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What’s logic got to do with it?
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logic

❖ A formal language in which to express knowledge. 

❖ A precise way to reason about that knowledge.

2

likes(john, jurassic_park)
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in non-artificial intelligence in artificial intelligence

knowledge/belief: 
• procedural 
• by acquaintance 
• descriptive 

• internal 
• external 

• linguistic 
• symbolic 

When we produce non-artificial intelligence (also 
known as children), combining knowledge and 
learning is the most natural thing in the world. A 
child may learn through experience that touching 
a hot pan hurts, but a responsible parent will try 
to limit such personal experience as much as 
possible. We do this by distilling our own 
experiences into knowledge representations (in 
this case the phrase "touching a hot pan will 
hurt") and hoping that the child heeds our 
warnings.

So why then, when it comes to artificial 
intelligence do large parts of the learning 
community seem to reject the help of such 



symbolic prior knowledge? Why do we insist on 
learning everything from scratch?

Note that I'm casting a slightly wider net with the 
definition of knowledge than the common definition of a 
"justified true belief", since the definition doesn't allow 
us to distinguish between the beliefs that are knowledge 
and those that aren't before we use them.
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The benefits of prior knowledge

4

Out-of-distribution learning 
zero-shot learning 
Interpolation

Disentanglement

Data-efficient learning

Tian, Y., Zhang, W., Zhang, Q., Cheng, J., Hao, P., & 
Lu, G. (2018, December). Co-consistent 
Regularization with Discriminative Feature for 
Zero-Shot Learning. In International Conference 
on Neural Information Processing (pp. 33-45). 
Springer, Cham.

Nie, W., Karras, T., Garg, A., Debnath, S., Patney, A., 
Patel, A., & Anandkumar, A. (2020, November). 
Semi-supervised StyleGAN for 
disentanglement learning. In International 
Conference on Machine Learning (pp. 7360-7369). 
PMLR.

Winkels, M. Group-Convolutions: Overcoming 
the data challenge in medical image analysis. 
MSc thesis 2019

It’s certainly not controversial to say that 
knowledge might help, in learning, or even be 
required. Here are three of the places where 
knowledge might help.
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The benefits of symbolic prior knowledge

5

Out-of-distribution learning 
zero-shot learning 
Interpolation

training testing

bicycle

wheels

transport

2

motorbike

wheels

transport

2

Disentanglement
Daza, D., Cochez, M., & Groth, P. (2021, April). Inductive Entity 
Representations from Text via Link Prediction. In Proceedings 
of the Web Conference 2021 (pp. 798-808).

Data-efficient learning
Wilcke, X. et al. (2017). The knowledge graph as the 
default data model for learning on heterogeneous 
knowledge. Data Science, 1(1-2), 39-57.

users movies

action

art-house

US

Europe

Downside: highly use case specific. 
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the pyramid of thought

6

logic

probability

learning

perception

language
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neurosymbolic AI

7

Prolog

Problog

Deep- 
Problog

• Only labeled sums, not single digits
• Train using only neural networks? Not suited!
• DeepProbLog can solve this:

• Neural predicate
• From pixels to distribution over digits
• NN trained from scratch

• Logic:
• Combine predictions into larger numbers
• Perform addition

DTAI reserach group8

Example task: MNIST addition

+                 = ?

Manhaeve, R., Dumancic, S., …(2018). Deepproblog: Neural probabilistic logic programming. NeurIPS

van Krieken, E., Thanapalasingam, T. … (2024). A-nesi: A scalable approximate method for probabilistic neurosymbolic inference. NeurIPS

of 27

link prediction: likes(mary, schindlers_list)?

training: learn to separate true edges from randomly sampled negatives.

8

sandra

john

mary inception

jurassic_park

schindlers_list

steven spielberg

christopher nolan

male

female memento

hasGender likes directedBy

mary schindlers_list?
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domain/range constraint: 

marriedTo: subject is always a <human>, object is always <human> 

<henry8, marriedTo, catherineOfAragon>  

<henry8, marriedTo, janeFonda> 

<henry8, marriedTo, towerOfLondon>

9

If we have the semantics, which negatives should 
weight more heavily?

