
Toward Machine-Understandable Contracts
Sudhir Agarwal1 and Kevin Xu 2 and John Moghtader 3

Abstract. We present Contract Definition Langauge, a novel
approach for defining contracts declaratively in a machine-
understandable way to achieve better comprehensibility and higher
efficiency of reasoning, analysis and execution of contracts through
higher degree of automation and interoperability. The effect of rep-
resenting contracts with our Contract Definition Language is not
only a significant reduction of legal transaction costs, but it also
opens a variety of new options to create better contracts. As a
proof of concept, we also present our modeling of two US statutes
(FERPA/SOPIPA/COPAA and HIPAA) as well as our prototypes for
validity checking and hypothetical analysis of contracts according to
those statues.

1 Introduction

The conventional view is that the automation of contract creation,
execution, and compliance is beyond the capabilities of today’s tech-
nologies. This view stems from a longstanding tradition of contract-
ing practices, where all terms and conditions are expressed and inter-
preted in natural language, often in obtuse, inaccessible legalese that
can only be deciphered by lawyers and judges. Many legal scholars
have called for more usable, interactive tools to make better sense of
contracts [1, 4, 8, 11, 14]. Contract scholars have defined a need for
user-facing tools that would make contracts more understandable and
actionable [4, 12], as well as a more modular and machine-readable
approach to future contracting practices [3, 15, 16].

The impetus for the Computable Contracts research at Stanford 4,
and Computational Law 5 more broadly, is a vision where computers,
or people with the help of computers, are able to rapidly understand
the implications of contracts in their legal context, in order to make
optimal decisions accordingly, on a potentially large and complex
scale. This vision, if realized, will dramatically improve access to
justice in the legal system.

In our definition, computable contracts have the following main
features:

1. Machine-understandable: In contrast to traditional natural lan-
guage contracts, computable contracts have logic-based formal se-
mantics which enables use of machines to automatically reason
over contracts.

2. Declarative: In contract to hard-coding contract terms with a pro-
cedural programming language such as Java and C++, computable
contracts are defined declaratively. Thus computable contracts can
be better comprehensible by legal professionals as well as the

1 CS Dept., Stanford University, USA. Email: sudhir@cs.stanford.edu
2 Law School, Stanford University, USA. Email: kevin.s.xu@gmail.com
3 Law School, Stanford University, USA. Email: jmoghtader@gmail.com
4 http://compk.stanford.edu
5 http://complaw.stanford.edu

clients as the declarative nature is closer to the way domain knowl-
edge is specified.

3. Executable: Computable contracts are executable like procedu-
ral code. Thus, computable contracts do not need to be translated
to programmed in a traditional programming language which re-
duces costs and errors as there is not need to manage two separate
versions (one for humans, another for machines) of the same con-
tract.

4. Interoperable: Computable contracts are interoperable in the
sense that they use shared vocabulary for referring to real world
objects, thus enabling automating reasoning over multiple differ-
ent contracts that may have interdependencies or even conflicting
terms.

In this paper, we present an approach for formulating, analyzing,
and executing contracts more efficiently and effectively by enabling
a high degree of automation. We introduce a Logic Programming
based Contract Definition Language (CDL). CDL makes possible au-
tomated reasoning over legal substance. We have identified the fol-
lowing four types of reasoning tasks with contracts:

1. Validity Check: Validity checking determines whether a contract
satisfies all the constraints it must satisfy. For example, a marriage
contract between an adult and a minor is invalid in most countries
because the law of the countries does not allow such contracts.
Constraints that need to be satisfied can be defined with CDL as
well.

2. Hypothetical Analysis: In many cases, a user (e.g. a legal pro-
fessional, a client, a customer, an employee etc.) wishes to under-
stand a given contract or a set of contracts for a situation. For ex-
ample, an employee who is not keeping very good health may be
interested in knowing what happens when he/she has to take more
sick leave than mentioned in the contract. Hypothetical analysis
roughly provides an answer to the question: What are the implica-
tions (obligations/rights) of laws and/or contract terms in a partic-
ular, given or hypothetical, situation?

3. Utility Computation: Terms in contracts often have a different
utility for the involved parties. The utility depends on the party’s
preferences. When a party’s preferences are known, the utility of
a contract for the party can be computed automatically.

4. Planning: A contract can be seen as a set of constraints on in-
volved parties’ behavior. When the goal of a party is known, a
plan, i.e. a sequence of actions, can be computed automatically
such that the execution of the sequence of actions would lead the
party to its desired goal state. Planning problem has been exten-
sively studied as a discipline of Computer Science and Artificial
Intelligence [5], and it might be possible to adopt one of the exist-
ing techniques for our purpose.

