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Abstract

The present paper is the result of a search for an analog for defeasible reasoning of valid consequence and
proof in deductive reasoning. The abundance of research on nonmonotonic logics, and more specificall y
on defeasible reasoning, has shown the notoriety of the topic. One reason is that the received canon of
views on logic and reasoning, as exemplified by standard logics, such as first-order predicate logic, is
inappropriate in the context of defeasible reasoning. A goal of the present paper is to provide a revision of
these views on logic and reasoning, by providing an abstract, formal theory of dialectical justification and
defeat. Dialectical justification can be regarded as an analog of valid consequence.

The starting point is an analog of interpretation in the context of defeasible reasoning, viz. the notion
of an extension of a theory, where a theory is regarded as a set of sentences. An extension of a theory can
be thought of as an interpretation of the theory as a set of defeasible statements. In an extension, a
theory's sentences can not only be justified, but also defeated. This is in contrast with the standard, non-
defeasible interpretation of a theory in terms of models, where all sentences of the theory are assigned the
same positive value, viz. true. In an extension of a theory, the justified part of the theory must provide an
argument against the entire defeated part.

The search for an analog of valid consequence and proof started naïvely, in work on the graphical
presentation of dialectical arguments in which statements can be supported by reasons and also attacked
by counterarguments. The development of naïve dialectical arguments for the experimental argument
assistance system ArguMed resulted in the discovery and investigation of the notion of dialectical
justification: an argument is dialectically justifying if and only if the argument attacks all arguments that
are incompatible with it.

Dialectical justification is analogous to valid consequence in the following two relevant ways. First, a
dialectically justifying argument can be regarded as a set of premises justifying its conclusions, in the
context of defeasible reasoning. The premises provide a basis justifying a conclusion, that is as solid as
possible in the context of defeasible reasoning. Second, the investigation of the internal structure of a
dialectically justifying argument leads to the notion of a justifying dialectical argument, that is a direct
generalization of that of a proof, but incorporates counterarguments. A major difference between
dialectical justification and valid consequence is of course that dialectical justification is nonmonotonic
relative to a theory: when an argument is dialectically justifying with respect to a theory, it need not be
dialectically justifying with respect to a larger theory. Another difference is the phenomenon of dialectical
ambiguity: it can be the case that a statement is both dialectically justifiable and dialectically defeasible
with respect to a theory. Dialectical ambiguity is analogous to inconsistency, but is not trivializing: the
existence of a dialecticall y ambiguous statement with respect to a theory does not imply that any
statement is dialectically justifiable.

The notion of dialectical justification plays a central role in an interesting necessary and sufficient
condition for the existence of an extension of a theory. A characterization of the number of extensions
(which is as usual zero, one or several) is given in terms of the notion of dialectical justification.

The notion of dialectical justification is closely related to the notion of admissibili ty that is currently
regarded as state of the art: an argument is admissible if and only if it attacks all arguments that attack it.
It is shown that the notion of dialectical justification is more satisfactory than the notion of admissibili ty,
as a tool in the analysis of extensions. By a meta-analysis it is shown that three properties of dialectical
justification are crucial: the union property, the localization property and the separation property.
Admissibili ty lacks the latter, and as a result of that, does not allow a characterization of the existence of
extensions analogous to that in terms of dialectical justification.

A useful instrument in the analysis of the dialectical interpretation of theories is the notion of a
theory's stages. A stage of a theory is a partial dialectical interpretation of the theory, i.e., a dialectical
interpretation of a subset of the theory. The stages of a theory correspond extensionally to the theory's
satisfiable subsets (where satisfiabili ty is used in the standard sense of having a model). There is an
interesting intensional difference, which is relevant for the maximization of stages. Instead of maximizing
the stage's justified part (which corresponds to maximizing a satisfiable subset), it is natural to maximize
the stage's scope, i.e., the part of the theory that is interpreted in the stage, whether justified or defeated.
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1 Introduction

Argumentation often has a dialectical character: it does not only involve arguments for a conclusion, but
also arguments against. For instance, when the claim that Peter shot George is subject to debate, witness
A's statement that Peter shot George could be adduced as a reason supporting the claim, while witness B's
statement that Peter did not shoot George could be raised as a reason attacking the claim. The present
paper attempts to show the nature of dialectical argumentation and how it should be modeled. It builds on
and extends the work of many authors who have written about the subject. Among the most influential for
my thinking about the subject are especially Reiter, Hage, Prakken, Pollock, Vreeswijk, Loui, Dung and
Toulmin.1

In the present paper, a logic of dialectical justification and defeat, called DEFLOG, is presented.
DEFLOG is about justification in the sense that it attempts to explain when conclusions are justified by a
set of assumptions. DEFLOG deals with defeat in the sense that sentences cannot only be justified, but also
defeated by a set of assumptions. The adjective 'dialectical' is used to suggest that in DEFLOG justification
and defeat occurs in a context of juxtaposed opposing or contradictory claims (and not to suggest a
dialogical setting, but see section 13.5). For instance, in DEFLOG, sets of assumptions can contain
opposing claims and still be sensibly interpreted from the dialectical point of view. DEFLOG is a logic in
the sense that it provides a formal specification of aspects of reasoning, viz. of dialectical argumentation.
The logicali ty of DEFLOG is stressed by the fact that it contains analogues of several elements that often
occur in logic, such as interpretations, valid consequence, proofs, satisfiabil ity and inconsistency (cf.
especially section 15).

DEFLOG uses a logical language with two connectives × and � . The first, the unary connective ×, is
used to express the defeat of a statement. If ϕ is a sentence, then the sentence ×ϕ expresses that the
statement that ϕ is defeated. (I like to speak of the dialectical negation of a statement.) The second, the
binary connective � , is used to express conditional justification. If ϕ and ψ are sentences, then the
sentence ϕ �  ψ expresses that if the statement that ϕ is justified, then the statement that ψ is justified. A
third connective �  is used to express attack. Attack is defined in terms of dialectical negation and
conditional justification. That the statement that ϕ attacks the statement that ψ is considered to mean that
if the statement that ϕ is justified, then the statement that ×ψ is justified. As a result, that ϕ attacks ψ is
expressed by the sentence ϕ �  ×ψ, abbreviated as ϕ �  ψ.2 It is among the innovations of DEFLOG that its
language is constructed using genuine sentential connectives, in the sense that nested expressions like p �

(q �  (r �  s)) - that can be suggested by sensible examples ! - are allowed.
The central definition of DEFLOG is that of the dialectical interpretation of a theory in terms of

extensions. There are two main differences between the idea of an interpretation of a theory in standard
logic (often called a model of a theory) and that of a dialectical interpretation of a theory in DEFLOG. The
first is that, in the interpretations of standard logic, all sentences in the theory are assigned the same
positive status, in logic usually referred to as true. A model of a theory is then a logically possible world
in which all sentences of the theory are true. In the dialectical interpretation of a theory in DEFLOG,
however, not all sentences need to be given a positive evaluation: a sentence of the theory can be either
positively evaluated, viz. as justified, negatively, viz. as defeated. The key idea is simple: in a dialectical
interpretation of a theory, a sentence of the theory is defeated if and only if it is justified by the justified
part of the theory that the statement is defeated.

The second main difference between standard interpretations and dialectical interpretations is that in
the interpretations of standard logic, the whole language is interpreted, i.e., all sentences of the language
are assigned a status (usually either true or false), while in dialectical interpretations, this need not be so:
a dialectical interpretation has an extent, that consists of the sentences of the language that are assigned a
status. The intuitive idea is that in a dialectical interpretation only those sentences are evaluated as
justified by the theory. More precisely, a sentence ϕ (in the language) is evaluated as justified in a
dialectical interpretation of a theory if and only if ϕ is supported by the justified part of the theory.

                                                          
1 The order in which the names appear only reflects the accidental chronology of my intellectual history. Some
relevant sources are Reiter's (1980), Hage's (1996, 1997), Prakken's (1997), Pollock's (1995), Vreeswijk's (1997),
Loui's (1998), Dung's (1995) and Toulmin's (1958).
2 For convenience, here and in the following the phrase 'the statement that' - as in 'the statement that ϕ' - is often
omitted. This is somewhat sloppy since it blurs the distinction between the sentence ϕ and the statement it expresses,
but will hopefully not lead to confusion.
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DEFLOG does not fall from the sky. The formal characterization of justification and defeat in a
dialectical context has recently received much attention. A lot of research has been devoted to the
formalization of these notions, which has resulted in a diversity of formalisms.3

Among the innovations of DEFLOG and the contributions of this paper are the following:

- The idea of considering extensions as interpretations of defeasible theories, contrasted with the
standard notion of models as interpretations of strict theories.

- The discovery of the notion of dialectical justification and its role in the extension existence and
extension multiplicity problems, and its subtle distinction from the notion of admissibility.

- The notion of naïve dialectical arguments as reason/attack-structures, and their evaluation, and an
explication of the discovery of the extent to which naïve dialectical arguments can count as the
counterpart in dialectical logic of proofs in standard logic.

- The notions of dialectical negation and conditional justification, and the discovery that attack and
several other notions from dialectical logic (like rebutters and undercutters) can be expressed in terms
of dialectical negation and conditional justification.

- The use of genuine sentential connectives ×, �  and � , allowing nested expressions, in the context of
dialectical argumentation, thus normalizing and enhancing the expressiveness of logics for dialectical
argumentation.

- The notion of stages as partial interpretations of defeasible theories, and the discovery of its
extensional (but not intensional) equivalence to the maximal consistent subsets of the theory.

- The distinction of two fundamentally different ways of maximizing partial dialectical interpretations
of theories, viz. the maximization of the theory's justified sentences, and the maximization of the
theory's interpreted sentences.

- Discussion of the relations between several types of stages (or, better, of their non-relations).

Of course some of the above are not entirely new or original, but I claim that the ideas are here at least
significantly extended or clarified, given suitable explicitness, or deservedly emphasized.

The paper is structured as follows. In the next section, the notion of a naïve dialectical argument is
introduced. Naïve dialectical arguments are structured sets of statements, in which statements can be
reasons for or counterarguments against other statements. By the graphical presentation of naïve
dialectical arguments, several key ideas can be set out in an intuitive way.

In section 3, the 'standard' logical core of DEFLOG is explained, viz. its language, interpretations and
models. Section 4 introduces the dialectical core, viz. the notion of extension as the dialectical
interpretation of a theory. The sections 5 to 10 further elaborate on DEFLOG's dialectical core, in terms of
among others stages, dialectical justification and dialectical arguments. Section 11 deals with some
representational issues that arise in the context of dialectical argumentation, and section 12 with
variations on DEFLOG. In section 12.4, a meta-analysis of some of the main properties of dialectical
justification shows why it has been selected from among several alternatives. Related research is
discussed in section 13. In section 14, two metaphors of dialectical argumentation, viz. the comparison
and the attack metaphor, are discussed from DEFLOG's point of view. In section 15, DEFLOG is contrasted
with standard propositional logic in an attempt to clarify the differences and the similarities between a
dialectical and a deductive approach to logic.

2 Naïve dialectical arguments

Part of the inspiration for the development of DEFLOG was my work on the graphical representation of
arguments in defeasible argumentation (during the design of prototypical argument assistance systems;
see, e.g., Verheij, 1998a, 1998b, 1999, to appear, and http://www.metajur.unimaas.nl/~bart/aaa/, where
the systems can be downloaded). I introduced the term 'dialectical argument' for an argument possibly
incorporating counterarguments against statements occurring in the argument. As a result of the possible
occurrence of a counterargument, not all statements in a dialectical argument are to be considered
justified. For instance, if a statement is attacked by a justified statement, the statement is defeated. It was
my hunch that dialectical arguments would become the counterparts in defeasible reasoning of proofs in
strict reasoning. Since it turned out that the dialectical arguments as they are studied here were too coarse

                                                          
3 Next to the sources mentioned in footnote 1, the reader might want to consult the work of Bondarenko et al.
(1997), Prakken & Sartor (1996), Verheij (1996a, 1996b, 1999), and the overview by Prakken & Vreeswijk (to
appear).



August 11, 2000 5

in structure for this purpose (see below, section 10), I now call them naïve dialectical arguments. The
notion of naïve dialectical arguments is still intuitively attractive and provides a good ill ustration of some
central ideas in DEFLOG. The discussion is rather informal and serves merely as an appetizer for the
formalism to come.

2.1 The structure of naïve dialectical arguments

Naïve dialectical arguments consist of statements that can have two types of connections between them: a
statement can support another, or a statement can attack another. The former is indicated by a pointed
arrow between statements, the latter by an arrow ending in a cross. Here is an example:

The dialectical argument consists of three elementary statements, viz. that Peter shot George, that witness
A states that Peter shot George, and that witness B states that Peter did not shoot George. As is indicated,
the second is a reason supporting that Peter shot George, the second a reason attacking that Peter shot
George.

The expressiveness of naïve dialectical arguments is significantly enhanced by considering the
connecting arrows (of both the supporting and the attacking type) as a kind of statements, that can as such
be supported and attacked. The arrow of a supporting or attacking argument step is here called the
warrant of the step (cf. also Toulmin's terminology, see also section 11.3 below).

For instance, one could ask why A's testimony supports that Peter shot George. In the following, the
statement that witnesses' testimonies are often truthful is adduced as a reason:

The statement that witnesses' testimonies are often truthful serves as a backing of the supporting
argument step (cf. also Toulmin's terminology, see also section 11.3 below). The same statement can back
the attacking argument step of B's testimony attacking that Peter shot George.

That the connecting arrows can also be attacked can be seen in the following example:

Here the unreliabili ty of witness A is adduced as a counterargument against the supporting connection
between the other two statements.

In general, naïve dialectical arguments are finite structures that result from a finite number of
applications of three kinds of construction types:

1. Making a statement
2. Supporting a previously made statement by a reason for it
3. Attacking a previously made statement by a reason against it (also called a counterargument)

It should be borne in mind that the types two and three consist of making two statements: one an ordinary
elementary statement, viz. the reason for or against a statement, the other the special statement that the
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reason and the supported or attacked statement are connected, as expressed by the warrant of the
supporting or attacking argument step.

Though naïve dialectical arguments are here considered as the result of a finite construction, their
corresponding tree structure can be virtually infinite. An example is suggested in the following picture:

The argument can be thought of as being the result of three construction steps. First the statement that
Peter shot George is made, then that statement is attacked by the counterargument that Peter did not shoot
George, and finally it is stated that the statement that Peter shot George is on its turn a counterargument to
its attack. If the resulting (finite) looping structure is expanded as a tree (growing downward from the
initial statement), the result is infinite.

2.2 Evaluating naïve dialectical arguments

Naïve dialectical arguments can be evaluated with respect to a set of defeasible assumptions. An example
of an evaluated naïve dialectical argument is the following:

Defeasible assumptions are preceded by an exclamation mark, all others - called issues - by a question
mark. Above the statement that witness A states that Peter shot George is a defeasible assumption. All
three arguments that occur in the argument are evaluated as justified, as is indicated by the dark bold font.
The statement about A's testimony is justified since it is an assumption that is not attacked, the statement
that Peter shot George is justified since it is supported by a justifying reason (viz. A's testimony), and
similarly for the statement about the investigation. (Here and in the following the warrants of argument
steps are implicitly assumed to be defeasibly justified.)

The following example involves the attack of the support relation between two statements:

The statements about A's testimony and unreliabili ty are defeasible assumptions, while the statement that
Peter shot George is an issue. The two assumptions are justified since they are not attacked. The statement
that Peter shot George is unevaluated (as is indicated by the light italic font): it is not justified since it is
an issue for which there is no justifying reason, nor is it defeated since there is no attacking
counterargument.

An example of a naïve dialectical argument in which a statement is defeated is the following:
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The issue that Peter shot George is defeated (as is indicated by the dark bold struck-through font) since it
is attacked by the counterargument that witness B states that Peter did not shoot George.

The evaluation of naïve dialectical arguments with respect to a set of defeasible assumptions is
naturall y constrained as follows:

1. A statement is justified if and only if
a. it is an assumption, against which there is no defeating counterargument, or
b. it is an issue, for which there is a justifying reason.
A statement is defeated if and only if there is a defeating counterargument against it.

2. A reason is justifying if and only if the reason and the warrant of the corresponding supporting
argument step are justified.

3. A counterargument is defeating if and only if the counterargument and the warrant of the
corresponding attacking argument step are justified.

It is a fundamental complication of dialectical argumentation that a naïve dialectical argument can have
any number of evaluations with respect to a set of defeasible assumptions: there can be no evaluation, or
one, or several.

Assuming as we do that statements cannot be both justified and defeated, the following argument
whether Peter shot George - already discussed above - has no evaluation with respect to the two
testimonies as defeasible assumptions.

That the argument has no evaluation is seen as follows. Since both assumptions are not attacked they
must be justified in any evaluation. But then A's testimony would require that it is justified that Peter shot
George, while at the same time B's testimony would require that it is defeated that Peter shot George. This
is impossible.

An example of a naïve dialectical argument with two evaluations is the looping argument discussed
above:

The argument has two defeasible assumptions, viz. that Peter shot George and that Peter did not shoot
George. The assumptions attack each other. In one evaluation, it is justified that Peter shot George, thus
making it defeated that Peter did not shoot George, while in the other evaluation it is the other way
around.

Note that the existence of the two evaluations is possible because the loop of attacks consists of an
even number of statements. An odd length loop of attacks can cause that there is no evaluation. An
example is the following:
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If its only elementary statement (viz. that this sentence is false) is a defeasible assumption, the argument
has no evaluation obeying the constraints.

3 DEFLOG's language, interpretations and models

The informall y presented notion of naïve dialectical arguments leads the way to the formalization of
dialectical justification and defeat in the formalism DEFLOG. As a first step, a suitable logical language
and its interpretation is introduced, and some of its elementary - and relatively standard - properties are
studied.

The first consideration towards DEFLOG's logical language is the recognition of the warrants of
argument steps as logically compound sentences. Since warrants connect two statements, they can be
expressed in a logical style using binary connectives. In DEFLOG, the warrant of a supporting step in
which the statement that ϕ is a reason for the statement that ψ, is denoted as ϕ �  ψ using the binary
connective � . The warrant of an attacking step in which the statement that ϕ is a counterargument to the
statement that ψ is denoted as ϕ �  ψ using the binary connective � .

Though a logical language with the two binary connectives �  and �  can successfully be used as the
basis of a formalization of justification and defeat (see, e.g., Verheij, to appear), a second consideration
leads to considerably simpler definitions and deeper understanding. This second consideration is that it is
useful to express the defeat of a statement in the logical language. In DEFLOG, the defeat of a statement is
expressed using the unary connective ×. A sentence ×ϕ expresses that the statement that ϕ is defeated.

As a result, it becomes possible to define attack in terms of conditional justification and defeat: the
statement that ϕ attacks ψ can be defined as the statement that if ϕ is justified, then ψ is defeated. In other
words, ϕ �  ψ can be considered as shorthand for ϕ �  ×ψ.

DEFLOG's logical language is defined as follows.

Definition (3.1): the language
Given a set of elementary sentences, DEFLOG's language is the smallest set of sentences, such that if ϕ
and ψ are sentences, then ×ϕ and (ϕ �  ψ) are sentences.

A sentence ϕ expresses that the statement that ϕ is justified.4 For convenience, it is also said that a
sentence ϕ expresses that ϕ is justified, or even simply that ϕ. A sentence ×ϕ expresses that the statement
that ϕ is defeated, or that ϕ is defeated, for short. A sentence ϕ �  ψ expresses that if the statement that ϕ
is justified, then the statement that ψ is justified, or that if ϕ, then ψ, for short.

If p, q and r are elementary sentences, then some examples of sentences are the following:

p, (p �  q), (p �  (q �  r)), ((p �  q) �  r), ×p, ××p, ×(p �  q), (p �  ×q), (×p �  q), (p �  p)

In the following, outer brackets are normally omitted, as for instance in (p �  q) �  r.

Convention (3.2)
If ϕ and ψ are sentences, then (ϕ �  ψ) and (ψ �  ϕ) are abbreviations of (ϕ �  ×ψ).

A sentence ϕ �  ψ expresses that the statement that ϕ attacks the statement that ψ, or in other words, that
the statement that ϕ is an argument against the statement that ψ. In DEFLOG, the statement expressed by ϕ

�  ψ is equivalent to the statement that if ϕ is justified, then ψ is defeated (or full y, that if the statement
that ϕ is justified, then the statement that the statement that ψ is defeated, is defeated).5

Sentences of the form ×ϕ are defeat sentences, sentences of the form ϕ �  ψ conditional sentences, and
sentences of the form ϕ �  ψ attack sentences. (Note that attack sentences are also conditional sentences.)
If ϕ �  ψ is a conditional sentence, ϕ is the conditional's antecedent and ψ its consequent. If ϕ is a
sentence, then ×ϕ is its defeat sentence.

In DEFLOG, sets of sentences are interpreted by assigning each sentence in the set one of two
justification statuses, either justified or defeated. The justification statuses are abbreviated as j and d,

                                                          
4 This reminds of Tarski's well -known scheme in standard logic, according to which a sentence ϕ expresses that the
sentence ϕ is true.
5 Note that in DEFLOG it is equivalent to say that ϕ is defeated, or that the statement that ϕ is defeated, is justified.
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respectively. The assignment of the status j to a sentence ϕ, corresponds to the statement ϕ being
justified, and the assignment of the status d to the statement being defeated.

In an interpretation, the assignment of justification statuses must obey two constraints, suggested by
the intended meaning of the sentences of the language. First, the statement ϕ being defeated coincides
with the statement ×ϕ being justified. As a result, a sentence ϕ is assigned the status d if and only if the
sentence ×ϕ is assigned the value j.

Second, if it is justified that if ϕ then ψ, and it is justified that ϕ, then it should follow that it is
justified that ψ. As a result, sentences ϕ �  ψ and ϕ being assigned the value j implies the sentence ψ
being assigned the value j.

Definition (3.3): interpretations
An interpretation (or world) is a mapping W from a set of sentences S to the set { j, d} , such that the
following two constraints obtain:
1. W(×ϕ) is equal to j i f and only if W(ϕ) is equal to d.
2. If W(ϕ �  ψ) and W(ϕ) are both equal to j, then W(ψ) is equal to j.
The set S is called the extent of the interpretation. If W is an interpretation, J(W) denotes the set of
sentences that are assigned the value j under W, and D(W) the set of sentences assigned the value d.
The elements of J(W) are said to be justified in W, those in D(W) defeated.

It should be noted that sentences of the language can be neither justified nor defeated in an interpretation,
since an interpretation's extent is not necessarily equal to the whole language.6 When an interpretation has
the whole language as its extent, i.e., any sentence of the language is either justified or defeated in the
interpretation, the interpretation is said to be total.

Note also that, while by the first constraint the justification status of a sentence ×ϕ in an interpretation
is a function of the status of ϕ, the second constraint shows that the justification status of a sentence ϕ �

ψ is not a function of the statuses of ϕ and ψ. Of the eight possible assignments of justification statuses to
three sentences ϕ, ψ and ϕ �  ψ, constraint 2 only excludes one, viz. that in which ϕ and ϕ �  ψ are
justified, while ψ is defeated. The meaning of a conditional ϕ �  ψ is simply that its consequent follows if
its antecedent applies. (This is in stark contrast with the truth functionality of the material implication of
standard logic, of which the truth coincides with the antecedent's falsity or the consequent's truth.)

Example (3.4)
In each row of the table on the left, the justified and defeated sentences of an interpretation are listed.
In the table on the right, examples of status assignments that are not interpretations are listed.

Examples of interpretations Examples of non-interpretations
Justified sentences Defeated sentences Justified sentences Defeated sentences

×p p p, ×p -
p, ××p ×p p ×p
p, q, p �  q - p, ×p ×p, ××p
p, ×q, p �  q q p, p �  q -
q, p �  q ×p p, p �  q q
×q, p �  q q ×p, q, ×p �  q -

p, q, ×(p �  q) p �  q

p, ×q, r, p �  q, ×q �  r q

Notation (3.5)
For an interpretation W, W �  ϕ denotes that the sentence ϕ is justified in the interpretation W.

There is no dedicated notation for a sentence being defeated in an interpretation, but note that by
constraint 1 in definition (3.3), W �  ×ϕ denotes that ϕ is defeated in W.

                                                          
6 This suggests that DEFLOG'S interpretations can be regarded as three-valued interpretations of the whole
language, viz. 'justified', 'defeated' and 'uninterpreted'. Whether this is a fruitful way of looking at DEFLOG'S
interpretations might be an interesting topic for further research.
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Models can be regarded as interpretations of sets of sentences as strict theories: all sentences in the set
of sentences are assumed to be justified. An interpretation is a model of a theory if all sentences in the
theory are justified in the interpretation.

Definition (3.6): models of theories, satisfiability
If T is a set of sentences and W is an interpretation, such that W �  ϕ for any sentence ϕ in T, then the
interpretation W is a model of the theory T, which is denoted as W �  T. A set of sentences is
satisfiable if it has a model.

Example (3.7)
The sets T1 = { p, p �  p} and T2 = { p, q, p �  r, q �  r} are not satisfiable, while the sets T3 = { p, p �  q,
q �  r} and T4 = { p �  q, (p �  q) �  r, ×r �  ×(p �  q)} are satisfiable.

The consequences of a theory are as usual defined as those sentences that are justified in all models of the
theory. Note that in determining the consequences of a theory it is considered as strict, i.e., non-
defeasible. The interpretation of theories as defeasible is the topic of the next section.

Definition (3.8): consequences of theories
If T is a set of sentences and ϕ a sentence, then ϕ is a consequence of the theory T if, for any
interpretation W, if W �  T, then W �  ϕ. That ϕ is a consequence of a theory T is denoted as T �  ϕ.
The set of consequences of T is denoted Cn(T).

Example (3.9)
The sets T1 and T2 of example (3.7) are not satisfiable, and therefore have all sentences of the
language as their consequences. The sets T3 and T4 have T3 ∪ { q, ×r} and T4 ∪ { ×r, ××(p �  q)} as
their sets of consequences.

The set Cn(T) of consequences of a theory T can be characterized by rules of inference. Cn(T) is the
closure of T under the rules of inference ϕ, ϕ �  ψ / ψ ( � -Modus ponens, or Modus ponens, for short) and
ϕ, ×ϕ / ψ (a variant of Ex falso quodlibet). The closure of T under ( � -)Modus ponens alone is denoted as
Mp(T). Mp(T) is the smallest set that contains T and that is closed under rule application. For satisfiable
T, Mp(T) and Cn(T) coincide. Note that Cn(T) and Mp(T) are also closed under the rule of inference ϕ, ϕ

�  ψ / ×ψ that might be called � -Modus ponens.

Definition (3.10)
A set of sentences S is conflict-free if there is no sentence ϕ in S, such that ×ϕ is in S. A set of
sentences S is closed under Modus ponens if whenever ϕ �  ψ and ϕ are in S, then ψ is in S.

The defeated sentences of an interpretation are 'encoded' in the justified sentences: a sentence ϕ in an
interpretation is defeated when and only when the sentence ×ϕ is justified. As a result, the defeated
sentences of an interpretation are in a precise sense superfluous in the characterization of an
interpretation: only the justified sentences suff ice in order to characterize an interpretation, as in the
following property.

Property (3.11)
A set of sentences C is conflict free and closed under Modus ponens if and only if there is an
interpretation W such that C is equal to J(W), the set of justified sentences of W.

Proof: The 'if'-part follows by checking the definitions. The 'only if'-part is based on the following construction. If C
is conflict free and closed under Modus ponens, then the mapping that assigns the value j to all sentences in C,
and the value d to all sentences ϕ, for which ×ϕ is in C, is an interpretation.

If C is conflict free and closed under Modus ponens, the interpretation that is constructed in the proof of
the property above is denoted as WC. Clearly, it follows that, for any such C, J(WC) is equal to C, and
that, for any interpretation W, WJ(W) is equal to W. This gives a convenient characterization of worlds in
terms of sets of sentences that is often used throughout the paper.
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Since the notion of a satisfiable set of sentences is important in DEFLOG, it is natural to look for a
syntactic characterization. It is provided by the notion of argument.

Definition (3.12)
A set of sentences is an argument if its closure under Modus ponens is conflict free.

Property (3.13)
A set of sentences C is an argument if and only if C is satisfiable.

Proof: Use property (3.11).

Definition (3.14): arguments for and against, attack, incompatibility
(i) An argument C supports or is an argument for a sentence ϕ if C �  ϕ. An argument C attacks or is

an argument against ϕ if C �  ×ϕ. The sentences in an argument C are also called its premises, the
sentences ϕ such that C �  ϕ, its conclusions.