Either we think of the semantically correct 
negatives as being “less wrong” so they should 
carry a lower loss, or as “hard negatives” which 
are more challenging to recognize as negatives, so 
they should carry a higher loss (or equivalently, be 
more likely to be sampled).

of 2710
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Treat Different Negatives Differently: Enriching

Loss Functions with Domain and Range

Constraints for Link Prediction

Nicolas Hubert1,2[0000−0002−4682−422X], Pierre Monnin3[0000−0002−2017−8426],
Armelle Brun2[0000−0002−9876−6906], and Davy Monticolo1[0000−0002−4244−684X]

1 Université de Lorraine, ERPI, Nancy, France
2 Université de Lorraine, CNRS, LORIA, Nancy, France

3 Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France
{nicolas.hubert,armelle.brun,davy.monticolo}@univ-lorraine.fr

pierre.monnin@inria.fr

Abstract. Knowledge graph embedding models (KGEMs) are used for
various tasks related to knowledge graphs (KGs), including link predic-
tion. They are trained with loss functions that consider batches of true
and false triples. However, different kinds of false triples exist and recent
works suggest that they should not be valued equally, leading to spe-
cific negative sampling procedures. In line with this recent assumption,
we posit that negative triples that are semantically valid w.r.t. signa-
tures of relations (domain and range) are high-quality negatives. Hence,
we enrich the three main loss functions for link prediction such that all
kinds of negatives are sampled but treated differently based on their
semantic validity. In an extensive and controlled experimental setting,
we show that the proposed loss functions systematically provide satis-
fying results which demonstrates both the generality and superiority of
our proposed approach. In fact, the proposed loss functions (1) lead to
better MRR and Hits@10 values, and (2) drive KGEMs towards better
semantic correctness as measured by the Sem@K metric. This highlights
that relation signatures globally improve KGEMs, and thus should be
incorporated into loss functions. Domains and ranges of relations being
largely available in schema-defined KGs, this makes our approach both
beneficial and widely usable in practice.

Keywords: Knowledge Graph Embeddings · Link Prediction · Schema-
based Learning · Loss Functions.

1 Introduction

A knowledge graph (KG) is a collection of triples (h, r, t) where h (head) and t
(tail) are two entities of the graph, and r is a predicate that qualifies the nature of
the relation holding between them. In this work, we do not consider literals. KGs
are inherently incomplete, incorrect, or overlapping and thus major refinement
tasks include entity matching and link prediction [29]. The latter is the focus of

In this recent paper, the authors get good results 
by giving the semantically correct triples a lower 
loss than the semantically incorrect ones. This 
causes the model to internalize the semantics.
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More importantly for the current discussion. 
There are always exceptions to any logical rule.
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The downsides of symbolic prior knowledge

❖ The platypus problem 

❖ The rhinoceros problem 

❖ The chair problem 

❖ The spork problem

12

Let's look at four examples of how we use 
symbolic knowledge in everyday life that show 
the downsides of relying too much on it. 
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The platypus problem

No mammals lay eggs. Only birds have bills.

13

This doesn't mean that these rules are useless, just 
that there are occasional exceptions. More 
importantly, there will be occasional exceptions 
that we cannot account for a-priori. 

We will observe them in the wild, and we will 
need to decide on the fly whether to trust our 
knowledge, or our eyes.
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The rhinoceros problem

Rules require context.

14

With a little creativity, I believe you can come up 
with potential counterexamples to any rule. This 
was a famous point of disagreement between 
Russell and Wittgenstein when they first met. The 
latter asserted that there was no such thing as a 
"truly knowable empirical fact". Russel suggested 
the statement "There is no Rhinoceros in this 
room." Apparently Russell even suggested 
looking under the desks. Wittgenstein's point 
appears to have been that it was merely very 
unlikely that was a rhinoceros in the room but not 
fully impossible.

