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Abstract—The environment around general-purpose service
robots has a dynamic nature. Accordingly, even the robot’s
programmer cannot predict all the possible external failures
which the robot may confront. This research proposes an
online incremental learning method that can be further used
to autonomously handle external failures originating from a
change in the environment. Existing research typically offers
special-purpose solutions. Furthermore, the current incremental
online learning algorithms can not generalize well with just
a few observations. In contrast, our method extracts a set of
hypotheses, which can then be used for finding the best recovery
behavior at each failure state. The proposed argumentation-
based online incremental learning approach uses an abstract and
bipolar argumentation framework to extract the most relevant
hypotheses and model the defeasibility relation between them.
This leads to a novel online incremental learning approach that
overcomes the addressed problems and can be used in different
domains including robotic applications. We have compared our
proposed approach with state-of-the-art online incremental learn-
ing approaches, an approximation-based reinforcement learning
method, and several online contextual bandit algorithms. The
experimental results show that our approach learns more quickly
with a lower number of observations and also has higher final
precision than the other methods.

Note to Practitioners—This work proposes an online incre-
mental learning method that learns faster by using a lower
number of failure states than other state-of-the-art approaches.
The resulting technique also has higher final learning precision
than other methods. Argumentation-based online incremental
learning generates an explainable set of rules which can be
further used for human-robot interaction. Moreover, testing the
proposed method using a publicly available dataset suggests
wider applicability of the proposed incremental learning method
outside the robotics field wherever an online incremental learner
is required. The limitation of the proposed method is that it aims
for handling discrete feature values.

Index Terms—Argumentation-Based Learning, Online Incre-
mental Learning, Argumentation Theory, General Purpose Ser-
vice Robots

I. INTRODUCTION

THE development and application of domestic service
robots are growing rapidly. Whereas basic household

robots are already common practice [1], the study of General
Purpose Domestic Service Robots (GPSR) able to do complex
tasks is increasing [2], [3]. Due to the dynamic environment
around GPSRs, they need to efficiently handle noise and
uncertainty [4].

On the hardware level of GPSRs, any kind of system
failure should be avoided. On a practical level, which involves

1 Department of Artificial Intelligence, Bernoulli Institute, Faculty of
Science and Engineering, University of Groningen, The Netherlands.

2 Institute of Engineering and Technology (ENTEG), Faculty of Science
and Engineering, University of Groningen, The Netherlands.

∗The corresponding author.

persistent changes in the environment, it becomes much more
difficult to account for all possible external failures at design
time. Therefore, it is important to note that confronting un-
foreseen failures is mostly the default state for GPSRs, rather
than an exceptional state as often described in the literature.
There are some solutions for external failure recovery in the
literature, which involve using simulations for the prediction
of external failures [5] and logic-based reasoning to account
for external failures [6], [7]. However, in most of these cases,
the solutions are proposed for specific applications. In the
following, we use the word “Failure” instead of the word
“External Failure” for conciseness. This means that the focus
of our research is not on system/hardware failures. In this
paper, we propose an argumentation-based incremental online
learning method for recovering from unforeseen failures.

A. Argumentation

Argumentation is a reasoning model based on interaction be-
tween arguments [8]. Argumentation has been used in various
applications such as non-monotonic reasoning [9], inconsis-
tency handling in knowledge bases [10], and decision making
[11]. In [12], Dung has defined an Abstract Argumentation
Framework (AF) as a pair of the arguments (whose inner
structures are unknown) and a binary relation representing the
attack relation among the arguments. Extending Dung’s idea,
some arguments can support a conclusion and others might be
against (attacking) that conclusion in the bipolar argumentation
framework [13]. Both the Bipolar Argumentation Framework
(BAF) and the Abstract Argumentation Framework (AF) are
used in the proposed argumentation-based learning approach.

B. Argumentation in Machine Learning

According to a recent survey by Cocarascu et al. [14], the
works using argumentation in supervised learning are listed
as follows. Argumentation-Based Machine Learning (ABML)
[15] uses the CN2 classification approach [16]. This method
uses experts’ arguments to improve the classification results.
The paper by Amgoud et al. [17] explicitly uses argumentation.
There are other approaches for improving classification using
argumentation in the literature [18].

Machine learning techniques have also been used for ar-
gumentation mining [19], [20], [21]. Bishop et al. combined
argumentation with machine learning to prevent failure in deep
neural network based break-the-glass access control systems
[22].

In contrast with the aforementioned methods, we do not
use argumentation for improving the current machine learning
approaches or resolving conflicting decisions between current
classification methods; instead, we focus on the development
of an online incremental learning method. Moreover, the
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proposed method only uses class labels for the testing phase
and not for the training. Therefore, it can be utilized in open-
ended (class-incremental) scenarios as well [23].

C. The Expansions

This research is an expansion of the conference paper [24].
The specific expansions are listed as follows.
• The comparison of our proposed Argumentation-Based

Learning (ABL) approach with multiple associative re-
inforcement learning approaches or contextual bandit
algorithms has been added to the paper. Contextual bandit
algorithms are the most relevant approach to study types
of scenarios similar to those presented in this paper.

• Formalizing the proposed method. This includes formal-
izing the updating procedure of the hypotheses generation
unit and hypotheses argumentation unit, formalizing the
process of generating hypotheses from the BAF and
formalization of the first and second guess generation. In
this way, the specification of the method is fully precise
and non-ambiguous.

• Extending the proposed method to handle multiple suc-
cessful recovery behaviors rather than only one success-
ful recovery behavior at each state. Real-world robotic
scenarios sometimes have multiple successful recovery
behaviors for a failure state.

• Specifying the algorithms in the proposed method
by adding pseudocodes to explain argumentation-based
learning in more detail. In this way, the computational
details of our implemented algorithms are fully explained.

• Validating the argumentation-based learning method out-
side the robotics scenarios, using a publicly available
machine learning dataset (from the UCI repository). This
emphasizes the applicability of the proposed method as
a general technique for online incremental learning and
it shows that this method is not limited to robotics
applications.

The rest of this paper is organized as follows. The required
background is presented in Section II. Section III introduces
the scenarios used in this research. In Section IV, the proposed
method has been explained in more detail. Section V presents
the experiments and the results obtained from this research.
The discussion is presented in Section VI. The conclusion is
given in Section VII.

II. BACKGROUND

The Abstract Argumentation Framework (AF) and Bipolar
Argumentation Framework (BAF) are the building blocks of
the online incremental learning approach proposed in this
paper. AF, BAF and online incremental machine learning
algorithms are formally defined in this section.