(ii ) An argument C attacks an argument C' if C attacks a sentence in C'.
(iii ) Arguments C and C' are compatible if C ∪ C' is an argument, and otherwise incompatible. The

arguments in a collection { Ci} i ∈ I are compatible if their union ∪i ∈ I Ci is an argument, otherwise
incompatible.

The set of sentences { p, p �  q} is an argument, the set { p, p �  q, ×q} is not. The argument { p, q, p �  (q �
r)} has p, q and p �  (q �  r) as premises, and p, q, p �  (q �  r), q �  r and ×r as conclusions.

If C attacks C', then C and C' are incompatible. If the arguments in a collection { Ci} i ∈ I are pairwise
compatible, the collection is not necessarily compatible. For instance, the three arguments { p} , { q} and
{ p �  q} are pairwise compatible, but the collection containing all three arguments is not compatible. The
incompatibil ity of two arguments does not imply that one of them attacks the other. E.g., the arguments
{ p, q} and { p �  r, q �  ×r} are incompatible, but neither attacks the other.

Property (3.15)
If C is an argument for ϕ, then there is a Modus ponens derivation with premises in C and conclusion
ϕ. If C is an argument against ϕ, then there is a Modus ponens derivation with premises in C and
conclusion ×ϕ.

Proof: Use property (3.11).

In the following figure, three arguments are graphicall y suggested.

ϕ ×ϕ

ϕ

A B C

The bottoms of the alpine shapes consist of the premises of the argument; the tops are the conclusions.
Argument A has conclusion ϕ, argument B conclusion ×ϕ and argument C has premise ϕ. B attacks C,
but not necessarily A (since ϕ might not be a premise of A). A and B are incompatible, and B and C too.

If C is an argument, then its closure under Modus ponens characterizes an interpretation, cf. (3.11). It
is denoted as WC. For arguments C, it does not in general hold that J(WC) is equal to C. It does hold that
J(WC) is equal to Cn(C).

Definition (3.16)
Let C be an argument. Then WC is the interpretation specified by the argument C.

The following monotonicity property obtains. Cf. the properties (4.6) and (6.6) below.
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Property (3.17)
Let T and T' be theories, such that T is a subset of T'. If T has no model, T' does not have one. If T and
T' both have a model, say W and W', respectively, and ϕ is justified in W, then ϕ is justified in W'. If
ϕ is defeated in W, it is defeated in W'. If ϕ is in the extent of W, it is in the extent of W'.

Proof: Use properties (3.11) and (3.15).

4 Extensions as interpretations of defeasible theories

The models of a theory, defined in the previous section, can be regarded as interpretations of strict
theories: a model of a theory is an interpretation in which all sentences of the theory are considered to
express justified statements. In this section, the notion of extensions of a theory is introduced. Extensions
are interpretations of theories as defeasible statements. The main idea is that an extension of a theory is an
interpretation specified by a part of the theory that is an argument against the remainder of the theory. In
other words, in an extension of a theory, the theory is split in a justified and a defeated part. The justified
part is an argument against the defeated part and specifies the extension. In this way, many sets of
sentences that are not satisfiable are given sensible interpretations as defeasible theories.

Before the formal definition is given, some examples are discussed. The following definition comes in
handy.

Definition (4.1)
Let ∆ be a set of sentences and C an argument. Then C is a ∆-argument if C is a subset of ∆.

Some simple but important examples are the following.

Example (4.2)
(i) Consider the set ∆ = { p, q, q �  p} . The theory ∆ says that p, that q, and that q attacks p. ∆ is clearly

not satisfiable. It contains an argument however that attacks all sentences outside the argument:
{ q, q �  p} is indeed an argument, and attacks p. In the interpretation specified by { q, q �  p} , ×p, q
and q �  p are justified, and p is defeated. This interpretation is the theory's extension.

(ii ) Consider the set ∆ = { p, q, r, q �  p, r �  q} . The theory ∆ says that p, that q, that r, and that q
attacks p, while q is on its turn attacked by r. Again the theory is not satisfiable. Still there is a ∆-
argument, viz. { p, r, q �  p, r �  q} , that attacks all sentences of the theory not in it, in this case only
q. In the interpretation it specifies all sentences in ∆ are justified, except q, which is defeated. This
interpretation is the theory's extension.

(iii ) Consider the set ∆ = { p, ×p} . The theory ∆ says that p, and that it is defeated that p. It is not
satisfiable. However the interpretation specified by the argument { ×p} in which ×p is justified and
p is defeated is the theory's extension.

Here is the formal definition of extensions.

Definition (4.3): extensions
If ∆ is a set of sentences and E an interpretation, then E is an extension of the theory ∆ if and only if E
is an interpretation that is specified by a ∆-argument J that attacks any sentence ϕ in ∆ \ J. The set J(E)
∩ ∆ is the justified part of the theory in the extension, the set D(E) ∩ ∆ the defeated part.

If E is an extension of ∆ and J is as in the definition, E = WJ. Since J is satisfiable, its set of consequences
is equal to Mp(J). Any sentence ϕ in J is justified in E, i.e., E(ϕ) = j, and any sentence ψ in ∆ \ J is
defeated in E, i.e., E(ψ) = d.

In the table, the splitt ing of some theories (among them those of example (4.2)) into sets of justified
and defeated sentences, as in the definition of extensions, is shown. Each splitt ing in the table corresponds
to an extension, by taking the interpretation specified by the justified sentences of the theory.
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Defeasible theory Justified part Defeated part
p, ×p ×p p
p, p �  q, q p �  q, q p
p, p �  q, q, q �  r, r p, p �  q, q �  r, r q
p, p �  q, ×p p �  q, ×p p

p, p �  q, ×(p �  q) p, ×(p �  q) p �  q
p, p �  q, q, q �  r p �  q, q, q �  r p

Another fundamental characteristic for the interpretation of sets of sentences as defeasible theories is the
following.

Property (4.4)
A theory can have zero, one or several extensions.

Proof: Cf. the following examples.

Example (4.5)
(i) The three theories { p, p �  p} , { p, p �  q, ×q} , { pi | i is a natural number} ∪ { pi 

�  pj | i and j are
natural numbers, such that i < j} lack extensions. For the latter theory, this can be seen as follows.
Assume that there is an extension E in which for some natural number n pn is justified. Then all pm

with m > n must be defeated in E, for if such a pm were justified, pn could not be justified. But that
is impossible, for the defeat of a pm with m > n can only be implied by a justified pm' with m' > m.
As a result, no pi can be justified in E. But then all pi must be defeated in E, which is impossible
since the defeat of a pi can only be implied by a justified pj with j > i. (Note that any finite subset
of the latter theory has an extension, while the whole theory does not. This shows a 'non-
compactness' property7 of extensions.) See also example (6.10) below.

(ii ) The three theories { p, q, p �  q, p �  q} , { pi, pi 
�  pi+1 | i is a natural number} and { ×ip | i is a natural

number} have two extensions. (Here ×ip denotes, for any natural number i, the sentence composed
of a length i sequence of the connective ×, followed by the constant p.)

(iii ) The theory { p, ×p} has a unique extension, just as the other example theories in the table above.

It follows that, although a theory that is not satisfiable, can have an extension, not all theories have an
extension: such theories are neither 'strictly satisfiable' nor 'defeasibly satisfiable'. Such sets of sentences
can neither be interpreted as a strict theory nor as a defeasible theory.

The following nonmonotonicity property obtains. Cf. the properties (3.17) and (6.6).

Property (4.6)
Let ∆ and ∆' be theories, such that ∆ is a subset of ∆'. If ∆ has an extension, ∆' need not have one. If ∆
and ∆' both have an extension, say E and E', respectively, and ϕ is justified in E, then ϕ need not be
justified in E'. If ϕ is defeated in E, it need not be defeated in E'. If ϕ is in the extent of E, it need not
be in the extent of E'.

Proof: While {p} has an extension, { p, p �  p} does not. While p is justified in the extension of { p} , it is not in that of
{ p, q, q �  p} . While ×p is justified in the extension of { ×p} , it is not in that of { ×p, q, q �  ×p} . While r is in the
extent of the extension of { p, p �  r} , it is not in that of { p, p �  r, q, q �  p} .

The following notational convention is sometimes useful.

Convention (4.7)
If S is a set of sentences, then ×S denotes the set { ×ϕ | ϕ is an element of S} and ×-1S the set { ϕ | ×ϕ is
an element of S} .

For determining the extensions of a theory, the following simple property can be helpful.

                                                          
7 A property P of sets is called compact if a set S has property P whenever all it s finite subsets have the property.
Cf. the compactness of satisfiabilit y in first-order predicate logic.
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Property (4.8)
If E is an extension of a theory ∆, then J(E) ⊆ Mp(∆) and D(E) ⊆ ×-1Mp(∆).

Proof: Let the set J be as in definition (4.3). Then E = WJ. Therefore J(E) = Mp(J) and since J ⊆ ∆ and Mp is
monotonous, J(E) ⊆ Mp(∆). Since E = WJ, it follows that D(E) ⊆ ×-1J(E). Then by J(E) ⊆ Mp(∆), also D(E) ⊆
×-1Mp(∆).

Obviously, it is not in general the case that Mp(∆) is a subset of the extent of an extension of the theory ∆.
An example is the theory ∆ = { p, p �  q, ×p} that has a unique extension specified by ×p and p �  q. In the
extension, p is defeated and q not taken into account..
The following proposition gathers some alternative definitions of extensions.

Proposition (4.9)
Let E be an interpretation and ∆ a set of sentences. Then the following are equivalent:
(i) E is an extension of the theory ∆.
(ii ) There are sets of sentences J and D with ∆ = J ∪ D, J ∩ D = ∅, such that J(E) = Mp(J) and

D(E) ⊇ D.
(iii ) There are sets of sentences J and D with ∆ = J ∪ D, J ∩ D = ∅, such that J(E) = Mp(J) and J(E)

⊇ ×D.
(iv) E = W∆ ∩ J(E) and E �  ×(∆ \ J(E)).
(v) E is an interpretation specified by a maximal satisfiable subset of ∆ and with ∆ in its extent.

Proof: (i) �  (ii): Let J be as in the definition of extensions and let D be ∆ \ J. Then J and D are as in (ii ). (ii) �  (iii ):
For any interpretation E and any set of sentences D, it follows from D(E) ⊇ D that J(E) ⊇ ×D. (iii ) �  (iv): Note
that J = ∆ ∩ J(E) and D = ∆ \ J(E). (iv) �  (v): J = ∆ ∩ J(E) is a maximal satisfiable subset of ∆ since for any ϕ in
∆ not in J, it obtains that J �  ×ϕ. (v) �  (i): Let J be a maximal satisfiable subset of ∆ specifying E. Any ϕ in ∆ \ J
is in E's extent. It cannot be in J(E) for then J ∪ (ϕ) would be satisfiable. Therefore it must be in D(E). But then
×ϕ must be in J(E). Since J specifies E, ×ϕ is a consequence of J.

By part (iv) of the proposition, the set J as it occurs in the definition of extensions can be extracted from a
given extension of the theory: the set J is equal to ∆ ∩ J(E). Note however that an extension E of a theory
∆ can be specified by other subsets of ∆ than ∆ ∩ J(E), viz. subsets J' for which it holds that ∆ ∩ J(E) =
Mp(J'). For instance, the unique extension E of the theory { p, p �  q, p �  r, q} is specified by { p, p �  q} ,
which is a proper subset of ∆ ∩ J(E).

The following property characterizes the extensions of satisfiable theories: they are just the
interpretations specified by the theory. In addition, it is stated that an extension of a theory is also an
extension of certain other sets of sentences.

Property (4.10)
(i) If T is satisfiable, then T has a unique extension, viz. the interpretation WT that is specified by T.
(ii ) If E is an extension of ∆, then E is an extension of any set of sentences ∆', such that J(E) ∩ ∆ ⊆ ∆'

⊆ J(E) ∪ D(E).

Proof: Property (i) follows from the fact that if E is an extension of T and ϕ were a sentence in T that is defeated in E,
then T ∩ J(E) �  ×ϕ and T would not be satisfiable. For property (ii ), first note that ∆' ∩ J(E) = ∆ ∩ J(E) and ∅ ⊆
∆' \ J(E) ⊆ D(E), and then use part (iv) of proposition (4.9).

Note that, though according to property (ii ) above an extension E of a theory ∆ is also an extension of any
set ∆', such that J(E) ∩ ∆ ⊆ ∆' ⊆ J(E) ∪ D(E), such a set ∆' can have an extension that is not an extension
of ∆. The following is an example.

Example (4.11)
The theory ∆ = { p, p �  q, q �  r, r �  s, q �  (r �  s), s �  (p �  q)} has one extension, viz. the
interpretation specified by ∆ \ { r �  s} , in which r �  s is defeated. J(E) ∪ D(E) has a second extension,
viz. the interpretation specified by { s} ∪ ∆ \ { p �  q} .
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In the following sections, the notion of extensions as interpretations of defeasible theories is further
investigated.

In the following, the notion of extensions is further investigated. One of the aims is to better
understand the possibili ty that a theory has zero, one or several extensions. Let's call the possibili ty that a
theory does not always have an extension the extension existence problem, and the possibili ty that a
theory has more than one extension the extension multiplicity problem. One tool will be the notion of
stages.

5 Stages

Even if a theory has no extension, its subsets can have extensions. The extensions of subsets of a theory
are called the theory's stages.8 The extensions of the subsets of a theory can be regarded as preliminary
stages on the path towards an extension of the whole theory. One could say that at these preliminary
stages less information as it is expressed in the theory, is taken into account than at an extension. Even if
the theory as a whole lacks an extension, its stages can provide interesting information about the theory.

Definition (5.1): stages
An interpretation S is a stage of the theory ∆ if and only if it is an extension of a subset of ∆. If S is a
stage, the set ∆ ∩ (J(S) ∪ D(S)) is the scope of the stage. If S is a stage, the sets J and D, where J :=
J(S) ∩ ∆ and D := D(S) ∩ ∆, are the j-scope and the d-scope of the stage, respectively. A sentence ϕ
in ∆ that is in the scope of a stage S is taken into account at the stage S.

The scope of a stage a theory can be regarded as the subset of the theory that has been taken into account
at the stage.9 A stage's scope should be contrasted with the stage's extent, which is the whole set of
sentences (not in general a subset of ∆) that are assigned a defeat status in it (cf. definition (3.3)). For
instance, in the stage of the theory { p, ×p, p �  q} specified by the set { p, p �  q} , q is in the stage's extent,
but not in its scope since it is not in the theory.

Example (5.2)
The sets ∅, { p} , { ×p} , { p �  q} , { p, p �  q} and { ×p, p �  q} specify the stages of the theory { p, ×p, p

�  q} . Its unique extension is specified by { ×p, p �  q} . Note that the scopes of the stages specified by
{ ×p} and { ×p, p �  q} include the sentence p.

Not all subsets of a theory occur as the scope of one of the theory's stages. There are two fundamentally
different reasons for this. The first is that the subset does itself not have an extension. For instance, the
subset { p, p �  p} of the theory { p, p �  p, q, q �  p} does not occur as the scope of a stage. The second
reason is that if S is an extension of a subset ∆' of a theory ∆, then the scope of the stage S of ∆ is not
necessarily equal to ∆'. The scope is then necessarily a larger subset of ∆. For instance, the stage
(actually: the extension) of the (satisfiable) theory { p, q, p �  q} specified by the set { p, p �  q} has the
whole theory as its scope.

The stages of a theory correspond exactly to the interpretations that are specified by the satisfiable
subsets of ∆:

Property (5.3)
An interpretation S is a stage of the theory ∆ if and only if S is specified by a satisfiable subset T of ∆,
i.e., S = WT.

Proof: If T is a satisfiable subset of ∆, then T has a unique extension, viz. WT, by part (i) of property (4.10). As a
result, it is a stage of ∆. If S is a stage of the theory ∆, it is by definition an extension of a subset ∆' of ∆. By part
(iv) of proposition (4.9) it is specified by ∆' ∩ J(S), which is a satisfiable subset of ∆.

                                                          
8 For the development of my ideas on stages, see also Verheij , 1996a and 1996b.
9 As a result, the stages of a theory can be regarded as three-valued interpretations of the theory, viz. the values
'justified', 'defeated' and 'not taken into account'. Together with the additional value 'uninterpreted' suggested in note
6, one can look at stages as four-valued interpretations of the whole language. Again, whether this is a fruitful view,
is left for further research.
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As a result, the stages of a theory are exactly the interpretations specified by the theory's arguments (cf.
definition (3.14)).

Note that extensionally stages coincide with satisfiable subsets, but not intensionally. One notion
associated with the stages of a theory is their scope, which is not as readily suggested by the theory's
satisfiable subsets.

A characteristic phenomenon of argument defeat that is made explicit in the stages of a theory, is the
possibili ty that the defeat status of a sentence changes on the basis of additional information.

Example (5.4)
(i) The sets { p, p �  q} and { ×p, q, p �  q} specify stages of the theory { p, q, p �  q} . The latter

specifies the theory's extension. In the former, p is justified since the attack q is not yet taken into
account. In the latter, p has become defeated since it is attacked by q.

(ii ) The stages specified by the sets { p, p �  q, q �  r} , { ×p, q, p �  q, q �  r} and { p, ×q, r, p �  q, q �  r}
of the theory { p, q, r, p �  q, q �  r} (the latter of which is the theory's unique extension) show the
reinstatement of a sentence: p is consecutively justified, defeated, and then again justified.

It is a natural step to accentuate the stages in which a maximal subset of the theory, is taken into account.
Such stages that have maximal scope, are called maximal stages.

Definition (5.5): maximal stages
An interpretation E is a maximal stage of the theory ∆ if and only if it has maximal scope among the
stages of ∆.

Note that a maximal stage of a theory, i.e., a stage with maximal scope, also has maximal extent among
the theory's stages, but that not all stages with maximal extent are maximal stages. The stage of the theory
{ p, p �  q, ×p} that is specified by the set { p, p �  q} has maximal extent (it is the stage that has maximal
extent among the stages with q in their extent), but does not have maximal scope: its scope does not
contain ×p, while the theory has a full-scope stage, namely its extension specified by { p �  q, ×p} .

Property (5.6)
Extensions are maximal stages, but not in general vice versa.

Proof: The scope of an extension of a theory is maximal since it is equal to the whole theory. Example (5.7) below
shows that maximal stages are not in general extensions.

Example (5.7)
The theory { p, p �  p} has the interpretations specified by { p} and { p �  p} as maximal stages, but no
extension. The theory { p, p �  q, ×q} has the interpretations specified by { p, p �  q} , { p, ×q} and { p �
q, ×q} as maximal stages, but has no extension. Cf. part (i) of example (4.5).

Property (5.6) implies that the number of maximal stages is equal to or larger than the number of
extensions. Example (5.7) shows that the number of maximal stages can indeed be larger than the number
of extensions. This can however only be the case if a theory lacks an extension, as the following property
shows. It says that for theories with an extension the notion of extension coincides with the notion of
maximal stage.

Property (5.8)
If a theory has an extension, then any maximal stage of the theory is an extension.

Proof: If E is an extension of a theory ∆, then its scope is equal to ∆. As a result, any maximal stage must have ∆ as
its scope, and is therefore also an extension.

As a result of this property, if a theory has an extension, the number of maximal stages of the theory
equals the number of extensions.

While the number of maximal stages is equal to or larger than that of extensions, the question arises
whether there is an analog for maximal stages of the extension existence problem: are there theories
lacking a maximal stage? Two of the three sample theories lacking an extension (discussed in example
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(4.5) above) were shown to have maximal stages (example (5.7) above). The third sample theory without
an extension also lacks a maximal stage.

Example (5.9): a theory without maximal stage
The theory ∆ = { pi | i is a natural number} ∪ { pi 

�  pj | i and j are natural numbers, such that i < j} has
no maximal stage. This can be seen as follows. Among its stages are the interpretations Sn specified
by the sets { pn} ∪ { pi 

�  pj | i and j are natural numbers, such that i < j} , where n is a natural number.
In a stage Sn, pn is justified and any pi with i < n is defeated. The extents of the stages Sn exhaust the
whole theory, so a maximal stage must have the whole theory as its extent, i.e., must be an extension.
However, the theory does not have an extension, cf. example (4.5), part (i).

Note that in the example, the non-existence of a maximal stage proves a 'non-compactness'
property: the sample theory ∆ has the property that for any finite subset ∆' of the theory there is a stage
the scope of which contains ∆', while for the whole theory there is not. (It is even the case that any
finite subset of ∆ has an extension.)

The analog of property (4.4) for maximal stages is the following.

Property (5.10)
A theory can have zero, one or several maximal stages.

Proof: The property follows from property (5.8), example (4.5) and example (5.9).

Maximal stages are the result of maximizing the scope of the stages of a theory. Another way to
maximize stages is by maximizing only the justified sentences in the scope of the stages. Stages that are
maximal in this second way are called the satisfiabil ity classes of a theory, since they turn out to
correspond exactly to the maximal satisfiable subsets of the theory.

Definition (5.11): satisfiability classes
A stage S is a satisfiability class of the theory ∆ if S is a stage of ∆ such that the j-scope of S is
maximal among the stages of ∆.

Property (5.12)
Let S be an interpretation and ∆ a set of sentences. Then the following are equivalent:
(i) A stage S is a satisfiabili ty class of the theory ∆.
(ii ) S is specified by a maximal satisfiable subset of ∆.
(iii ) S is a stage such that J(S) is maximal among the stages of ∆.

Proof: Assume that S is a satisfiabilit y class with j-scope J. J is satisfiable. If T with ∆ ⊇ T ⊇ J is satisfiable, it
specifies a stage with j-scope J. By the maximali ty of J, it follows that T = J. Assume that S is specified by a
maximal satisfiable subset T of ∆. Then S = WT and J(S) = Mp(T). If S' is a stage of ∆ with J(S') ⊇ J(S), then S'
is specified by the satisfiable set J(S') ∩ ∆ ⊇ T. Then the maximality of T implies that J(S') ∩ ∆ = T, and
therefore S' = S. Assume that S is a stage with j-scope J such that J(S) is maximal among the stages of ∆. If S' is a
stage with j-scope J' with ∆ ⊇ J' ⊇ J, then J(S') = Mp(J') ⊇ Mp(J) = J(S) by the monotonicity of Mp. By the
maximali ty of J(S), it follows that J(S) = J(S'). But then J = J(S) ∩ ∆ = J(S') ∩ ∆ = J'.

Example (5.13)
Consider the theory { p, q, r, p �  q, q �  r} that was already discussed in part (ii ) of example (5.4)
above. Its satisfiabili ty classes that have all the attack sentences of the theory in their extent, are
specified by the sets { q, p �  q, q �  r} (in which p is defeated, q justified and r not taken into account)
and { p, r, p �  q, q �  r} (in which p and r are justified and q defeated). The latter is the theory's
extension.

Note that the example shows that satisfiabili ty classes are 'insensitive' to the possibili ty of
counterattack and reinstatement: the stage in which p comes out as defeated and q as justified is from
the point of view of satisfiabil ity classes as good as the stage in which the outcome is the other way
around.

Satisfiabili ty classes and maximal stages are the maxima of two different partial orderings on the set of
stages of a theory. The partial orderings are defined as follows.
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Definition (5.14): a stage extending another stage
S extends S', denoted as S 

�
 S', if the scope of S is a subset of that of S'.

S compatibly extends S', denoted as S �  S', if the j-scope of S is a subset of the j-scope of S' and the d-
scope of S is a subset of the d-scope of S'.

Note that 
�
 and �  are not defined in terms of set inclusion of the extents of stages (which might be

confusing given the terminology), but of their scopes.

Property (5.15)
Let S and S' be stages of a theory. Then, if S �  S', S 

�
 S'.

Proof: If J(S) ∩ ∆ ⊆ J(S) ∩ ∆, then J(S) ⊆ J(S). If J(S) ⊆ J(S), then D(S) ⊆ D(S).

The satisfiability classes of a theory are the � -maxima among the theory's stages and its maximal stages
the 

�
-maxima.

Property (5.16)
Any maximal stage of a theory is a satisfiabili ty class, but not in general vice versa.

Proof: Any � -maximum is also � -maximal. The satisfiabilit y class of the theory { p, q, p �  q} specified by { q} is not
a maximal stage since the stage (actually: extension) specified by { p, p �  q} , in which q is defeated, has larger
scope.

Corollary (5.17)
Any extension of a theory is a satisfiabili ty class, but not in general vice versa.

Proof: Combine the properties (5.6) and (5.16).

The number of satisfiabili ty classes is larger than or equal to the numbers of maximal stages and
extensions. Indeed, in contrast with the situation for maximal stages and extensions, any theory has one or
more satisfiabili ty classes.

Theorem (5.18)
(i) Any theory ∆ has one or more satisfiability classes.
(ii ) If S is a stage of ∆, then ∆ has a satisfiabili ty class that is compatible with S.

Proof: For part (i), consider the partial ordering �  on the set of stages. Apply Zorn's lemma (or, if you prefer, one of
its weakenings) after observing that the stage specified by the empty set of sentences is a stage and that totally
ordered chains of stages (Si)i have a supremum, viz. WJ, where J is the union of all sets J(Si). For part (ii ),
consider the partial ordering �  on the set of stages compatible with S.

Property (5.19)
A theory has a maximal stage if and only if the partial ordering 

�
 on the theory's satisfiabilit y classes

has a maximum.

Proof: The property follows directly from the definitions.

Corollary (5.20)
Any finite theory has a maximal stage.

Proof: The number of satisfiabilit y classes of a finite theory is finite (e.g., since the number of partial justification
status assignments is) and finite partial orderings have a maximum.

Recall that finite theories do not always have an extension. Cf. part (i) of example (4.5).
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Definition (5.21): compatibility of stages
Stages S and S' of a theory ∆ are compatible if there is a stage S'', such that S �  S'' and S' �  S''. Stages
are incompatible if they are not compatible. A collection of stages { Si} i ∈ I is compatible if there is a
stage S, such that Si 

�  S for all i i n I.

The definition matches the notion of compatibil ity of arguments, cf. the correspondence between stages
and arguments following from (5.3).

Example (5.22)
The stages specified by the sets { p, q} and { p �  r, q �  ×r} are not compatible. Note that the example
shows that if two stages are incompatible, there need not be a sentence that is justified in one and
defeated in the other (in contrast with a property of dialectically justifying stages, defined and
discussed below, property (6.11)).

Compatibili ty in pairs of the stages in a collection of stages { Si} i ∈ I does not imply compatibili ty. See the
corresponding example for arguments below definition (3.14).

Property (5.23)
(i) Stages S and S' of a theory ∆ are compatible if and only if J(S) ∪ J(S') is satisfiable.
(ii ) If S and S' are compatible stages, then S �  WJ(S) ∪ J(S') and S' �  WJ(S) ∪ J(S').
(ii ) If S and S' are compatible stages, and S'' is a stage such that S �  S'' and S' �  S'', then WJ(S) ∪ J(S') 

�

S''.

Proof: Part (i) can be seen as follows. Let S'' be a stage such that S �  S'' and S' �  S''. Then J(S) ∪ J(S') ⊆ J(S''), which
is satisfiable. If J(S) ∪ J(S') is satisfiable, then it specifies a stage S'' = WJ(S) ∪ J(S'), such that S �  S'' and S' �  S''.
Part (ii ) follows immediately. For part (iii ), note that from S �  S'' and S' �  S'', it follows that J(S) ∪ J(S') ⊆ J(S'')
and therefore WJ(S) ∪ J(S') �  WJ(S'') = S''.

Notation (5.24)
If S and S' are compatible stages, then S �  S' denotes the stage WJ(S) ∪ J(S'). S �  S' is the union of the
stages S and S'.

Property (5.25)
If S1 and S2 are different satisfiability classes of the theory ∆, then S1 and S2 are incompatible.

Proof: If S1 and S2 were compatible satisfiabili ty classes, their union S1 �  S2 would exist and would be a satisfiabilit y
class. If S1 and S2 are different, this would contradict their maximali ty with respect to the partial ordering � .

Corollary (5.26)
If S1 and S2 are different maximal stages or extensions of a theory ∆, then S1 and S2 are incompatible.

Proof: Maximal stages and extensions are satisfiabili ty classes.

6 Dialectical justification

An important question to ask is whether it is possible to find a criterion that determines whether a
particular sentence is dialecticall y interpretable with respect to a theory, either as justified or as defeated.
That is the topic of this section. The result is the notion of dialectical justification that can be regarded as
an analog in defeasible reasoning of valid consequence in deductive reasoning.

A relevant property of extensions is expressed in the following proposition.

Proposition (6.1)
Let E be an extension of a theory ∆. Then J(E) is a ∆-argument that attacks any ∆-argument C that is
incompatible with J(E).