I'm on Wittgenstein's side. We don't need to go so 
far as to image microscopic or invisible 



rhinoceros. With a little creativity, we can, for 
instance, imagine the possibility that one of the 
people present had a rhinoceros keychain. That 
would be a coincidence, but certainly not 
impossible. 

You may argue that this is cheating. Russell was 
surely referring to actual rhinoceros. But for our 
purposes, at least, this is an important point. If we 
are talking about small probabilities, we must 
consider the possibility that the original statement 
was poorly phrased, or ambiguous. It's truth 
depends on our interpretation and the context in 
which we apply it.
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Fig. 5: All inter-dataset links in the LOD cloud. Thicker edges represent more
identity links. The full diagram is available at https://sameas.cc/explicit/img.

The majority of non-singleton identity sets (31,337,556 sets; 63.96%) has size
2. There are relatively few large identity sets, and the largest identity set has
cardinality 177,794. It includes Albert Einstein, the countries of the world, and
the empty string.

Edges in ⇠i We calculate the number of directed edges (or arcs) in the iden-
tity closure. This is the number of owl:sameAs triples that would be needed
in order to express the full materialization of ⇠e. This calculation requires
us to query and stream through the full RocksDB closure index, and there-
fore gives a good indication of the processing time required for running large-
scale jobs over the sameAs.cc dataset. The calculation (i) retrieves all identity
sets, (ii) calculates their cardinality, and (iii) sums the squares of the cardinali-
ties. This operation takes only 55.6 seconds and shows that the materialization
consists of 35,201,120,188 owl:sameAs statements. Notice that almost 90% (or
31,610,706,436 statements) of the materialization is contributed by the single
largest identity set (i.e., [dbr:Albert Einstein]⇠).

reasoning at scale: sameAs, subClassOf  

15Wang, S., Raad, J., Bloem, P., & Van Harmelen, F. (2021, June). Refining Transitive and Pseudo-Transitive Relations at Web Scale. In ESWC.

Beek, W., Raad, J., Wielemaker, J., & Van Harmelen, F. (2018, June). sameas. cc: The closure of 500m owl: sameas statements. In ESWC

Shuai Wang
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The chair problem  
cf. soup, games

Family likeness

16

"It's like there's some inherent ability within 

everybody to tell what is and isn't soup, but 

there's no rules."

"There is no characteristic that is 

common to everything that we 

call games; but we cannot on the 

other hand say that ‘game’ has 

several independent meanings 

like ‘bank’. It is a family-likeness 

term"

Another problem is that there are certain concepts 
that are simply difficult to define in simple terms. 
We all know when something is a chair, but when 
you start making rules, like "it must have legs", 
"you can sit on it" or so on, it becomes very easy to 
come up with counterexamples. Things that break 
the rules and are very clearly chairs, or things that 
satisfy all the rules and are very clearly not.

Wittgenstein used games as the prime example of 
this type of concept, and called them family-
likeness terms (Familienänlichkeiten).

If it's so difficult to define precisely what makes 
something a chair, a soup or a game, why is it that 



we use these concepts so easily? Probably more 
easily than we do concepts with very precise 
definitions, like "right-of-way", "finite-state-
machine" or "submission deadline"? I think the 
answer is that we use learning. We see two or three 
examples of a chair and we get the general idea. 
As we go through life we see more examples and 
counter-examples and we refine our internal 
representations. 

of 27

The spork problem

17

"A spork is a combination of a spoon and a fork."

"There is such a thing as a spork."

Finally, and most importantly, there's the spork 
problem. Imagine that you don't know what a 
spork is. I can tell you that there is such a thing. 
Even though you don't know what it is, or 
anything about it, you have no problem 
processing the information that such a thing 
exists. As we speak, you are creating space in your 
head for the concept of a spork and perhaps 
making some educated guesses about what it 
might be.

Then, as I tell that it's a combination of a spoon 
and a fork, you start to fill in the blanks. You now 
know its approximate shape and size, and you 
know what it's for. There are a few ways one 
might combine a spoon and a fork, so you still 
don't know exactly what it looks like, but you can 
already narrow it down to a small and finite 
number of possibilities.

