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Abstract. Legal reasoning about evidence can be a precarious exercise, in
particular when statistics are involved. A number of recent miscarriages
of justice have provoked a scientific interest in formal models of legal
evidence. Two such models are presented by Bayesian networks (BNs)
and argumentation. A limitation of argumentation is that it is difficult
to embed probabilities. BNs, on the other hand, are probabilistic by
nature. A disadvantage of BNs is that it can be hard to explain what
is modelled and how the results came about. Assuming that a forensic
expert presents evidence in a way that is either already a BN or expressed
in terms that easily map to a simple BN, we may wish to express the same
information in argumentative terms. We address this issue by translating
Bayesian networks to arguments. We do this by means of an intermediate
structure, called a support graph, which represents the variables from the
Bayesian network, maintaining independence information in the network,
but connected in a way that more closely resembles argumentation. In
the current paper we test the support graph method on a Bayesian
network from the literature. We argue that the resulting support graph
adequately captures the possible arguments about the represented case.
In addition, we highlight strengths and limitations of the method that
are revealed by this case study.
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1. Introduction

A number of formal models for reasoning under uncertainty—such as legal reasoning
about evidence—have been introduced. We study argumentation and Bayesian
networks (BNs). With the introduction of scientific methods in the investigation of
legal evidence, a number of challenges have arisen. Most notable is the question how
to reason with probabilistic evidence. Since forensic evidence is often presented in
the form of probabilities, it has become necessary to find models of legal evidence
and legal proof that can accommodate probabilities. This is illustrated by a number
of recent miscarriages of justice, such as in the infamous cases of Sally Clark in the
UK and Lucia de Berk in the Netherlands. We argue that problems originate from



a communication barrier between scientific and legal experts. Where scientific
experts are usually well-versed in mathematics and probability theory, lawyers
and judges are often more accustomed to arguments.

In previous work we have introduced support graphs as an intermediate
structure between arguments and BNs [17,18]. In this paper we test the support
graph method on a BN from the literature, which provides an evaluation of the
method. We do not aim to present a normative system but rather a descriptive
system that can be used to explain the evidence in order to explain what is modelled
by that BN and which arguments are allowed by the information captured in it. We
find that the resulting arguments are as expected, but we also highlight a limitation
of the approach, which is that when a conclusion is supported by multiple pieces
of evidence the individual contributions are not clearly distinguishable.

In the next section we review relevant background knowledge and we illustrate
the support graph method by means of a small toy example. In Section 3 we
present our main case study. In Section 4 we discuss the results and provide
references to related and possible future research.

2. Background
2.1. Argumentation

Argumentation [19,3] is the study of arguments, counter arguments and argument
evaluation. Formal argumentation is based on logic, and a number of systems
that implement this coexist [14,7,5]. Typical for argumentation models is that
arguments are built by combining inference rules. Starting with some premises, a
rule with some of those premises as its antecedents can be applied. Further rules
can be applied if their antecedents are satisfied by either premises or conclusions
of rules that were already applied. In this fashion a sequence (or in fact a tree) of
inferences can be constructed which we call an argument.

In common sense reasoning, inferences are usually not strict but defeasible. A
defeasible inference can have exceptional circumstances under which the inference
does not apply. An argument that uses a defeasible inference can be attacked by
another argument that concludes that the exceptional circumstances hold. Such
an attacking argument is called an undercutter. Another kind of attack is rebuttal,
which tries to prove the contrary of a statement rather than attacking the link
between statements [15].

E: Evidence of blood [
match DNA l

H: Defendant guilty

A: Accuracy of
evidence

Figure 1. Examples of arguments. H is supported by E but this inference is undercut by A.

Figure 1 portrays a very small set of arguments about a DNA matching
procedure. A match has evidential value for the hypothesis that the defendant is



guilty. As an undercutter to this inference an argument is shown that says that
the evidence is not accurate and therefore this conclusion cannot be drawn from
that premise.