Proof: Since E is an extension, J(E) is satisfiable. Hence a ∆-argument C that is incompatible with J(E) cannot be a
subset of J(E) since J(E) is not incompatible with any of its subsets. Therefore there is a sentence ϕ in C that is
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not in J(E). Since E is an extension, it is in D(E). But for any sentence ϕ in D(E) it holds by the definition of
extensions that J(E) �  ×ϕ, i.e., J(E) attacks C.

The following corollary is a 'localized' version of proposition (6.1), that will be the starting point of
section 10, where the internal structure of dialectical justification is investigated.

Corollary (6.2)
Let E be an extension of a theory ∆, ϕ a sentence that is justified in E, and C a J(E)-argument for ϕ.
Then for any ∆-argument C' that is incompatible with C, there is a ∆-argument C'' that is compatible
with C (in fact a J(E)-argument), such that C'' attacks C'.

Proof: Take J(E) in the role of C''. Since C is a subset of J(E), C' is incompatible with J(E). Hence J(E) attacks C'
according to the proposition.

The property of the argument J(E) in proposition (6.1) above is sufficiently important to deserve a name
of its own.

Definition (6.3): dialectically justifying arguments
A ∆-argument C is dialectically justifying with respect to ∆ if and only if C attacks any ∆-argument C'
that is incompatible with C.

Definition (6.4): dialectically justifiable and defeasible sentences
A sentence ϕ is dialectically justifiable with respect to ∆ if and only if there is a ∆-argument C for ϕ
that is dialectically justifying with respect to ∆. Such an argument C is then called a dialectical
justification of ϕ, and C dialectically justifies ϕ with respect to ∆. A sentence ϕ is dialectically
defeasible with respect to ∆ if and only if ×ϕ is dialectically justifiable with respect to ∆. If C is a
dialectical justification of ϕ, then the argument C dialectically defeats ϕ with respect to ∆.

Example (6.5)
(i) The argument { p, r, q �  r} dialectically justifies p with respect to the theory { p, q, r, p �  q, q �  r}

(see part (ii ) of example (5.4) and example (5.13)). The argument { p} does not dialectically justify
p since the incompatible argument { q, p �  q} is not attacked. The argument { r, q �  r} dialectically
defeats q with respect to the theory.

(ii ) Sentences can be both dialectically justifiable and defeasible with respect to a theory. Consider the
theory { p, q, p �  q, p �  q} (see part (ii ) of example (4.5)). Then p and q are both dialectically
justifiable and defeasible with respect to the theory. The argument { p, p �  q} dialectically justifies
p and dialectically defeats q, while the argument { q, p �  q} dialectically defeats p and dialectically
justifies q.

(iii ) A sentence need not be dialectically justifiable or defeasible with respect to a theory. For instance,
the sentence p is not dialectically justifiable and not dialectically defeasible with respect to the
theory { p, p �  p} (see part (i) of example (4.5)).

The following nonmonotonicity property obtains. Cf. the properties (3.17) and (4.6).

Property (6.6)
Let ∆ and ∆' be theories, such that ∆ is a subset of ∆'. If a sentence ϕ is dialectically justifiable with
respect to ∆, it need not be dialectically justifiable with respect to ∆'. If a sentence ϕ is dialecticall y
defeasible with respect to ∆, it need not be dialectically defeasible with respect to ∆'. If a sentence ϕ is
dialectically justifiable or defeasible with respect to ∆, it can be neither dialectically justifiable nor
dialectically defeasible with respect to ∆'.

Proof: While p is dialectically justifiable with respect to {p} , it is not with respect to { p, q, q �  p} . While ×p is
dialectically defeasible with respect to { ×p} , it is not with respect to { ×p, q, q �  ×p} . While r is dialectically
justifiable with respect to { p, p �  r} , it is neither dialectically justifiable nor dialectically defeasible with respect
to { p, p �  r, q, q �  p} .
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Property (6.7)
(i) If C is a dialectical justification of ϕ with respect to ∆, then C is a dialectical justification for all it s

conclusions.
(ii ) If C is a dialecticall y justifying argument with respect to ∆, then Cn(C) (which is equal to Mp(C))

is also dialectically justifying.

Proof: Part (i) of the property is a direct consequence of the definitions. Part (ii ) follows by noting that any argument
C' that is incompatible with Mp(C) is also incompatible with C.

The new terminology leads to the following rephrasing of proposition (6.1).

Corollary (6.8)
(i) The set of justified sentences of an extension of a theory is a dialectically justifying argument with

respect to the theory.
(ii ) If ϕ is a justified sentence in an extension of a theory ∆, then ϕ is dialecticall y justifiable with

respect to ∆ and J(E) is a dialectical justification of ϕ.
(iii ) If ϕ is a defeated sentence in an extension of a theory ∆, then ϕ is dialectically defeasible with

respect to ∆ and J(E) is a dialectical justification of ×ϕ with respect to ∆.

Proof: The corollary is a reformulation of proposition (6.1) using the new terminology.

The following non-trivial sufficient condition for the non-existence of extensions is implied by the
corollary.

Corollary (6.9)
A theory ∆ has no extension if there is a sentence in ∆ that is neither dialecticall y justifiable nor
dialectically defeasible with respect to ∆.

Proof: Any sentence in ∆ is either justified or defeated in an extension of ∆ and therefore dialectically justifiable or
defeasible with respect to ∆.

The corollary can explain all examples of theories without extensions that have been encountered above
(part (i) of example (4.5)): in all there is a sentence that is neither dialecticall y justifiable nor dialectically
defeasible. Nevertheless the condition in corollary (6.9) is not necessary for the non-existence of an
extension. It does not obtain that a theory has an extension if any sentence in the theory is dialecticall y
justifiable or defeasible, as the following example shows.

Example (6.10)
The theory ∆ = { p, q, p �  q, q �  p, r, r �  r, s, s �  s, p �  r, q �  s} has no extension. Nevertheless all
sentences in the theory are dialectically justifiable or defeasible with respect to ∆. The ∆-arguments
{ p, p �  q} , { q, q �  p} , { p, ×r, p �  r} and { q, ×s, q �  s} are dialectical justifications with respect to ∆
of p, q, ×r and ×s, respectively.

The following proposition shows when the union of two dialectically justifying arguments is not
dialectically justifying.

Proposition (6.11)
Let C and C' be dialectically justifying arguments with respect to a theory ∆. Then the following are
equivalent:
(i) C ∪ C' is not a dialectically justifying argument with respect to ∆.
(ii ) C ∪ C' is not an argument.
(iii ) C and C' are not compatible.
(iv) There is a ϕ, such that C dialectically justifies ϕ while C' dialectically defeats ϕ.
(v) There is a ϕ in ∆, such that C dialectically justifies ϕ while C' dialectically defeats ϕ.
(vi) There is a ϕ in C ∪ C', such that C dialectically justifies ϕ while C' dialectically defeats ϕ.
(vii ) C attacks C'.
(viii ) C attacks C' and C' attacks C.
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Proof: That (i) follows from (ii ), which follows from (iii ), which follows from (iv), which follows from (v), which
follows from (vi), which follows from (vii ) (use property (6.7)), which follows from (viii ), is immediate. It is left
to show that (viii ) follows from (i). Assume first that C ∪ C' is not an argument. Then C and C' are incompatible,
and since each is dialectically justifying it follows that C attacks C' and that C' attacks C. Assume second that C
∪ C' is an argument. The proof of the proposition is finished, when it is shown that C ∪ C' is then dialectically
justifying. Let C'' be an argument that is incompatible with C ∪ C'. In the case that C'' is incompatible with C', C'
attacks C'' since C' is dialectically justifying. In the case that C'' is compatible with C', C is incompatible with the
argument C' ∪ C'', and therefore C attacks C' ∪ C'' since C is dialectically justifying. Since C and C' are
compatible it follows that C attacks C''. In both cases C ∪ C' attacks C''. It follows that C ∪ C' is dialectically
justifying.

The result can be generalized to arbitrary collections of dialectically justifying arguments:

Proposition (6.12)
Let { Ci} i ∈ I be a collection of dialectically justifying arguments with respect to a theory ∆, and let C
be its union ∪i ∈ I Ci. Then the following are equivalent:
(i) C is not a dialectically justifying argument with respect to ∆.
(ii ) C is not an argument.
(iii ) { Ci} i ∈ I is not compatible.
(iv) There are i and j in I, such that Ci and Cj are incompatible.
(v) There is a ϕ and there are i and j in I, such that Ci dialectically justifies ϕ while Cj dialecticall y

defeats ϕ.
(vi) There is a ϕ in ∆ and there are i and j in I, such that Ci dialectically justifies ϕ while Cj

dialectically defeats ϕ.
(vii ) There is a ϕ in C and there are i and j in I, such that Ci dialectically justifies ϕ while Cj

dialectically defeats ϕ.
(viii ) There are i and j in I, such that Ci attacks Cj.
(ix) There is an attack loop among the Ci, i.e., there are no i(0), ..., i(n), such that Ci(k) attacks Ci(k+1)

for k from 0 to n-1, and Ci(n) attacks Ci(0).
(x) There are i and j in I such that Ci attacks Cj and Cj attacks Ci.

Proof: Again the implications from bottom to top are immediate. It remains to show that (i) implies (x). Assume first
that C is not an argument. Then there are i(0), ..., i(n) in I (with n > 0), such that Ci(0) ∪ Ci(1) ∪ ... ∪ Ci(n) is not an
argument, while Ci(1) ∪ ... ∪ Ci(n) is. Then Ci(0) is incompatible with the argument Ci(1) ∪ ... ∪ Ci(n). Since Ci(0) is
dialectically justifying, it therefore attacks Ci(1) ∪ ... ∪ Ci(n). Ci(0) then attacks one of Ci(1), ..., Ci(n), say Ci(1). By
applying the previous proposition it follows that Ci(1) also attacks Ci(0). Assume second that C is an argument.
That C is then dialectically justifying can be seen as follows. Let C' be an argument that is incompatible with C.
Then there are i(0), ..., i(n) in I (with n > 0), such that C' ∪ Ci(0) ∪ Ci(1) ∪ ... ∪ Ci(n) is not an argument, while C'
∪ Ci(1) ∪ ... ∪ Ci(n) is. Therefore Ci(0) is incompatible with the argument C' ∪ Ci(1) ∪ ... ∪ Ci(n). It follows that Ci(0)

attacks one of C', Ci(1), ..., Ci(n). Since C is an argument, Ci(0) attacks C'. A fortiori, C attacks C'.

The propositions (6.11) and (6.12) have some important corollaries.

Corollary (6.13): reduction
Let ∆ be a theory. Then the following are equivalent:
(i) There is an incompatible collection of dialectically justifying arguments.
(ii ) There is an incompatible pair of dialectically justifying arguments.
(iii ) There is a pair of dialectically justifying arguments that attack each other.

Corollary (6.14): union
If C and C' are compatible dialecticall y justifying arguments, then also C ∪ C' is dialectically
justifying. (Similarly, for any compatible collection of dialectically justifying arguments: the union of
a compatible collection of dialectically justifying arguments is again dialectically justifying.)

Corollary (6.15): separation
If C and C' are incompatible dialectically justifying arguments, then there are opposites ϕ and ×ϕ,
such that C �  ϕ and C' �  ×ϕ, or such that C �  ×ϕ and C' �  ϕ. (Similarly, for any incompatible
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collection of dialectically justifying arguments: given an incompatible collection of dialectically
justifying arguments, there are opposites that are the consequence of the unions of compatible
subcollections.)

The union and separation properties are central in the treatment of the extension existence and
multiplicity problems in section 9 (cf. section 12.4).

A stronger version of separation follows immediately from the definition of dialectical justification:

Corollary (6.16): separation at the base
If C and C' are incompatible dialectically justifying arguments, then there is a sentence ϕ in C ∪ C',
such that C �  ×ϕ or C' �  ×ϕ. (Similarly, for any incompatible collection of dialectically justifying
arguments: given an incompatible collection of dialectically justifying arguments, there is a sentence
in the union of the collection that is attacked by the union of a compatible subcollection.)

In section 12.4, some variants of dialectical justification are treated. Each lacks at least one of these
properties.

7 Dialectically justified stages

Each justified sentence of an extension is dialectically justified by the justified sentences of the extension,
as was established in proposition (6.1). The analog for the justified sentences of stages, maximal stages or
satisfiabili ty classes does not obtain. For instance, the justified sentences in a stage of a theory are not
necessarily dialecticall y justified by the justified sentences of the stage. This leads to the notion of
dialectically justified stages.

Definition (7.1): dialectically justified stages
A stage S is a dialectically justified stage of the theory ∆ if and only if S is a stage of ∆, for which it
obtains that J(S) dialectically justifies any sentence in J(S) and dialectically defeats any sentence in
D(S).

Property (7.2)
Let S be a stage of the theory ∆. The following are equivalent:
(i) S is a dialectically justified stage.
(ii ) J(S) dialectically justifies any sentence in J(S).
(iii ) For any ϕ in J(S), there is a subset C of J(S) that dialectically justifies ϕ with respect to ∆.
(iv) S is specified by the union of a compatible collection of dialectically justifying arguments.
(v) S is specified by a dialectically justifying argument.

Proof: (ii ) follows from (i) by the definition of dialectically justified stages. (iii ) follows trivially from (ii ). Assume
(iii ). For any ϕ in J(S), pick a Cϕ ⊆ J(S) that dialectically justifies ϕ. Then by the union property (6.14) the union
C of the Cϕ is a dialectically justifying argument. But obviously C is equal to J(S) and therefore specifies S.
Assume (iv). Then by the union property (6.14) the union of the collection of justifying arguments is a
dialectically justifying argument. It also specifies S. Assume (v) and let C be a dialectically justifying argument
specifying S. Then Mp(C) = J(S). Now by part (ii ) of property (6.7) J(S) is dialectically justifying and (i) follows.

In analogy with the case of stages in general, there are two different ways to 'maximize' dialectically
justified stages. The first possibili ty is to maximize the j-scope, i.e., the set of sentences in the theory that
are justified in the dialectically justified stage. The second possibili ty is to consider dialectically justified
stages in which the scope is maximal, i.e., in which the interpreted part of the theory is as large as
possible. Maximal dialectically justified stages of the first type are dialectically preferred stages, those of
the second type maximal dialectically preferred stages. Dialectically preferred stages are the analog
among dialectically justified stages of the satisfiabili ty classes among stages in general, maximal
dialectically preferred stages that of maximal stages.

Definition (7.3): dialectically preferred stages and maximal dialectically preferred stages
(i) A stage S is a dialectically preferred stage of the theory ∆ if and only if S is a dialectically

justified stage of ∆ such that J(S) ∩ ∆ is maximal among the dialectically justified stages of ∆.
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(ii ) A stage S is a maximal dialectically preferred stage of the theory ∆ if and only if S is a
dialectically justified stage of ∆ such that the scope of S is maximal among the dialectically
justified stages of ∆.

The dialectically preferred stages of a theory are the � -maxima among the theory's dialectically justified
stages. A theory's maximal dialecticall y preferred stages the � -maxima.

It will not be surprising that maximal dialectically preferred stages are dialectically preferred stages
and that extensions are maximal dialectically preferred stages. However, there exist theories that have
dialectically preferred stages that are not maximal dialectically preferred stages, and theories that have
maximal dialectically preferred stages that are not extensions.

Property (7.4)
(i) Any maximal dialectically preferred stage of a theory is a dialectically preferred stage, but not in

general vice versa.
(ii ) Any extension of a theory is a maximal dialectically preferred stage, but not in general vice versa.

Proof: (i) Any � -maximum is also � -maximal. Example (7.5) below shows that there is a theory with a dialectically
preferred stage that is not maximal dialectically preferred. (ii ) Proposition (6.1) and its paraphrase (6.8) show that
extensions are dialectically preferred. Extensions are maximal dialectically preferred stages since their scope is
the whole theory. The theory { p, p �  p} has no extension, but the empty stage specified by the empty set as
maximal dialectically preferred stage.

Example (7.5)
The theory { p, q, r, p �  q, q �  p, q �  r, r �  r} has the stage specified by { q, q �  p, q �  r} , in which p
and r are defeated and q is justified, as extension, and therefore as maximal dialecticall y preferred
stage. The stage specified by { p, p �  q} , in which p is justified, q is defeated and r is not taken into
account, is a dialecticall y preferred stage, that is not maximal dialectically preferred.

Dialectically preferred stages are not necessarily satisfiabil ity classes and satisfiabili ty classes are not
necessarily dialecticall y preferred stages, as the following example shows. The further investigation of the
relation between satisfiabili ty classes and dialectically preferred stages is postponed to the next section.

Example (7.6)
The theory { p, p �  p} has satisfiabili ty classes { p} and { p �  p} , neither of which is a dialectically
preferred stage. Its only dialectically preferred stage (which is therefore also maximal dialectically
preferred) is the empty stage specified by the empty set of sentences.

Nevertheless an analog of property (5.25) and corollary (5.26) is easily proven.

Theorem (7.7)
If P1 and P2 are different dialectically preferred stages or maximal dialectically preferred stages of the
theory ∆, then P1 and P2 are incompatible.

Proof: If P1 and P2 were compatible, their union P1 �  P2 would be a dialectically justified stage by the properties
(6.14) and (7.2). Since P1 and P2 are different, P1 �  P2 would compatibly extend P1 and P2, while P1 �  P2 would
not be equal to one of P1 and P2, contradicting the � -maximali ty of P1 and P2.

Since by property (7.4) there can be more dialectically preferred and maximal dialectically preferred
stages than there are extensions, the question again arises whether all theories have a dialecticall y
preferred stage and a maximal dialectically preferred stage. It turns out that indeed all theories have a
dialectically preferred stage, but that not all theories have a maximal dialectically preferred stage.

Theorem (7.8)
(i) Any theory ∆ has at least one dialectically preferred stage.
(ii ) If S is a dialectically justified stage of ∆, then ∆ has a dialectically preferred stage that is
compatible with S.
(iii ) Not all theories have a maximal dialecticall y preferred stage.
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Proof: (i) Consider the partial ordering �  of the set of dialectically justified stages. Observe that the empty stage (i.e.,
the stage with empty extent) is a dialectically justified stage for any theory. Unions of totally ordered chains (Si)i

of dialectically justified stages have a dialectically justified stage as supremum S, viz. the stage specified by the
union of all sets J(Si). (Here the properties (6.14) and (7.2) are used.) By Zorn's lemma (or one of its weakenings)
�  has a maximum. (ii ) Apply Zorn's lemma (or one of its weakenings) to the partial ordering �  of the set of
dialectically justified stages that are compatible with S. (iii ) Example (7.12) below shows that there is a theory
without maximal dialectically preferred stage.

The construction of an example of a theory without a maximal dialectically preferred stage, discussed
below as example (7.12), is rather involved. For instance, example (5.9) of a theory without a maximal
stage has a maximal dialectically preferred stage, viz. the empty stage. One reason that the construction of
a counterexample is not simple, is that analogs of property (5.19) and corollary (5.20) about maximal
stages obtain for maximal dialecticall y preferred stages.

Property (7.9)
A theory has a maximal dialecticall y preferred stage if and only if the partial ordering �  on the
theory's dialectically preferred stages has a maximum.

Proof: The property follows directly from the definitions.

Corollary (7.10)
Any finite theory has a maximal dialecticall y preferred stage.

Proof: The number of dialectically preferred stages of a finite theory is finite and finite partial orderings have a
maximum.

In the discussion of example (7.12) of a theory without a maximal dialectically preferred stage, the
following lemma is useful.

Lemma (7.11)
In a dialectically preferred stage S of a theory ∆, any sentence ϕ in ∆, for which any ∆-argument C
that is incompatible with { ϕ} contains a sentence ψ that is defeated in S, is justified in S.

Proof: Let ϕ be a sentence, for which the condition of the lemma obtains. If ϕ is not justified in S, it is defeated or not
taken into account. Assume first that ϕ is defeated in S. Then J(S) supports ×ϕ, and therefore J(S) is an argument
that is incompatible with { ϕ} . The condition of the lemma then says that J(S) contains a sentence that is defeated
in S, which is impossible. Assume second that ϕ is not taken into account in S. Then J(S) ∪ {ϕ} is dialectically
justifying, which can be seen as follows. Let C be a ∆-argument incompatible with J(S) ∪ {ϕ} . If C is
incompatible with J(S), then J(S) attacks C since J(S) is dialectically justifying. If C is compatible with J(S), then
C ∪ J(S) is incompatible with { ϕ} , so by the condition of the lemma C ∪ J(S) contains a sentence ψ that is
defeated in S. The sentence ψ must be in C, and since it is defeated J(S) attacks ψ. It follows that J(S) ∪ {ϕ} is
dialectically justifying. As a result, the stage specified by J(S) ∪ {ϕ} is dialectically justified (cf. property (7.2)),
while it compatibly extends S, which implies that it is equal to S (since S is dialectically preferred). This
contradicts that ϕ is not taken into account in S.

Example (7.12): a theory without maximal dialectically preferred stage
Consider the theory ∆ consisting of the following sentences:

pi, qi, ri, for any natural number i
pi �  pj for all i and j with i < j
pi �  qi and pi �  qi for all i
pi �  rk for all i and k with k ≤ i
rk �  rk for all k

Then the following are the 'initials' of some of ∆'s stages:
S0: p0 (q0) (r0) (p1) q1 - (p2) q2 - (p3) q3 - (p4) q4 - ...
S1: (p0) q0 (r0) p1 (q1) (r1) (p2) q2 - (p3) q3 - (p4) q4 - ...
S2: (p0) q0 (r0) (p1) q1 (r1) p2 (q2) (r2) (p3) q3 - (p4) q4 - ...
S3: (p0) q0 (r0) (p1) q1 (r1) (p2) q2 (r2) p3 (q3) (r3) (p4) q4 - ...
S4: (p0) q0 (r0) (p1) q1 (r1) (p2) q2 (r2) (p3) q3 (r3) p4 (q4) (r4) ...



26 August 11, 2000

... ... ... ... ... ... ...
The sentences in brackets ( ) are defeated at the stage. The other listed sentences are justified. The
hyphens - indicate sentences that are not taken into account. For instance, at S0, p0 is justified, q0 is
defeated and r1 is not taken into account. For any natural number i, Si is defined as the stage at which
(i) pi is justified and, for any j such that i ≠ j, pj is defeated, and
(ii ) qi is defeated and, for any j such that i ≠ j, qj is justified, and
(iii ) for any j such that i ≥ j, ri is defeated and, for any j such that i < j, rj is not taken into account,

and
(iv) any sentence in ∆ of the form ϕ �  ψ is justified.
The following properties obtain, as is proven below:
a. Each stage Si is dialectically preferred.
b. Si and Sj are incompatible if i ≠ j.
c. If i < j, then the scope of Si is a proper subset of the scope of Sj.
d. If a stage S is dialectically preferred, such that, for some i, pi is justified in S, then S is equal to

Si.
e. If a stage S is dialectically preferred, such that no pi is justified, then all pi are defeated, all qi

are justified and no ri is taken into account in S. The scope of this stage is properly contained in
the scope of any of the stages Si.

f. ∆ has no maximal dialectically preferred stage.

Proof: The properties a, b and c follow from the definitions. Property d is shown as follows. Assume that pi is
justified in a dialectically preferred stage S. Then qi and all pj with j > i are defeated. If, for some j, pj is defeated,
then by lemma (7.11) qj is justified since S is dialectically preferred. So any qj with j > i is justified. No pk with k
< i is justified since then pi would be defeated. Assume now that, for some k < i, pk is not taken into account at S.
Then also qk is not taken into account, for otherwise qk would be justified or defeated, making pk defeated or
justified, respectively, which would be impossible. But if pk and qk are not taken into account, then the stage
specified by J(S) ∪ {qk} would be dialectically justified, contradicting the � -maximali ty of S among the
dialectically justified stages. Therefore no pk with k < i is not taken into account. As a result, all pk with k < i are
defeated, and then by the lemma all qk with k < i are justified. Property e follows from the lemma applied to the
sentences qi. Property f follows from the other properties as follows. Assume that S is a maximal dialectically
preferred stage of ∆. Then either there is a pi that is justified in S or there is no such pi. The former is impossible
since by d S would have to be equal to a stage Si, but no stage Si is maximal dialectically preferred by b and c.
The latter is impossible since S would be equal to the dialectically preferred stage in property e, which has a
scope that is properly contained in the scope of each of the dialectically preferred stages Si, contradicting that S is
maximal dialectically preferred.

Note that the example proves a non-compactness property: though any finite stage of the sample theory
has a maximal dialectically preferred stage (by corollary (7.10)), the whole theory does not. Cf. also
example (5.9) and one of the sample theories in part (i) of example (4.5).

8 The relations between the types of stages

Among the stages of a theory, the following special types have been distinguished: extensions, maximal
stages, satisfiability classes, dialectically justified stages, dialectically preferred stages and maximal
dialectically preferred stages. Several relations between types of stages have already been encountered. In
this section, the previously found relations are recapitulated and a number of other relations are
established.10

Satisfiabili ty and dialectical justifiabili ty divides the types in two main groups. The 'satisfiability
group' consists of the extensions, the maximal stages, the satisfiabili ty classes and the stages. The
'dialectical justification group' consists of the extensions, the dialectically justified stages, the dialectically
preferred stages and the maximal dialectically preferred stages. Note that the type of extensions belong to
both groups.

The relations between the types of stages within a group have already been investigated. If E, M, SC,
S, DJ, P and MP denote the sets of extensions, maximal stages, satisfiabili ty classes, stages, dialectically
justified stages, dialectically preferred stages and maximal dialectically preferred stages of a theory,

                                                          
10 This section extends my earlier work on the relations between types of stages (Verheij , 1996a).
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respectively, the relations between the types within the same group can be summarized as in the following
figure.

MP  

E  SC  M  

P  E  DJ  

satisfiability
types

dialectical justification
types

S  

The arrows indicate inclusion maps between the sets of stages. All inclusions have been proven earlier (in
the properties (5.6) and (7.4)). They were also shown to be proper inclusions, in the sense that for each
inclusion there exists a theory for which the inclusion is proper.

In this section, the relations between the stage types in different groups are investigated. The main tool
is the dialecticall y justified restriction of stages. The dialectically justified restriction of a stage is the
largest substage of a stage that is dialectically justified. For any stage, the dialectically justified restriction
exists, as the following proposition shows.

Proposition (8.1)
Let S be a stage of a theory ∆. Consider the union J(S)|dj of all dialectically justifying subsets of J(S).
Then the stage S|dj specified by J(S)|dj is a justified stage.

Proof: The proposition follows immediately from the properties (6.14) and (7.2).

Definition (8.2): dialectically justified restrictions
If S is a stage of a theory ∆, then the stage S|dj occurring in proposition (8.1) is the dialectically
justified restriction of S.

By proposition (8.1), there is a (surjective) map from the set of stages to the set of dialectically justified
stages, that maps a stage S to its justified restriction S|dj. In the following, the properties of this map are
investigated.

The dialectically justified restriction of a stage is a dialectically justified stage. One might hope that,
by dialectically justified restriction, stages of one of the other satisfiabili ty types E, M and SC map nicely
to stages of a dialectical justification type DJ, P or MP. For instance, it could be that the dialecticall y
justified restriction of a maximal stage is always maximal dialectically preferred, or that any maximal
dialectically preferred stage is the dialectically justified restriction of a maximal stage. One such relation
is trivial: since any extension is its own dialectically justified restriction, the restriction of any extension is
an extension and any extension is the restriction of an extension.

Surprisingly, as will be shown below, no other relation of this kind obtains. More precisely, the
images of the sets M and SC under the restriction map are not in general included in MP or P, and the
originals of MP and P do not in general include M or SC. The following four new types of stages are
found in this way.

SCDJ: The set of dialectically justified stages that are the dialectically justified restriction of a
satisfiabili ty class.

MDJ: The set of dialectically justified stages that are the dialectically justified restriction of a
maximal stage.

PSC: The set of satisfiabili ty classes that have a dialecticall y preferred stage as dialectically
justified restriction.

MPSC: The set of satisfiabili ty classes that have a maximal dialectically preferred stage as
dialectically justified restriction.

The SCDJ and MDJ types belong to the group of dialectical justification types. The PSC and MPSC types
belong to the group of satisfiabili ty types. Note that except for their existence as independent types of
stages, these four new classes do not seem to be very interesting. Their existence stresses that
satisfiabili ty and dialectical justification are very different notions.

In the following figure, the inclusion and dialectically justified restriction maps between the stage
types are summarized. The more interesting 'old' stage types have been highlighted by the use of a bold
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font. The vertical arrows indicate the dialectically justified restriction maps, all of which are surjective.
The arrow from E to E indicates the identity map. All other arrows indicate inclusion maps.