A. Formal Definition of Abstract Argumentation Framework

An argumentation framework defined by Dung [12] is a pair
AF = (AR, Ratt) where AR is a set of arguments, and Ratt is
a binary relation on AR, i.e. Ratt ⊆ AR × AR. The meaning
of A Ratt B is that A attacks B where A and B are two
arguments. In order to define the grounded extension semantics

Figure 1: An abstract argumentation framework (AF)

in AF, which is used in the proposed learning method, some
semantics should be defined first.
(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is no
B,C ∈ S such that B attacks C.
(Acceptability) An argument A ∈ AR is acceptable with
respect to a set S of arguments iff for each argument B ∈
AR: if B attacks A then B is attacked by at least one element
of S.
(Admissibility) A conflict-free set of arguments S is admissi-
ble iff each argument in S is acceptable with respect to S.
(Characteristic Function) The characteristic function FAF

in an argumentation framework AF = (AR, Ratt) is defined as
follows:
FAF : 2AR → 2AR and
FAF (S) = {A|A is acceptable with respect to S}.

(Grounded Extension) The grounded extension of an argu-
mentation framework AF, denoted by GEAF , is the least fixed
point of FAF with respect to set-inclusion [12]. Since FAF is
a monotonic function with respect to set inclusion [12], the
existence of the fixed point for this function follows from the
Knaster-Tarski theorem [25].
Example: Consider the argument set AR =
{A,B,C,D,E} and the attack relations given by
Ratt = {(A,B), (B,A), (C,D), (C,E)} as demonstrated in
Fig. 1. Then the conflict-free sets of arguments would be
{}, {A}, {B}, {C}, {D}, {E},{A, C}, {A, D}, {A, E}, {B,
C}, {B, D}, {B, E}, {D, E}, {A, D, E}, {B, D, E}. Among
these, only the sets of {}, {A}, {B}, {C}, {A, C}, {B, C}
are admissible. The grounded extension is {C}, which is the
least fixed point of FAF .

It can be proved that the grounded extension of the
abstract argumentation framework utilized in the proposed
argumentation-based learning method is the singleton admissi-
ble sets which do not have both incoming and outgoing edges.

B. Formal Definition of an Abstract Bipolar Argumentation
Framework

An Abstract Bipolar Argumentation Framework (BAF) [13]
is an extension of Abstract Argumentation Framework by
adding a support relationship. A BAF is a triple of the form
< AR,Ratt, Rsup> where AR is the finite set of arguments,
Ratt⊆ AR×AR is the attack set and Rsup⊆ AR×AR is the
support set. Considering Ai and Aj ∈ AR, then Ai Ratt Aj

means that Ai attacks Aj and Ai Rsup Aj means that Ai

supports the argument Aj .
The semantics of BAF are as follows:

(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is no
B,C ∈ S such that B attacks C.
(Admissible set) Let S ⊆ AR. S is admissible iff S is conflict-
free, closed for Rsup (if B ∈ S and B Rsup C ⇒ C ∈ S) and
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Figure 2: The supporting weights in the Bipolar Argumenta-
tion Framework (BAF).

Figure 3: A Bipolar Argumentation Framework (BAF).

S defends all its elements. For instance in Fig. 3, {A,C,E, F}
is an admissible set since E defends C (i.e. E attacks D which
itself is attacking C) and C defends A and no argument attacks
F. Therefore, {A, C, E, F} defend all its elements.
(Preferred extension) The set E ⊆ AR is a preferred
extension iff E is inclusion-maximal among the admissible
sets. An inclusion-maximal set among a collection of sets is
a set that is not a subset of any other set in that collection.
(Supporting Weights) Like [26] the support relations in our
model also have an assigned weight. Therefore, a node with
higher sum of supporting weights can attack nodes with lower
sum of supporting weights. For instance, Fig. 2 shows that the
aggregated supporting weight of the argument A is 6+4 = 10
and the corresponding supporting weight for the argument B
is 2 + 3 + 4 = 9. Therefore, argument A can attack and defeat
B. The 9 arrows show attack relations and the → arrows
demonstrate support relations in Fig. 2 and Fig. 3. The formal
definition of the supporting weights function is defined in Eq.
8 in Section IV-D.

Figure 3 shows a bipolar argumentation framework. The
admissible sets are {}, {E}, {A, C, E}, {A, C, E, F}. The
preferred extension in this BAF is {A, C, E, F}.

C. Formal Definition of Online Incremental Machine Learning
Algorithms

We define an incremental learning approach that uses a
sequence of data instances d1, d2, ..., dt for generating the
corresponding models M1,M2, ...,Mt. In case of incremental
online learning, each data instance di incrementally updates
the model and Mi : Rn → {1, ..., C}, where C is the number
of class labels, is representing the model which depends on
Mi−1. The online learning is then defined as an incremental
learning which is also able to continuously learn. Incremental
learning approaches have the following properties:
• The model should adapt gradually, i.e. Mi is updated

using Mi−1.
• The previously learned knowledge should be preserved.

A recent study on the comparison of the state-of-the-art
methods for incremental online machine learning [27] shows
that Incremental Support Vector Machines (ISVM) [28], [29]
together with LASVM [30], which is an online approximate
SVM solver, and Online Random Forest (ORF) [31] outper-
form the other methods. The comparison methods used in our
paper have been chosen based on the aforementioned survey
[27].
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Figure 4: Schematic overview of the possible failure state
scenarios. Only the green location is relevant for finding the
best recovery behavior. Alt. stands for the Alternative Route
recovery behavior.

The proposed argumentation-based incremental learning ap-
proach uses the bipolar argumentation framework to model
the visited data instances and generate relevant hypotheses.
Subsequently, the abstract argumentation framework is used
to model the defeasibility relations (i.e. the attack relations)
between the current set of generated hypotheses and predict
the best action (recovery behavior) for an unforeseen incom-
ing data instance. Furthermore, the model incrementally gets
updated as new data instances enter the model.

III. SCENARIOS

The performance of the different methods is tested using three
test scenarios. The aim of the first two test scenarios is to
model a situation where a programmer has provided an initial
solution (e.g., a top level behavior such as entering the room),
while (s)he has not accounted for all possible failures (e.g.,
objects and persons blocking the entrance), but allows the
robot to find new solutions whenever a (previously unseen)
failure occurs.

The basic setup of the first two test scenarios is illustrated
in Fig. 4. The high-level behavior of the robot aims to proceed
from the initial location to the target location using three
entrances. Different obstacles might be on its way to the target
location. In these scenarios, an agent observes all the obstacle
locations at once and chooses a single recovery behavior
(action) for recovering from that failure state. The agent
can reach the goal if it chooses the best recovery behavior;
otherwise, it fails to reach the goal.

