poll ock, 1987).

He propcses to withhold from drawing a cnclusion in case there is an
unresolved conflict of rules. He adieves this by considering al arguments with
conflicting last steps as defeaed in case of an urresolved conflict: the aguments
are collectively defeated.

In Reason-Based Logic (chapter 2), there is a variant of colledive defed: if
there ae @nflicting reasons, but there is no weighing information avail able, no
conclusion follows. As a result, while Pollock’s colledive defea can maintain
consistency for general multiple rule nflicts, Reason-Based Logic uses a form of
colledive defea in the spedfic case of bipolar multi ple conflicts.

6 Reasoning about rules

Below, we discussthree gproadchesto deding with reasoning about rules. The first
isto tred rules as gedal sentences. The seaond is to use rule identifiers. The third
istotred rules as pedal objeds.

6.1 Rulesas special sentences

The first approach to deding with reasoning about rules is to trea rules as gedal
sentences, as in conditional logics (e.g., Nute, 1980 1994 Delgrande, 1988. In
conditi onal logics, the properties of a spedal connedive ae spedfied on the meta-
level. We dready discussed the oonditional logic gpproach in sedion 3.2 on
relevance There, we mentioned conditi onal logics because they make it possble to
take the requirement of relevance into acount. But conditional logics aso are
regarded as logics that can trea reasoning with rules.
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For instance, asaume we want to represent a transitive type of rule. Then one of
the defining properties of the rule-representing conditi onal would be:

A>B,B>CFA>C

This rule of inference makes it passble to derive the cnditional A > C from the
conditionalsA >B and B > C.

If we wish to represent a type of rule that is not transitive, one of the defining
properties of the cnditiona representing the rule type, might have the following
wedker property:

A>B,(AOB)>CKA>C

By choasing the defining properties, we can spedfy different forms of reasoning
about rules.

However, there ae two limitations. The first limitation is that in this way it is
impossble to dstingush classes of rules unless eadt classof rules is represented
by a syntadicdly different conditional. As a result, properties of rules of different
kinds, such as transitive and intransitive rules, can only be represented at the meta-
level, and not, more flexibly, at the logicd level.

The second limitation is that in conditional logics, it is impassble to represent
fads about rules, other than that they are valid or invalid. As aresult, althoughit is
possble to represent the first type of reasoning about rules distingushed in
sedion 2.4, i.e., reasoning with rules as conclusions, it is not passble to represent
the second type, i.e., reasoning with fads about rules.

6.2 Ruleidentifiers

The second approach to deding with reasoning about rules is an attempt to ded
with these limitations, and is the technique of rule identifiers, already discussed as
one of the techniques to represent exceptionsin sedion 4.1.

This technique can be used in a more general way to ded with reasoning about
rules. To represent exceptions to rules the rule identifiers were only used in the
spedal purpose predicate Exception(identifier). However, rule identifiers can also
be used as parameters for other predicates. For instance, the anclusion of a priority
argument says that some rule prevails over another rule. If the identifiers of these
rules are identifier, and identifierz, this can be represented as foll ows:

Prevails(identifiers, identifierz)

As aresult, if this technique is used, it is possble to represent the second type of
reasoning about rules distingushed in sedion 2.4, i.e., reasoning with fads about
rules, but it is not clea how to represent the first type, i.e., reasoning with rules as
conclusions. This limitation is the result of the fad that the gproac is unclea



Sedion 6: Reasoning about rules 33

about the status of rules and identifiers, as was aready noted in sedion 4.1 on
representing exceptions.

6.3 Rulesas special objects

The latter brings us to the third approach to deding with reasoning about rules,
namely to consider rules as gedal objeds, as in Reason-Based Logic (chapter 2).
This approach was also dscussd in sedion 3.3 on relevance and sedion 4.1 on
representing exceptions.

Aswe will seg this approacd can be regarded as an integration of the two ather
approaches, keeging the benefits of bath. To recdl, rules are treded as objeds, that
are represented as follows:

rule(condition, conclusion)

Transitivity of rules can now be represented as

Valid(rule(a, b)), Valid(rule(b, c)) i Valid(rule(a, c))

Transitivity of rules can be restricted to a cetain class of rules by explicitly
mentioning such a dass here named transitive_class:

Class(transitive_class, rule(a, b)), Class(transitive_class, rule(b, c)),
Valid(rule(a, b)), Valid(rule(b, c)) I Valid(rule(a, c))

Fads about rules are stated using the @wmplete rule, instead of using only an
identifier. The former is more epressve. For instance, wheress for the
representation of an exceptionto aruleit is sufficient to use an identifier, asin

Excluded(identifier),

for the representation of the validity of a rule the complete rule, including its
conditi on and conclusion are needed, as in the foll owing sentence

Valid(rule(condition, conclusion))
As explained in chapter 2, sedion 3.1, this approach requires a trandation from
sentences to terms. This trandation is arealy necessry in order to daw a
conclusion from avalid rule, asin ordinary rule gplicaion:

Valid(rule(condition, conclusion)), Condition I~ Conclusion

For details on the formal definition of such a trandation, the reader is referred to
chapter 2, sedion 4.3.
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In this approadh, the properties of rules can be spedfied bah on the meta-level
and on the level of the logicd language. As a result, the meta-level can be used to
spedfy the general properties of rules that are mnsidered most basic, such as rule
applicaion and its relation to exceptions, while the level of the logicd language
can be used to spedfy the spedfic properties of spedfic rulesin a spedfic case or
domain.

Therefore, this approach can ded with both types of reasoning with rules that
were distingushed in sedion 2.4, in contrast with the conditionals and identifiers
approach.
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