E  SC  
M  

satisfiability
types

MPSC  PSC  

E  SCDJ  

MDJ  
dialectical justification

types

MP  P  

DJ  

S  

That the maps in the figure exist is easy to check using what has been discussed before. The surjectivity
of the dialectically justified restriction maps follows from the definitions of the new stage types. For
particular theories some or even all of the maps can collapse into identities. An extreme example is the
theory { p} in which all sets in the figure except DJ are equal to the singleton set consisting of the theory's
extension (specified by p). For this theory, DJ consists of two stages, viz. the empty stage and the theory's
extension.

In general, however, any inclusion map is proper, in the sense that for any inclusion map there is a
theory for which the inclusion of the sets is proper. For most inclusion maps, this is easy to check using
examples encountered earlier. For instance, it follows from the existence of dialecticall y preferred stages
that are not maximal dialectically preferred, that there are theories ∆, such that PSC ∆ is a proper subset of
MPSC ∆. Showing the properness of the following inclusion maps requires new examples:

P ⊆ SCDJ, but P ≠ SCDJ: example (8.3), part (i)
SCDJ ⊆ DJ, but SCDJ ≠ DJ: example (8.3), part (ii )
PSC ⊆ SC, but PSC ≠ SC: example (8.3), part (i)

All obtaining inclusions are shown in the figure. Example (8.3), part (iii ), shows that PSC 
�

 M and MDJ
�

 P. Example (8.3), part (iv), shows that MPSC 
�

 M, MPSC 
�

 M, PSC 
�

 M, MDJ 
�

 MP, MDJ 
�

 MP
and MDJ 

�
 P.

Example (8.3)
(i) Let's again look at the theory { p, q, r, p �  q, q �  r} . Its satisfiabili ty class specified by { q, p �  q, q

�  r} has the empty stage as dialectically justified restriction. The empty stage is not dialectically
preferred. The only dialectically preferred stage is the theory's extension specified by { p, r, p �  q,
q �  r} . The only satisfiabili ty class of which it is the restriction is the extension itself.

(ii ) The stage S specified by { p, p �  q, q �  r} of the theory in part (i) is dialectically justified. It has
one satisfiabil ity class compatibly extending it, viz., the theory's extension. The dialectically
justified restriction of the extension is the extension itself and is not equal to S. As a result, the
stage S is in DJ, but not in SCDJ.

(iii ) The theory { p, q, r, p �  q, q �  r, r �  r} has two maximal stages (but no extension). The first, M1, is
specified by { p, p �  q, q �  r, r �  r} : p is justified, q is defeated and r is not taken into account. M1

is the theory's maximal dialectically preferred stage, and therefore equal to its dialecticall y
justified restriction. The second, M2, is specified by { q, p �  q, q �  r, r �  r} : p is not taken into
account, q is justified and r is defeated. The dialectically justified restriction of M2 is the empty
stage, which is not dialectically preferred. M2 is a maximal stage, that is not the dialectically
justified restriction of a dialectically preferred stage.

(iv) The theory { p, q, r1, r2, r3, p �  q, q �  p, q �  r1, r1 �  r2, r2 �  r3, r3 �  r1, r2 �  r2, r3 �  r3} is an example
of a theory with a maximal dialecticall y preferred stage, for which no compatible maximal stage
with larger or equal extent exists. The theory has one maximal stage and one maximal dialectically
preferred stage, but they are not compatible. The theory's maximal stage M is specified by p, r1 and
the attack sentences of the theory: in M, p is justified, q defeated, r1 justified, r2 defeated and r3 not
taken into account. Its dialectically justified restriction is the dialectically preferred stage P
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specified by p and the attack sentences (in which r1 and r2 are not taken into account). The theory's
maximal dialectically preferred stage MP, is specified by q and the attack sentences of the theory:
in MP, p is defeated, q justified, r1 defeated, and r2 and r3 not taken into account. It is its own
dialectically justified restriction. M has larger scope than MP, but M's dialectically justified
restriction has smaller scope than that of MP.

Corollary (8.4)
Let #E, #M, #SC, #DJ, #P and #MP denote the number (or cardinali ty) of extensions, maximal stages,
satisfiabili ty classes, dialectically justified stages, dialectically preferred stages and maximal
dialectically preferred stages of a theory, respectively. Then the following inequaliti es hold:
(i) #E ≤ #M ≤ #SC
(ii ) #E ≤ #MP ≤ #P ≤ #DJ
(ii ) 1 ≤#P ≤ #SC
The inequaliti es are sharp, in the sense that all equalities can occur. No other inequalities hold in
general.

Proof: The parts (i) and (ii ) follow from the inclusions discussed above. Part (iii ) follows from part (i) of theorem
(7.8) above, and from the inclusion of P in SCDJ and the surjection of SC is onto SCDJ. Example (8.3) provides
counterexamples to several of the missing inequaliti es. The theory { p, q, r, p �  q, q �  r, r �  q} is a
counterexample to the inequality #SC ≥ #DJ. Its only dialectically justified stage is the empty stage, while there
are several satisfiabilit y classes. The theory { p, q, p �  q} is a counterexample to #SC ≤ #DJ. It has four
dialectically justified stages, viz. those specified by the subsets of { p, p �  q} , and three satisfiabilit y classes,
specified by the three two-element subsets of { p, q, p �  q} .

9 The extension existence problem and the extension multiplicity problem

As noted in property (4.4), a theory can have zero, one or several extensions. The possibilit y that a theory
does not always have an extension was called the extension existence problem, and the possibil ity that a
theory has more than one extension the extension multiplicity problem. In this section these problems are
investigated.

According to corollary (6.8), all justified sentences of a theory's extension are dialectically justifiable
with respect to the theory, and all defeated sentences dialectically defeasible. As a result, a theory has no
extension if there is a sentence in the theory that is neither dialectically justifiable nor dialectically
defeasible with respect to the theory (corollary (6.9)). The opposite of the latter does not hold: example
(6.10) shows a theory for which all sentences are dialectically justifiable or defeasible with respect to the
theory, while the theory lacks an extension.

It turns out that the dialectical justifiabili ty (or defeasibili ty) of a sentence does not guarantee that
there is an extension in which the sentence is justified (or defeated, respectively). A weaker conclusion
does follow however: for any dialectically justifiable sentence there is a dialectically preferred stage in
which the sentence is justified (and similarly for a dialectically defeasible sentence).

Proposition (9.1)
A sentence ϕ is dialectically justifiable with respect to a theory ∆ if and only if there is a dialectically
preferred stage of ∆ in which ϕ is justified. A sentence ϕ is dialecticall y defeasible with respect to a
theory ∆ if and only if there is a dialectically preferred stage of ∆ in which ϕ is defeated.

Proof: The proposition follows from the properties (6.14) and (7.2) and from part (ii ) of theorem (7.8).

The proposition leads to the following important characterization. It solves the 'dialectically preferred
stages multiplicity problem', i.e., the analog of the extension multiplicity problem for dialectically
preferred stages. (Note that the 'dialectically preferred stage existence problem' has already been solved:
any theory has one or more dialectically preferred stages.)

Theorem (9.2)
A theory ∆ has two or more dialectically preferred stages if and only if there is a sentence ϕ that is
both dialectically justifiable and defeasible with respect to ∆. Equivalently, a theory ∆ has a unique
dialectically preferred stage if and only if there is no sentence ϕ that is both dialecticall y justifiable
and defeasible with respect to ∆.
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Proof: The 'if'-part (of the first equivalence) follows from proposition (9.1) and theorem (7.7). The 'only if'-part is
seen as follows. Two dialectically preferred stages P1 and P2 must be incompatible by theorem (7.7). Therefore
J(P1) ∩ ∆ and J(P2) ∩ ∆ are incompatible. Since J(P1) ∩ ∆ is a dialectically justifying ∆-argument, J(P1) ∩ ∆
attacks J(P2) ∩ ∆. Therefore there is a ϕ, such that J(P1) ∩ ∆ �  ×ϕ, while ϕ is in J(P2) ∩ ∆. Choose such a ϕ.
Since J(P1) = Cn(J(P1) ∩ ∆), ϕ is in J(P1). As a result, ϕ is justified in P1 and defeated in P2. Since the stages are
dialectically preferred, ϕ must then be dialectically justifiable and defeasible with respect to ∆.

Theorem (9.3)
Let n be a natural (or cardinal) number. A theory ∆ has exactly n dialectically preferred stages if and
only if n is equal to the maximal number of mutually incompatible dialectically justifying ∆-
arguments C.

Proof: Combine proposition (9.1) and theorem (7.7).

Dealing with the extension existence problem requires the notions of dialectical justifiabilit y in a context
and of disambiguating arguments.

Definition (9.4): dialectical justifiability in a context
A sentence ϕ is dialectically justifiable in the context C with respect to ∆ if and only if there is an
argument C' that contains C and that dialectically justifies ϕ with respect to ∆. A sentence ϕ is
dialectically defeasible in the context C with respect to ∆ if and only if ×ϕ is dialectically justifiable in
the context C with respect to ∆.

Definition (9.5): disambiguating arguments
A ∆-argument C is disambiguating if there is no sentence that is both dialectically justifiable and
defeasible in the context C with respect to ∆.

As a result, if a disambiguating argument C is dialectically justifying, there is only one dialecticall y
preferred stage compatibly extending the stage specified by C.

Theorem (9.6)
A theory ∆ has no extension if and only if, for any disambiguating ∆-argument C, there is a sentence
in ∆ that is neither dialectically justifiable nor dialectically defeasible in the context C with respect to
∆. Equivalently, a theory ∆ has one or more extensions if and only if there is a disambiguating ∆-
argument C, in the context of which any sentence in ∆ is dialectically justifiable or dialectically
defeasible with respect to ∆.

Proof: Consider a disambiguating argument C, such that any sentence ϕ in ∆ is dialectically justifiable or defeasible
in the context C with respect to ∆, say by a dialectically justifying argument Cϕ containing C. The collection
{ Cϕ} ϕ in ∆ is compatible, since otherwise C would not be disambiguating (property (6.12)). The union of the
collection specifies an extension of ∆. Consider now a theory ∆ with an extension E. Then J(E) is a
disambiguating dialectically justifying ∆-argument, such that any sentence in ∆ is dialectically justifiable or
defeasible in the context J(E) with respect to ∆.

The importance of the theorem is that it gives necessary and sufficient conditions for the (non-)existence
of an extension in terms of the notion of dialectical justification. It shows that if all sentences of a theory
are dialectically interpretable with respect to the theory (i.e., dialectically justifiable or dialectically
defeasible), while the theory still lacks an extension, it must be the case that the dialectical justification or
defeat of one sentence is incompatible with that of another. The sentences of the theory must be
dialectically justifiable in different, incompatible 'choices' of context. Of course such incompatible
dialectical justifications can be extended to different and therefore incompatible dialectically preferred
stages. In a context that is not disambiguating, this cause for the non-existence of an extension can be
obscured. In a disambiguating context, no incompatible choices of justifications can be made. The
following provides an example.

The theorem shows that dialectical justification is the 'right' tool to investigate the local structure of
the extensions of a theory.
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Example (9.7)
Let's reconsider the theory ∆ = { p, q, p �  q, q �  p, r, r �  r, s, s �  s, p �  r, q �  s} of example (6.10).
Although all sentences are dialectically justifiable or defeasible with respect to ∆, there is no
disambiguating dialectically justifying argument C, such that all are dialectically justifiable or
defeasible in the context C with respect to ∆. The dialectically justifying ∆-arguments { p, p �  q} for p
and { p, ×r, p �  r} for ×r are incompatible with the dialectically justifying ∆-arguments { q, q �  p} for q
and { q, ×s, q �  s} for ×s.

Corollary (9.8)
A dialecticall y preferred stage P of a theory ∆ is an extension if and only if any sentence in ∆ is
dialectically justifiable or defeasible in the context J(P) with respect to ∆. Equivalently, a dialecticall y
preferred stage P of a theory ∆ is not an extension if and only if there is a sentence that is neither
dialectically justifiable nor defeasible in the context J(P) with respect to ∆.

Proof: Note that if P is a dialectically preferred stage, J(P) is disambiguating, and apply theorem (9.6).

Theorem (9.6) gives criteria for the case that no extension of a theory exists, and for the case that at least
one extension exists. The following corollary gives a criterion for the case that at least two extensions
exist.

Corollary (9.9)
A theory ∆ has two or more extensions if and only if there are two or more incompatible
disambiguating dialectically justifying ∆-arguments C and C', in the context of which any sentence in
∆ is dialectically justifiable or defeasible with respect to ∆.

Proof: The corollary follows by the combination of theorems (9.6) and (9.2).

Corollary (9.10)
Let n be a natural (or cardinal) number. A theory ∆ has exactly n extensions if and only if n is equal to
the maximal number of mutually incompatible disambiguating ∆-arguments C, in the context of which
any sentence in ∆ is dialectically justifiable or defeasible with respect to ∆.

10 Dialectical arguments and the internal structure of dialectical justification

In the present section, the internal structure of arguments dialectically justifying a sentence ϕ is
investigated. At the core of such an argument there is an argument for ϕ. In general, such an argument is
not dialectically justifying, namely in case it does not attack all arguments incompatible with it. A
dialectical justification of ϕ is thus in general larger than an argument for ϕ. In general, it not only
contains an argument for ϕ, but also arguments attacking the arguments incompatible with the argument
for ϕ (cf. corollary (6.2)). It is the goal of this section to investigate how an argument must be extended in
order to become dialectically justifying.

In order to probe as deeply as possible into the internal structure of dialectical justification, the
investigation will be in terms of elementary arguments and elementary incompatibili ty, defined as
follows.

Definition (10.1): elementary arguments and elementary incompatibility
(i) An argument C is an elementary argument for a sentence ϕ if C is the only argument for ϕ that is

contained in C.
(ii ) Let C be an argument. An argument C' is elementarily incompatible with C if there is a minimal

unsatisfiable subset C'' of C ∪ C', such that C' = C'' \ C. C' elementarily attacks C if C' and C' is
elementarily incompatible with C and C' attacks C.

For instance, the argument { p, p �  q, q} is an argument for q, but not an elementary argument. Also the
argument { p, p �  q, q �  r, r �  q} for q is not elementary. The argument { p, q} is incompatible with { ×p} ,
but not elementarily incompatible. The set { ×p} is elementarily incompatible with { p, q} though. This
shows that the incompatibili ty relation is symmetric, while the elementary incompatibili ty relation is not.
Also { p} and { p �  q, p �  q} are incompatible, showing that there need not be a sentence ϕ, such that ϕ is



32 August 11, 2000

a consequence of one argument and ×ϕ of the other. If C elementarily attacks C' at ϕ, then C is an
elementary argument for ϕ.

Another natural minimali ty definition for incompatible arguments would be minimal incompatibili ty.
In that case some causes of incompatibili ty cannot be distinguished however. It can for instance be the
case that an argument attacks another argument, while there is no corresponding minimally incompatible
attacking argument. E.g., the argument { p, p �  ×q} (minimally) attacks the argument { q, q �  ×p} , but is
not minimally incompatible with it. The former is elementarily incompatible with the latter though since
{ p, p �  ×q, q} is minimally unsatisfiable.

Cf. also definition (3.14) and the remarks following it.
In the following, some examples of increasing complexity are discussed as a preliminary to the

systematic investigation of the internal structure of dialectical justification in terms of elementary
arguments and elementary incompatibility.

Example (10.2)
Consider the theories ∆0 = { p} , ∆1 = { p, ×p} and ∆2 = { p, ×p, ××p} . Their respective unique
extensions are specified by the arguments { p} , { ×p} and { p, ××p} . As a result, p is dialectically
justifiable with respect to ∆0 and ∆2, but dialectically defeasible with respect to ∆1. Let's now try to
explain this in terms of the elementary arguments and elementarily incompatible arguments of the
theories. The only minimal argument for p is { p} . Let's call it  C0. In ∆1 and ∆2, there is one argument
elementarily incompatible with it, viz. C1 = { ×p} . On its turn, there is one argument elementarily
incompatible with C1 in ∆2, viz. C2 = { ××p} . Moreover, C1 attacks C0 and C2 attacks C1.

The situation is summarized in the figure below. Here and in the following, only elementary
arguments and arguments elementarily incompatible with another argument are shown. The alpine
shapes indicate the arguments. That an argument attacks another argument is indicated by a cross-
headed arrow. Each row corresponds to one of the theories. The alpine shapes in a column indicate the
same argument.

C0 C1 C2

∆0

∆1

∆2

The three systems of arguments { C0} , { C0, C1} and { C0, C1, C2} contain all i nformation that explains
the status of p. For ∆0 the situation is simple: C0 is a ∆-argument for p, and there are no arguments
incompatible with it. For ∆1, the situation is thus: though C0 is a ∆-argument for p, there is an
argument attacking it, viz. C1. Note that while C0 is also incompatible with C1, the situation is not
symmetric, since C0 does not attack C1. Since from ∆1, there is no argument attacking C1, the
argument C0 cannot be extended to an argument dialectically justifying p. In ∆2, this is remedied by
the argument C2: it is an argument attacking C1, thereby making it possible to extend C0 to the
dialectically justifying argument C0 ∪ C2. In ∆1, there is one argument that is incompatible with C1,
viz. C0. Since C0 is itself attacked by C1, all arguments incompatible with C1 are attacked.

The figure below summarizes the situation. The black arguments are the arguments that are only
incompatible with arguments that are themselves attacked.

C0 C1 C2

∆0

∆1

∆2
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The three theories il lustrate the following slogan: an argument can only be extended to a dialectically
justifying argument if each argument incompatible with it is attacked.

Example (10.3)
The theory ∆ = { p, p �  q, r, r �  ×p} allows non-trivial derivations (in contrast with the previous
example). The theory's extension E is specified by p �  q, r and r �  ×p. The sentence q is not justified
in E (q is not taken into account) since { r, r �  ×p} is an argument attacking the only argument { p, p �

q} for q, and there is no attack against it.

Example (10.4)
An argument can be incompatible with or attacked by more than one argument. The theories ∆1 = { p,
q1, q2, r1, r2, q1 �  ×p, q2 �  ×p, r1 �  ×q1, r2 �  ×q2} and ∆2 = ∆1 \ { r2} show that each attacking argument
must be attacked. In the extension of ∆1, p is justified, in that of ∆2, defeated. There are two arguments
attacking the (trivial) argument { p} for p, viz. the arguments { q1, q1 �  ×p} and { q2, q2 �  ×p} . In ∆1,
there are arguments attacking each, viz. { r1, r1 �  ×q1} and { r2, r2 �  ×q2} . In ∆2, the latter is missing.
The relations between the arguments concerning p are summarized in the following figure.

∆1

∆2

Example (10.5)
The theories ∆1 = { p, q, r1, r2, q �  ×p, r1 �  ×q, r2 �  ×q} and ∆2 = ∆1 \ { r2} show that one argument
suffices as an attack against incompatible or attacking arguments, even if there are several. In the
extension of ∆1, p is justified. The argument { q, q �  ×p} attacks the argument { p} for p. In ∆1, the
argument is attacked by two elementary arguments, viz. { r1, r1 �  ×q} and { r2, r2 �  ×q} . From ∆2, the
latter is missing, but still p is justified in the extension of ∆2. Cf. the following figure.

∆1

∆2

Example (10.6)
For an argument to be dialectically justifying, it does not suffice that there are arguments attacking
against only the arguments attacking it (see also the sections 12.4 and 13.3 on the notion of
admissibili ty). The theory ∆1 = { p, p �  r, q, q �  ×r} is an example. The arguments { p, p �  r} and { q,
q �  ×r} are incompatible with each other, but neither attacks the other. As a result, the arguments
attack all arguments attacking them, since there are none. Still , ∆1 has no extension. The theory ∆2 =
∆1 ∪ { ×q} does have an extension since the argument { ×q} attacks { q, q �  ×r} . ∆2's extension is the
interpretation specified by { p, p �  r, q �  ×r, ×q} , in which p and r are justified, and q is defeated.

The figure summarizes the situation. The crossed line indicates elementary incompatibili ty in both
directions.
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∆1

∆2

Example (10.7)
A related theory illustrating that a dialectically justifying argument must attack all arguments
incompatible with it, is the theory ∆'1 = { p, p �  q, p �  q} . The elementary argument { p} for p is
elementarily incompatible with the argument { p �  q, p �  q} . Neither argument is attacked by an
argument. The theory has no extension, while ∆'2 = ∆'1 ∪ { ×(p �  q)} has one. Cf. the following figure,
in which the crossed arrow indicates (one-directional) elementary incompatibili ty.

∆'1

∆'2

Definition (10.8): opposites
Sentences ϕ and ψ are opposites if ϕ is equal to ×ψ or ψ is equal to ×ϕ.

A sentence ϕ that is not of the form ×ψ, has one opposite, viz. ×ϕ. A sentence ϕ of the form ×ψ has two
opposites, viz. ×ϕ (which is equal to ××ψ) and ψ. For a sentence ϕ of the form ×ψ, ψ is conveniently
denoted as ×-1ϕ.

Example (10.9)
The sentence ×p has two opposites, viz. p and ××p. Arguments for either of p's opposites are
incompatible with arguments for p, and must be attacked if p is to be justified in an extension.
Consider the theory ∆ = { q0, q1, q2, q0 �  p, q1 �  ×p, q2 �  ××p} . There are three non-trivial arguments
from ∆: the first { q0, q0 �  p} , the second { q1, q1 �  ×p} , the third { q2, q2 �  ××p} . They are denoted C0,
C1 and C2, respectively. C0 and C1 are (elementarily) incompatible with each other, just as C1 and C2.
(Cf. the figure below.) The theory ∆ has no extension since none of the incompatible arguments is
attacked. From each of the theories ∆0 = ∆ ∪ { r0, r0 

�  q0} , ∆1 = ∆ ∪ { r1, r1 
�  q1} and ∆2 = ∆ ∪ { r2, r2 

�

q2} , a new argument { ri, ri 
�  qi} (for i = 0, 1 or 2) can be constructed, denoted C'i. C'i attacks Ci. Only

∆1 has a (unique) extension, viz. the interpretation specified by { q0, q2, q0 �  p, q1 �  ×p, q2 �  ××p, r1, r1
�  q1} , in which p and ××p are justified, q1 is defeated (by r1) and ×p is not taken into account (since
the argument C1 of ×p is attacked). In ∆1, C1 is attacked by C'1, so that all arguments (elementarily)
incompatible with C0 and C2 (there is only one: C1) are attacked. ∆0 and ∆2 have no extension. In ∆0,
for instance, only one of the two arguments C0 and C2 incompatible with C1 is attacked, viz. the
argument C0, which is attacked by C'0. From ∆0, there is no argument attacking the argument C2

incompatible with C1. For ∆2 similar remarks apply. From the union ∆02 of the theories ∆0 and ∆2,
arguments attacking either argument incompatible with C1 can be constructed, viz. C'0 and C'2. As a
result, ∆02 has a (unique) extension, viz. the interpretation specified by { q1, q0 �  p, q1 �  ×p, q2 �  ××p,
r0, r0 

�  q0, r2, r2 
�  q2} , in which ×p is justified, q0 and q2 are defeated (by r0 and r2), and p and ××p are

not taken into account (since the arguments C0 and C2 of p and ××p are attacked).
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∆
C0 C1 C2

∆0

∆02

∆1

In the previous examples, for determining whether a sentence ϕ is justified in an extension of a theory ∆,
it sufficed to consider the structure of the graph of arguments formed by all elementary arguments for ϕ,
all arguments elementarily incompatible with those arguments, the arguments elementarily incompatible
with those, etc. and the type of incompatibility (viz., attacking or not). If all arguments incompatible with
an argument were attacked, the argument would be effective.

In general, considering the dialectical graph concerning a sentence ϕ does not suffice to determine
whether it is dialectically justifying. A complication occurs when the sentences in one argument occur in
another. The following two examples show first a theory in which such a problem arises, and then a
similar example that is not problematic. The relevant notions are indirect support are indirect
incompatibility.

Definition (10.10)
Let ∆ be a theory and C an elementary ∆-argument for a sentence ϕ. Then C (directly) supports ϕ. A
∆-argument C indirectly supports ϕ if there is a series of ∆-arguments C0, C1, ..., Cn with n an even
natural number larger than 2, such that the following obtain:
(i) C0 is an elementary argument for ϕ, and Cn is equal to C.
(ii ) For all odd i from 0 to n, Ci is elementarily incompatible with Ci-1.
(iii ) For all even i from 2 to n, Ci elementaril y attacks Ci-1.
A ∆-argument C is directly incompatible with ϕ if there is such a series with n equal to 1, and
indirectly incompatible if there is a such a series with n an odd natural number larger than 1.

Example (10.11)
A difficulty arises in the theory ∆ = { p, q, r, p �  q, q �  r, r �  p} . A part of the graph of arguments
relevant for justifying p is indicated in the following figure. The three arguments depicted are { p, r �

p} , { q, p �  q} and { r, q �  r} .

p q

r

Note that any argument that attacks (or is incompatible with) another argument is itself attacked. Still ,
∆ has no extension. The problem arises by the fact that p occurs both at a (directly or indirectly)
incompatible and at a (directly or indirectly) supporting place in the dialectical graph. The cause of the
diff iculty is that p plays opposing roles with respect to the justification of q. It can be seen that this is
the cause of the missing extension if one considers the theory ∆' = (∆ \ { r �  p} ) ∪ { s, r �  s} , in which
the role of attacking r is taken over from p by the sentence s. The theory ∆' has an extension, viz. the
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interpretation specified by { q, s, p �  q, q �  r, r �  s} , in which p and r are defeated. The situation is
depicted in the following figure.

p q sr

Example (10.12)
The theory ∆ = { p, p �  q, r, r �  (p �  q), p �  r} has the interpretation specified by { p, p �  q, r �  (p �
q), p �  r} , in which p and q are justified and r is defeated, as its extension. The role of p in justifying q
is noteworthy: p occurs not only in the only elementary argument { p, p �  q} for q, but also in the
argument { p} that attacks the argument { r, r �  (p �  q)} against p �  q that attacks the argument for q.
The sentence p occurs both in a (directly or indirectly) supporting and in a (directly or indirectly)
incompatible position. A part of the graph of arguments relevant for justifying q is indicated in the
following figure. It is suggested that q is a conclusion of the left-most argument and that p is a
premise in two of the indicated arguments. The double role of p does not lead to a problem.

p p

q

As a result, sentences should not occur in arguments with different roles, viz. both in a (directly or
indirectly) supporting argument and in a (directly or indirectly) incompatible one.

The examples above lead to the following definitions of elementary dialectical graphs and justifying
dialectical arguments. The dialectical graph concerning a sentence ϕ with respect to a theory ∆ is the
graph of elementary ∆-arguments for ϕ, the arguments elementarily incompatible with them, those
elementarily incompatible with the latter, etc.

Definition (10.13): elementary dialectical graphs
The elementary dialectical graph concerning ϕ with respect to ∆ is the smallest collection { Ci} i ∈ I of
∆-arguments, such that the following obtain:
(i) Any elementary ∆-argument for ϕ is in the collection.
(ii ) If C is an argument in the collection and C' a ∆-argument that is elementarily incompatible

with C, then C' is in the collection.

Note that the elementary dialectical graph concerning ϕ consists of the arguments that (directly or
indirectly) support ϕ and those that are (directly or indirectly) incompatible with it.

Below it will be shown that the dialectical justifiabili ty of a sentence ϕ with respect to ∆ coincides
with the existence of a subgraph of the elementary dialectical graph concerning ϕ that has properties as
ill ustrated by the examples above. Such special subtrees are dialectical arguments justifying ϕ.

Definition (10.14): justifying dialectical arguments
A dialectical argument justifying ϕ with respect to ∆ is a (non-empty) subcollection { Ci} i ∈ I' of the
elementary dialectical graph { Ci} i ∈ I concerning ϕ with respect to ∆, such that the following obtain:
(i) There is an elementary ∆-argument for ϕ is in the subcollection.
(ii ) No argument in the collection both (directly or indirectly) supports ϕ and is (directly or

indirectly) incompatible with ϕ.
(iii ) If C is an argument in the subcollection that is directly or indirectly incompatible with an

argument for ϕ in the subcollection, then there is an argument in the subcollection that attacks
it.

(iv) If C is an argument in the subcollection that directly or indirectly supports ϕ, then all ∆-
arguments in the elementary dialectical graph that are incompatible with C are in the
subcollection.

The union of the arguments in a dialectical argument justifying ϕ that directly or indirectly support ϕ,
are the justified premises of the dialectical argument. The union of the arguments in a dialectical
argument justifying ϕ that are directly or indirectly incompatible with ϕ, are the defeated premises of
the dialectical argument. The sentences supported by the set of justified premises of a dialectical
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argument justifying ϕ are the justified conclusions of the dialectical argument. The sentences attacked
by the set of justified premises of a dialectical argument justifying ϕ are the defeated conclusions of
the dialectical argument.