Then I show you a picture and your idea of a 
spork is complete. Now, whenever you come 
across one in the rest of your life, you can 
recognize it. Even though you'll probably never  
come across one that looks exactly like this.

On the fly, with zero effort, based on almost no 
knowledge, you have created a new concept and 
tied it into the rest of your internal semantic 
network.
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the reverse pyramid

18

logic

probability

learning

perception

language

of 27

logic 

❖ logic as knowledge representation: a subset of language 

❖ logical reasoning: a subset of “human” reasoning 

❖ Not the fundamental mechanism of thought, but a very limited subset of it.

19
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A registration

A division of the world into a discrete collection of objects, 
concepts and relations. 

"It is insufficient for AI [...], to assume that intelligence is a capacity 
of systems deployed in an ontologically structured world. 
Ontology is an achievement of intelligence, not a 
presupposition."  
—Brian Cantwell-Smith

20

prob.
learning

perception

I believe all of these issues emerge from one single 
problem in the way symbolic knowledge is used 
on all neurosymbolic approaches being studied 
today.

The problem of registration. This is a phrase 
coined by philosopher Brian Cantwell-Smith. An 
intelligence's registration is the way it takes its 
collection of raw, continuous input signal, and 
organizes them into a (mostly) discrete picture of 
the world. In short, the way it maps observations 
to symbols.

The point that Cantwell-Smith makes is that 
building a registration, including the vocabulary 



of symbols must be part of a true intelligence. An 
agent must be allowed to build its own 
registration, it's own collection of symbols, 
introducing new ones as the need arises. 

If we take our registration, our ontologies, and 
limit the agent to that particular registration of the 
world, it can never be truly intelligent, and one or 
all of the four problems we saw before will 
emerge. 

That doesn't mean we can't use our own 
knowledge to help intelligent agents emerge, only 
that our knowledge can't form the internal 
registration of the agent. It must be outside of the 

of 27

How do we allow an algorithm to develop its own 
registration, while guiding it with the symbolic 
knowledge we have?

21

of 27

A simple option: externally

22

Transformer model Data augmentation

<latexit sha1_base64="ljQsT4u4xF10868lNBA63Wb0PH8="></latexit>

8x Human(x) ! Mortal(x)

Human(Socrates)

—

Mortal(Socrates)

"All humans are mortal. There is a human called Socrates. Socrates is mortal."

"There once was a person called Scorates. Since people are mortal, so was Socrates."
(sic)

"There once was a human called Socrates. He was mortal. This stands to reason, since 
all men are mortal"
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More complex: internally

23

transitive inference problems (which depend on the hippocampus
[Bunsey and Eichenbaum, 1996; Dusek and Eichenbaum, 1997])
require stimuli to be represented on an abstract ordered line,
such that A>B and B>C implies A>C. Similarly, abstraction of
hierarchical structure permits rapid inferenceswhen encountering
new social situations.

Structural generalization offers dramatic benefits for new
learning and flexible inference and is a key issue in artificial intelli-

gence. One promising approach is to maintain ‘‘factorized’’ repre-
sentations inwhichdifferentaspectsof knowledgeare represented
separately andcan thenbeflexibly re-combined to represent novel
experiences (Higgins et al., 2017). Factorizing the relationships be-
tweenexperiences fromthecontent of eachexperiencecouldoffer
apowerfulmechanism forgeneralizing this structural knowledge to
new situations. Notably, exactly such a factorization exists be-
tween sensory and spatial representations in lateral (LEC) and

A B

D E

C

F

I
HG

Figure 1. Spatial and Relational Inferences Cast as Structural Generalization
(A–C) Structured relationships exist in many situations and can often be formalized on a connected graph, e.g., (A) social hierarchies, (B) transitive inference, and

(C) spatial reasoning. Often the same relationships generalize across different sets of sensory objects (e.g., left/right in A). This transferable structure allows quick

inference, e.g., seeing only the blue relationships allows you to infer the green ones.