In order to make the explanation of the method simpler, we
first concentrate on finding only the best recovery behavior
for each failure state. In the method Section IV, we will
also explain how to generalize the method to scenarios where
multiple recovery behaviors might be successful in a failure
state.

A. Recovery Behaviors

Whenever the robot is confronted with a failure state, it may
use any of the following recovery behaviors to resolve the
issue. The run-time of each recovery behavior in seconds is
presented in parentheses in front of each recovery behavior:
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• Continue (2s): This solution is only useful if the failure
has resolved itself (e.g., the obstacle moved away just
after the failure).

• Push (5s): The robot can try pushing any obstacle.
• Ask (4s): The robot can try to ask any type to move.
• Alternative Route (Alt) (10s): The robot can move to

another entrance to reach the target location.
It is important to note that choosing Alternative Route as
the best recovery behavior may not always lead to success,
because the robot may again be confronted with new obsta-
cles (Fig. 4). Moreover, the best recovery behavior not only
depends on the run-time of each recovery behavior, but also
on the type, the color and the location of the obstacles.

B. Test Scenario 1

In this scenario, three types of obstacles (ball, box or person)
with four colors (red, blue, green or yellow) can be presented
in one of the locations 1 to 6 (Fig. 4). Locations 7 to 9
play no role in this scenario. There can be either zero or
one combination of color-type in each location. Only location
number 5, marked in green (Fig. 4), is relevant for choosing
the best recovery behavior. It is important to notice that the
robot does not know this fact and it should infer that the only
effective location is location number 5 by observing different
failure states in the environment.The agent observes all the
obstacle locations at once and chooses a single recovery be-
havior (action) at each state. A new state is generated randomly
at each time step. The number of possible combinations of
the color-type in each location is 13 (3 types × 4 colors
+ “no obstacle” = 13). Since there are 6 locations in this
scenario, the number of all possible states in this scenario is
136 = 4, 826, 809.

Notice that colors can have meaningful interpretations for
each type of obstacle. For instance, the red object might be
heavy and cannot be pushed, while green ones are light. On the
other hand, red people can be more cooperative and move out
of the robot’s way when being asked. Therefore, the colors can
represent any realistic feature for the people and the objects.
Using the colors instead of these realistic features simplifies
the scenarios with fewer features.

C. Test Scenario 2

This scenario is more complex than the first scenario since
each color-type combination can be presented in any of the
nine possible locations. Here, only the green locations 5 and 8
are required for determining the best recovery behavior. Once
again, the robot does not know this fact and it should infer
that the only effective locations are the location number 5
and 8 by observing different failure states in the environment.
The agent predicts a single recovery behavior (action) while
it can observe all the obstacle locations at once at each state.
The number of all possible states in this scenario is 139 =
10, 604, 499, 373.

D. Test Scenario 3

The third scenario has a different purpose and context. It
shows the applicability of the proposed method outside the
robotics field. The recent study on online incremental machine

learning techniques [27] used the publicly available datasets
from the UCI machine learning repository [32]. We also used
the SPECT heart dataset from the UCI machine learning repos-
itory. This dataset represents the diagnosis of cardiac Single
Proton Emission Computed Tomography (SPECT) images.
Each of the images (patients) is even classified as normal
or abnormal. The database of 267 SPECT image sets has
been processed for extracting features that summarize the
original SPECT images. We randomly selected 40 out of 267
data instances and fed them incrementally to the incremental
learning approaches in order to compare the results.

The SPECT heart dataset has recently been used in various
researches [33], [34], [35], [36].

Notice that we do not use class labels in the training and
that the label for each class is determined autonomously based
on a trial and error procedure in our proposed method. Class
labels are only used for testing the performance of the model
for prediction on an unforeseen data instance.

IV. METHOD

In this section, we will discuss the proposed argumentation-
based learning method for recovering from an unforeseen
failure state.

A. Argumentation-Based Learning (ABL)

In order to explain ABL, we first use a simplified version of the
previous test scenarios where there is only one location ahead
of the robot (instead of 6 or 9). When there is no obstacle
ahead of the robot, the best recovery behavior is “Continue”.

Assume that the robot confronts a blue-ball blocking the
entrance. Since there is no pre-trained model yet, the robot
tests different recovery behaviors in order of their run-time
to find the best one. Supposing that pushing the ball was
successful in this case, the robot should learn from this
experience.

However, unlike the traditional tabular reinforcement learn-
ing techniques, only learning the best recovery behaviors
(actions) for exactly the same experiences (states) is not
enough. We need a learning approach capable of inferring the
correlated feature values (each feature value is the color or type
of the obstacle at each location or an empty location with no
color and type) for choosing the best recovery behavior. This
is known as generalization in the machine learning literature.
For instance, confronting a red ball and a green ball with the
same recovery behavior of pushing, the robot should make a
new hypothesis push a ball. Therefore, the next time the robot
confronts the yellow ball, it can easily infer that Push is the
best recovery behavior.

Confronting a yellow ball with Alternative Route as the
best recovery behavior contradicts the previous hypothesis.
Therefore, a new hypothesis is made: Push a ball unless it’s
yellow. From an argumentation perspective, we can see each
hypothesis as an argument. Therefore, the second generated
hypothesis can attack and defeat the first argument. This is
inspired by human agents who make new hypotheses from
their perceptions and reason about the best course of action at
each state.
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Figure 5: Architecture of the proposed Argumentation-based
learning method.

The architecture of the proposed argumentation-based learn-
ing method is shown in Fig. 5. A bipolar argumentation
framework is used as hypotheses generator unit and an abstract
argumentation framework models the defeasibility relation
between these generated hypotheses.

Algorithm 1 presents the pseudocode of argumentation-
based learning. When a new data instance enters the model,
all the combinations of its feature-values and the set of nodes
in the grounded extension of the AF will be extracted. Each
node (argument) in the AF unit is of the form precondition→
post-condition: weight. According to the similarity between
the preconditions of the arguments in the grounded extension
and the feature values combinations, there will be three
possible cases. Either there will be a unique similarity, multiple
similarities or no similarity. In case of unique similarity, the
post-condition of the argument (which is a recovery behavior)
will be used as the first guess and will be applied to the
environment to see the result. On the occasion that there exist
multiple similarities, the recovery behavior with the highest
weight among the arguments will be chosen and its post-
condition will be applied to the environment. A successful
recovery from the failure state will update the BAF unit
using Algorithm 2. On the other hand, failure from recovery
will lead to generating the second guess (Algorithm 3), up-
dating the BAF unit (Algorithm 2), generating hypotheses
from BAF unit (Algorithm 4) and updating the AF unit
(Algorithm 5), respectively.