Note that there is a slight abuse of terminology here, since dialectical arguments are not a special kind of
arguments (in the sense of definition (3.14)), but graphs of arguments. Normally, no confusion is to be
expected. If required, one could speak of monolectical arguments when referring to arguments in the
sense of satisfiable sets of sentences, as in definition (3.14).

Note the difference between dialectically justifying arguments, which are satisfiable sets of sentences
of a special kind, and justifying dialectical arguments, which are certain subcollections of elementary
dialectical graphs. The closely related terminology is not coincidental, as the following proposition and
theorem show.

Proposition (10.15)
Let { Ci} i ∈ I' be a dialectical argument justifying ϕ with respect to a theory ∆. Then the set C of
justified premises of the dialectical argument is an argument dialectically justifying ϕ with respect to
∆.

Proof: First it must be shown that C is an argument, i.e., that it is satisfiable. Assume to the contrary that C is not
satisfiable. Then there is a minimal subset C* of C that is not satisfiable. C* is finite, say C* = { ϕ0, ..., ϕn} . For
each ϕt there is a Ct in the dialectical argument that contains ϕt and directly or indirectly supports ϕ. For any t
from 0 to n, let C* t be the set C* \ Ct. Then C* t is satisfiable and therefore C* t is elementarily incompatible with
Ct. As a result, C* t is directly or indirectly incompatible with ϕ and occurs in the dialectical argument.
Subsequently, there is a C** t in the dialectical argument that attacks C* t. So, there is a sentence ψ in C* t, attacked
by C** t. But since C* t is a subset of C*, there is a t' with 0 ≤ t' ≤ n, such that ϕ = ϕt'. So C** t attacks also Ct'. A
fortiori, C** t is incompatible with Ct'. But then C** t indirectly supports ϕ, since it attacks C* t, and is indirectly
incompatible with ϕ, since it is incompatible with Ct'. This contradicts the definition of a justifying dialectical
argument. So C is satisfiable after all .

Second it must be shown that C is dialectically justifying with respect to ∆. Consider an argument C' that is
incompatible with C. Let ψ be a sentence, such that C ∪ C' �  ψ and C ∪ C' �  ×ψ. By the compactness of the
consequence notion � , there is a finite subset C* of C, such that C* ∪ C' �  ψ and C* ∪ C' �  ×ψ. Let C0, ..., Cn be
arguments directly or indirectly supporting ϕ in the dialectical argument, such that C* ⊆ C0 ∪ ... ∪ Cn. Pick a
maximal number of indices i(0), ..., i(m) from among the indices 0, ..., n, such that C** = C' ∪ Ci(0) ∪ ... ∪ Ci(m)

is satisfiable. Then there is an index i from among the indices 0, ..., n, such that C** is incompatible with Ci. Let
C** * be a subset of C** that is elementarily incompatible with Ci. But Ci directly or indirectly supports ϕ, so
C** * occurs in the dialectical argument, as an argument directly or indirectly incompatible with ϕ. As a result,
there is a C*** * in the dialectical argument that attacks a sentence χ in C** *. C** ** is a subset of C since it
directly or indirectly supports ϕ. Therefore also C is an argument against χ. The sentence χ is an element of C** \
Ci(0) ∪ ... ∪ Ci(m) ⊆ C' since if χ were an element of Ci(0) ∪ ... ∪ Ci(m), χ would be an element of C and C would
not be satisfiable. This implies that C attacks C', as required.

Finally, it must be checked that ϕ is a conclusion of C, which follows from the fact that any dialectical
argument justifying ϕ contains an elementary ∆-argument for ϕ.

Theorem (10.16)
There is an argument C dialecticall y justifying a sentence ϕ with respect to ∆ if and only if there is a
dialectical argument justifying ϕ with respect to ∆.

Proof: The 'if'-part of the theorem follows from the proposition. For the 'only if'-part of the theorem, a dialectical
argument justifying ϕ must be constructed given an argument C dialectically justifying ϕ. The construction goes
by induction on n, as follows. At n = 0, start with the collection of elementary C-arguments for ϕ. At an odd level
n+1, add all arguments that are elementarily incompatible with the arguments added at level n. At an even level
n+1, add all elementary C-arguments that attack an argument added at level n. That at least one such argument
exists, is shown as follows. Pick an argument Cn added at the odd level n. Cn is added as an argument that is
elementarily incompatible with an argument Cn-1, added at level n-1. Cn-1 is a subset of C, since n-1 is even.
Therefore Cn and C are incompatible. Since C is dialectically justifying, C attacks Cn. But then there is also an
elementary C-argument that attacks Cn. It remains to be checked that no argument added in the construction both
(directly or indirectly) supports ϕ and is (directly or indirectly) incompatible with ϕ. Assume to the contrary that
such an argument C* is added in the construction. Then there would be sequences of arguments C0, ..., C2i+1 and



38 August 11, 2000

C'0, ..., C'2j, as in the definition of indirect support and incompatibilit y, all added in the construction, with C0 and
C'0 elementary arguments for ϕ and C2i+1 and C'2j equal to C*. But then there is an elementary C-argument C**
added in the construction that attacks C2i+1 = C*. But both C* and C** are subsets of C, contradicting the
satisfiabili ty of C.

This theorem shows that a justifying dialectical argument reveals the internal structure of a dialectically
justifying argument.

Note that the elementarity conditions on the arguments that form a justifying dialectical argument
serve to enforce that justifying dialectical arguments expose the internal structure of dialectical
justification to the highest possible degree.

How do the justifying dialectical arguments as defined here relate to the naïve dialectical arguments of
section 2? Apart from the difference in presentation between the two, where justifying dialectical
arguments are formally elaborated, while naïve dialectical arguments were only informally presented,
there is also a conceptual difference. In justifying dialectical arguments, a stronger notion of defense
against counterarguments is used, viz. dialectical justification, according to which any incompatible
argument must be attacked. Naïve dialectical arguments can only model what might be called 'naïve
dialectical justification', according to which any argument that attacks a consequence of an argument
must be attacked. Naïve dialectical justification is a weaker notion of dialectical justification (just like
admissibili ty) that does not suff ice in the analysis of the internal structure of dialectical justification and
dialectical interpretation as extensions. Cf. also section 12.4.

An interesting topic of research is whether the extension existence and multiplicity problems are
simplified or even disappear for theories with well-behaved elementary dialectical graphs. A simple and
often powerful property is the well-foundedness of the tree expansion of a graph. A tree is well-founded if
it contains no infinite branches. In the literature, well-foundedness has been fruitfull y used in the context
of argument defeat. For instance, Dung (1995) proves that his argumentation frameworks have a unique
stable extension when they are well-founded.

Unfortunately, the tree expansion of the elementary dialectical graph of an unsatisfiable theory ∆ is
never well-founded. This can be seen as follows. Let C be any minimal unsatisfiable subset of ∆. Then C
can be split i nto two non-empty disjoint subsets C' and C'' that are elementarily incompatible with each
other. By choosing C', such that it is a minimal argument for a sentence ϕ, it follows that the tree
expansion of the dialectical graph concerning ϕ with respect to ∆ contains C', C'', C', C'', ... as an infinite
branch. As a result, considering only theories with well-founded dialectical trees would exclude all
unsatisfiable theories.

It is then natural to consider the restricted tree expansion of the dialectical graph, which does not
include all arguments that are elementarily incompatible with other arguments, but only those that attack
arguments in the graph. If one restricts the tree expansion of the dialectical graph to attacks only, the
notion of well-foundedness does no longer exclude all unsatisfiable theories. A simple example is the
theory { p, q, p �  q} that has a unique extension. Its 'attack tree' is clearly well-founded, though its full
dialectical tree is not. It might be hoped that it holds in general that theories with well-founded attack
have a unique extension. This is however not the case. An example is the theory { p, p �  q, p �  q} that has
well-founded attack, but no extension. Examining the example, it can be conjectured that the problem is
that the theory does not only have attack-type counterarguments: the argument { p, p �  q} is a
counterargument to { p, p �  q} , but does not attack it.

It turns out that theories with well-founded attack and only attack-type counterarguments indeed have
a unique extension. The following definition formalizes the relevant notions.

Definition (10.17): well-founded attack and only attack-type counterarguments
(i) The set of sentences ∆ is a theory with well-founded attack if there is no infinite sequence of

arguments C0, C1, C2, ..., where each Ci is attacked by its successor Ci+1.
(ii ) The set of sentences ∆ is a theory with only attack-type counterarguments if for all ∆-arguments C

and C' with C �  ×ϕ and C' �  ϕ, it holds that ϕ is an element of C'.

The following theorem can now be proven. It is a generalization of Dung's (1995) result that well-
founded argumentation frameworks have a unique stable extension (cf. section 13.2 below).

Theorem (10.18)
If ∆ is a theory with well-founded attack and only attack-type counterarguments, then ∆ has a unique
extension. The extension is also ∆'s unique dialectically preferred stage.
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Proof: For any ∆-argument C, define F∆(C) as the union of all ∆-arguments that are only attacked by ∆-arguments
that are attacked by C. Claim: the union of the sets ∅, F∆(∅), F∆(F∆(∅)), ..., denoted G(∆), specifies an extension
of ∆. The claim is shown in two steps. First, it is shown that G(∆) is satisfiable. Since F∆ is monotonic and
minimal incompatible subsets of G(∆) would be finite, it suff ices to show that F∆(C) is satisfiable for any
argument C. Assume that F∆(C) is not satisfiable, i.e., there are F∆(C)-arguments C' and C'' for sentences ×ϕ and
ϕ, respectively. Since ∆ has only attack-type counterarguments, ϕ is an element of C''. Since C'' is a subset of C1

∪ ... ∪ Cn, for certain arguments C1, ..., Cn that are only attacked by ∆-arguments that are attacked by C, ϕ is an
element of one of the Ci, say Ci(0). So C' attacks Ci(0) and therefore C attacks C'. But then it follows that C attacks
itself, contradicting that C is satisfiable.

Second, it is shown that if G(∆) is not an argument against all sentences in ∆ \ Cn(G(∆)), it is not well -
founded. Assume that ϕ0 is in ∆ \ Cn(G(∆)), while G(∆) is not an argument against ϕ0. Since G(∆) is a subset of
F∆(G(∆)) (even equal to it), G(∆) does not attack all ∆-arguments attacking the argument C0 = { ϕ0} , for otherwise
ϕ0 would be in G(∆). So there is a ∆-argument C1 with C1 

�  ×ϕ0 that is not attacked by G(∆). C1 attacks C0. C1

cannot be a subset of Cn(G(∆)), for then G(∆) would be an argument against ϕ0. So there is a sentence ϕ1 in C1

that is not in Cn(G(∆)). As a result, ϕ1 is in ∆ \ Cn(G(∆)), while G(∆) is not an argument against ϕ1. Repeating the
above with ϕ1 in the place of ϕ0, an argument C2 attacking C1 and a sentence ϕ2 in ∆ \ Cn(G(∆)) that is not
attacked by G(∆), are found. Continuing inductively, one finds a sequence of arguments C0, C1, C2, ..., each
attacked by its successor.

11 Representational issues

In this section, a number of representational issues is discussed. How expressive is DEFLOG?11

11.1 Non-defeasible and defeasible assumptions

In several logical models for defeasible reasoning, theories are divided into two parts. One part of a
theory consists of the non-defeasible assumptions, the other of the defeasible assumptions. Above, no
such distinction has been made. The set of assumptions was encoded as an unstructured set of sentences.
As a result, DEFLOG's definitions and proofs are simpler since they do not need to keep track of two
distinct parts of a theory. The question arises whether the lack of this distinction in DEFLOG is a
limitation. It is not, in the sense that it is easy to define the extensions of 'mixed theories', consisting of a
non-defeasible and a defeasible part, in terms of the definition of DEFLOG's extensions of 'completely
defeasible' theories, as follows.

Let (T, ∆) be a pair of sets of sentences. Then the following definition of extension has the effect that
the sentences in T are interpreted non-defeasibly, while the sentences in ∆ are interpreted defeasibly in an
extension:

An extension of the theory (T, ∆) is an extension E of T ∪ ∆, such that the sentences in T are justified
in E.

Below, this definition of extensions of mixed theories is occasionall y useful.

11.2 Defeasible vs. inconclusive conditionals

DEFLOG's conditionals are defeasible in the sense that a conditional ϕ �  ψ in a theory or following from a
theory can be defeated in an extension of the theory. In this sense, conditionals are treated on a par with
the non-conditional sentences. Any sentence, whether it is a conditional or not, can be defeated in an
extension of a theory, even though it is in the theory's Modus ponens closure.

For conditionals, there is however a second way in which they can be considered to be defeasible, that
is typical for conditionals only: it can be that under exceptional circumstances the conditional is not
followed, while it is not itself defeated. Under such circumstances the conditional does not imply its
consequent even though its antecedent does. In order to distinguish this second type of defeasibili ty for

                                                          
11 Section 13 on related research shows aspects of DEFLOG's expressiveness. For instance, the treatment of Reiter's
logic for default reasoning (section 13.1) shows how defeasible rules of inference can be modeled in DEFLOG, while
the treatment of Vreeswijk's abstract argumentation systems (section 13.2) shows the modeling of defeasible
arguments (in the sense of derivations).
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conditionals, such conditionals are categorized as inconclusive here. In contrast, when a conditional is
said to be defeasible, the standard DEFLOG type of defeasibili ty is meant that is not specific for
conditionals.

An example might clarify the distinction between defeasible and inconclusive conditionals. Let p �  q
be a conditional and let r express an exceptional circumstance. Then if p �  q is a defeasible conditional, r
will make p �  q itself defeated. The result is that q does not follow if p obtains. In a sense, the conditional
itself has disappeared. If p �  q is an inconclusive conditional, however, r will not make the conditional p

�  q defeated, but only its effect, viz. that the conditional makes that q follows from p. By r, p �  q does
not have the effect that q follows from p, even though the conditional i tself is not defeated. Only the
conditional's effect has disappeared.

DEFLOG's conditionals are defeasible (just like any sentence), but not inconclusive since in any
interpretation when a conditional and its antecedent are justified the conditional's consequent is also
justified. Again the question arises whether this is a limitation.

It is not, since there is a simple way to incorporate inconclusive conditionals in DEFLOG. Let �  be a
new connective that will be used to express an inconclusive conditional. The following scheme of
(defeasible) assumptions suffices to make �  function as an inconclusive conditional:

(ϕ �  ψ) �  (ϕ �  ψ)

By the scheme, �  is turned into a connective such that ϕ �  ψ normally implies ϕ �  ψ. As a result, it
normally follows from ϕ �  ψ and ϕ via ϕ �  ψ that ψ. But since the scheme is to be interpreted
defeasibly, the effect of the conditional ϕ �  ψ can be blocked. That there are exceptional circumstances
in which the conditional ϕ �  ψ does not have its normal effect, is straightforwardly expressed as ×((ϕ �

ψ) �  (ϕ �  ψ)). If required, this expression can be abbreviated as ~(ϕ �  ψ). As a result, ~ is a dedicated
kind of negation for conditionals. Note that ~ is not an ordinary connective, since it cannot be attached to
any sentence, but only to conditionals: while ~(p �  q) and ~(p �  (q �  r)) are sentences, ~p is not.

As an example of the mixed theories discussed in section 11.1, it is shown how a system is arrived at
in which all sentences are interpreted non-defeasibly, while the system's conditionals are inconclusive.

Let T be any theory consisting of sentences using only the connectives �  and ~ (with the restriction
that ~ only occurs in front of a � -conditional sentence). Note that in T, DEFLOG's connectives �  and × do
not occur, except 'hidden' in sentences of the form ~(ϕ �  ψ) that abbreviate ×((ϕ �  ψ) �  (ϕ �  ψ)). Let ∆
consist of all sentences of the scheme (ϕ �  ψ) �  (ϕ �  ψ). Consider the extensions of the mixed theory
(T, ∆), as defined at the end of section 11.1, as the interpretations of a theory T about inconclusive
conditionals. Such interpretations are referred to as the { � , ~} -extensions of T.

Note that in { � , ~} -extensions of a theory T no sentence of T is defeated. In particular, no sentence ϕ
�  ψ or ~(ϕ �  ψ) can be defeated. The only sentences that can be defeated are of the form (ϕ �  ψ) �  (ϕ
�  ψ). The conditional �  is inconclusive as planned: it can be the case that sentences ϕ �  ψ and ϕ are
both justified while ψ is not. A simple example is provided by the theory T consisting of the following
four sentences:

p �  q, r �  ~(p �  q), p, r

In its unique extension, p �  q and ~(p �  q) are justified and q is not interpreted. Note that in this example
p �  q cannot be reinstated (i.e., made effective again) by adding { � , ~} -sentences to T, since r is a strict
assumption. If r would itself have been the conclusion of an inconclusive conditional (as e.g. in the theory
consisting of p �  q, r �  ~(p �  q), p, r', r' �  r), the conditional p �  q could be reinstated by blocking that
conditional (in the example r' �  r, that is blocked by adding ~(r' �  r)).

The system of { � , ~} -extensions shows that DEFLOG's use of defeasible conditionals does not
preclude the modeling of inconclusive conditionals.

11.3 Toulmin's argument scheme

The following figure is adapted from Toulmin's The Uses of Argument (1958, p. 104).
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So, Q, C

Since
W

On account of
B

Unless
R

D

W for Warrant
B for Backing
R for Rebuttal

D for Datum
Q for Qualifier
C for Claim

The Datum consists of certain facts that support the Claim. The Warrant justifies that the Datum supports
the claim, while the Backing provides on its turn support for the Warrant. A Rebuttal provides conditions
of exception, that weaken the Warrant, and the Qualifier can express a degree of force that the Datum
gives to the Claim by the Warrant.

Toulmin's so-called argument scheme has had a continuous influence on argumentation researchers
(cf., e.g., Bench-Capon, 1995, Van Eemeren et al., 1996). In the discussion of naïve dialectical arguments
(section 2), some connections between Toulmin's scheme and DEFLOG have been mentioned.

As examples of the qualifier Q, Toulmin mentions modal qualifiers, such as 'probably' and
'presumably'. Since DEFLOG's language has no modal operators, the qualifier Q of the scheme has no
counterpart in DEFLOG. In the following, the qualifier and the claim are therefore taken together in the
'quali fied claim' QC.

A straightforward way to model the relation between datum D, claim C and warrant W in DEFLOG is
to think of the warrant W as the conditional D �  QC: it is the formal expression of the conditional
connection between the two statements D and QC. A difference with Toulmin is that in his examples
warrants often express a more general connection between statements, viz. one between patterns of
statements. One way to deal with this is to extend DEFLOG's language with variables.

The relation between the backing B and the warrant W is expressible by the conditional B �  W, which
is then - using the conception of warrants above - equal to B �  (D �  QC). An example is the following:

Thieves should be punished �  (John is a thief �  John should be punished)

This conditional can be regarded as an instance of the following scheme:

Thieves should be punished �  (Person is a thief �  Person should be punished)

This scheme represents the connection between the 'unconditional' form of a rule statement (Thieves
should be punished) with its 'conditional' form (Person is a thief �  Person should be punished).

Note that in this conception of data, claims, warrants and backings both the connection between datum
and claim and that between backing and warrant are expressed as a conditional, the former as D �  QC,
the latter as B �  (D �  QC). This suggests a slight generalization of Toulmin's scheme: there could be a
statement supporting the conditional B �  (D �  QC). In other words, the backing B and the warrant W can
themselves be considered as datum and claim of a Toulmin scheme. This would involve a backing B' for
which B' �  (B �  W), i.e., B' �  (B �  (D �  QC)). The following is an example:

The rule that thieves should be punished applies �  (Thieves should be punished �  (John is a thief �

John should be punished))

Note by the way that the conception of data, claims, warrants and backings as presented here interprets
them in a pure Modus ponens context, as in the following figure. On the left, the warrant W is replaced by
the conditional D �  QC with which it is identified.
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D D �  QC

QC

B B �  (D �  QC)

D W

QC

B B �  W

Each statement in the scheme can of course itself again occur in another scheme, possibly in a different
role. The most obvious example of this is that the claim of one scheme can be the datum of the next.

What about Toulmin's notion of rebuttal R? A first obvious conception of the role of Toulmin's
rebuttal R is as an attack of the qualified claim QC. This conception is in fact suggested by Toulmin's
graphical representation. The connection would then be represented as R �  QC. An example would be the
following:

John died last year �  John should be punished

In a second conception of the role of Toulmin's rebuttal R, it attacks the connection between data and
claim (just as Pollock's undercutting defeaters, to be discussed in the next section). The connection would
then be represented as R �  (D �  QC). Here is an example:

John is a minor first offender �  (John is a thief �  John should be punished)

In a third conception of the role of a rebuttal R, it is considered to attack the connection between backing
and warrant, which can be represented as R �  (B �  (D �  QC)). The following is an example:

John acted under force majeure �  (Thieves should be punished �  (Person is a thief �  Person should
be punished))

The interpretation of Toulmin's scheme within DEFLOG as discussed here (with the three variants for the
role of rebuttals) adds all of DEFLOG's machinery to it: the notions of extensions of theories and of
dialectical justification become relevant. In this way, the DEFLOG interpretation of the scheme is more
specific than Toulmin's original description.

Let's briefly consider extensions in the context of the DEFLOG interpretation of Toulmin's scheme.
The following three theories correspond to the three conceptions of Toulmin's rebutters. In each, a datum,
backing and rebutter are defeasibly assumed:

D, B, R, B �  (D �  QC), R �  QC
D, B, R, B �  (D �  QC), R �  (D �  QC)
D, B, R, B �  (D �  QC), R �  (B �  (D �  QC))

Of the three theories, only the latter has an extension. For instance, in the first theory the derivation R, R
�  QC / ×QC of ×QC does not suff ice to block the derivation

D D �  QC

QC

B B �  (D �  QC)

of QC. For blocking the latter, attacking one of its premises is required.
Arguably, it is then better to interpret Toulmin's scheme in terms of the inconclusive conditional �

discussed in section 11.2. The warrant W is then interpreted as D �  QC. The backing is connected to the
warrant by assuming B �  (D �  QC), and the rebuttal for instance by assuming R �  ~(D �  QC) or R �

~(B �  (D �  QC)). The theories

D, B, R, B �  (D �  QC), R �  ~(D �  QC)
D, B, R, B �  (D �  QC), R �  ~(B �  (D �  QC))

both have a { � , ~} -extension.
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11.4 Pollock's undercutting and rebutting defeaters

Pollock has distinguished two types of reasons leading to defeat (e.g., Pollock, 1987, 1995, p. 40-41, p.
85-86). He speaks of χ as a rebutting defeater when ϕ is a reason for ψ and χ is a reason for denying ψ.
According to Pollock, rebutting defeaters are to be contrasted with undercutting defeaters. In Pollock's
words, undercutting defeaters attack the connection between the reason and a conclusion rather than
attacking the conclusion directly. In DEFLOG, no corresponding distinction between types of defeaters is
made since in DEFLOG's language both types are expressible.

An undercutting defeater presupposes a reason ϕ for a conclusion ψ. In DEFLOG, this is represented
by the pair of sentences ϕ and ϕ �  ψ. If now χ is an undercutting defeater attacking the connection
between ϕ and ψ, this can be represented by the sentence χ �  (ϕ �  ψ). Assume now that ϕ, ϕ �  ψ, χ and
χ �  (ϕ �  ψ) are part of a defeasible theory ∆. Then in any extension of ∆ in which ϕ, χ and χ �  (ϕ �  ψ)
are all three justified, it must be the case that ϕ �  ψ is defeated: it follows from χ and χ �  (ϕ �  ψ) that
×(ϕ �  ψ). As a result, it does not follow from ϕ that ψ. This is exactly as required: defeasibly it is the case
that ϕ justifies ψ. By the undercutting exception χ the connection between the two is lost. Note that in
DEFLOG the sentences ϕ, ϕ �  ψ, χ and χ �  (ϕ �  ψ) do not have to be part of the defeasible theory ∆
itself; it can be sufficient that they follow from the theory.

A rebutting defeater also presupposes a reason ϕ for a conclusion ψ. If now χ is a rebutting defeater
(with respect to ϕ as a reason for ψ), χ must be a reason denying ψ. Let's interpret such a reason as a
reason for not-ψ. Here the nature of the negation not-ψ of ψ is left implicit. It could be the classical or
intuitionistic negation of ψ, but in the present context also the defeat of ψ (i.e., ×ψ) is a reasonable option.
A first attempt to model the rebutting defeater χ in DEFLOG would include the five sentences ϕ, ϕ �  ψ, χ,
χ �  not-ψ and χ �  (ϕ �  ψ) in a theory (or would make them follow from a theory). But then a rebutting
defeater would be nothing more than an undercutting defeater - as represented by the four sentences ϕ, ϕ

�  ψ, χ and χ �  (ϕ �  ψ) - that is a reason for denying ψ - represented by the fifth sentence χ �  not-ψ.
Indeed this representation does not correctly capture the idea of a rebutter. For in this representation, χ
would still attack the connection between ϕ and ψ if it were defeated that χ �  not-ψ. So even if the
reason χ prima facie denying ψ is not actually denying ψ, it would imply that ϕ �  ψ is defeated.

In the correct way to represent the rebutting defeater χ the statement χ �  (ϕ �  ψ) is replaced by (χ �

not-ψ) �  (χ �  (ϕ �  ψ)). Only if the statements (χ �  not-ψ) �  (χ �  (ϕ �  ψ)), χ �  not-ψ and χ are all three
justified, it follows that ϕ �  ψ is defeated. As a result, χ only has its rebutting effect if it is actually
denying ψ.

This account of Pollock's rebutting defeaters can immediately be generalized to what might be called
'priority defeaters'. A priority defeater exists in the situation that the occurrence of one reason blocks the
occurrence of another reason. When χ is a reason for ω that when it occurs blocks a reason ϕ for ψ, then
χ as a reason for ω is a priority defeater for ϕ as a reason for ψ. Priority defeaters are analogous to
rebutting defeaters with the difference that a priority defeater does not need to deny the conclusion of the
reason it attacks, but can attack any reason. Priority defeaters occur frequently in the law (cf., e.g., Hage,
1997, and Prakken, 1997). It can for instance be the case that the application of one legal rule is excluded
in case another rule is applied. An example is the Lex superior derogat legi inferiori principle, according
to which of two rules with conflicting conclusions only the one made by the highest authority applies.
When χ as a reason for ω is a priority defeater for ϕ as a reason for ψ, this can be expressed as (χ �  ω) �

(χ �  (ϕ �  ψ)). When χ �  ω and χ are both justified, then ϕ �  ψ is defeated. As a result, χ only has its
defeating effect when it is actually justifying ω.

Another kind of generalization of Pollock's rebutting defeaters is what might be called 'outweighing
defeaters'. A set of reasons for a conclusion are an outweighing defeater when they block a set of reasons
against the conclusion. The idea is that then the pros outweigh the cons. The idea of outweighing has for
instance been studied in the context of legal reasoning by Hage (1997) and Verheij (1996b). Outweighing
defeaters can be regarded as 'multi-reason' rebutters. An interesting difference with 'single-reason' is the
intuition that it can be the case that reasons that are individually outweighed by another reason, might
together be stronger than the opposing reason. Assume that ϕ1 and ϕ2 are reasons for χ, and that ψ is a
reason for not-χ that individually rebuts both ϕ1 and ϕ2. We then have the following:

ϕ1, ϕ2, ψ
ϕ1 �  χ
ϕ2 �  χ
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ψ �  not-χ
(ψ �  not-χ) �  (ψ �  ×(ϕ1 �  χ))
(ψ �  not-χ) �  (ψ �  ×(ϕ2 �  χ))

That ϕ1 and ϕ2 together outweigh ψ can be represented as follows:

(ϕ1 �  χ) �  ((ϕ2 �  χ) �  (ϕ1 �  (ϕ2 �  ×(ψ �  not-χ))))

By this sentence, ψ cannot be a reason for not-χ when ϕ1 and ϕ2 are reasons for χ. On its own, the
representation of outweighing is not sufficient. The set of nine sentences above has two extensions, one in
which χ is justified by ϕ1 and ϕ2 and the other in which not-χ is justified by ψ. The cause is that ψ can
still rebut ϕ1 and ϕ2 individually, even when they are both justified.