As far as reasoning with contracts is concerned, in this paper, we
focus on validity check and hypothetical analysis only. They allow



automated support while still leaving the decision-making and im-
plementation to the user, and are also required by other reasoning
tasks.

The paper is organized as follows. We first give an overview of
foundations upon which our technique is built. Then, we present the
syntax and semantics of our Contract Definition Language (CDL).
We present two case studies involving modeling with CDL and au-
tomatically reasoning about two U.S. Federal statutes, FERPA and
HIPAA. We conclude and identify next steps after a discussion of
related work.

2 Foundations

In this section we give a short overview of the syntax and intuitive se-
mantics of deductive databases and logic programs, two foundational
techniques upon which we build our Contract Definition Language.

2.1 Databases

The vocabulary of a database is a collection of object constants, func-
tion constants, and relation constants. Each function constant and
relation constant has an associated arity, i.e. the number of objects
involved in any instance of the corresponding function or relation.
A term is either a symbol or a functional term. A functional term is
an expression consisting of an n-ary function constant and n terms.
In what follows, we write functional terms in traditional mathemat-
ical notation - the function followed by its arguments enclosed in
parentheses and separated by commas. For example, if f is a binary
function constant and if a and b are object constants, then f(a,a)
and f(a,b) and f(b,a) and f(b,b) are all functional terms.
Functional terms can be nested within other functional terms. For ex-
ample, if f(a,b) is a functional term, then so is f(f(a,b),b).
A datum is an expression formed from an n-ary relation constant and
n terms. We write data in mathematical notation. For example, we
might write parent(art,bob) to express the fact that Art is the
parent of Bob. A dataset is any set of data that can be formed from
the vocabulary of a database. Intuitively, we can think of the data in
a dataset as the facts that we believe to be true in the world; data that
are not in the dataset are assumed to be false.

2.2 Logic Programs

The language of logic programs includes the language of databases
but provides additional expressive features. One key difference is the
inclusion of a new type of symbol, called a variable. Variables al-
low us to state relationships among objects without explicitly nam-
ing those objects. In what follows, we use individual capital letters
as variables, e.g. X, Y, Z. In the context of logic programs, a term
is defined as an object constant, a variable, or a functional term, i.e.
an expression consisting of an n-ary function constant and n sim-
pler terms. An atom in a logic program is analogous to a datum
in a database except that the constituent terms may include vari-
ables. A literal is either an atom or a negation of an atom (i.e. an
expression stating that the atom is false). A simple atom is called
a positive literal, The negation of an atom is called a negative lit-
eral. In what follows, we write negative literals using the negation
sign ˜. For example, if p(a,b) is an atom, then ˜p(a,b) de-
notes the negation of this atom. A rule is an expression consist-
ing of a distinguished atom, called the head and a conjunction of
zero or more literals, called the body. The literals in the body are

called subgoals. In what follows, we write rules as in the exam-
ple r(X,Y) :- p(X,Y) & ˜q(Y). Here, r(X,Y) is the head,
p(X,Y) & ˜q(Y) is the body; and p(X,Y) and ˜q(Y) are sub-
goals.

Semantically, a rule states that the conclusion of the rule is true
whenever the conditions are true. For example, the rule above states
that r is true of any object X and any object Y if p is true of X and
Y and q is not true of Y. For example, if we know p(a,b) and we
know that q(b) is false, then, using this rule, we can conclude that
r(a,b) must be true.

3 Contract Definition Language (CDL)
CDL descriptions are open logic programs. While a traditional logic
program is typically used to specify views and constraints on a sin-
gle database state, CDL descriptions can specify a state-transition
system. CDL is expressive enough to define a Turing machine. The
declarative syntax and formal semantics of CDL makes CDL de-
scriptions easier to comprehend and maintain. The executability of
CDL descriptions makes it superfluous to hard-code contract terms
with procedural code as well as makes CDL a promising alternative
for defining self-executable contracts such as Ethereum Smart Con-
tracts [6, 10].

The basis for CDL is a conceptualization of contracts in terms of
entities, actions, propositions, and parties. Entities include objects
relevant to the state of a contract are usually represented by object
constants in CDL. In some cases, we use compound terms to refer to
entities. Actions are performed by the parties involved in the contract.
As with entities, we use object constants or compound terms to re-
fer to primitive actions. Some actions may not be legal in every state.
Propositions are conditions that are either true or false in each state of
a contract. In CDL, we designate propositions using object constants
or compound terms. Parties are the active entities in contracts. Note
that, in each state, some of the contract’s propositions can be true
while others can be false. As actions are performed, some proposi-
tions become true and others become false. On each time step, each
party has a set of legal actions it can perform and executes some
action in this set. In CDL, we usually use object constants (in rare
cases compound terms) to refer to parties. In CDL, the meaning of
some words in the language is fixed for all contracts (the contract-
independent vocabulary) while the meanings of all other words can
change from one contract to another (the contract-specific vocabu-
lary).