2.2. Bayesian networks

A Bayesian network (BN) is a model of a probability distribution in which a
directed acyclic graph G = (V,E) consisting of variables V and directed edges
E is used to express knowledge of a conditional independence relation. For a
variable V' we will use Par(V) to denote the set of parents in the graph and
Cld(V) for the set of children. Figure 2a shows a small example, which was taken
from Fenton et al. [4]. Three variables are shown that represent a minimalistic
model of DNA identification. With every variable is associated a conditional
probability table that specifies the probabilities of the outcomes of that variable
conditional on any configuration of outcomes of parents of that node in the graph
(see Figure 2b). Together these tables specify the full joint probability over all
variables. Observations can be entered into the model and posterior probabilities
of other nodes conditioned on those observations can be calculated. For instance,
P(H = true|E = true) can be calculated (to be 0.161).

H: A:
H: Defendant A: Accuracy false | 0.99 false | 0.1
guilty of evidence true | 0.01  true | 0.9
E:
A /X
B H false true
E: Evidence of

blood match DNA A | false true false | true
false | 0.5 [ 1—-10"% ] 0.5 [ 0.0

true | 0.5 1076 0.5 1.0
(a) graphical structure (b) conditional probability tables

Figure 2. Small example BN. From Fenton et al. [4].

One of the aspects of BNs that can be hard to explain to legal experts who
are not trained in probability theory, is that the graphical structure of the BN
encodes probabilistic independences. When two adjoining edges converge (such as
in Figure 2a) this is called a head-to-head connection. A node on a trail (a simple
path in the undirected version of the graph) is said to block inference through that
trail if it is observed but not a head-to-head connection, or if it is an unobserved
head-to-head node without observed descendants. A trail is called active when
it is not blocked by any of the nodes on the trail. If there are no active trails
between two nodes, they are conditionally independent given the evidence.

A head-to-head-connection can model explaining away, which occurs when
two parents of a node both have a positive correlation with their common child
but feature a negative correlation with each other conditioned on this child.

The fact that new evidence can sometimes remove dependencies (when it
blocks the last remaining path) and sometimes add new possible dependencies
(when it unblocks a head-to-head connection) can be the source of confusion.



We observe that the step-wise propagation of evidence through a BN is similar
to making inferential steps in argumentation. There are three distinct ways in
which an atomic inferential step can be made in a BN. T'wo simple methods are to
follow an edge from the BN graph and reason from one side to the other. This is
allowed in both directions so we obtain two possible kinds of inferences, which we
will treat slightly differently. Note that although these inferences are on their own
all acceptable, there are some restrictions when combining inferential steps, which
we will discuss below. The third way to make an inference is to reason from one
parent of a node to another parent of that same node. This is possible because
explaining away captures a more complex interaction than the combination of one
inference along the direction of an edge with an inference against the direction
of another edge. In fact, this combination is exactly the only thing that is not
allowed when combining inferential steps. Instead the ezplaining away inference
between parents is the only allowed way to reason between these variables.

2.8. Support graphs

To explain inference in a BN in argumentative terms, we have introduced an
intermediate model that we have called a support graph [17,18]. A support graph
is a compact representation of all possible inferential steps in a given BN. It
maintains the independence information from the BN but presents the variables in
a graphical structure that more closely matches an argumentative interpretation.
It does this in a way that correctly reflects the complex interactions between
parents of a common child. It is not an argument graph because it presents the
variables and not specific variable assignments.

A support graph is constructed by iteratively deepening it. We start with a
variable of interest V* and check for all of the three kinds of possible inferences
that we mentioned above: parents, children and parents of children. In fact this
collection is often referred to as the Markov blanket (MB) of a node. We maintain
for every branch a set of variables F that contains forbidden variables that cannot
be used in further support. We use this set to preclude a number of prohibited
combinations of inferences. In every step further down in the support graph, F is
copied and possibly enlarged. This is described by Definition 1 and clarified in
Figure 3.

Definition 1 (Support graph). Given a BN with graph G = (V,E) and a variable of
interest V*, a support graph is a tuple (G,V,F) where G is a directed graph (N, L),
consisting of nodes N and edges L, V : N — V assigns variables to nodes, and
F : N — P(V) assigns sets of variables to each node, such that G is the smallest
graph containing the node N* (for which V(N*) = V* and F(N*) = {V*}) closed

under the following expansion operation:
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Figure 3. Visual representation of the three cases in Definition 1. A support node for variable
Vi can obtain support in three different ways from a variable Vj;, depending on its graphical
relation to Vj.