There are two ways of completing the representation of outweighing to resolve this. The first uses the
following two sentences:

ϕ1 �  (ϕ2 �  ×((ψ �  not-χ) �  (ψ �  ×(ϕ1 �  χ))))
ϕ1 �  (ϕ2 �  ×((ψ �  not-χ) �  (ψ �  ×(ϕ2 �  χ))))

These sentences have the effect that ψ does no longer rebut ϕ1 and ϕ2 individually when ϕ1 and ϕ2 are
both justified. A second way of completing the representation of outweighing uses the idea of accrual of
reasons. It requires the use of the inconclusive conditional �  discussed in section 11.2 as a representation
of prima facie reasons. So ϕ1 �  χ, ϕ2 �  χ and ψ �  not-χ are replaced by ϕ1 �  χ, ϕ2 �  χ and ψ �  not-χ.
Then the accrual of ϕ1 and ϕ2 as reasons for χ is represented thus:

(ϕ1 �  χ) �  ((ϕ2 �  χ) �  ((ϕ1 �  (ϕ2 �  χ))))

The sentence expresses that if ϕ1 and ϕ2 are each a reason for χ, then they also form together a reason for
χ. (Note that ϕ1 �  (ϕ2 �  χ) can be regarded as a conditional with the conjunction of ϕ1 and ϕ2 as
antecedent.) When each individual reason is defeated, their combination need not be. The idea is that
combined reasons can be stronger than the individual reasons.

The � -analog of the accrual sentence, viz. (ϕ1 �  χ) �  ((ϕ2 �  χ) �  ((ϕ1 �  (ϕ2 �  χ)))), does not work
since it only has its accruing effect when both ϕ1 �  χ and ϕ2 �  χ are not defeated, while accruing is only
interesting in case ϕ1 �  χ or ϕ2 �  χ is defeated.

The idea of accrual has been adopted by Hage (1997, e.g., p. 203-204) and Verheij (1996b, e.g., p.
161-162) and contested by Pollock (1995, p. 101-102) and Prakken (1997, p. 198-200).

A remark similar to the one ending the discussion of Toulmin's scheme is in place. Pollock's defeaters
(and priority and outweighing defeaters) might well be represented somewhat better in terms of the
inconclusive conditional �  discussed in section 11.2, instead of in terms of DEFLOG's defeasible
conditional � . We saw that in the case of outweighing defeaters the idea of accrual of reasons requires �

instead of � . A � -representation is also slightly closer to Pollock's account of defeaters since Pollock's
reason statements seem to be intended as inconclusive rather than as defeasible conditionals (with
obtaining antecedent).

11.5 Collective and indeterministic defeat

In much work on dialectical argumentation, some general principle to preserve consistency is modeled.
For instance, it can be regarded as unwanted that the consequents of a set of conditionals of which the
consequents are inconsistent, all follow from the antecedents. Two straightforward principles to preserve
consistency in situations like this might be called the collective and indeterministic defeat (cf. Verheij,
1996b, p. 124-5). In collective defeat, none of the consequents of the conditionals follows, while in
indeterministic defeat one of the consequents does not follow. Both in collective and indeterministic
defeat, the inconsistency is resolved. In indeterministic defeat, each choice of blocked consequent is
allowed, each leading to a different resolution of the inconsistency.

Collective defeat is for instance built into Pollock's (1995) OSCAR and in Reason-Based Logic
(Hage, 1996, 1997, Verheij, 1996b). In both cases, collective defeat is an ultimate remedy: only when
other means of conflict resolution (by explicit information, like in OSCAR on the basis of rebutting or
undercutting defeaters, and in Reason-Based Logic by exclusionary reasons or weighing reasons) have
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failed, the remaining conflict is resolved by a form of collective defeat. Pollock handles collective defeat
by an additional evaluation status that he calls provisional defeat (Pollock, 1995, p. 112-4). In Reason-
Based Logic the conclusions of pros and cons are blocked when neither outweigh the other (e.g., Hage,
1997, p. 163-4).

Indeterministic defeat occurs for instance in the systems of Lin (1993) and Vreeswijk (1997). In Lin's
system, only one of two arguments (in the sense of derivations) with opposing conclusions can be an
element of an 'argument structure', that is Lin's counterpart of extensions. Vreeswijk's system refines
indeterministic defeat by the use of a conclusive force relation on arguments (also in the sense of
derivations). If there is no information about the conclusive force relations between the arguments
involved in a conflict (i.e., a set of arguments with inconsistent conclusions), any choice of a single
argument in the conflict can resolve it by being left out of an extension. However when an argument in
the conflict has stronger conclusive force than another, it cannot be chosen to resolve the conflict by
being left out of an extension. In Vreeswijk's system, indeterministic defeat is the primary resort for
resolving conflict, but it can be influenced by the conclusive force relation. It can for instance be the case
that by the conclusive force relation only one choice is left. (See also section 13.2.)

Modeling collective and indeterministic defeat in DEFLOG requires a method that is similar to the
modeling of inconclusive conditionals in section 11.2. Let �  be a connective for which the principle of
collective or indeterministic defeat should apply.

The first axiom scheme that is needed expresses that a � -conditional normall y implies its � -
counterpart:

Φ: (ϕ �  ψ) �  (ϕ �  ψ)

The second axiom scheme expresses the defeat of the first axiom scheme in case of a conflict of
conditionals:

Ψi: (ϕ1 �  (ϕ2 �  (... �  (ϕn �  ((ϕ1 
�  ψ1) �  ((ϕ2 

�  ψ2) �  (... �  ((ϕn 
�  ψn) �  ×(Φi))...))))...))),

where ψ1, ψ2, ..., ψn are inconsistent (with respect to some logical standard), and Φi is (ϕi 
�  ψi) �

(ϕi �  ψi) for some i with 1 ≤ i ≤ n.

Ψ1, Ψ2, ... and Ψn together express that the conditionals ϕ1 
�  ψ1, ϕ2 

�  ψ2, ... and ϕn 
�  ψn are collectively

defeated in case of a conflict, in the sense that then none of the conditionals ϕ1 �  ψ1, ϕ2 �  ψ2, ... or ϕn �

ψn follows, and therefore no consequent ψ1, ψ2, ... or ψn.
Indeterministic defeat can be modeled by blocking the Ψj for j ≠ i when Ψi is active. This is expressed

by a third axiom scheme as follows:

×Φi �  ×Ψj, for i and j with 1 ≤ i, j ≤ n and j ≠ i.

The effect of this scheme is that when Ψi is active (i.e., when Φi obtains) the other Ψj should be blocked.
In other words, when ϕi 

�  ψi does not lead to ϕi �  ψi all others do.
Note that collective defeat leads to one extension, while indeterministic defeat leads to many (in fact

one for each choice of conflict resolution).

12 Variations

In the present section, some variations of the definitions of DEFLOG are discussed.

12.1 Standard logical connectives

No attention has been paid to the standard connectives, expressing conjunction, negation and material
implication. DEFLOG's connectives × and �  differ from the standard connectives in two important
respects. First the connective �  is not 'truth-functional'. It is a bit awkward to speak of truth functionali ty
here since in DEFLOG justification statuses play the role of truth values.12 Put more accurately, the
justification value of a composite sentence ϕ �  ψ in an interpretation is not in general a function of the

                                                          
12 It should be noted however that speaking of truth values or of justification statuses is merely a matter of the use
of different labels, especially in order to avoid the multitude of connotations that are related to the label 'truth values'.
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justification values of the sentences ϕ and ψ in the interpretation. For instance, if ϕ and ψ are both
justified in an interpretation, then ϕ �  ψ can be justified, defeated or unevaluated. Second the semantics
of the connectives × and �  is partial. To be precise, sentences of the form ×ϕ or ϕ �  ψ are not necessarily
evaluated in an interpretation, not even if the sentences ϕ and ψ are.

This raises the question whether DEFLOG can incorporate the standard connectives. The answer is yes,
and there are at least three interesting ways to do this.

A first, conservative way to incorporate the standard connectives is to add new connectives to
DEFLOG's language, and axiomatize their intended meaning in terms of a set of assumptions. Let ¬ and �

be connectives that are intended to express standard negation and material implication. (Recall that these
two are functionally complete for the truth-functional connectives.) Consider the set of sentences Tprop

consisting of all sentences of the following forms:

ϕ �  (ψ �  ϕ)
(ϕ �  (ψ �  χ)) �  ((ϕ �  ψ) �  (ϕ �  χ))
(¬ϕ �  ¬ψ) �  (ψ �  ϕ)

(ϕ �  ψ) �  (ϕ �  ψ)

The first three schemes are famil iar from Hilbert-style versions of standard proof theory, in which there
are some axiom schemes and only one rule of inference, viz. Modus ponens. The fourth scheme links the
standard connective �  with DEFLOG's � . Its role is to validate Modus ponens for the connective �  using
the fact that it is already valid for � .13

The following property holds.

Property (12.1)
If S ∪ { ϕ} is a set of sentences that only contain the connectives ¬ and � , then S ∪ Tprop 

�
DEFLOG ϕ if

and only if S � Hilbert ϕ.

In the second way to incorporate the standard connectives, DEFLOG's connectives × and �  are used to
express standard negation and material implication, respectively. Consider the set of sentences T*prop

consisting of all sentences of the following forms:

ϕ �  (ψ �  ϕ)
(ϕ �  (ψ �  χ)) �  ((ϕ �  ψ) �  (ϕ �  χ))
(×ϕ �  ×ψ) �  (ψ �  ϕ)

If one reads × as standard negation and �  as material implication, the three schemes are again those
famili ar from Hilbert-style versions of proof theory. The following property follows from the soundness
and completeness (for standard logic) of the Hilbert-style proof theory, and from the fact that in DEFLOG

�  validates Modus ponens (i.e., in any interpretation in which ϕ �  ψ and ϕ are justified, also ψ is
justified). The property is stronger than property (12.1) above.

Let W be a DEFLOG interpretation. Then the following are equivalent:
1. W is total and a model of Tprop.
2. W is an interpretation with the following two properties:

a. For any sentence ϕ, W(×ϕ) = j if and only if W(ϕ) ≠ j.
b. For all sentences ϕ and ψ, W(ϕ �  ψ) = j i f and only if W(ϕ) ≠ j or W(ψ) = j.

Proof: That part of property 2 follows from property 1 is seen by noting that the following are all equivalent. (i)
W(×ϕ) = j. (ii ) ×ϕ ∈ J(W). (iii ) J(W) � DEFLOG ×ϕ. (iv) J(W) � Hilbert ×ϕ. (v) It does not hold that J(W) � Hilbert ϕ. (vi)
It does not hold that J(W) � DEFLOG ϕ. (vii ) ¬ϕ ∉ J(W). (viii ) W(ϕ) ≠ j. The totality of the interpretation is used in

                                                          
13 The notions of validating and validity are here used in the standard sense: Modus ponens is valid for a conditional

�  if the truth (or justifiedness or other positive evaluation) of sentences ϕ and ϕ �  ψ in some interpretation (or
possible world or other semantic whole) implies the truth (or the justifiedness or the positive evaluation, respectively)
of the sentence ψ in that interpretation (or that possible world or that semantic whole, respectively).
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the equivalence of (iv) and (v). Part b follows similarly. An interpretation W that obeys part a of property 2 is
total14 since then if ϕ is not justified in W, it follows that ×ϕ is justified, and therefore that ϕ is defeated in W.

The constraints a and b on interpretations are the analogues of the standard constraints on interpretations
for standard negation and material implication.

Let's call i nterpretations that obey the equivalent conditions above standard interpretations. For
standard interpretations, the following 'triviali ty result' obtains.

Property (12.2)
Let ∆ be a set of sentences and W a standard interpretation. Then W is an extension of ∆ if and only if
W is a satisfiabili ty class of ∆.

This triviali ty result is perhaps the primary reason why in standard logic the notions of extension and
dialectical justification do not arise. It collapses into the notion of maximal consistency (the standard
counterpart of DEFLOG's satisfiabili ty classes).

Note that the result also gives a connection between DEFLOG and the maximal consistent set approach
to defeasible reasoning, as it has been proposed by, e.g., Rescher (1964) and Poole (1988).

The triviali ty result follows from the following slightly more general theorem (cf. a similar result by
Bondarenko et al., 1997).

Theorem (12.3)
Let ∆ be a set of sentences, such that, for any sentence ϕ and any subset S of ∆, it obtains that S ∪ { ϕ}
is not satisfiable if and only if S �  ×ϕ. Then the extensions of ∆ coincide with the satisfiabili ty classes
of ∆.

Proof: It suff ices to show that each satisfiabilit y class of ∆ is an extension. Let SC be one of ∆'s satisfiabilit y classes,
and let C be the maximal subset of ∆ specifying SC. Consider a sentence ϕ in ∆ that is not justified in SC, i.e., ϕ
is not in Mp(C). Then C ∪ {ϕ} is not satisfiable, since C is a maximal satisfiable subset of ∆ (property (5.12)).
Hence, by the assumption of the theory, C �  ×ϕ.

The third way to incorporate the standard connectives is by extending DEFLOG's language and adding
standard constraints that must obey in an interpretation. If the connectives ¬ and �  are added to the
language in order to express standard negation and material implication, the following constraints would
have to be added to definition (3.3), in which DEFLOG's interpretations are defined:

3. For any sentence ϕ, W(¬ϕ) = j if and only if W(ϕ) ≠ j.
4. For all sentences ϕ and ψ, W(ϕ �  ψ) = j i f and only if W(ϕ) ≠ j or W(ψ) = j.

Note that interpretations obeying these constraints are total with respect to standard negation ¬: for any
sentence ϕ, either ϕ or ¬ϕ is justified in an interpretation. (Here it is assumed that the background
negation is standard: either ϕ is justified in an interpretation or it is not.) Interpretations are still not total
with respect to 'dialectical negation' ×, since it can be the case that ϕ and ×ϕ are both not justified.

Two new schemes of tautologies that obtain in interpretations obeying the additional constraints 3 and
4 above are the following:

×ϕ �  ¬ϕ
(ϕ �  ψ) �  (ϕ �  ψ)

Note that in these tautology schemes the occurrences of �  cannot all be replaced by � , without making
the scheme contingent. For example, the instances of the schemes ×ϕ �  ¬ϕ and (ϕ �  ψ) �  (ϕ �  ψ) are
not justified in all interpretations obeying 3 and 4. Note that the scheme (ϕ �  ψ) �  (ϕ �  ψ) that was used
in the first way of incorporating the standard connectives is not tautologous.

                                                          
14 Recall that a total interpretation is an interpretation with the whole language as its extent, i.e., an interpretation in
which any sentence of the language is either justified or defeated.
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12.2 Symmetric defeat and symmetric dialectical justification

An obvious variation of the definitions of DEFLOG is symmetric DEFLOG. In symmetric DEFLOG, it does
not only follow from the justifiedness of a sentence ×ϕ that the sentence ϕ is defeated as in 'ordinary'
DEFLOG, but it also follows from the justifiedness of ϕ that the sentence ×ϕ is defeated. The latter does
not obtain in ordinary DEFLOG.

An additional constraint on interpretations (definition (3.3)) is all that is needed. For any sentence ϕ it
must hold that:

3. W(ϕ) = j if and only if W(×ϕ) = d.

Note the subtle difference with the other constraint about defeat sentences:

1. W(×ϕ) is equal to j i f and only if W(ϕ) is equal to d.

By constraint 1, the justifiedness of ×ϕ expresses the defeat of ϕ. By constraint 3, the justifiedness of ϕ
expresses the defeat of ×ϕ. With only constraint 1, the set of defeated sentences of an interpretation is
faithfully mirrored in the set of justified sentences: each defeated sentence ϕ corresponds to the justified
sentence ×ϕ. After adding constraint 3, the set of defeated sentences of an interpretation also contains a
faithful mirror image of the set of justified sentences: each justified sentence ϕ corresponds to a defeated
sentence ×ϕ. From constraints 1 and 3 it follows that a sentence ϕ is justified in an interpretation if and
only if the sentence ××ϕ is justified, and that a sentence ϕ is defeated in an interpretation if and only if the
sentence ××ϕ is defeated.

The figure below il lustrates the situation. The large ovals represent the sets of justified and defeated
sentences of an interpretation. The small ovals are the corresponding subsets of sentences of the form ×ϕ.

Justified
sentences

Defeated
sentences

Justified
sentences

Defeated
sentences

Ordinary DEFLOG Symmetric DEFLOG

Let J and D denote the set of justified and defeated sentences in an interpretation, respectively. Then in
ordinary DEFLOG it holds that ×D is a subset of J. In symmetric DEFLOG, it also holds that ×J is a subset
of D. This leads to two chains of inclusions holding in symmetric DEFLOG:

J ⊇ ×D ⊇ ××J ⊇ ×××D ⊇ ...
D ⊇ ×J ⊇ ××D ⊇ ×××J ⊇ ...

The theory of ordinary DEFLOG developed in the previous sections can be naturally adapted for
symmetric DEFLOG. Again satisfiable sets of sentences T have a unique model WT with a minimal set of
justified sentences. As a result satisfiable sets of sentences specify an interpretation WT, and definition
(4.3) of extensions still makes sense in the context of symmetric DEFLOG. The sets of justified sentences
of interpretations can - in analogy with property (3.11) - be characterized as the sets that are conflict-free,
closed under Modus ponens and closed with respect to double dialectical negation, i.e., ϕ is in the set if
and only if ××ϕ is in it. The set of consequences Cn(T) of a set of sentences T is the closure of T under
the rules of inference ϕ, ϕ �  ψ / ψ (Modus ponens), ϕ, ×ϕ / ψ (a variant of Ex falso quodlibet), ××ϕ / ϕ
and ϕ / ××ϕ.

A natural alternative to definition (4.3) of extensions for symmetric DEFLOG is the following:
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Definition (12.4): symmetric extensions in symmetric DEFLOG

If ∆ is a set of sentences and E an interpretation, then E is a symmetric extension of the theory ∆ if and
only if E is an interpretation that is specified by a ∆-argument J, such that, for any ϕ in ∆ \ J, an
opposite of ϕ is a consequence of J.

Recall definition (10.8) of the opposites of a sentence: the opposites of a sentence ϕ are ×ϕ and ×-1ϕ, if it
exists.

There are more theories with symmetric extensions in symmetric DEFLOG than in ordinary DEFLOG.
For instance, the theory { p, p �  q, ×q} does not have an ordinary DEFLOG extension, but has a symmetric
DEFLOG extension, viz. the (symmetric) interpretation in which q is justified and ×q defeated. However,
also in symmetric DEFLOG there are theories without extensions, e.g., the theory { p, p �  p} .

That there are more extensions in symmetric DEFLOG is the result of the fact that more arguments
serve as attacks of other arguments, in the sense that they can resolve incompatibil ities. In ordinary
DEFLOG, an argument C attacks another argument C' if the defeat of a sentence in C' follows from C. In
symmetric DEFLOG, it makes sense to define that an argument C attacks another argument C' if the
opposite of a sentence in C' follows from C.

The central theorems of ordinary DEFLOG seem to have analogues for symmetric DEFLOG. I have not
discovered interesting properties holding for symmetric DEFLOG, but not for ordinary DEFLOG.

12.3 Deep and shallow attack

Assume that the sentence ϕ is justified in an extension of a theory ∆ and that there is a non-trivial Modus
ponens derivation of ϕ with premises in ∆, i.e., a derivation with at least one instance of Modus ponens.
Then, in order to defeat ϕ, it does in general not suffice to add an attack χ to the theory. Often the theory
∆ ∪ { χ, χ �  ϕ} (where χ is a sentence that is not an element of ∆, nor is a subsentence of an element of
∆) has no extension. A simple example shows this. The theory { p, q, q �  p} has a unique extension, while
the theory { p, q, q �  p, r, r �  p} has no extension. The reason why this happens is that blocking the
derivation q, q �  p / p of p requires that one of its premises is defeated, viz. q or q �  p. If only its
conclusion p is attacked, an incompatibili ty remains.

In order to defeat ϕ, no reason ψ for ϕ can be justifying. In other words, if there is a justified reason
ψ, the conditional ψ �  ϕ expressing its connection with ϕ should be attacked as well . However, if there is
a non-trivial derivation of ψ �  ϕ, the argument above can be repeated: it can be the case that the theory ∆
∪ { χ, χ �  ϕ} ∪ { χ �  (ψ �  ϕ) | ∆ �  ψ �  ϕ} has no extension. An example is the theory { p, q0, q1, q1 �  (q0

�  p), r, r �  p, r �  (q0 �  p)} that has no extension since the derivation q1, q1 �  (q0 �  p) / q0 �  p is not
blocked.

The point can be repeated for conditionals with ϕ as its deep consequent. Here the deep consequent of
a conditional is defined as follows. If ϕ �  ψ is a conditional for which ψ is not a conditional then the deep
consequent of ϕ �  ψ is ψ. If ϕ �  ψ is a conditional for which ψ is a conditional χ �  ω then the deep
consequent of ϕ �  ψ is the deep consequent of χ �  ω. For instance, the deep consequents of p �  q, p �  (q

�  r), (p �  q) �  (r �  (s �  t)) and are q, r and ×(s �  t), respectively.
This suggests a distinction between deep and shallow attack of a statement. A shallow attack of a

statement ϕ in a theory ∆ is then a statement χ in ∆ for which also χ �  ϕ is in ∆. A deep attack of a
statement ϕ in a theory ∆ consists of an attack of the statement, but also of each conditional with ϕ as its
consequent or as its deep consequent.

Consider the following derivation of p with premises in the theory { q0, q1, q2, q2 �  (q1 �  (q0 �  p))} .
The leftmost sentences of the derivation express the statements attacked by a deep attack of p.

p

q0q0 �  p

q1q1 �  (q0 �  p)

q2q2 �  (q1 �  (q0 �  p))

For a statement r to be a deep attack of p it is required that all of the following are included in the theory:

r �  p
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r �  (q0 �  p)
r �  (q1 �  (q0 �  p))
r �  (q2 �  (q1 �  (q0 �  p)))

Note that for blocking the derivation shown r and r �  (q2 �  (q1 �  (q0 �  p))) would suffice. For any
individual derivation, attacking a premise would suffice.

However deep attack of a statement abstracts from individual derivations. It is a stronger type of
attack with its own 'semantics'. Deep attack of a statement involves not only the attack of the statement
itself, but of any possible 'backbone' of a derivation of the statement. Here the backbone of a Modus
ponens derivation (with all majors in Modus ponens instances on the left as in the figure above) consists
of the string of leftmost sentences that directly leads to the derivations conclusion. Formally, the
backbone of a Modus ponens derivation is defined as follows. A trivial derivation ϕ has ϕ as its
backbone. If Π(ϕ �  ψ) and Π(ϕ) are derivations, then the derivation Π(ϕ �  ψ), Π(ϕ) / ψ has the
backbone of Π(ϕ �  ψ) extended with ϕ �  ψ as its backbone.

Deep attack can be thought of as a long - actually infinite - conjunction. If deep attack is expressed
using the connective ��� , the following suggests a definition:

ϕ ���  ψ := ϕ �  ψ, plus for any χ, ϕ �  (χ �  ψ), plus for any χ, χ', ϕ �  (χ' �  (χ �  ψ)), plus ...

Each of the following theories has an extension:

p, q, q �  p, r, r ���  p
p, q0, q1, q1 �  (q0 �  p), r, r ���  p
p, q0, q1, q2, q2 �  (q1 �  (q0 �  p)), r, r ���  p

It should be noted that deep attack does not guarantee the existence of an extension, as adding the
sentence ×p ���  ×p to any of the theories above shows.

Both DEFLOG's ordinary, 'shallow' attack, and deep attack as discussed here, have useful
characteristics. DEFLOG's shallow attack shows that attacking a statement does not suffice in order to
defeat the statement, but that any of its derivations need be blocked. Deep attack is a tool to make it
possible to reach the defeat of a statement by adding one attack without bothering about all possible
derivations. DEFLOG's shallow attack has a simpler semantics than deep attack, in the sense that the
semantics of deep attack is expressible in that of DEFLOG's shallow attack (as the infinite conjunction
above suggests).

12.4 Admissibilit y, naïve dialectical justification and dialectical justification: a meta-analysis

An argument is dialectically justifying if it attacks any argument incompatible with it (cf. definition
(6.3)). In the literature, a variant of dialectical justification occurs that goes by the name of admissibili ty,
according to which an argument is admissible if it attacks any argument attacking it (cf. Dung, 1995,
Bondarenko et al., 1997, see also section 13.3). Obviously, in DEFLOG, dialectically justifying arguments
are also admissible, while there are admissible arguments that are not dialectically justifying.15

Another variant of dialectical justification (in fact one that I at first thought to be the central notion) is
naïve dialectical justification: an argument is naïvely dialectically justifying if the argument attacks any
argument attacking the argument itself or one of its consequences. (Cf. also the naïve dialectical
arguments of section 2. See the discussion after theorem (10.16).) Clearly, dialectically justifying
arguments are also naïvely dialectically justifying, and naïvely dialectically justifying arguments are
admissible.

Why has in DEFLOG dialectical justification been chosen instead of admissibili ty and naïve dialectical
justification, that to some may seem more natural and at least simpler? The reason is that dialectical

                                                          
15 Admissibilit y in DEFLOG depends of course on its notions of argument and attack. The results in section 13.3
show that DEFLOG's admissibili ty are indeed an extrapolation of Dung's admissibilit y. In fact DEFLOG's dialectical
justification is too, since as will be seen admissibilit y and dialectical justification coincide on Dung's restricted
language. Though extensionally the definitions coincide on Dung's restricted language, the intensional difference
remains: in admissibilit y, only attacks must be countered by attacks, while in dialectical justification all
incompatibles must be countered by attacks. The intensional difference can however only be extensionally
appreciated on DEFLOG's richer language, as is especially shown in the present section.
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justification has properties that make it especially suitable for the analysis of extensions. In this section,
some of these properties are discussed. By a meta-analysis, it is shown how the properties operate in some
of DEFLOG's central theorems.

Among the useful properties of dialectical justification are the following:

Union
If C and C' are compatible dialecticall y justifying arguments, then also C ∪ C' is dialectically
justifying. (Similarly, for any compatible collection of dialectically justifying arguments: the union of
a compatible collection of dialectically justifying arguments is again dialectically justifying.)

Localization
Let E be an extension of a theory ∆. Then there is a collection { Ci} i ∈ I of dialecticall y justifying
arguments that covers J(E), i.e., J(E) is equal to ∪i ∈ I Ci.

Separation
If C and C' are incompatible dialectically justifying arguments, then there are opposites ϕ and ×ϕ,
such that C �  ϕ and C' �  ×ϕ, or such that C �  ×ϕ and C' �  ϕ. (Similarly, for any incompatible
collection of dialectically justifying arguments: given an incompatible collection of dialectically
justifying arguments, there are opposites that are the consequence of the unions of compatible
subcollections.)

The union and separation properties were stated earlier as the corollaries (6.14) and (6.15). The
localization property is an immediate consequence of part (i) of corollary (6.8).

For our meta-analysis, these properties  are generalized from dialectical justification to a general
property of arguments Φ. Let Φ∆(C), abbreviated Φ(C), express that the argument C has the property Φ
with respect to a theory ∆. An argument C is a Φ-argument of a theory ∆ if Φ∆(C). Then the properties
can be thus paraphrased:

Union
If C and C' are compatible Φ-arguments, then C ∪ C' is also a Φ-argument. (Similarly, for any
compatible collection of Φ-arguments: the union of a compatible collection of Φ-arguments is again a
Φ-argument.)

Localization
Let E be an extension of a theory ∆. Then there is a collection { Ci} i ∈ I of Φ-arguments that covers
J(E), i.e., J(E) is equal to ∪i ∈ I Ci.

Separation
If C and C' are incompatible Φ-arguments, then there are opposites ϕ and ×ϕ, such that C �  ϕ and C' �

×ϕ, or such that C �  ×ϕ and C' �  ϕ. (Similarly, for any incompatible collection of Φ-arguments: given
an incompatible collection of Φ-arguments, there are opposites that are the consequence of the unions
of compatible subcollections.)

It is not hard to see that admissibili ty has the localization and union properties, but not the separation
property, while naïve dialectical justification has the localization property, but lacks both union and
separation.

For instance, the theory { p1, p1 �  q, p2, p2 �  q} shows that naïve dialectical justification does not have
the union property. The arguments { p1} and { p1 �  q} are two compatible, naïvely dialectically justifying
arguments with respect to the theory, while their union { p1, p1 �  q} is not, since it does not attack the
argument { p2, p2 �  q} that attacks its consequence q.

That neither for admissibility nor for naïve dialectical justification, the separation property obtains,
can be seen by inspection of the theory { p1, p1 �  q, p2, p2 �  (q �  q)} . With respect to the theory, there are
four maximal admissible arguments, viz. each three-element subset of the theory. These are also the
maximal naïvely dialectically justifying  arguments. (Note that each argument of the theory is admissible
and naïvely dialectically justifying since there are no attacks.) Any pair of these arguments is
incompatible, yet there is no sentence that is defeated by an argument, let alone by an admissible or
naïvely dialectically justifying argument, as is required by the separation property.