We now use an illustrative example to explain the proposed
method in more detail.

B. Example
Table I shows the best recovery behavior when the robot
confronts an obstacle with different colors and types. Notice
that this table is only used for this example and a randomly
generated table is utilized for each of the 1000 independent
runs for the experiments. Figures 6 to 8 show the updating
procedure of the model step by step. In the hypotheses gener-
ation unit (BAF), an arrow→ shows a support relation between
arguments and 9 shows an attack relation between them.
However, in AF, → shows an attack relationship between the
arguments.

Referring to Table I, at the beginning of the learning
procedure, the robot confronts a Red-Ball (R-Ba). It tests all

Algorithm 1: Argumentation-Based Learning pseudocode
input: Current BAF Graph, Current AF Graph, Data Instance DI

entering the argumentation-based learning model
output: List of best recovery behaviors called BRB-list

- Extract all feature-value combinations DI and add them to a list
called Combs.

- Find the set of nodes in grounded extension (GE of AF)
for (all gx in GE) do

for (all comb in Combs) do
if (gx.precondition==comb) then

BRB-list.Add(gx.post-condition)

if (BRB-list is not empty) then
if (BRB-list.Length==1) then

- Apply BRB-list[0] to environment and observe the result.
else

- Select a recovery behavior in BRB-list with highest weight.

if (result==failure) OR (BRB-list is empty) then
- Use BAF unit for second guess generation and add these guesses

to BRB-list by using Algorithm 3
- Update the BAF unit using Algorithm 2.
- Generate Hypothesis from the updated BAF using Algorithm 4.
- Update the AF unit using the generated hypotheses using

Algorithm 5.
if (result==success) then

- Update the BAF unit using Algorithm 2.
return BRB-list

Order Color Type Best Recovery Behavior
1 Red Ball Push
2 Red Box Alternative Route
3 Red Person Ask
4 Green Ball Push
5 Green Box Alternative Route
6 Green Person Ask
7 Blue Ball Push
8 Blue Box Alternative Route
9 Blue Person Alternative Route
10 Yellow Ball Push
11 Yellow Box Alternative Route
12 Yellow Person Ask
13 None None Continue

Table I: Possible combinations of color-type with the best
recovery behaviors.

the recovery behaviors in order of their run-times and finds the
Push recovery behavior as a success (Table I). Subsequently,
the Bipolar Argumentation Framework is getting updated as
in Fig. 6. In order to update the BAF, first, the best recovery
node is added which is Push in this case. Then all the possible
combinations of the feature-values of the current state are
added as supporting nodes. The supporting nodes for Push
are R, Ba and R-Ba. If there previously exists the same
supporting node, its supporting weight will be increased. For
instance in Fig. 7, where 8:B-Bo enters the BAF, since B
and B-Bo are new supporting nodes for the Alt (Alternative
Route) recovery behavior, they are added to the model with a
supporting weight equal to 1. On the other hand, Bo already
exists in the set of supporting nodes for Alt and its weight
is increased. After updating the supporting weights, a set of
hypotheses is generated based on the number of occurrences
of each supporting node. For instance, after observing 1:Red-
Ball (R-Ba), R → Push and Ba → Push are added to the AF
unit.

Confronting 2:R-Bo and using the previously generated
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Algorithm 2: Updating Hypotheses Generation Unit

input: Current BAF Graph, New Data Instance (DI) and the Best
Recovery Behavior BRB

output: BAF Graph

- Extract all feature-value combinations of DI and add them to a list
called Combs.

if (BRB is not in BAF) then
- Add BRB to the BAF graph;
- Add bidirectional attack edges between BRB node and all other

Recovery Behavior Nodes (RBN) in BAF;

for (any item in Combs) do
- Boolean isNewCombination = true
for (any sup in BRB.supporting-nodes) do

if (item == sup) then
sup.weight += 1;
isNewCombination = false;

if (isNewCombination) then
BRB.supporting-nodes.Add (item);

hypotheses (specifically R → Push), the robot would infer
that the best possible recovery behavior is Push, which is a
wrong choice in this case (Table I). Therefore, the robot tries
other recovery behaviors and finds Alt as success and updates
the model accordingly. Moreover, a bidirectional attack will
be added among all the recovery nodes in the BAF (in this
case, Alt and Push). Subsequently, the new set of hypotheses is
generated to update the hypotheses argumentation unit. Finally,
an abstract argumentation framework is updated to model
the attack relations between the set of generated hypotheses
(arguments). This BAF-AF update cycle goes on and on during
the learning procedure.

In this small example, seven out of thirteen predictions of
the model are correct, and only two are wrongly classified
using the proposed argumentation-based learning. In other
cases, our system can provide multiple probable guesses. For
instance, when 12:Y-P enters the system in Fig. 8, the AF
cannot provide any suggestion but the BAF will suggest both
Ask and Alt as the candidate recovery behaviors. However, the
mapping of the states to the best recovery behavior is randomly
generated in all the experiments.

C. Hypotheses Generation Unit (BAF Unit)

This unit has two roles. Firstly, it generates a new set of
hypotheses whenever the AF unit could not classify the new
data instance correctly (1). The second role of this unit is to
produce a second guess for the best recovery behavior (2):

1) In order to generate a new set of hypotheses from the
constructed BAF, only one recovery behavior is considered
which is highlighted with a red box in Fig. 6 to 8. The
pseudocode shown in Algorithm 4 shows the procedure of
hypotheses generation.

The pseudocode of updating the current hypotheses gener-
ation graph (BAF unit) using a new data instance is shown in
Algorithm 2. The only nodes which are getting updated during
this process are the best recovery behavior for the current data
instance and its supporting nodes. Autonomously identifying
the best recovery behavior through trial and error, the update
procedure for hypotheses generation takes place. The updating
procedure searches for a node in the BAF graph with the best

Figure 6: Example of Argumentation-Based Learning for the
illustrative example. First part

recovery behavior and appends all the possible combinations
of the feature-values of the current state to the support nodes
of the best recovery behavior node. In case that a supporting
node already exists in the best recovery behavior node, its
supporting weight is incremented.

2) In order to generate a second guess, a new BAF should
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Figure 7: Example of Argumentation-Based Learning for the
illustrative example. Second Part

be constructed. For an unforeseen failure state, the set of all
possible combinations of feature-values is compared with the
supporting nodes of each recovery behavior node. According
to the sum of the matching supporting weights, the attack
relations are adapted among the recovery behaviors. Therefore,
only recovery behaviors with a higher sum of the matching
supporting weights can attack the other recovery behavior. For
instance, in the example, when 12: Y-P enters the model for
prediction, the AF is not be able to guess the best recovery
behavior. Constructing a new BAF for a second guess, shown
in Fig. 9, the calculated weighted sum for the Alternative
Route (Alt) node is the same as Ask and higher than Push.
Accordingly, the attack relations get updated. Using preferred
extension semantics and its intersection with recovery behavior
nodes, both Alternative Route (Alt) and Ask are chosen as the
second guesses.