(D) Our task is predicting the next sensory observation in sequences derived from probabilistic transitions on a graph. Each node has an arbitrary sensory

experience, e.g., a banana. An agent transitions on the graph observing only the immediate sensory stimuli and associated action taken, e.g., having seen

motorbike / book / table / chair, it should predict the motorbike next if it understands the rules of the graph.

(E) If you know the underlying structure of social hierarchies, observing a new node (in red) via a single relationship, e.g., Emily is Bob’s daughter, allows immediate

inference about the new node’s (Emily’s) relationship to all other nodes (shown in black/gray).

(F) Similarly for spatial graphs observing a new node on the left (solid red line) also tells us whether it is above or below (dashed red lines) other surrounding nodes.

(G) Our agent performs this next step prediction task in many worlds sharing the same underlying structure (e.g., 6- or 4-connected graphs), but differing in size

and arrangement of sensory stimuli. The aim is to learn the common structure in order to generalize and perform quick inferences.

(H) Knowing the structure allows full graph understanding after only visiting all nodes, not all edges. Here, only 18 steps (red line) are required to infer all 42 links.

(I) An agent that knows structure (node agent) will reach peak predictive performance after it has visited all nodes, quicker than one that has to see all transitions

(edge agent). Icons from https://www.flaticon.com. See also Figure S1.
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OPEN ACCESS

1250 Cell 183, 1249–1263, November 25, 2020

Article

Whittington et al. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory [...]. Cell, 183(5), 1249-1263.
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function, conditioned on both the action and the (embedded) source state via zt = E(st). The overall
energy of a state-action-state triple then can be defined as follows: H = d(zt + T (zt, at), zt+1).

This additive form of the transition model provides a strong inductive bias for modeling effects of
actions in the environment as translations in the abstract state space. Alternatively, one could model
effects as linear transformations or rotations in the abstract state space, which motivates the use of a
graph embedding method such as RESCAL (Nickel et al., 2011), CompleX (Trouillon et al., 2016),
or HolE (Nickel et al., 2016b).

With the aforementioned modifications, we arrive at the following energy-based hinge loss:

L = d(zt + T (zt, at), zt+1) + max(0, � � d(z̃t, zt+1)) , (1)

defined for a single (st, at, st+1) with a corrupted abstract state z̃t = E(s̃t). s̃t is sampled at random
from the experience buffer. The margin � is a hyperparameter for which we found � = 1 to be a
good choice. Unlike Bordes et al. (2013), we place the hinge only on the negative term instead of
on the full loss and we do not constrain the norm of the abstract states zt, which we found to work
better in our context (see Appendix A.3). The overall loss is to be understood as an expectation of
the above over samples from the experience buffer B.

2.3 OBJECT-ORIENTED STATE FACTORIZATION

Our goal is to take into account the compositional nature of visual scenes, and hence we would
like to learn a relational and object-oriented model of the environment that operates on a factored
abstract state space Z = Z1⇥ . . .⇥ZK , where K is the number of available object slots. We further
assume an object-factorized action space A = A1 ⇥ . . .⇥AK . This factorization ensures that each
object is independently represented and it allows for efficient sharing of model parameters across
objects in the transition model. This serves as a strong inductive bias for better generalization to
novel scenes and facilitates learning and object discovery. The overall C-SWM model architecture
using object-factorized representations is shown in Figure 1.

CNN

Object 
extractor

MLP

Object 
encoder

GNN

Transition
model

Contrastive
loss

st mt zt zt + Δzt zt+1

Figure 1: The C-SWM model is composed of the following components: 1) a CNN-based object
extractor, 2) an MLP-based object encoder, 3) a GNN-based relational transition model, and 4) an
object-factorized contrastive loss. Colored blocks denote abstract states for a particular object.