The proofs of the localization property for admissibili ty and naïve dialectical justification are
straightforward. The proof of the union property for admissibili ty is almost trivial (in contrast with the
proof of its dialectical justification analogue) since any attack of the union of a collection of arguments is
also an attack of one of the arguments in the collection.
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Note also that the 'empty' property of arguments, viz. satisfiabil ity or 'argumenthood', that any
argument satisfies, has the localization and union properties. Localization follows from the satisfiabil ity
of the set of justified sentences of an extension, and the union property is for satisfiabili ty trivial. The
incompatible arguments { p} and { p �  p} show that satisfiabili ty lacks the separation property.

In order to show the use of the properties, several of DEFLOG's definitions are generalized from
dialectical justification to a general property of arguments Φ, as follows.

Definition (12.5)
(i) A stage S is a Φ-stage if it is specified by a Φ-argument.
(ii ) A stage S is Φ-preferred with respect to a theory ∆ if J(S) ∩ ∆ is maximal among the theory's Φ-

arguments.

Definition (12.6)
(i) A sentence ϕ is Φ-justifiable with respect to a theory ∆ if it is a consequence of a Φ-argument of the

theory, and Φ-defeasible if ×ϕ is a consequence of a Φ-argument. A sentence is Φ-interpretable with
respect to a theory ∆ if it is Φ-justifiable or Φ-defeasible with respect to the theory. A sentence is Φ-
ambiguous with respect to a theory ∆ if it is Φ-justifiable and Φ-defeasible with respect to the theory.

(ii ) Let C be an argument. A sentence ϕ is Φ-justifiable in the context C with respect to a theory ∆ if it is a
consequence of a Φ-argument of the theory that contains C, and Φ-defeasible in the context C if ×ϕ is
a consequence of a Φ-argument that contains C. A sentence is Φ-interpretable in the context C with
respect to a theory ∆ if it is Φ-justifiable or Φ-defeasible in the context C with respect to the theory. A
sentence is Φ-ambiguous in the context C with respect to a theory ∆ if it is Φ-justifiable and Φ-
defeasible in the context C with respect to the theory.

Definition (12.7)
An argument C is Φ-disambiguating with respect to a theory ∆ if there is no sentence that is Φ-
ambiguous in the context C with respect to the theory.

The following theorem holds.

Theorem (12.8)
(i) Let ∆ be a set of sentences and let Φ have the union property. Then the following hold:

a. Any pair of Φ-preferred stages of the theory ∆ is incompatible.
b. If there is a Φ-ambiguous sentence with respect to the theory ∆, then there are at least two Φ-

preferred stages.
(ii ) Let ∆ be a set of sentences and let Φ have the union and the localization property. Then the

following hold:
a. If E is an extension, then J(E) is a Φ-argument.
b. There is no extension of the theory ∆ if for any Φ-disambiguating context C there is a sentence

ϕ in ∆ that is not Φ-interpretable in the context C with respect to ∆.
 (iii ) Let ∆ be a set of sentences and let Φ have the union and the separation property. Then the following

hold:
a. There is a Φ-ambiguous sentence with respect to the theory ∆ if there are at least two Φ-

preferred stages.
b. If there is no extension of the theory ∆, then for any Φ-disambiguating context C there is a

sentence ϕ in ∆ that is not Φ-interpretable in the context C with respect to ∆.

Proof: (i) a. If P1 and P2 are preferred and compatible, their union U is a Φ-stage with J(U) ∩ ∆ ⊇ (J(P1) ∩ ∆) ∪
(J(P2) ∩ ∆). (i) b. Apply Zorn's lemma to the Φ-arguments that are compatible with a Φ-justification of the Φ-
ambiguous sentence, and to those compatible with a Φ-justification of its opposite. (ii) a. By localization, J(E) is
the union of Φ-arguments, and therefore by union itself a Φ-argument. (ii ) b. Let E be an extension. Then, by (ii )
a., J(E) is a Φ-argument. J(E) is disambiguating, and any sentence in ∆ is Φ-interpretable in the context C. (iii ) a.
Let P1 and P2 be different preferred stages. By (i) a. (and the union property), they are incompatible. So by the
separation property, there are opposites ϕ and ψ, such that J(P1) ∩ ∆ �  ϕ and J(P2) ∩ ∆ �  ψ. As a result, ϕ or ψ is
a Φ-ambiguous sentence with respect to the theory ∆. (iii ) b. Let C be Φ-disambiguating and let for any sentence
ϕ in ∆ Cϕ be a Φ-justification of ϕ or of ×ϕ that contains C. The collection of the Cϕ is compatible, since
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otherwise there would (by the separation property) be a Φ-ambiguous sentence in the context C. The union of the
Cϕ is a ϕ-argument (by the union property) and specifies an extension of the theory ∆.

Since dialectical justification has the union, the separation and the localization properties, all parts of the
theorem can be instantiated for dialectical justification. The instantiations for dialectical justification of
all parts of the theorem have been proven earlier. Part (i) a. is theorem (7.7) and (i) b. is the 'if'-part of
theorem (9.2). Part (ii ) a. occurs in corollary (6.8), and (ii ) b. is the 'if'-part of theorem (9.6). Part (iii ) a. is
the 'only if'-part of theorem (9.2), and (iii ) b. the 'only if'-part of theorem (9.6).

Since admissibili ty has the union and the localization property, the parts (i) and (ii ) of the theorem
hold for admissibili ty. Since naïve dialectical justification only has the localization property, no part of
the theorem is relevant for naïve dialectical justification. It is not hard to find counterexamples against
part (iii ) for admissibili ty and against all parts for naïve dialectical justification.

For a property Φ with the union, the localization and the separation property, like dialectical
justification, the theorem can be summarized as follows.

Corollary (12.9)
Let ∆ be a set of sentences and let Φ have the union, the separation and the localization property. Then
the following hold:
(i) Any pair of Φ-preferred stages of the theory ∆ is incompatible.
(ii ) There is a Φ-ambiguous sentence with respect to the theory ∆ if and only if there are at least two

Φ-preferred stages.
(iii ) There is no extension of the theory ∆ if and only if for any Φ-disambiguating context C there is a

sentence ϕ in ∆ that is not Φ-interpretable in the context C with respect to ∆.
(iv) Let n be a natural (or cardinal) number. A theory ∆ has exactly n extensions if and only if n is

equal to the maximal number of mutually incompatible Φ-disambiguating arguments C, in the
context of which any sentence in ∆ is Φ-interpretable with respect to ∆.

Except for part (i) of the corollary (that only depends on the union property), which obtains for
admissibili ty, no part of the corollary obtains for admissibilit y or naïve dialectical justification. All parts
of the corollary obtain for dialectical justification, as was shown earlier.

I know of one other property of arguments than dialectical justification that has the union, the
separation and the localization property. It is weak dialectical justification. An argument is weakly
dialectically justifying if it attacks a consequence of any argument incompatible with it. The difference
with dialectical justification is that the attack of a consequence of an incompatible argument suff ices
instead of an attack of the argument itself. For weak dialectical justification, all results of the theorem and
the corollary obtain. My preference for the notion of dialectical justification stems from its property of
separation at the base:

Separation at the base
If C and C' are incompatible Φ-arguments, then there is a sentence ϕ in C ∪ C', such that C �  ×ϕ or C'

�  ×ϕ. (Similarly, for any incompatible collection of Φ-arguments: given an incompatible collection of
Φ-arguments, there is a sentence in the union of the collection that is attacked by the union of a
compatible subcollection.)

Dialectical justification has the property of separation at the base, while naïve dialectical justification
does not have it. By the property, Φ-ambiguity becomes an ambiguous Φ-interpretabili ty of a sentence in
a theory, and not merely of one of its consequences. To me, the former seems to be most appropriate.
Note that separation at the base follows directly from the definition of dialectical justification. I do not
know of other properties of arguments than dialectical justification with the properties of union,
separation at the base and localization. Still there does not seem to be a direct proof that dialectical
justification is the only such property of arguments.

13 Related research

In the following, research related to DEFLOG is discussed. Since terminology is not at all standard
throughout the literature, it will sometimes be the case that a term as it is used by another author has a
different meaning than it has in DEFLOG.



54 August 11, 2000

13.1 Reiter's logic for default reasoning

An important and still i nfluential logical model of defeasible reasoning is Reiter's (1980) logic for default
reasoning. The following is a restatement of Reiter's definition of extension. For any set S of first-order
sentences (i.e., closed first-order formulas), Thfo(S) denotes the set of sentences that are first-order
provable from S. Let Lfo denote the set of first-order sentences

Definition (13.10): Reiter's logic for default reasoning
(i) A default is an expression of the form α : Mβ1, ..., Mβm / γ, where α, β1, ..., βm, and γ are first-

order sentences.
(ii ) A default theory is a pair (D, W), where D is a set of defaults and W a set of first-order sentences.
(iii ) Let (D, W) be a default theory. For any subset S of Lfo, define Γ(S) as the smallest set Γ of first-

order sentences satisfying the following three properties:
D1. W ⊆ Γ
D2. Thfo(Γ) = Γ
D3. If α : Mβ1, ..., Mβm / γ ∈ D and α ∈ Γ, and ¬β1, ..., ¬βm ∉ S then γ ∈ Γ.

(iv) A set of first-order sentences E is an extension for (D, W) if and only if Γ(E) = E.

Let now LDEFLOG denote the language of DEFLOG that uses the first-order sentences as sentence constants.
Let the DEFLOG translation of a default α : Mβ1, ..., Mβm / γ be the set of m+1 sentences α �  γ, ¬β1 

�  (α
�  γ), ... and ¬βm �  (α �  γ), and let the DEFLOG translation D* of a set of defaults D be equal to the union
of all the translations of the defaults in D. Let Tfo be the set of DEFLOG sentences { ϕ1 �  (ϕ2 �  (...(ϕn �

ψ)...)) | ϕ1, ϕ2, ..., ϕn � fo ψ with ϕ1, ϕ2, ..., ϕn, ψ ∈ Lfo} , where � fo denotes first-order consequence. The
following proposition establishes a formal connection between Reiter's logic for default reasoning and
DEFLOG.

Proposition (13.11)
E is a Reiter extension of (D, W) if and only if E = Thfo(J(E*) ∩ Lfo) for some DEFLOG extension E*
of the theory Tfo ∪ W ∪ D* with Tfo ∪ W ⊆ J(E*).

Proof: Let E be a Reiter extension of (D, W). Let J* be equal to Tfo ∪ E ∪ {α �  γ | α : Mβ1, ..., Mβm / γ ∈ D, ¬β1 ∉
E, ..., ¬βm ∉ E} ∪ {¬βi �  (α �  γ) | α : Mβ1, ..., Mβm / γ ∈ D} . J* is DEFLOG-satisfiable since for no default α :
Mβ1, ..., Mβm / γ ∈ D both α �  γ is in J* and there is an i such that ¬βi is in J*. J* contains all sentences in Tfo ∪
W ∪ D* except the α �  γ for which there is an i for which ¬βi is in J*. But for such α �  γ, J* contains ×(α �  γ)
since J* then contains ¬βi and ¬βi �  (α �  γ) for some i. So J* specifies a DEFLOG extension E* of the theory Tfo

∪ W ∪ D*. Since J(E*) = Mp(J*), it follows that Tfo ∪ W ⊆ J(E*) and that E = Thfo(J(E*) ∩ Lfo).
Let E* be a DEFLOG extension of the theory Tfo ∪ W ∪ D* with Tfo ∪ W ⊆ J(E*). It needs to be shown that

Γ(E) = E, where E = Thfo(J(E*) ∩ Lfo). In order to show that Γ(E) ⊆ E, it suff ices to check that E satisfies the
properties D1, D2 and D3 (with E in the places of both S and Γ). For D3, note that if, for some default α : Mβ1,
..., Mβm / γ ∈ D, it holds that α is in E and ¬β1, ..., ¬βm ∉ E, then α and α �  γ are both justified in E*, and
therefore γ is in J(E*). For Γ(E) ⊇ E, note that any ϕ in E ⊆ J(E*) ⊆ Mp(Tfo ∪ W ∪ D*) is a DEFLOG

consequence of a minimal argument C ⊆ J(E*) consisting of sentences from Tfo, W and D*. Since C ∩ D*
contains only sentences of the form α �  γ for a default α : Mβ1, ..., Mβm / γ ∈ D, for which there is no ¬βi in
J(E*) ⊇ E, it then follows that ϕ is in Γ(E).

A formal connection between Reiter's logic for default reasoning and argument defeat has also been
shown by Dung (1995).

13.2 Vreeswijk's abstract argumentation systems

In Vreeswijk's (1993, 1997) abstract argumentation systems, the defeat of arguments as derivations is
studied. Vreeswijk's arguments are constructed from given sets of strict and defeasible rules of inference.
In case a contradiction can be derived, one of the arguments involved in the derivation is considered to be
defeated. As a result, the conflict is resolved. The selection of the defeated argument among all arguments
involved in the conflict is, guided by a given conclusive force relation between arguments. If no
defeasible argument involved in the conflict has stronger conclusive force than any of the others, then
each can be selected as defeated. If one has stronger conclusive force than another, it cannot be selected
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as the defeated argument. If more than one argument can be selected as the defeated argument, each
choice gives rise to a separate extension. Assume for instance that the three defeasible arguments σ1, σ2

and σ3 can be extended to a derivation of a contradiction. If none of the arguments has stronger
conclusive force than another, there are three extensions, viz. the three sets of two arguments { σ1, σ2} ,
{ σ1, σ3} and { σ2, σ3} . If for instance σ1 has stronger conclusive force than σ2, { σ2, σ3} is not an
extension.

Below some of Vreeswijk's (1997) definitions are recounted, some of them slightly adapted. Since in
Vreeswijk's formalism rules and arguments are always treated separately, no notational precautions were
necessary to distinguish a rule of inference from its instance in a derivation, i.e., in an argument. Since
below the distinction is necessary in order to prevent ambiguity, rules of inference are denoted using the
symbols �  and � , while their instances in arguments are denoted using �  and � . Vreeswijk's (1997)
numbering is followed.

Definition (13.12): Vreeswijk's abstract argumentation systems
2.2 A language is a set L containing a distinguished element ⊥.
2.3 A strict rule of inference is a formula of the form ϕ1, ..., ϕn �  ϕ, where ϕ1, ..., ϕn is a finite,

possibly empty, sequence in L and ϕ is a member of L. A defeasible rule of inference is a formula
of the form ϕ1, ..., ϕn 

�  ϕ, where ϕ1, ..., ϕn is a finite, possibly empty, sequence in L and ϕ is a
member of L.

2.5 An argument σ is
a. a member p of L. Its conclusion and only premise is p.
b. a formula of the form σ1, ..., σn �  ϕ, where σ1, ..., σn is a finite, possibly empty, sequence

of arguments, such that the conclusions of σ1, ..., σn are ϕ1, ..., ϕn, respectively, for some
rule ϕ1, ..., ϕn �  ϕ. Its conclusion is ϕ, its set of premises is the union of the sets of
premises of σ1, ..., σn.

c. a formula of the form σ1, ..., σn 
�  ϕ, where σ1, ..., σn is a finite, possibly empty, sequence

of arguments, such that the conclusions of σ1, ..., σn are ϕ1, ..., ϕn, respectively, for some
rule ϕ1, ..., ϕn 

�  ϕ. Its conclusion is ϕ, its set of premises is the union of the sets of
premises of σ1, ..., σn.

2.10 An argument is strict if it is built using strict rules only, otherwise defeasible.
2.1 An abstract argumentation system is a triple (L, R, ≤), where L is a language, R is a set of rules of

inference and ≤ is a reflexive and transitive order on arguments. For arguments σ and τ, σ < τ
denotes that σ ≤ τ while not τ ≤ σ.

3.2 A subset P of L is incompatible if there exists a strict argument with conclusion ⊥.
4.1 A base set is a finite compatible subset of L. If P is a base set, an argument is based on P if its

premises are in P. A set of arguments is incompatible if the set of conclusions of the arguments is
incompatible. A set of arguments is incompatible with an argument σ if Σ ∪ { σ} is incompatible.

2.15 An argument σ undermines a set of arguments Σ if there is a τ in Σ with τ < σ.
4.2 Let P be a base set, and let σ be an argument. A set of arguments Σ is a defeater of σ if Σ is

incompatible with σ and not undermined by it.
4.17 Let P be a base set. A relation |~ between P and arguments based on P is a defeasible entailment

relation if, for every argument σ based on P, it holds that P |~ σ if and only if
a. the set P contains σ, or
b. for some arguments σ1, ..., σn and a sentence ϕ in L, P |~ σ1, ..., σn and σ = σ1, ..., σn �  ϕ,

or
c. for some arguments σ1, ..., σn and a sentence ϕ in L, P |~ σ1, ..., σn and σ = σ1, ..., σn 

�  ϕ
and no set of arguments Σ with P |~ Σ is a defeater of σ.

4.18 A set of arguments Σ is an extension of P if there exists a defeasible entailment relation �  such that
Σ = { σ | P |~ σ} .

Note that some of Vreeswijk's terminology also occurs in DEFLOG, but in a different meaning. Examples
are Vreeswijk's arguments, incompatibility and extensions which are differently defined in DEFLOG.
When confusion is likely, we speak for instance of DEFLOG arguments and AAS arguments, where AAS
abbreviates 'abstract argumentation systems'.

In the following, a formal connection between Vreeswijk's abstract argumentation systems and
DEFLOG is established. Assume an argumentation framework (L, R, ≤) as given.
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As sentential constants in DEFLOG, the union of four sets is used: the set L, the set of rules R, the set
of arguments and the set of conclusive force statements σ < τ. In this way, a large part of the formal
apparatus of Vreeswijk's abstract argumentation systems can be translated into DEFLOG's language.
Consider for instance the construction of an AAS argument σ(p) �  q from an AAS argument σ(p) with
conclusion p and a defeasible rule of inference p �  q. This construction can now be expressed within
DEFLOG by the sentence (p �  q) �  (σ(p) �  (σ(p) �  q)). (Note that here the notational distinction between
rules of inference and their instances in arguments are needed in order to prevent ambiguity.)

Consider now the following four schemes of DEFLOG sentences. The first two model AAS argument
construction, the second two AAS defeat.

(i) (ϕ1, ..., ϕn �  ϕ) �  (σ1 �  ( ... (σn �  (σ1, ..., σn �  ϕ)) ... )
Here ϕ1, ..., ϕn �  ϕ is a rule and σ1, ..., σn are arguments with conclusions ϕ1, ..., ϕn.

(ii ) (ϕ1, ..., ϕn 
�  ϕ) �  (σ1 �  ( ... (σn �  (σ1, ..., σn 

�  ϕ)) ... )
Here ϕ1, ..., ϕn 

�  ϕ is a rule and σ1, ..., σn are arguments with conclusions ϕ1, ..., ϕn.
(iii ) ρ1 �  ( ... (ρr �  (τ1 �  ( ... (τt �  ×((ϕ1, ..., ϕn 

�  ϕ) �  (σ1 �  ( ... (σn �  (σ1, ..., σn 
�  ϕ)) ... ))) ... ))) ... )

Here ρ1, ..., ρr are strict rules of inference that can be used to extend σ1, ..., σn 
�  ϕ and the

arguments τ1, ..., τt to an argument with conclusion ⊥. The other elements of the scheme are as in
(ii ).

(iv) (σ1 > τ1) �  (ρ1 �  ( ... (ρr �  (τ1 �  ( ... (τt �  ×(ρ1 �  ( ... (ρr �  (τ1 �  ( ... (τt �  ×((ϕ1, ..., ϕn 
�  ϕ) �  (σ1

�  ( ... (σn �  (σ1, ..., σn 
�  ϕ)) ... ))) ... ))) ... ))) ... ))) ... ))

All elements of the scheme are as in (iii ).

Before the explanation of the schemes, it can be noted that the second scheme occurs as a subscheme of
the third scheme, which on its turn is a part of the fourth. Using convenient abbreviations, the structure of
the third and fourth schemes stands out more clearly as follows:

(iii ) ρ1 �  ( ... (ρr �  (τ1 �  ( ... (τt �  ×(ii )) ... ))) ... )
(iv) (σ1 > τ1) �  (ρ1 �  ( ... (ρr �  (τ1 �  ( ... (τt �  ×(iii )) ... ))) ... ))

By the schemes (i) and (ii ), arguments can be expanded by the application of strict and defeasible rules.
By scheme (iii ), argument expansion by application of a defeasible rule is blocked if the expansion could
lead to an argument with conclusion ⊥. This is achieved by an attack of scheme (ii ) in case there are strict
rules and additional arguments from which an unwanted argument for ⊥ could be constructed. By scheme
(iv), the application of the defeasible rule is reinstated in case the resulting argument has stronger
conclusive force than one of the other arguments needed to construct the unwanted argument for ⊥.
Formally this is expressed by an attack of scheme (iii ) in case an appropriate conclusive force statement
obtains, in addition to the rules and arguments needed for the construction of an argument for ⊥.

As an il lustration, one example is worked out. Let the language L consist of the sentences ⊥, p1, p2, q
and ¬q. Consider the three rules of inference p1 

�  q, p2 
�  ¬q and q, ¬q �  ⊥. With respect to the abstract

argumentation framework with these rules and an empty conclusive force relation, the base set { p1, p2}
has two AAS extensions, viz. the sets of arguments { p1, p2, p1 

�  q} and { p1, p2, p2 
�  ¬q} . If the

argument p1 
�  q has stronger conclusive force than the argument p2 

�  ¬q in the abstract argumentation
framework, then the base set { p1, p2} has only { p1, p2, p1 

�  q} as an extension.
In the following the instances of the schemes (i) to (iv) are listed that can be used to mimic

Vreeswijk's technical apparatus in DEFLOG. Assume first that the conclusive force relation is empty. Then
the following are needed.

(i) (q, ¬q �  ⊥) �  ((p1 
�  q) �  ((p2 

�  ¬q) �  ((p1 
�  q, p2 

�  ¬q) �  ⊥)))
(ii .a) (p1 

�  q) �  (p1 �  (p1 
�  q))

(ii .b) (p2 
�  ¬q) �  (p2 �  (p2 

�  ¬q))
(iii .a) (q, ¬q �  ⊥) �  ((p1 

�  q) �  ×((p2 
�  ¬q) �  (p2 �  (p2 

�  ¬q))))
(iii .b) (q, ¬q �  ⊥) �  ((p2 

�  ¬q) �  ×((p1 �  q) �  (p1 �  (p1 
�  q))))

By (i), the arguments p1 
�  q and p2 

�  ¬q for q and ¬q can be extended to the argument (p1 
�  q, p2 

�

¬q) �  ⊥ if the rule q, ¬q �  ⊥ and the arguments p1 
�  q and p2 

�  ¬q obtain. By (ii .a), the defeasible
argument p1 

�  q can be formed from the rule p1 
�  q and the argument p1. By (ii .b), p2 

�  ¬q can be
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formed from p2 
�  ¬q and p2. The sentences (iii .a) and (iii .b) make (ii .a) and (ii .b) defeasible. For

instance, (ii .a) expresses the situation that the rule q, ¬q �  ⊥ and the argument p1 
�  q make the

construction sentence (ii .a) for the argument p2 
�  ¬q defeated.

The DEFLOG theory consisting of p1, p2 and the above sentences (i), (ii .a), (ii .b), (iii .a) and (iii .b) has
two extensions, one in which (ii .a) is defeated and one in which (ii .b) is. In the first DEFLOG extension,
the three argument expressing sentences p1, p2 and p1 

�  q are justified, while p2 
�  ¬q is not taken into

account, and in the second p1, p2 and p2 
�  ¬q are justified, while p1 

�  q is not taken into account. As a
result, the two DEFLOG extensions correspond to the two AAS extensions of the base set { p1, p2} .

Assume now that (p1 
�  q) > (p2 

�  ¬q), i.e., that the argument p1 
�  q has stronger conclusive force

than the argument p2 
�  ¬q. Then the following instance of scheme (iv) does the trick.

(iv) ((p1 
�  q) > (p2 

�  ¬q)) �  ((q, ¬q �  ⊥) �  ((p1 
�  q) �

×((q, ¬q �  ⊥) �  ((p2 
�  ¬q) �  ×((p1 

�  q) �  (p1 �  (p1 
�  q)))))))

It says that the conclusive force comparison (p1 
�  q) > (p2 

�  ¬q), the rule (q, ¬q �  ⊥) and the argument
(p1 

�  q) make the blocking sentence (iii .b) defeated. As a result, the DEFLOG theory consisting of p1, p2

and the above sentences (i), (ii .a), (ii .b), (iii .a), (iii .b) and (iv) has only one extension, viz. the one in
which (ii .b) and (iii .b) are defeated. Only the DEFLOG extension in which p1, p2 and p1 

�  q are justified
remains, in correspondence with the only remaining AAS extension.

Let now ∆AAS consist of all sentences of one of the schemes (i) through (iv). Note that only for the
sentences of the forms (ii ) and (iii ) an attack is available (as expressed in (iii ) and (iv), respectively).

Proposition (13.13)
A set of AAS arguments E is an AAS extension of a base set P with respect to an abstract
argumentation system (L, R, ≤) if and only if E is equal to the set of justified statements in a DEFLOG

extension of the theory P ∪ R ∪ ≤ ∪ ∆AAS that express an AAS argument.

Proof: Given an AAS extension E as in the proposition, it is possible to construct a DEFLOG extension of P ∪ R ∪ ≤
∪ ∆AAS. The defeat of no sentence in P ∪ R ∪ ≤ is derivable from the theory since the defeat sentences do not
even occur in a sentence in the theory. (Recall that the defeat sentence of a sentence ϕ is ×ϕ.) The only defeat
sentences that occur in a sentence in the theory are the defeat sentences of sentences in ∆AAS of the forms (ii ) and
(iii ). E determines which sentences of the forms (ii ) and (iii ) actually are to be considered defeated. Let D(ii)

consist of the form (ii ) sentences in ∆AAS that express the construction of an argument σ1, ..., σn �  ϕ that is not in
E, while the arguments σ1, ..., σn are in E and the rule ϕ1, ..., ϕn �  ϕ is in R. Let D(iii) consist of the form (iii )
sentences that express that an argument σ1, ..., σn �  ϕ cannot be constructed, while it is in E, and while there are
arguments τ1, ..., τt in E and strict rules ρ1, ..., ρr in R that can be used to expand it to an argument for ⊥. Claim:
(P ∪ R ∪ ≤ ∪ ∆AAS) \ (D(ii ) ∪ D(iii)) specifies a DEFLOG extension of the theory P ∪ R ∪ ≤ ∪ ∆AAS, in which
exactly the sentences in D(ii) ∪ D(ii i) are defeated. The claim follows from two observations. First, observe that for
any sentence in D(ii) expressing the construction of an argument σ1, ..., σn �  ϕ there must be arguments τ1, ..., τt

in E and strict rules ρ1, ..., ρr in R that can be used to construct an argument for ⊥, while σ1, ..., σn �  ϕ does not
have stronger conclusive force than one of the arguments τ1, ..., τt. As a result, a corresponding form (iii ) sentence
can be used to derive its defeat, while no form (iv) sentence can defend against that. Second, observe that for any
sentence in D(iii) expressing the attack of a form (ii ) argument construction sentence, there must be an argument
among the τ1, ..., τt that has weaker conclusive force than σ1, ..., σn �  ϕ. As a result, its defeat can be derived
from an appropriate form (iv) sentence.

That the set of justified statements in a DEFLOG extension of the theory P ∪ R ∪ ≤ ∪ ∆AAS is an AAS
extension of P with respect to (L, R, ≤) follows from similar observations.

A major difference between DEFLOG and Vreeswijk's abstract argumentation systems is that the former is
sentence-based, while the latter is derivation-based, in the sense that in DEFLOG the statements expressed
by sentences can be defeated, while in Vreeswijk's abstract argumentation systems derivations (in his
system called arguments) are the object of defeat. Verheij's CUMULA (1996b) is in a similar way
derivation-based. The reconstruction of Vreeswijk's abstract argumentation systems shows how DEFLOG

can incorporate the derivation-based approach by including sentences that express derivations in the
logical language.

Another important difference is that Vreeswijk's abstract argumentation systems defeat is non-
deterministic, in the following special sense: when some AAS arguments are involved in a conflict, each
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can be chosen as defeated, merely by its being involved in the conflict. The theory does not prescribe
which from among the arguments to choose as defeated. The choice can be restricted by the conclusive
force relation: an argument that is stronger than another argument in the conflict cannot be chosen as
defeated. DEFLOG is deterministic, in the special sense that when a statement is defeated in an extension
of a theory this is an explicit consequence of the justified part of the theory. That it still can occur that
there are several extensions is not the result of non-deterministic choice, but of dialectical ambiguity (i.e.,
the possibili ty that a sentence is both dialectically justifiable and defeasible).