D. Formal Representation of Updating Procedure of the Hy-
pothesis Generation Unit (Algorithm 2)
In Section II-C, the formal definition of online incremental
learning is represented. The sequence of labeled data instances
d1, ..., dt is entering the model and the BAF unit gets updated.

Figure 8: Example of Argumentation-Based Learning for the
illustrative example. Third Part

Figure 9: The generated BAF when Yellow-Person (12:Y-P)
enters the model. Blue nodes show the intersection of preferred
extensions and recovery behavior nodes.

The hypotheses generation unit is represented by BAFt+1

when a data instance dt is entering this unit.

BAF0 =< AR0, Ratt0 , Rsup0 >=< Ø,Ø,Ø >

BAFt+1 = update(BAFt, dt) ∀t ≥ 0 (1)

In the following lines, the update procedure for the BAF model
is described. The BAF model at time t+1 is in the following
form:

BAFt+1 =< ARt+1, Rattt+1
, Rsupt+1

> (2)
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Algorithm 3: Second Guess Generation Pseudocode
input: Current BAF Graph, Set of Recovery Behavior Nodes (RBN)
output: Set of recovery behaviors

- Generate a new graph G from BAF with the same set of nodes.
- G.sup = BAF.sup
for Node a in RBN do

for Node b in RBN do
if a != b then

if (a.weight > b.weight) then
G.attacks.add(attack(a,b));

else if (a.weight == b.weight) then
G.attacks.add(attack(a,b));

- return the set of nodes in the preferred extension of G.

Using the best recovery behavior at time t called BRBt

(This is determined by trial and error in the environment) and
the set of all the subsets of feature values in the n-dimensional
data instance dt = (f1t , f2t , ...., fnt

) (fit shows the ith feature
value of the n-dimensional dt vector), called Combs(dt), the
arguments set of the BAF gets updated in the following form:

ARt+1 = ARt ∪BRBt ∪ Combst (3)

where
Combst =

{
P ⊆ {f1t , ..., fnt}

}
(4)

In addition to the set of all the arguments AR, we need to
keep track of the set of the Recovery Behavior Nodes (RBN)
among the arguments in the following way:

RBNt =
{
BRB0, ..., BRBt−1

}
(5)

The attack relation Rattt+1
is getting updated using the current

set of the Recovery Behavior Nodes RBNt and the best
recovery behavior BRBt.

Rattt+1
= Rattt ∪

{
att(BRBt, b)|b ∈ RBNt

}
∪
{
att(b, BRBt)|b ∈ RBNt

} (6)

The support relations between the arguments are getting up-
dated as follows.

Rsupt+1 = Rsupt ∪
{
sup(c,BRBt)|c ∈ Combst

}
(7)

For instance in the example, when the 1:R-Ba enters the BAF
unit (Fig. 6), all the combinations of this data instance {R, Ba,
R-Ba} are added as support nodes to the current best recovery
behavior node, which is Push.

There is also a weight function Wt : Rsup → N+ which
specifies the weights of the support relations in Rsup at time
t. Whenever Rsup gets updated, the corresponding weights for
the support relations update in the following way:

∀c ∈ Combst : Wsup(c,BRBt)t+1
={ Wsup(c,BRBt)t + 1 if sup(c,BRBt) ∈ Rsupt

1 otherwise

(8)

Here, Wsup(c,BRBt)t is the weight of the support relation
sup(c,BRBt) at time t. Eq. 8 means that if the supporting
node c has been already existed in the BAF unit, then its weight
is incremented. Otherwise, its supporting weight is set to 1.

Algorithm 4: Hypotheses Generation Pseudocode.
input: Current BAF Graph, Threshold, the best recovery behavior and

the latest hypothesis with wrong recovery behavior called WrongRule
output: The set of generated hypotheses

- Choose the Best Recovery Behavior node called BRB.
- Normalize the supporting weights of BRB to [0, 1].
- Sort BRB.supporting-nodes according to their weight values from

high to low.
- Sum = 0;
- Hypotheses-List = Empty;
for (any sup in BRB.supporting-nodes) do

if (sup.weight > Threshold) then
Add sup→ BRB to the Hypotheses-List;

for any (A → BRB) in Hypotheses-List do
for any B → BRB in Hypotheses-List do

if (A ⊃ B) then
Remove (A → BRB) from Hypotheses-List;

Add WrongRule.P recondition→ BRB to Hypotheses-List;
return Hypotheses-List;

E. Formal Representation of Generating the Second Guesses
using BAF (Algorithm 3)

For generating the second guess using the incoming data
instance dt, another BAF should be constructed. Fig. 9 shows
the new extracted BAF when the 12:Y-P enters model. It
is almost the same as the main hypotheses generation unit.
However, only the attack relations Ratt should be adapted as
follows.

Rattt =
{
att(a, b) | a, b ∈ RBNt, x, y ∈ Combst,( ∑

(x,a)∈Rsupt

Wsup(x,a)t ≥
∑

(y,b)∈Rsupt

Wsup(y,b)t

)} (9)

Only the recovery behavior node with the higher aggregated
supporting weights can attack the other recovery behavior
node in the generated BAF. For generating a second guess,
the preferred extensions semantics is used to choose the best
recovery behavior nodes as the second guess. Therefore, the
elements in the intersection of the preferred extensions set and
the set of recovery behavior nodes RBNt are selected.