Encoder and Object Extractor We split the encoder into two separate modules: 1) a CNN-based
object extractor Eext, and 2) an MLP-based object encoder Eenc. The object extractor module is a
CNN operating directly on image-based observations from the environment with K feature maps in
its last layer. Each feature map m

k
t = [Eext(st)]k can be interpreted as an object mask corresponding

to one particular object slot, where [. . .]k denotes selection of the k-th feature map. For simplicity,
we only assign a single feature map per object slot which sufficed for the experiments considered
in this work (see Appendix A.4). To allow for encoding of more complex object features (other
than, e.g., position/velocity), the object extractor can be adapted to produce multiple feature maps
per object slot. After the object extractor module, we flatten each feature map m

k
t (object mask) and

feed it into the object encoder Eenc. The object encoder shares weights across objects and returns
an abstract state representation: zkt = Eenc(mk

t ) with z
k
t 2 Zk. We set Zk = RD in the following,

where D is a hyperparameter.

Relational Transition Model We implement the transition model as a graph neural network
(Scarselli et al., 2009; Li et al., 2015; Kipf & Welling, 2016; Battaglia et al., 2016; Gilmer et al.,
2017; Battaglia et al., 2018), which allows us to model pairwise interactions between object states

3

Kipf, T., Van der Pol, E., & Welling, M. (2019). Contrastive learning of structured world models. arXiv preprint arXiv:1911.12247.
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Probing the representations of named entities 
in Transformer-based Language Models  

25

Stefan Schouten

random-mention
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(a) Accuracy for News Topic Classification.
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(b) Uncertainty for News Topic Classification.

random-mention
frequency

type-invariant
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random-tokens
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(c) Loss for Masked Language Modeling.
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type-invariant
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random-tokens
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(d) Uncertainty for Masked Language Modeling.

Figure 1: Performance metrics and uncertainty estimates obtained while performing Topic Classification and
Masked Language Modeling for our entity-mention substitution experiments using our RefNews dataset. Error Bars
display 95% confidence intervals indicating sensitivity to random initialization.

Task Training Variable random-mention type-invariant

TopicCLF From init. Frequency 0.00 ± 0.01 -0.01 ± 0.02
Topic 0.10 ± 0.01 0.17 ± 0.01

Fine-tuned Frequency 0.00 ± 0.01 -0.02 ± 0.01
Topic 0.10 ± 0.01 0.19 ± 0.01

MaskedLM Pre-trained Frequency 0.15 0.19
Topic -0.03 0.00

Fine-tuned Frequency 0.07 ± 0.00 0.13 ± 0.00
Topic -0.03 ± 0.01 -0.02 ± 0.01

Table 2: Pearson correlation between difference in frequency/topic and the model’s loss while performing masked
language modeling or topic classification for our entity-mention substitution experiments.

390

Are identities represented and are they used?



of 2726

Reasoning about Ambiguous Definite Descriptions

Stefan F. Schouten and Peter Bloem and Ilia Markov and Piek Vossen
Vrije Universiteit Amsterdam

{s.f.schouten,p.bloem,i.markov,p.t.j.m.vossen}@vu.nl

Abstract

Natural language reasoning plays an increas-
ingly important role in improving language
models’ ability to solve complex language un-
derstanding tasks. An interesting use case
for reasoning is the resolution of context-
dependent ambiguity. But no resources exist to
evaluate how well Large Language Models can
use explicit reasoning to resolve ambiguity in
language. We propose to use ambiguous defi-
nite descriptions for this purpose and create and
publish the first benchmark dataset consisting
of such phrases. Our method includes all infor-
mation required to resolve the ambiguity in the
prompt, which means a model does not require
anything but reasoning to do well. We find this
to be a challenging task for recent LLMs. Code
and data available at: https://github.com/
sfschouten/exploiting-ambiguity

1 Introduction

Natural language understanding and reasoning are
interdependent skills: reasoning with natural lan-
guage presupposes a level of understanding; but
full understanding may require the resolution of
ambiguities through reasoning. Complex ambigu-
ity in particular could benefit from explicit ‘out
loud’ reasoning, such as the reasoning that is pro-
duced with chain-of-thought prompts.