There are the following contract-independent structural relation
constants.

1. role(r) means that r is a role in the contract.
2. base(p) means that p is a base proposition in the contract.
3. percept(r,p) means that p is a percept for role r.
4. input(r,a) means that a is an action for role r.

To these basic structural relations, we add the following relations
for talking about steps.

1. step(s) means that s is a step.
2. successor(s1,s2) means that step s1 comes immediately

before step s2.
3. true(p,s) means that the proposition p is true on step s.
4. sees(r,p,s) means that role r sees percept p on step s.
5. does(r,a,s) means that role r performs action a on step s.
6. legal(r,a,s) means it is legal for role r to play action a on

step s.



7. goal(r,n,s) means that player has utility n for player r on
step s.

8. terminal(s) means that the state on step s is terminal.

The truth of propositions in the initial state can be stated using true
with the first step as the step argument; and update rules can be stated
using true and successor. Just how this works should become
clear from the following modeling of a part of the well known board
game Tic-Tac-Toe.

There are two roles say black and whitewho make their moves
alternatively.

role(white)
role(black)
true(control(black),N) :-

true(control(white),M) &
successor(M,N)

true(control(black),N) :-
true(control(white),M) &
successor(M,N)

If white marks a cell in a state, then that cell has a x in the next
state. Analogously, if black marks a cell in a state, then that cell
has a o in the next state. Further rules not shown below ensure that
all other cells carry their previous markings to the next state.

true(cell(I,J,x),N) :-
does(white,mark(I,J),M) &
successor(M,N)

true(cell(I,J,o),N) :-
does(black,mark(I,J),M) &
successor(M,N)

CDL interprets negations as failure and does not allow negations
or disjunctions in the head. While negation as failure could be a lim-
itation in some scenarios, in many scenarios one can safely make a
closed-world assumption. The inability to express disjunctions in the
head can be a limitation in some cases, but in many cases, the regu-
lations are laws and regulations are definite. In many cases, once can
introduce a new atom to represent the union of the disjunts. Excep-
tions can be modeled with CDL indirectly by introducing an auxil-
iary view and adding its negation in the body of the appropriate rules.

4 Case Studies
Thus far, we have modeled two sets of U.S. Federal statutes: 1.
the intersecting compliance requirements of the Family Educa-
tional Rights and Privacy Act, Children’s Online Privacy Protec-
tion Act, and Student Online Personal Information Protection Act
(FERPA/COPPA/SOPIPA); 2. the Privacy Rule in Health Insurance
Portability and Accountability Act (HIPAA). Both sets of statutes
are complex in their content and form. Our work in modeling these
statutes is motivated by the goal of demonstrating how a computable
contract scheme can increase accuracy, efficiency, and consistency in
the interpretation of complex legal landscapes, which would be valu-
able for both lawyers working in those domains and laypeople who
are affected by the relevant laws.

4.1 FERPA Prototype
In this prototype, we have modeled with CDL the intersecting com-
pliance requirements of the Family Educational Rights and Privacy

Act, Children’s Online Privacy Protection Act, and Student On-
line Personal Information Protection Act (FERPA/COPPA/SOPIPA).
The prototype is online available at http://compk.stanford.
edu/ferpa.html.

The prototype allows interactive formation of an agreement be-
tween an information service provider and a district as well as analy-
sis of multiple agreements. It demonstrates the capabilities and added
value of our proposed language and reasoning techniques in the sit-
uation where an information service provider wishes to obtain data
about school going children. In such a case, the information service
provider is required by law to enter into a contract with the districts
controlling the schools. In the prototype, a contacting party can fill
in the details such as which student’s data is to be shared, the po-
tential use of the data by the provider, age/grades level of the stu-
dents etc. The prototype then checks the validity of the contract as
per FERPA, COPPA and SOPIPA and displays the violations and
obligations if any. The behavior of the user interface is directly de-
termined by FERPA, COPPA and SOPIPA rules modeled with CDL.
For the purpose of the demo, we allow users to edit the rules and
verify the change in the behavior of the system.

Below we present an excerpt of the database and the rules that we
have modeled for this case study. The complete set of rules is visible
in the ‘Law’ tab of the prototype.