F. Formal Representation of Hypotheses Generation (Algo-
rithm 4)

Using the updated Bipolar Argumentation Framework (BAF)
from the previous subsection, the set of hypotheses can be
generated. Therefore, we can inductively define the hypothesis
set as follows:

HS0 = Ø;

HSt+1 = GenerateHypothesis(BAFt+1, BRBt+1, NCt);
(10)

Here, NCt is the hypothesis used in the AF unit and was
Not Correctly (NC) determined the action (recovery behavior).
We also count the number of times the recovery behavior
BRBt+1 was the best recovery behavior until now and call
it CBRBt+1. Each hypothesis in the hypotheses has the
form of precondition (pre) → post-condition (post): weight
where weight is the hypothesis weight. Whenever a hypothesis
is shown in the form pre → post instead of the previous
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form, it means that the hypothesis weight is equal to 1. The
formalization of generating the hypotheses set is as follows:

HSt+1 =
{

(A→ BRBt+1) : weight | A ∈ AR \RBNt+1

,weight =
Wsup(A,BRBt+1)t+1

CBRBt+1
, sup(A,BRBt+1) ∈ Rsupt+1

,Normalized(Wsup(A,BRBt+1)t+1
) ≥ threshold ,

∀a ∈ A @b ∈ A : a ⊂ b
}
∪ {(NCt.pre→ BRBt+1)}

(11)

Here, the threshold ∈ [0,1] and Normalize is the linear normal-
ization function for Wsup(A,BRBt+1). This equation means that
when the best recovery behavior is determined, it is used as
the post-condition of the hypothesis and its supporting nodes
with a weight higher than a specific threshold are chosen as
the pre-condition. The hypothesis weight is also computed
based on the supporting weight of the supporting node in the
pre-condition and the number of times the current recovery
behavior was the best recovery behavior so far. Choosing a
low threshold value means generating more hypotheses. After
an extensive set of experiments, we found out that threshold
= 0.4 was a good value in all the experiments.

G. Hypotheses Argumentation Unit using AF

As stated in the previous sections, this unit tries to justify
what has been learned so far by updating the attack relations
between the arguments (hypotheses). The arguments in this
framework can only bidirectionally attack each other when
they have the same preconditions but different post-conditions.

When a new data instance enters the model, there are
three possible cases for the set of hypotheses in the grounded
extension of the AF. When the grounded extension of the AF
is the empty set, the second guess is generated by the BAF
unit. If one argument with the same post-condition exits in
the grounded extension of the AF, then this post-condition
will be the AF’s first guess. If more than one argument
with different recovery behaviors in their post-condition was
chosen, the weights of arguments determine which argument
has more power to be selected. For instance in the example, if
blue-ball enters the model after it has been trained using the
complete set of data in Table-I, both B → Alt: 2/4 and Ba →
Push:1 can be used for prediction. Since the Ba → Push:1
has higher weight, the Push recovery behavior will be chosen,
which is the correct choice for this failure state. Notice that in
the proposed argumentation-based learning method, it can be
proved that the grounded extension is a set of the singletons
in the AF.

Algorithm 5 shows the updating process of the hypotheses
generation unit.

H. Formal Representation of Updating Procedure of Hypothe-
ses Argumentation Unit (Algorithm 5)

The hypotheses generation unit is represented by AFt when
data instance dt−1 is entering this unit for updating.

AF0 =< AR,Ratt >=< Ø,Ø >

AFt = update(AFt−1, HSt) ∀t ≥ 1 (12)

Algorithm 5: Updating Hypotheses Argumentation Unit
input: Current AF Graph, the new set of generated hypotheses HS

from BAF unit
output: AF Graph

for (all item in HS) do
- Add item to set of AF.arguments
- Update the attack relations between arguments as follows
for (all arg in AF.arguments) do

if (arg.pre == item.pre) & (arg.post != item.post) then
AF.attacks.Add(attack(item, arg))
AF.attacks.Add(attack(arg, item))

return AF

In time t the Abstract Argumentation Framework (AF) is:

AFt =< ARt, Rattt > (13)

Here the argument set ARt is updated at time t using all
elements in the recently generated hypotheses set HSt and
the previous arguments set ARt−1 as follows:

ARt = ARt−1 ∪HSt (14)

The attack relationship Rattt is also get updated whenever
two arguments have the same preconditions but different post-
conditions:

Rattt = Rattt−1
∪
{
att(x, y)|x ∈ ARt, y ∈ ARt,

x.pre = y.pre ∧ x.post 6= y.post
} (15)

Here, the att(x,y) is the abbreviation for x Ratt y. Figures
6, 7 and 8 show this process. Whenever the hypothesis R →
Push enters the AF unit, since it has the same precondition but
different post-condition with respect to the existing hypothesis
R → Alt in AF, they will bidirectionally attack one another.

Each time a new data dt enters the AF unit for the first guess
generation, the grounded extension called GEt+1 is computed.
Using Combst+1, the Best matching Hypothesis BHt+1 is
chosen to generate the first guess in the following way.

BHt+1 =
{
A ∈ Ht+1|B ∈ Ht+1, A.weight ≥ B.weight

}
(16)

where

Ht+1 =
{
h ∈ GEAFt+1

| h.pre ∈ Combst+1

}
(17)

This means that only the hypothesis with the highest weight
can be selected as the best matching hypothesis. Subsequently,
the first guess is the post-condition of the current best hypoth-
esis:

FGt+1 = BHt+1.post (18)

I. Why not Reinforcement Learning?

Reinforcement Learning (RL) techniques learn by interact-
ing with the environment. Like our proposed method, these
methods effectively learn with trial and errors, by performing
actions and remembering their consequences [37]. Traditional
tabular reinforcement learning methods are inefficient for
large state spaces [38]. Moreover, most traditional tabular
reinforcement learning techniques do not take the similarity
of the features of each state into account, which is needed for
the robotic scenarios in this paper. However, there are a few
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exceptions. Some more recent tabular RL techniques have the
generalization capability and take the similarity of features
into account [39], [40]. In order to include the generaliza-
tion capability into traditional tabular RL techniques, a non-
linear function approximation technique like artificial neural
networks is incorporated to handle the large state space and
account for the similarity of the features among the states.
However, the robotics scenarios in this research have the
following properties which make these RL methods behave
similarly to a neural network:
• In these scenarios, the next state is not dependent on the

current state and the current action because the simulated
failure states are generated randomly in the experiments.

• As a consequence of independence between two con-
secutive states, there is no delayed reward in the cor-
responding robotic scenarios. Therefore, only the instant
rewards, that are dependent on the success of choosing
the best recovery behavior at each state, are enough for
the formulation.

Considering these properties, the function approximation of
the reinforcement learning approach is like a neural network
which takes the current state and the current action and outputs
the instant rewards. Using such a neural network, the next
step is to find the action with the highest instant reward for
that state to be selected as the best recovery behavior. This
is similar to having a neural network which takes the current
state as the input and outputs the best recovery behavior in that
state. This network has been implemented as an MLP neural
network in the results section. Moreover, we have compared
our method with contextual bandit algorithms.
J. Contextual Bandits
Contextual bandits or associative reinforcement learning tech-
niques have been used for scenarios similar to those studied
in this paper. Therefore, we compare the performance of the
proposed ABL technique with various online contextual bandit
algorithms.

Contextual bandit is defined as follows. There is an agent
who can choose between a number of choices (known as
“arms”), which can lead to stochastic rewards. In each round,
the current state is generated, which is a set of features of
a fixed dimensionality that is known as “context”. The agent
chooses an arm at each round and the corresponding reward for
that action in that specific context is returned as a feedback to
the agent. The ultimate goal of the agent is to find a policy that
maximizes the long-term rewards using the history of previous
actions.