Existing resources used to evaluate reasoning
are not well suited to investigate the capability of
resolving ambiguity by explicit reasoning. Some
existing benchmarks require the resolution of am-
biguity, but focus only on ambiguity that humans
can resolve intuitively (e.g. Winograd schemas,
Levesque et al. 2012). The ability to reason with
natural language is often evaluated with tasks con-
sidered complex enough to require it. These may
or may not include ambiguities of various types,
making them poorly suited to evaluate when mod-
els are able to resolve ambiguity and which types.
Such tasks may also benefit from abilities besides

In 2010, the pope was a native speaker of German.

in 2010 now

FrancisBenedict

Spanish

Denotee

Native 
Language

Time

German

The current pope (Francis) was, as of
2010, a native speaker of German.

The pope in 2010 (Benedict) was a
native speaker of German.

De dicto

De re

Figure 1: Example ambiguous definite description.
Since a person’s native language does not change over
time, we know that the de dicto interpretation is correct.

explicit reasoning, such as factual recall. Thus,
improvements on these tasks cannot be easily at-
tributed to improvements in reasoning.

In this paper we create a new benchmark dataset
which requires models to resolve ambiguous defi-
nite descriptions. Definite descriptions are phrases
that denote entities by describing the properties or
roles that are unique to them within the relevant
context (e.g. “the pope”, “john’s mother”, “our
king”). We use ambiguous descriptions which de-
note one of two entities, and include information
on both entities in context. Specifically, we intro-
duce a de dicto / de re ambiguity by including a
temporal operator (see Figure 1 for an example).
By asserting something that is true of only one of
these entities, one of the two interpretations can be
excluded by reasoning.

We demonstrate the value of this approach by
creating a new benchmark dataset generated from
Wikidata. We explicitly include the knowledge re-
quired for disambiguation in the prompt of each
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The samples for this dataset were created based on the descriptions of images. Thus, our
approach is to embed the sentences as follows:

You are looking at a picture.
Q Describing it as: “Four children are playing in some water.” is [in]correct.
H Saying (about the picture) that: “The children are wet.” is [in]correct.

Without additional context proposition Q1 is quite unclear. Literal interpretations (e.g.
‘throughout the universe there are at least four children playing in some water’) are implau-
sible, but no other clues as to the situational context are given. To avoid this ambiguity, we
establish a context grounded in the image-based origin of the dataset.

EntailmentBank (Dalvi et al., 2021) This dataset is similar in structure, consisting of
hypotheses and premises. However, it does not contain contradictory meaning relations,
only entailments. The subject of the statements are also different since EntailmentBank was
derived from ARC (Clark et al., 2018) which consists of grade-school level science questions.
We combine the premises of EntailmentBank with the questions and answers from ARC
on which they were based. In order to create contradictions we combine the premises of
EntailmentBank with an incorrectly answered question. For example:

Qa “New york is located in the northern hemisphere.” is [in]correct.
Qb “December is during the winter for new york.” is [in]correct.
H Answering “In New York, the shortest period of daylight occurs during: ‘December’ or ‘June’?”

with “December” is [in]correct.

The dataset contains trees of entailing sentences, where each premise may itself be supported
by premises of its own. However, we disregard anything but the first level of supporting
premises. Another difference is that, each premise on its own does not necessarily have an
entailment relation with the hypothesis, but their conjunction does. In our experiments each
of a sample’s premises always have the same polarity.

Models

The models we investigate with our selection of probing methods are X different sizes of
Llama 2 (Touvron et al., 2023).

and..
maybe
one other,
GPT-J,
gemma-
7b?

4.1 Effect of altering premises

In this experiment we train the probes on our data with each premise affirmed. Then at eval-
uation time, we evaluate on held-out data, including data where the premises were altered
in number of ways and measure the effect on the the degree of belief in the hypothesis.

The first alteration changes the premises’ polarity (changing from from ‘correct’ to ‘incor-
rect’), resulting in p(h; q

+) and p(h; q
�). We also alter the content of the premises by either:

replacing them with unrelated premises; or, swapping their contents with random charac- Include
where
these un-
related
premises
come from
for both
datasets.

ters; yielding p(h; q
0) and p(h; q̃), respectively. Finally, we remove the premises outright,

giving us p(h). See Appendix D for examples for each of these variants.