L

A supporter N; with variable V(N;) = V; is added as a parent to a node
N; (with V; = V(N;)), whenever:
1. V; € Par(V;) \ F(N;), or
2. V; € Cld(V;) \ F(N;), or
3. V; € Par(Cld(V;) \ F(N:)) \ F(N,)
The forbidden set F(N;) of the new support node is respectively:
1. F(N;) u{V;}
2. F(N;) U{V;} U{V} € Par(V})|V; = V; < Vi, in E but not V; — V;}
5. F(N,) U{V;} U (Cld(V;) N Cld(V;)
If a support node with this forbidden set and the same V(Nj) already exists,

that node is added as the parent of N;, otherwise a supporting node N; is
created.

Informally, support for a variable V; is taken from the Markov blanket. Support
from a neighbour Vj is omitted if it is in the forbidden set. Support through
head-to-head connections is omitted if the common children are in the forbidden
set.

We illustrate the support graph construction process with the example BN
presented in Figure 2. As the variable of interest we take “H: Defendant guilty”.
The first case from the support graph definition does not apply because H does
not have parents. The second case does apply, so we create a support for H from
E. The F-set for the new support node contains H and E, but also A because it is
another parent of E and reasoning between parents through the child is prohibited.
This means that this branch cannot be supported by further nodes. However, we
can retrace our steps and try to find more support for the variable of interest. We
have not yet invoked the third case on that node, so we add a support for H from A.
We can see from the definition that not only are H and A added to F of this node
but also E because common children are added to this set. This means that this



H_defendant_guilty H_defendant_guilty

true 1.22
E_evidence_of A_accuracy E_evidence_of
_blood_match_dna _of_evidence _blood_match_dna
true

(a) support graph for BN in Figure 2. (b) Augmented support graph that has
been labelled with likelihood ratios and
best supported outcomes.

Figure 4. First example BN. From Fenton et al. [4].

branch is now also finished and the support graph construction is completed. The
resulting support graph is shown in Figure 4a. We note that the term support in
this case means that one of the outcomes supports either outcome of the supported
variable and not necessarily that the truth of one variable supports the truth of
the other. A support graph can, already on its own, be a valuable explanation
tool to show how inference propagates through a BN. It can, however, also be
used as a skeleton for argument construction. In [17] we have shown how different
labellings can be applied to turn support graphs into arguments. The support
graph method offers a number of ways in which the correct assignment labels can
be added to the nodes. For this, a probabilistic measure of inferential strength
is used. A well-known measure of strength [1] of evidence on a hypothesis is the
likelihood ratio (LR). We have added outcome assignments for the outcome with
the highest LR in Figure 4b together with that LR. The resulting argument graph
shows that the evidence (DNA match) has a likelihood ratio of 1.22 on the truth
outcome of the hypothesis. The second branch of the support graph has been
greyed out because no observation is available for the accuracy. We still show the
accuracy node to indicate that this variable can provide further support (if the
match turns out to be accurate) or attack (if the match is not accurate). These are
exactly the argument and the possible undercutter that one would expect from
this case.

3. The Lulu case study

As a case study we examine a larger network, which originates from Taroni et al. [16,
page 50]. The BN is shown in Figure 5. This model represents a case in which a
suspect (Jack) is charged with the stabbing of Lulu. The available evidence in this
case is (E) that a DNA profile match is found between his blood and a sample
taken from the crime scene (CS) and (W) that a witness (John) testifies that
he saw Jack near Lulu’s house shortly after the time of the stabbing. The right
part of the network models that Jack may have been in love with Lulu, causing
John to be jealous of Jack which could pose an alternative explanation for John’s
testimony. An arrow is drawn between nodes J and F' because it is more likely
that Jack was near Lulu’s place if he was in love with her.



B: Blood at CS
comes from offender
\Y;

VA
C: Blood at CS
comes from Jack
E: DNA profiles W: John’s
match testimony of F

Figure 5. The Lulu network [16]. We have omitted the conditional probability tables for brevity.