Most research on finding an efficient algorithm for con-
textual bandit problems in the last decade can be divided
into two categories, namely Upper Confidence Bounds based
algorithms (UCB) [41], [42], [43], [44] and Thompson Sam-
pling algorithms (TS) [41], [45], [46], [47]. Zhou el al.
[48] proposed an offline multi-action learning approach which
can take constraints on the learning policy into account, for
instance budget constraints. In Section V, we will compare our
method with both UCB and TS approaches.
K. Generalizing ABL to Other Real-Word Scenarios
So far, we have assumed that at each failure state only one
recovery behavior is successful and the others fail. However,

this assumption might not be the case in all the real-word
scenarios. Therefore, in the following paragraphs, we explain
how we can generalize the ABL method to handle multiple
successful behaviors.

Like Reinforcement Learning (RL) techniques, each action
(i.e. a recovery behavior in our case) must have a reward
reflecting how good it is. For example this reward can be a
function of the run-time of that recovery behavior where the
lower run-time leads to higher reward. This reward function
for each recovery behavior can be formulated as follows.

R =

{
0 Failure

1
run-time Successful Recovery Behavior

(19)

Using the epsilon-greedy algorithm [49] for choosing the
different recovery behaviors at each failure state, we are able
to have a trade-off between the exploration of the new recovery
behaviors and the exploitation the previously successful recov-
ery behaviors. When a new recovery behavior is explored and
it is successful, then the BAF unit in ABL should generate a
new set of hypotheses based on that recovery behavior and its
run-time.

Furthermore, the hypothesis format in the AF unit of the
ABL method should be changed. The new hypotheses have
the form pre → post : weight : reward. Subsequently, the
set of hypotheses with the highest rewards in the grounded
extension of the AF unit is found for choosing the best
recovery behavior. If the hypotheses used in the previous step
have the same rewards, the weight is used to choose the best
recovery behavior as before.

The required changes in the ABL algorithm are listed below:
• The line “choose the Best Recovery Behavior node called

BRB” in the Algorithm 4 should change to “choose the
Best Recovery Behavior node called BRB based on the
epsilon-greedy algorithm (ε = 0.05)”

• The Reward is added to the format of each hypothesis.

pre→ post : weight : reward

• The Best Recovery Behavior from the AF unit is chosen
based on the grounded extension, the reward and the
weight of each hypothesis.

This methodology is only needed when we don’t know the
rewards of each recovery behavior (action) in advance. If we
previously know the rewards for each of the recovery behav-
iors (as in our experiments), with the following modification,
we can use the same ABL method as before. At each point a
trial and error procedure takes place based on the ordering of
the recovery behaviors from the one with the highest reward
(lowest run-time) to the one with the lowest reward (highest
run-time). This guarantees that the first successful recovery
behavior is always a best choice.

V. EXPERIMENTS

In this section, we compare the performance of our proposed
ABL method with other incremental learning techniques and
contextual bandits algorithms. The survey by V. Losing et
al. compared a broad range of incremental online machine
learning techniques [27]. Using the key methods in their
survey, we are also comparing the proposed method with
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Incremental Support Vector Machine (ISVM) [28], [50], [51],
incremental decision tree based on C4.5 [52] and ID3, in-
cremental Bayesian classifier [53], Online Random Forest
(ORF)[31] and Multi-Layer Neural Networks for classification
with localist models like Radial Basis Functions (RBF) which
work reliably in incremental settings [54], [55].

Cortes has recently compared the performance of different
contextual bandit algorithms in his paper [56]. He adapted
Multi-Arm Bandits (MAB) policies to contextual bandit algo-
rithms. We have also compared our proposed ABL technique
to various online contextual bandit approaches.

A. Performance Measure

The mean performance of each method is calculated over 1000
independent runs. Each run for the robotic scenarios consists
of 200 failure recovery attempts. Since the order of the failures
has a direct effect on all the open-ended online incremental
learning methods like ours, the order of failures is randomized
for each run in which there is an equal uniform probability for
each solution to be a success.

We are interested in knowing whether the method picked
the best recovery behavior or not for a given failure state.

For the third test scenario, we randomly choose 40 data
instances for online train and test procedure.

Notice that all the methods use the same randomly generated
data set compatible with the conditions mentioned in the test
scenarios.

Furthermore, the mapping of each state to the best recovery
behavior (a table like Table I), which is used for testing the
performance of the model, is randomly generated at each of
the 1000 independent experiments.

B. Comparison criteria

In the robotic scenarios, we need a learning approach which
can quickly learn to recover from failure states in a low
number of attempts. Moreover, for other test scenarios, the
goal is to incrementally learn from a lower number of training
instances. Therefore, the increase in learning precision in a
lower number of attempts is one important criterion (which we
call learning speed) to evaluate the efficiency of the method
[57]. Therefore, learning curves with the highest steepness in
a smaller number of attempts are desirable. Furthermore, the
final learning precision is also an important criterion.

C. Comparison Methods

The first method utilized for comparison is a incremental naive
Bayesian classifier [58]. We use exactly the same parameters
as [58] in the experiments. The second categories of methods
that are used for comparison are rule extraction and decision-
tree based methods. The PART algorithm is based on the C4.5
decision tree classification method [59]. PRISM is an algo-
rithm for inducing modular rules [60], [61]. The ID3 algorithm
constructs an unpruned decision tree for classification [62].
The J48 algorithm is also based on a pruned or unpruned C4.5
decision tree [52]. The incremental version of decision tree

algorithm is discussed in [63]. We used the standard Weka1

machine learning software for the implementation of these
methods.

The incremental version of the random forest algorithm
is called Online Random Forest (ORF) [31]. We have used
the same parameters in the implementation of the online
random forest method. The Multi-Layer Perceptron (MLP)
neural network is also used for the comparison. An extensive
set of experiments has been conducted to find the best number
of layers and the best number of nodes at each layer. Notice
that a high number of hidden units and nodes leads to
over-fitting of the model in the initial iterations and a low
number of hidden units leads to under-fitting of the model
and low learning capacity of the model in the final iterations.
Therefore, we chose four hidden layers with 10 nodes in each
layer which had good results in our experiments. The final
algorithm for the comparison is Incremental Support Vector
Machine (ISVM). We tried different non-linear kernel types
for the ISVM method, namely, the polynomial kernel functions,
sigmoid kernel function and the radial basis kernel function.
Consequently, we have chosen Radial Basis Function (RBF)
for conducting all the experiments.