We also include an additional baseline based on the probabilities given to the ‘cor-
rect’/‘incorrect’ tokens by the language modeling head.

Results In Figure 1 we can see the premise sensitivity obtained by each probing method
for each layer in Llama2-7b for both datasets. We observe that all methods show a degree of
premise sensitivity, with the sensitivity generally increasing through the layers.

In Figure 2 we can see the log-ratio of E3 to E4 for Llama2-7b on both datasets. It shows
which of the two complementary errors dominates in each layer. What we see for SNLI is
that in the early layers E4 is larger than E3 for all probing methods. This suggests that in the
early layers what is stated about the premises is assumed to be true. On EntailmentBank
this does not happen, which can be explained through the differences between the two
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(a) SNLI (b) EntailmentBank

Figure 1: Premise sensitivity (mean absolute premise effect)

(a) SNLI (b) EntailmentBank

Figure 2: The log-ratio of E3 to E4, showing which error dominates in each layer.

datasets: the EntailmentBank hypotheses state facts for which LLMs likely already have
degree-of-belief regardless of the premise.

4.2 Intervening on premise beliefs

TODO:
• p(h |do(q� += q))

p(h |do(q+ �= q))

5 Discussion

6 Conclusion
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Abstract

Recent work has demonstrated that the latent spaces of language models
contain directions predictive of the truth of sentences. Multiple methods
recover such directions and build probes that are described as getting
at a model’s ‘knowledge’ or ‘beliefs’. We investigate this phenomenon,
looking closely at the role of context on the outputs of such probes. Our
experiments establish where in the model the probe results in probabilities
that are conditional on the preceding (related) sentences. Specifically, we
quantify the responsiveness to the presence of (negated) supporting and
contradicting sentences. We also perform a causal intervention experiment,
investigating whether moving the representation of a premise along a
‘belief direction’ influences the position of the hypothesis along that same
direction. We find that ...

1 Introduction

As Large Language Models (LLMs) are adopted more widely, the need to understand how
they perform their tasks increases. ...

Recent methods demonstrate that in the latent space of LLMs there are directions that
correlate with the truth of sentences (Burns et al., 2023; Li et al., 2023; Marks & Tegmark,
2023). This indicates that while processing sentences in its input, the model seemingly
represents sentences as more or less (likely to be) true, resembling a kind of occurrent belief.
Thus, by projecting representations on such belief directions we obtain a probe whose output
can be interpreted as the LLM’s degree of belief. We call such probes belief probes.

We investigate the effect of different contexts on the outputs of belief probes. The goal is to
determine how the context in which a statement appears influences the model’s assessment
of truth-values. We call the task of correctly incorporating context when making such
assessments truth-value judgment. We borrow this name from a task in language acquisition
which involves subjects determining whether something is true or false with respect to a
given situation (Gordon, 1996).

LLMs perform well on tasks which are commonly held to require reasoning (Suzgun
et al., 2022). With this in mind, we expect LLMs’ degrees of belief to be sensitive to relevant
information provided in context. Given two sentences: a premise Q followed by a hypothesis
H; we might expect a model to represent (potentially at different points) both P(H) and
P(H|Q). Our experiments determine to what extent, and in which layers, a language
model’s degree of belief depends on context.

However, there are at least two ways in which context may be incorporated. On the one
hand, for the purposes of determining a degree of belief for H, the LLM could simply assume
that if Q is asserted it must be true, corresponding to P(H|Q = qasserted). On the other hand,
the model could disregard whether Q or ¬Q is asserted, and instead use its own degree
of belief in Q when determining if it believes H, corresponding to Eq⇠QLM [P(H|Q = q)].
Thus, our experiments determine when model behaviour: 1) assumes previous assertions
are correct, or 2) is based on previous degrees of belief.

Finally, we investigate if the belief directions causally mediate truth-value judgment, or
if they only reflect the outcome of that process. In other words, we establish whether a
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