A: Jack J: Jack
stabbed Lulu loved Lulu

Figure 6 shows the resulting support graph labelled with likelihood ratios
and corresponding outcomes. Branch 1 shows the argument from the DNA match
(E), via the sample identity C, to the conclusion that Jack indeed stabbed Lulu.
Le., the profiles match, therefore the blood at the crime scene is from Jack and
therefore it must have been Jack who stabbed Lulu. This is the most important
argument that we expect to find in this network. However, we also expect to find
the undercutter that states that if the blood at the crime scene is not from the
offender, then Jack’s DNA at the crime scene is no proof that he stabbed her. We
indeed recognise this as the greyed out node on the far right of the graph.

We identify a second incriminating argument in branch 2. It states that Jack
was near Lulu’s place. For this two possible sub-arguments are identified. Firstly,
to leave a bloodstain, one needs to be present at the crime scene so a DNA match
is evidence that Jack was present. And secondly, there is a testimony by John. For
either sub-supporter we see a possible attacker. For the former sub-argument we
see again that if the blood at the crime scene is not from the offender is does not
hold. For the latter sub-argument we see that it may not hold (or be as strong) if
John was jealous of Jack.

A third argument is found (branch 3) that weakens the conclusion that Jack
stabbed Lulu. It states that John’s testimony against Jack could be explained by
John’s jealousy which in turn could be explained by the fact that Jack loved Lulu
(otherwise John would not need to be jealous). The latter explains why Jack may
have been near Lulu’s house, even if he did not stab her.

Looking at the LR measures of inferential strength, we observe that branch 3
poses, by far, the least support. The likelihood ratio valuation of that evidence
is only 1.26. By comparison, the support from the DNA match is a lot stronger
(LR = 498). However, if we examine branch 2 of the support graph, we observe
that it has a collective evidential strength of 594. This is even larger than the
DNA matching evidence. This is the result of the fact that our support graph
construction method has identified that the DNA match is not just a supporter
for the hypothesis that Jack stabbed Lulu, but also for the fact that he was
near her place. Although this is not incorrect, it shows that our current method
(only presenting collective probabilistic strength) may be too crude because in
this branch we can not distinguish from which observation the stronger support
originates.
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Figure 6. Support graph for the Lulu networks. Branches from the root have been numbered 1-3

for easy reference from the text.



4. Related research

BNs have been used as a tool to model forensic evidence, and even complete legal
cases [6,4,11,13,12,20,21]. However, attempts to explain probabilistic inferences
have usually focused on visual or textual explanations so far. See for instance
the work of Lacave and Diez [10,9], Koiter [8] and Druzdzel [2]. All of these
methods attempt to explain what is modelled in a BN by visually displaying the
different interactions between variables or by verbally presenting the relations
among variables. However, none of these methods use argumentation.

Vreeswijk [22] has proposed a method to construct rules from BNs to form
arguments but this approach only respects the independence properties of a
BN under a number of limiting constraints on the design of the network under
which, for example, no inter-causal interaction can be modelled. A method to
extract argument that follow BN reasoning based on numeric information is
argument diagram extraction [7]. An argument diagram is a graphical structure
that informally represents Bayesian argumentation, but does not allow one to
identify possible counter arguments. In argument diagrams, therefore, only one
side of the story is highlighted.

5. Conclusion

We have applied the support graph method to an example BN from the existing
literature to identify argumentative structures in BNs for explanation purposes.
This serves to illustrate the approach and suggests that support graphs indeed
capture exactly the inferences that are probabilistically valid and are sufficiently
concise to provide a good overview of a case. We take these results to be a good
indication that support graphs are indeed suitable models to explain inference in
BNs. To conclude that they have good explanatory value in real world applications,
however, requires further investigation.

We suggest that in future research it should be investigated how individual
strengths of contributions to support can be identified. For now we have presented
the collective likelihood ratio of all branches under the current node as a measure
of its argumentative strength. However, some supporting branches may contribute
more than others. It may even be the case that some decrease the probability of
the conclusion but are outweighed by others. This is valuable information when
we want to construct arguments or explanations about the case.
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