We have utilized several online contextual bandit ap-
proaches for our comparisons including bootstrapped upper
confidence bound [56], [64], bootstrapped Thompson sampling
[56], [65] and some other methods from [56], including ep-
silon greedy, adaptive greedy, explore-then-exploit, exploration
based on active learning, softmax explorer and exploration
based on active learning approaches.

Notice that to fairly compare the ABL approach with all
the contextual bandit approaches, we have used the same
procedure as ABL for training the contextual bandit models.
This means that we have also used the best choice of action
at each state to update a contextual bandit model if it fails to
predict the correct action at that state.

In addition to the three scenarios introduced in this paper,
we have also included the mushroom dataset from the UCI
machine learning repository [32] that has been used in con-
textual bandits research [66], [67], [68]. The mushroom dataset
includes descriptions of hypothetical samples corresponding to
23 species of mushrooms divided into two classes (edible and
poisonous). For this experiment, the dataset has been randomly
shuffled in each iteration and the first 500 instances of the
shuffled data have been chosen.

D. Results

As one can see in Fig. 10, Fig. 11 and Fig. 12, the proposed
Argumentation-Based Learning (ABL) method outperforms all
the other methods in both the comparison criteria used for this
research, namely, the final learning precision and the learning
speed. The steepness of the learning curve shows that the ABL
learns faster in a lower number of iterations.

For the first test scenario, after observing 30 failure states,
ABL achieves 74% precision, while the best method among
others has 60% precision. The final precision of ABL is 95%,
while the best final precision among other methods is 90%. For

1https://www.cs.waikato.ac.nz/ml/weka/
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Figure 10: Comparison of Argumentation-Based Learning
(ABL) with key methods for incremental online learning [27]
using the first test scenario.

Figure 11: Comparison of Argumentation-Based Learning
(ABL) with key methods for incremental online learning [27]
using the second scenario.

Figure 12: Comparison of Argumentation-Based Learning
(ABL) with key methods for incremental online learning [27]
using the third scenario. This non-robotic scenario emphasizes
that the proposed ABL method is generalizable to other online
incremental learning scenarios.

the second test scenario, after 30 observations, the ABL has
58% precision while J48 as the best performer among all other
methods has 42% precision. Moreover, the final precision of
ABL for the second test scenario is 85% while J48 and ID3,
the best among all others, achieve almost 80% final precision.

Figure 13: Comparison of Argumentation-Based Learning
(ABL) and some contextual bandit methods [56] for the first
scenario. The red curve shows the accuracy of ABL.

Figure 14: Comparison of Argumentation-Based Learning
(ABL) and some contextual bandit methods [56] for the second
scenario.

In the third scenario, which differs from the two prior scenarios
in context, ABL repeatedly outperforms all the other methods
in both of the comparison criteria. Among other methods,
incremental naive Bayes and incremental random forest (ORF)
have better results. The final learning precision of ABL in this
scenario is 75% while it is 70% for the incremental naive
Bayes method. The slope of the learning curve also shows the
faster learning speed of ABL with respect to all of the other
methods.

Figure 13, 14 and 15 show the comparison of ABL with
contextual bandits using the first and second scenario as well
as the mushroom dataset. In all experiments, ABL outperforms
the other approaches considerably, both in terms of learning
speed and in terms of final learning precision. The explorative
nature of contextual bandit algorithms may lead to this differ-
ence in performance.

VI. DISCUSSION

A key reason that the proposed method works better than
Naive Bayes originates from the independence assumption
between all features in the Naive Bayesian formulation. In
the case of neural networks, considering that there is only
a small number of training data instances, a complex neural
network tends to over-fit and a small neural network leads to
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Figure 15: Comparison of Argumentation-Based Learning
(ABL) and some contextual bandit methods [56] for the
mushroom dataset.

under-fitting. Choosing the best neural network architecture
dynamically according to the number of visited data is also
a challenging task. On the other hand, decision-tree based
techniques fail at the initial recovery attempts and then grad-
ually learn the best recovery behavior. This is because of the
change in entropy or information gain when new unforeseen
data updates the decision tree. This is also the case with the
Online Random Forest (ORF) method. Furthermore, ISVM
does not perform well in circumstances where only a few
features are associated with predicting the class label. In all
the above cases, the suggested ABL approach performed better
as it considers any possible dependence between features and
it can immediately focus on features which are most relevant
for the optimal decision.

Moreover, ABL leads to an explicit representation of the
learning process understandable for humans, as is also the
case with decision-tree based techniques. In contrast, neural
networks, support vector machines and Bayesian techniques
are all black boxes [69] (this means that the trained models are
not easily interpretable and explainable) for the humans. This
explicit representation of the learning process can be utilized
in combination with human-robot interaction. Employing this
property, ABL can be used in multi-agent scenarios where
agents can transfer their knowledge to each other.

The proposed ABL method has a limitation. It handles
data sets with discrete feature values. This limitation can be
addressed in future works.

Consequently, the proposed argumentation-based incremen-
tal learning algorithm could learn in fewer attempts with
higher precision than other algorithms used for comparison.
The results have also shown that ABL outperforms contextual
bandit algorithms in terms of learning precision. Moreover,
ABL extracts an explicit set of rules that explain the knowl-
edge acquired by the agent over the interaction with the
environment. This feature makes the method more explainable
and easy to debug by an expert.

Therefore, this method can be a good alternative when the
feature values are discrete. Although we have shown that the
current ABL approach is working well for the aforementioned
scenarios in this paper, these results are limited to datasets
with discrete feature values that are not high-dimensional. To

make ABL more efficient for higher dimensional problems, we
have introduced Accelerated Argumentation-Based Learning
(AABL) [70] to improve the space and computational com-
plexity of the method.

VII. CONCLUSION

General purpose service robots should be able to recover from
unexpected failure states caused by environmental changes. In
this article, an argumentation-based learning (ABL) approach
is proposed which is capable of generating relevant hypotheses
for online incremental learning scenarios. This set of hypothe-
ses is updated incrementally when unforeseen data enters the
model. The conflicts among these hypotheses are modeled by
Abstract Argumentation Frameworks.

The performance of ABL has been evaluated using both the
robotics and the non-robotics incremental learning scenarios.
The third scenario, which has a non-robotic context, is a
publicly accessible dataset from the UCI machine learning
repository. This scenario shows the fact that the proposed
ABL method can be used in any online incremental learning
application with discrete feature values. Moreover, we have
also compared the performance of different contextual bandit
algorithms with ABL. According to these experiments, the
proposed method learns faster and with higher ultimate clas-
sification precision than various state-of-the-art online incre-
mental learning methods.
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