The result is for instance that Vreeswijk's abstract argumentation systems are not very well suited for
modeling Pollock's undercutters. If for instance p undercuts q as a reason for r, then Vreeswijk interprets
this in terms of the conditional q > r (cf. Vreeswijk's notation, 1997, p. 277; the conditional > is not to be
confused with the conclusive force relation on arguments). He first enforces a contradiction between q > r
and ¬(q > r), where the latter is made to follow from p, and then adds that the argument for ¬(q > r) has
stronger conclusive force than an argument for q > r. Vreeswijk would use a strict rule q > r, ¬(q > r) �

⊥, a defeasible rule p �  ¬(q > r), and the stipulation that the AAS argument p �  ¬(q > r) (or any other
argument ending like this) has stronger conclusive force than the AAS argument q > r (and any other
argument with this conclusion). As a result, that p undercuts q as a reason for p must partly be expressed
in the fixed conclusive force relation on arguments, that is expressed outside the logical object language.
To me it seems much more natural that undercutters (and for that matter all other defeat information) are
expressible in the logical object language, like in DEFLOG.

13.3 Dung's admissible sets

Dung's (1995) notion of admissible sets of unstructured arguments turned out to be a fruitful abstraction
of ideas from nonmonotonic reasoning and logic programming.16 Dung's definitions provided inspiration
for several of DEFLOG's definitions (and for some of my earlier work on dialectical argumentation, e.g.,
Verheij, 1996a and 1996b). The following recapitulates some of Dung's definitions.

Definition (13.14): Dung's admissible sets
(i) An argumentation framework is a pair <AR, attacks> where AR is a set of arguments and attacks

is a binary relation on AR. If (A, B) ∈ attacks, then the argument A attacks the argument B. A set
of arguments S attacks an argument A if there is an argument B in S that attacks A.

(ii ) Given an argumentation framework <AR, attacks>, a set S ⊆ AR of arguments is conflict-free if
there are no arguments A and B in S such that A attacks B.

(iii ) An argument A ∈ AR is acceptable with respect to a set S of arguments if, for each argument B ∈
AR, if B attacks A then S attacks B.

(iv) A conflict-free set of arguments S is admissible if each argument in S is acceptable with respect to
S.

(v) A preferred extension of an argumentation framework <AR, attacks> is an admissible set that is
maximal with respect to set inclusion.

(vi) A conflict-free set of arguments S is a stable extension if S attacks any argument not in S.

The DEFLOG translation of an argumentation framework <AR, attacks> goes as follows. The arguments
of AR are used as the elementary sentences of DEFLOG's language. If <AR, attacks> is an argumentation
framework, then the theory AR ∪ { A �  B | (A, B) ∈ attacks} is its DEFLOG translation. The following
proposition establishes a formal connection between Dung's admissible sets and DEFLOG.

Proposition (13.15)
Let ∆ be the DEFLOG translation of an argumentation framework <AR, attacks>. Then the following
obtain:
(i) A set of arguments S ⊆ AR is conflict free (in Dung's sense) if and only if S is satisfiable (in

DEFLOG's sense).
(ii ) A conflict free set of arguments S ⊆ AR is admissible (in Dung's sense) if and only if S is

dialectically justifying with respect to ∆ (in DEFLOG's sense).
(iii ) A set of arguments S ⊆ AR is a preferred extension of <AR, attacks> (in Dung's sense) if and

only if S specifies a preferred stage of ∆ (in DEFLOG's sense).

                                                          
16 Admissibilit y has also been discussed in section 12.4.
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(iv) A set of arguments S ⊆ AR is a stable extension of <AR, attacks> (in Dung's sense) if and only
if S specifies an extension of ∆ (in DEFLOG's sense).

Proof: All parts of the proposition follow by straightforward definition checking.

The major difference between DEFLOG and Dung's definitions is that DEFLOG has a logical language in
which information concerning justification, attack and defeat can be expressed, whereas Dung uses an
unstructured language and a fixed set of attack relations. As a result of its expressive language, DEFLOG

allows very flexible representations. Sentences like p1 �  (q �  r) and p2 
�  (q �  r) expressing that q attacks

r if p1 and that p2 attacks that q attacks r, have no counterpart in Dung's argumentation frameworks.
A natural way to define dialectical justification in Dung's framework is the following:

A conflict free set of arguments C (in Dung's sense) is dialectically justifying (in Dung's
framework) if C attacks any conflict free set of arguments C', such that C ∪ C' is not conflict free.

It follows by straightforward definition checking17 that the notions of admissibili ty and dialectical
justification that differ on DEFLOG's language (see especially section 12.4) coincide on Dung's restricted
language.

Bondarenko, Dung, Kowalski and Toni (1997) have used admissibili ty in their discussion of an
abstract, argumentation-theoretic approach to default reasoning. Their setting is just as Dung's (1995)
related to DEFLOG's, yet they focus on deductive systems. Interestingly, whereas in DEFLOG dialectical
negation × is treated as an ordinary connective, Bondarenko, Dung, Kowalski and Toni consider the
question which sentences are the contraries of others as part of the domain theory (as the mapping from
sentences to their contraries is explicitly represented in their assumption-based frameworks). It seems that
the notion of dialectical justification can be directly transplanted to their system. For the reasons,
discussed in section 12.4, it is probable that dialectical justification has better properties for analyzing
assumption-based frameworks than admissibili ty.

By the technical closeness of DEFLOG and the approaches of Dung (1995) and Bondarenko, Dung,
Kowalski and Toni (1997), several of DEFLOG's properties have direct analogues in the latter work. Using
the proposition, many results on DEFLOG are immediately relevant for Dung's admissible sets (and vice
versa, of course). For instance, the results on the extension existence problem and the extension
multiplicity problem in section 9 and on the internal structure of dialectical justification in section 10 can
be easily translated to Dung's framework. The former give amongst others necessary and suff icient
conditions for the existence of Dung's stable extensions and for the multiplicity of Dung's stable
extensions in terms of dialectical justification, and equivalently in terms of admissibili ty (by the
equivalence of dialectical justification and admissibili ty on Dung's restricted language, discussed above).
The results of section 8 on types of stages can also be transplanted to Dung's preferred extensions. For
instance, it is not the case that Dung's preferred extensions are in general maximal stages, or can in
general be extended or compatibly extended to maximal stages (cf. also Verheij, 1996a).18

13.4 Reason-Based Logic

Reason-Based Logic (Hage, 1996, 1997; Verheij, 1996b) is a formal model of rules and reasons, inspired
by the use of these notions in the field of law. In Reason-Based Logic, rules are individuals that can have
properties. Key properties of rules distinguished in Reason-Based Logic are their validity, applicabili ty or
exclusion. These properties are part of the core of Reason-Based Logic - they belong to its 'logical
constants'. Rules can however also have other properties. For instance, they can be just, or effective.

In order to allow rules to have properties, they are not represented as sentences, but as terms. In
Reason-Based Logic, the validity of a rule with antecedent ϕ and consequent ψ is for instance expressed
by the sentence Valid(rule(ϕ, ψ)). Reason-Based Logic assumes a translation from sentences to terms.

                                                          
17 Let C be admissible (and therefore conflict free), and C' conflict free while C ∪ C' is not conflict free. Then C
attacks C' or C' attacks C. If C' attacks C, there is an argument α in C' that attacks an argument β in C. But β is
acceptable with respect to C, so C attacks α. So C is dialectically justifying. Let C be dialectically justifying, and let
α be an argument in C. If β attacks α, then { β} is a conflict free set attacking C, while C ∪ {β} is not conflict free.
Therefore C attacks { β} , α is acceptable with respect to C and C is admissible.
18 As a result, Prakken and Vreeswijk's (to appear, section 5.1) claim that preferred extensions correspond to
maximal partial status assignments is mistaken.
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The main relations between the core properties of rules in Reason-Based Logic are (in Verheij 's
(1996b) version) encoded in its semantic constraints. For instance, rules can only be excluded if they are
valid. It should be stressed that only the main relations between Reason-Based Logic's core properties are
encoded in the semantic constraints. For instance, the semantic constraints do not determine which rules
are valid. It is a starting point of Reason-Based Logic that the question whether a rule is valid can be
answered differently in different contexts. As a result, the representation of the facts about rules is to a
large extent left to the domain theory.

The semantic constraints of Verheij 's (1996b) version of Reason-Based Logic can be used to define a
monotonic consequence notion. However, since in Reason-Based Logic rules can be excluded and the
reasons for a conclusion can outweigh the reasons against it, it is also natural to study nonmonotonic
consequence notions for Reason-Based Logic. For instance, fixed point definitions in the style of Reiter's
logic for default reasoning have been applied to Reason-Based Logic.

Similarly, DEFLOG can be used to specify nonmonotonic aspects of Reason-Based Logic. Here an
axiom system is presented that gives an idea how the representation of rules and their properties in
Reason-Based Logic can be modeled in DEFLOG.

(i) ϕ �  (Valid(rule(ϕ, ψ)) �  Reason(ϕ, ψ))
(ii ) Reason(ϕ, ψ) �  ψ
(iii ) Excluded(rule(ϕ, ψ)) �  ×(ϕ �  (Valid(rule(ϕ, ψ)) �  Reason(ϕ, ψ)))
(iv) Outweighs({ ϕ1, ..., ϕn} , { ψ1, ..., ψm} , χ) �  ×(Reason(ψj, not-χ) �  not-χ)
(v) Reason(ψm+1, not-χ) �  ×(Outweighs({ ϕ1, ..., ϕn} , { ψ1, ..., ψm} , χ) �  ×(Reason(ψj, not-χ) �  not-χ))

(vi) Reason(ϕ, ψ) �  Valid(rule(ϕ, ψ))
(vii ) Excluded(rule(ϕ, ψ)) �  Valid(rule(ϕ, ψ))
(viii ) Outweighs({ ϕ1, ..., ϕn} , { ψ1, ..., ψm} , χ) �  Reason(ϕi, χ)
(ix) Outweighs({ ϕ1, ..., ϕn} , { ψ1, ..., ψm} , χ) �  Reason(ψj, not-χ)

Note that ϕ, ψ etc. are used as metavariables for corresponding sentences and terms in these axiom
schemes. In schemes (iv), (v) and (ix), not-χ is a metavariable that stands for the negation of χ, where the
type of negation is left implicit here. In scheme (v), it is assumed that ψm+1 differs from ψ1, ..., ψm.

By axiom scheme (i), if the antecedent of a valid rule is satisfied, it becomes a reason for the rule's
consequent. According to axiom scheme (ii ), if there is a reason for some conclusion, the conclusion
follows. Both schemes are defeasible, though, as the schemes (iii ) and (iv) show. If a rule is excluded, it
does not give rise to a reason (scheme (iii )). If the reasons ϕ1, ..., ϕn for a conclusion χ outweigh the
reasons ψ1, ..., ψm against it, the latter do not lead to their conclusion not-χ (scheme (iv)). By scheme (v),
outweighing has no effect if there is an opposing reason that is not considered.

While the axiom schemes (i) to (v) express central properties of rules in Reason-Based Logic, the
schemes (v) to (ix) are mostly auxili ary. Schemes (vi) and (vii ) state that only valid rules give rise to
reasons or can be excluded. By schemes (viii) and (ix), outweighing actually concerns reasons for and
against a conclusion.

Details about Reason-Based Logic can be found in the work of Hage (1996, 1997) and Verheij
(1996b).

13.5 Winning strategies in dialogue games

In the context of dialectical argumentation, i.e., argumentation with arguments and counterarguments, it is
natural to consider dialogue games in which one of the game players tries to justify some statement, while
the other tries to show that it is not justified or that it is defeated. For instance, Prakken and Sartor (1997)
have used a dialogue game in order to characterize their category of justified arguments. The basic idea is
that an argument is justified if there is a winning strategy for the player that starts a dialogue game by
claiming the argument.

Here the definitions as given by Prakken (1997) are given. Not all notions occurring in the definitions
are formally defined here. They are recounted as an il lustration. The numbering is taken from Prakken
(1997, p. 166-167).
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Definition (13.16)
6.5.2 A dialogue based on a default theory Γ is a nonempty sequence of moves movei = (Playeri, Argi)

(with i > 0), such that
1. Argi ∈ ArgsΓ

2. Playeri = P if and only if i is odd; and Playeri = O if and only if i is even;
3. If Playeri = Playerj = P and i ≠ j, then Argi ≠ Argj;
4. If Playeri = P, then Argi strictly defeats Argi-1;
5. if Playeri = O, then Argi defeats Argi-1.

6.5.3 A dialogue tree is a tree of moves such that
1. Each branch is a dialogue;
2. If Playeri = P, then the children of movei are all defeaters of Argi.

6.5.4 A player wins a dialogue if the other player cannot move. And a player wins a dialogue tree if and
only if it wins all branches of the tree.

6.5.5 An argument A is justified if and only if there exists a dialogue tree with A as its root, and won by
the proponent.

Player P is the proponent and player O the opponent of the argument with which the dialogue starts. The
players exchange arguments as allowed by the default theory (conditions 1 and 2 under 6.5.2). By
condition 3, the proponent is not allowed to repeat his moves. Conditions 4 and 5 state that each newly
adduced argument must be a counterargument to its predecessor (in the sense of the system defined by
Prakken and Sartor). Note the asymmetry between the proponent and the opponent: while a proponent's
argument must strictly defeat its predecessor, the opponent only needs to provide a defeating argument.

Dialogue trees (6.5.3) are those collections of dialogues that show the proponent's reaction to any
possible counterargument by the opponent. Winning a tree (6.5.4) means that the proponent has a winning
strategy. Finally, in 6.5.5, an argument is defined to be justified when its proponent has a winning
strategy.

The idea of winning strategies in dialogue games is closely related to that of a justifying dialectical
argument as it was defined in section 10 on the internal structure of dialectical argumentation (definition
(10.14)). In fact, a justifying dialectical argument corresponds exactly to a winning strategy for the first
player in the following argumentation game:

Definition (13.17)
(i) An argumentation game concerning ϕ with respect to a theory ∆ is a (finite or infinite) sequence of

∆-arguments C1, C2, ... (where the indices are natural numbers > 0) , such that
a. C1 is an elementary argument for ϕ, and
b. Ci+1 and Ci are elementarily incompatible if i is odd, and
c. Ci+1 elementarily attacks Ci if i is even, and
d. if i and j have different parity, then Ci and Cj are not equal.
If the argument sequence is finite, the length of the game is the number of arguments in the
sequence.

(ii ) An argumentation game has ended if it is not a proper initial of another argumentation game, or if
it is infinite. An ended argumentation game is won by the second player if there is a final argument
with even index. Otherwise the game is won by the first player.

(iii ) The first player has a winning strategy in the argumentation game concerning ϕ with respect to ∆
if there is a map S from the set of argumentation games Γ concerning ϕ with respect to ∆ that have
an even index final argument CΓ, to the set of ∆-arguments, such that S(Γ) is an argument
elementarily attacking CΓ.

Since ended argumentation games can be finite or infinite, there are two types of winning for the first
player: the game is finite and the last argument has odd index, or the game is infinite. The intuition behind
the second type of winning is that in that case the first player has a reply to any move by the second
player. As a result, the first player succeeds in attacking all counterarguments by the second player. The
map S in the definition of the first player having a winning strategy indicates which move the first player
can make in reply to any previous move by the second player.

Proposition (13.18)
There exists a dialectical argument justifying ϕ with respect to a theory ∆ if and only if the first player
has a winning strategy in the argumentation game concerning ϕ with respect to ∆.
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Proof: The proposition follows from the observations that argumentation games correspond exactly to the initial parts
of branches in a justifying dialectical argument, and that ended argumentation games correspond exactly to the
full branches of a justifying dialectical argument. The correspondence is such that the length of the indices of the
arguments in a branch of a justifying dialectical argument is equal to the index of the corresponding argument in
an argumentation game. Since by the definition of a justifying dialectical argument, it has no branches ending
with an even length index, each even length game can be continued by the first player by playing the next
argument in the branch corresponding to the game.

14 The comparison and the attack metaphor in dialectical argumentation

In the field of dialectical argumentation, two guiding metaphors can be distinguished, viz. the comparison
and the attack metaphor.19 Both can be regarded as attempts to adapt pure maximal consistency for
modeling dialectical argumentation. The first is the comparison metaphor. In this metaphor, the defeat of
a statement (or argument or rule of inference or derivation, or whatever is one's favorite object of defeat)
is the result of comparing the statements (or ...) that are involved in a conflict. Usually, the comparison
involves notions like strength or priority, that are usually taken as a primitive. In the comparison
metaphor, one starts with a symmetric notion like conflict, that is then asymmetricized by a comparison
relation. When two statements are conflicting and one has priority, the other is defeated. Pollock's (1987)
rebutting defeaters are a paradigmatic example of defeat like in the comparison metaphor. The
comparison metaphor is also at the heart of Vreeswijk's (1997) work.

The second is the attack metaphor. In this metaphor, defeat is the result of a battle between statements
(or arguments or whatever) some of which attack others. Some of the statements (or ...) are defeated, viz.
those that are attacked by an undefeated statement; others remain undefeated, e.g., those that are not at all
attacked, or that are only attacked by arguments that are themselves defeated. The notion of attack is
taken as a primitive. Attack is usually taken as an asymmetric relation. Pollock's (1987) undercutting
defeaters are a paradigmatic example of defeat like in the attack metaphor. Dung's (1995) work and
Verheij's (1996b) CUMULA are based on the attack metaphor.

The two metaphors are to some extent interchangeable. Assume that the statements ϕ and ψ are
conflicting. Then the priority of ϕ over ψ or the attack of ψ by ϕ has the same result: ϕ is undefeated and
ψ defeated.

For quite some time, I considered the attack metaphor more satisfactory than the comparison
metaphor.20 My main reasons were threefold. First, undercutters are harder to explain using the
comparison metaphor (cf. the discussion of Vreeswijk's treatment of undercutters in section 13.2).
Second, I considered defeat as the immediate result of an asymmetric relation like attack, while the
comparison metaphor naturally starts with a symmetric relation like conflict. Third, in the case of the
defeat of structured arguments, the comparison metaphor seemed to imply the unnatural separation of
argument construction on the one hand and comparison and defeat on the other.

I have changed my opinion, since in DEFLOG, the comparison and the attack metaphor merge into
one, while none of my three reasons against the comparison metaphor obtain. Any defeated statement ϕ
corresponds to a justified statement ×ϕ, with which it is conflicting (in the sense that ϕ and ×ϕ cannot
both be justified in an interpretation). This seems a choice for the comparison metaphor. Another of
DEFLOG's traits is however more like the attack metaphor, viz. the inherent asymmetry between ϕ and ×ϕ
that is built into the definition of extensions. By this asymmetry, the defeat of ϕ coincides with the
justification of ×ϕ, but not the other way around. The defeat of ×ϕ does not coincide with the justification
of ϕ, but with that of ××ϕ. (Note that the asymmetry is taken away in symmetric DEFLOG, discussed in
section 12.2, suggesting that symmetric DEFLOG is less appropriate for modeling dialectical
argumentation than ordinary, asymmetric DEFLOG.)

The mixture of the comparison and the attack metaphor in DEFLOG explains why both have been
fruitfully adopted, while as yet neither has successfully claimed its primacy.

                                                          
19 In my dissertation (Verheij , 1996, p. 164-5), I spoke in a similar vein of inconsistency-triggered and
counterargument-triggered defeat.
20 See e.g. my lecture notes on attack and defeat at http://www.metajur.unimaas.nl/~bart/teaching/defarg/. Amongst
others, a discussion with Alejandro García made me doubt my position.
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15 DEFLOG as a dialectical logic

DEFLOG can be regarded as what might be called a dialectical logic, viz. a logic in which not only
attention is paid to justification, but also to defeat. Dialectical logics can be contrasted with deductive
logics, in which only justification is addressed. Here justification might be interpreted in terms of rules of
inference. A paradigmatic example of a deductive logic is standard propositional logic with its semantics
in terms of valuations and its proof theory in terms of (e.g.) rules of inference. Here the differences
between DEFLOG and standard propositional logic as logics are briefly addressed.

The difference between the logical languages of DEFLOG and propositional logic is only superficial.
Whereas DEFLOG only uses two sentential connectives �  and ×, propositional logic uses �  and ¬, and
usually several more, like ∨, ∧ and � . It is well-known however that a propositional language using only

�  and ¬ as connectives does not diminish its expressiveness. The reason why in DEFLOG only �  and ×
are used is that they seem to suffice for a dialectical logic. Since the interpretation of �  validates Modus
ponens, it is possible to mimic many deductive logics (in fact all deductive logics that have a Hilbert-style
proof theory, based on Modus ponens only). It has been shown (especially in the sections 11 and 13) that
many notions in the field of defeasible reasoning can be modeled when DEFLOG's dialectical negation × is
added.

A difference between DEFLOG and propositional logic already arises at the level of interpretations.
Whereas DEFLOG's interpretations are valuations of the language's subsets, those of propositional logic
are always total: any sentence of the language must be assigned a truth value. The reason for this
difference is that DEFLOG's 'partial' interpretations can be thought of as worlds as they are specified by a
theory about the world. Since such a theory does not necessarily provide complete information (in the
sense of having for any sentence ϕ either ϕ or its negation as a consequence), it makes sense to consider
the partial interpretations of DEFLOG. Note that in propositional logic there is formally an analog for
DEFLOG's partial interpretations, viz. the sets of sentences that are closed under valid consequence21.

The next difference between DEFLOG and propositional logic occurs when theories are interpreted.
The interpretation of a theory in propositional logic are its models, which are the interpretations in which
all sentences in the theory are positively evaluated, viz. as true. In contrast, in DEFLOG, a theory is
interpreted in terms of its extensions, in which some sentences of the theory are evaluated positively and
others negatively, viz. as justified and defeated, respectively. The reason is that in DEFLOG a theory is
interpreted as a defeasible specification of the world. On the one hand, the sentences in the theory express
statements about the world that are assumed to state truths. On the other hand, the theory can itself
express that statements in the theory or following from it are not to be assumed to state truths. As a result,
DEFLOG provides a distinct way of interpreting sets of sentences, next to their ordinary interpretation as
strict theories. In the ordinary, strict interpretation of theories, the sentences in a theory are all assumed to
state truths. The distinct way of interpretation is to consider a set of sentences as a dialectical theory that
expresses defeasible assumptions about the world. The result is that there are two kinds of satisfiabili ty.
The first is standard, 'strict' satisfiability, when a theory has a model. The other is 'dialectical'
satisfiabili ty, when a theory has an extension. Note that an extension of a theory can be regarded as a
specific kind of consistency maintenance (just like taking maximal satisfiable subsets) since any
extension of a theory selects a satisfiable subset of the theory. However it has been shown above
(especially in section 8) that there are many satisfiable subsets of a theory (all corresponding to the
theory's stages) that do not correspond to extensions.

The notion of valid consequence in propositional logic, according to which a conclusion follows from
a theory in case it is true in any model of the theory, has a counterpart in DEFLOG's notion of dialectical
justification. Just as a theory has valid consequences, it has dialectically justifiable consequences. An
important difference is that the notion of validity is monotonic, in the sense that a valid consequence of a
theory is also a valid consequence of any larger theory. Dialectical justification is nonmonotonic: if a
statement is dialectically justifiable with respect to a theory it need not be dialectically justifiable with
respect to a larger theory. Dialectical justification does also not obey the inclusion property since it is not
the case that any statement expressed by the theory is dialectically justifiable with respect to the theory.
Valid consequence has the inclusion property.

Another difference arises with respect to inconsistency: whereas an inconsistency in propositional
logic trivializes the theory, since any conclusion follows from a theory that has both a conclusion and its
negation as a consequence, its analog in DEFLOG, viz. dialectical ambiguity, is not trivializing: the

                                                          
21 Such a set is confusingly often called a theory, in contrast with the use of that term in the present paper, where a
theory is just any set of sentences.



64 August 11, 2000

existence of a statement that is both dialectically justifiable and dialectically defeasible with respect to a
theory does not imply that any statement is dialectically justifiable. Note also that while inconsistency
corresponds to non-satisfiabili ty in propositional logic, the analogous correspondence between dialectical
ambiguity and dialectical non-satisfiabili ty (in the sense of not having an extension) does not hold:
dialectical ambiguity is the first step towards ambiguous dialectical satisfiabili ty, in the sense of having
more than one extension. The precise correspondence between dialectical ambiguity and dialectical non-
satisfiabili ty is stated in theorem (9.6) and corollary (9.10). It is significantly more complex than the
equivalence of inconsistency and non-satisfiabili ty in propositional logic.

The role of valid proofs in propositional logic is similar to that of the justifying dialectical arguments
of DEFLOG. Whereas a valid proof shows the internal structure of valid consequence, in the sense that it
explicates the inference steps that lead from a theory to its conclusion, justifying dialectical arguments
show the internal structure of dialectical justification. Justifying dialectical arguments do however not
only explicate the inference steps that lead from a theory to its conclusion (in DEFLOG simply a sequence
of applications of � -Modus ponens), but also which attacks are required against incompatibiliti es. An
important limitation follows: the set of justifying dialectical arguments with respect to a theory is not
recursively defined in terms of the theory as is the case for the set of valid proofs. As a result, the
justifying dialectical arguments are not in general readily computable.

These differences show that the dialectical logic DEFLOG differs significantly from deductive logic as
exemplified by standard propositional logic. DEFLOG can in an important sense, however, be regarded,
not as a modification, but as an expansion of deductive logic: its core is a deductive logic built around a
Modus ponens validating conditional � , to which dialectical negation × has been added.

16 Conclusion

When theories are interpreted dialectically, i.e., as sets of sentences expressing juxtaposed opposing and
contradicting statements, some of which can be justified and others defeated, more theories are
interpretable then when theories are interpreted 'monolectically', i.e., as sets of sentences assumed to be
all true. In other words, there are more theories with extensions than theories with models.

A fundamental complication of dialectical interpretation of theories in terms of extensions is that
theories can have zero, one or several extensions. The extension existence problem asks for a necessary
and sufficient criterion for the existence of an extension of a theory. The extension multiplicity problem
asks for a necessary and sufficient criterion for the existence of multiple extensions of a theory.

In the present paper, the notion of dialectical justification has been introduced: an argument is
dialectically justifying when it attacks all arguments that are incompatible with it. The properties of
dialectical justification, especiall y the union, localization and separation properties, make it particularly
suitable for the analysis of extensions. It has been shown that the notion of dialectical justification gives
rise to necessary and sufficient criteria that solve the extension existence and the extension multiplicity
problems. The idea is that an extension exists if and only if there is a part of the theory in the context of
which no sentence of the theory is dialectically ambiguous (i.e., both dialectically justifiable and
dialectically defeasible), while all sentences of the theory are dialectically interpretable (i.e., either
dialectically justifiable or dialectically defeasible) in the context of that part of the theory. Multiple
extensions exist if and only if there are multiple incompatible parts with these properties.

It has been shown that a simple, dialectically interpreted logical language using ordinary connectives
× and �  is suitable as a language for the analysis of central topics of dialectical argumentation, such as
Toulmin's argument scheme, Pollock's rebutting and undercutting defeaters, and priority and weighing
defeaters. An important consequence of the choice of language is that in DEFLOG all information
concerning justification and defeat is expressible in the logical object language as contingent information.
There is no need for separate classes of defeasible rules of inference, priority information or pre-defined
conclusive force relations between arguments. All these kinds of information can be expressed directly in
DEFLOG's language, along with the other contingent information.

The internal structure of dialectical justification has been analyzed, in terms of justifying dialectical
arguments (that differ subtly from the naïve dialectical arguments of section 2).

The idea of stages provides a different approach towards the investigation of the local properties of
dialectical interpretation of theories in terms of extensions. A theory's stages are the dialectical
interpretations of parts of the theory. Instead of maximizing only the justified sentences of a theory in a
stage, it is also possible to maximize the whole set of interpreted sentences of a theory. It turns out that
the types of maximization are perpendicular, in the sense that maximization in one sense does not imply
maximali ty in the other sense. The result is a plethora of types of stages, with few interrelations. To me,
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this suggests that one should not consider each as a different type of dialectical interpretation of theories,
as is for some types suggested in the work of Dung (1995) and Bondarenko et al. (1997) and also in
Prakken & Vreeswijk's overview (to appear), but merely as partial interpretations with an interesting
special property. In other words, to me, there is only one 'genuine' dialectical semantics, viz. dialectical
interpretation as extensions. All other notions, such as satisfiabili ty classes, dialectically preferred stages
and maximal stages, are in the first place tools in the investigation of the properties of extensions. The use
of the notion of dialectical justification in the extension existence and the extension multiplicity problems
is an example of the application of such tools.
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