4.1.1 Views

The following view definitions define the cat-
egories district_data_pii. Categories
district_data_non_pii, additional_data_pii
and additional_data_non_pii can be defined analogously.

district_data_pii(D,district_student_name) :-
district_data(D,district_student_name)

district_data_pii(D,district_student_
parent_name) :-
district_data(D,district_student_parent_name)

district_data_pii(D,district_student_dob) :-
district_data(D,district_student_dob)

district_data_pii(D,district_student_address):-
district_data(D,district_student_address)

district_data_pii(D,district_student_ssn):-
district_data(D,district_student_ssn)

district_data_pii(D,district_student_moms_
maiden_name):-
district_data(D,district_student_moms_
maiden_name)

district_data_pii(D,district_student_pob):-
district_data(D,district_student_pob)

The following view definition states a provider is under direct con-
trol of district if the provider can amend terms with consent. Other
views can be modeled analogously.

provider_under_direct_control_of_district(D) :-
provider_can_amend_terms_with_consent(D)



For the complete set of view definition we refer to the ‘Law’ tab
of the prototype.

4.1.2 Constraints

Below the CDL modeling of the constraint that for any district data
PII, if the selected FERPA provision is school official exemption,
then the provider must be under direct control of the district. Other
constraints can be modeled analogously.

illegal("Provider must be under direct control
of District.") :-
district_data_pii(D,A) &
ferpa_provision(D,school_official_exemption) &
˜provider_under_direct_control_of_district(D)

The following rule states the provider must select a FERPA provi-
sion.

illegal("Must select FERPA exemption.") :-
district_data_pii(D,A) &
˜ferpa_provision(D,actual_parental_consent) &
˜ferpa_provision(D,directory_exemption) &
˜ferpa_provision(D,school_official_exemption)

The following rule states that commercial use of data is prohibited
under school official exemption.

illegal("Under School Official Exemption,
commercial use of data is prohibited."):-
ferpa_provision(D,school_official_exemption) &
district_potential_use_by_provider(
D,district_4aiii)

The following rule states that if the district is in California, then
commercial use of any data from the district is prohibited.

illegal("SOPIPA prohibits commercial use of
any data.") :
district_in_california(D) &
district_data_pii(D,A) &
district_potential_use_by_
provider(D,district_4aiii)

For the complete set of modeled view definition we refer to the
‘Law’ tab of the prototype.

4.1.3 Obligations

Below the CDL modeling of the consequence that if FERPA provi-
sion is directory exemption, then the district must allow opportunity
for parent to opt-out of the disclosure of student’s data.

add(D,"District must allow opportunity for
parents to opt-out of the disclosure of
student+data.") :-
district_data_pii(D,A) &
ferpa_provision(D,directory_exemption)

For the complete set of modeled obligations we refer to the ‘Law’
tab of the prototype.

Figure 1. Screenshot of our prototype showing that the contract is invalid
as well as the reason for the invalidity.

Validity Checking As briefly mentioned above, our prototype can
automatically check whether a contract is valid according to a law.
This feature can be very useful in the contract formation phase. Fig-
ure 1 shows an example contract in which the information service
provider is not under the control of the district, and therefore the se-
lected data artifacts to be shared for the selected intended use is not
allowed by the law. In the example contract shown in Figure 1, the
violation is computed because of the presence of the following rule.

illegal("Provider must be under direct control
of District.") :- district_data_pii(D,A) &
ferpa_provision(D,school_official_exemption) &
˜provider_under_direct_control_of_district(D)

In addition to computing whether a contract is valid or not, our
prototype can also automatically output the reason for the invalidity
or any rights, limitations and obligations that parties have if the con-
tract is valid. In our example, if the FERPA is changed to ”Actual
Parental Consent”, then the contract becomes valid, and our proto-
type can also automatically compute that the district may disclose
the data only according to the terms of the parental consent.

Hypothetical Analysis In addition to validity checking as
described above, the FERPA prototype also supports hypothetical
reasoning over a set of (valid) contracts. Typically, an information
service provider enters into multiple contracts, one for each district,
to be able to achieve broader coverage for his/her service. Given
a set of such contracts, an information provider is often faced
with the problem of deciding whether he/she may use certain data
artifact for a particular use. In order to obtain the answer to such a
question with our prototype, the information service provider would
formulate his question as a query in the ‘Contract Analysis’ tab. Our
prototype then analyses all the existing contracts of the information
service provider and produces the answer to the question. For
example, if an information service provider wishes to know which
data he/she may share with a third party, he/she would pose the query
provider_may_share(District,Data,3rd_party,Use).
The answer to this query will contain all (district, data artifact, usage)
that the provider may share with a 3rd party (see also Figure 2).



Figure 2. Screenshot of the output of hypothetical analysis

4.2 HIPAA Prototype

In our HIPAA prototype, we specifically modeled the Privacy Rule
of the statute. Under the HIPAA Privacy Rule, all types of health-
care providers and related organizations, collectively known as ‘cov-
ered entities,’ are the main subjects of regulation and must comply
with the Rule’s provisions when deciding if and how to disclose
a patient’s information, called Protected Health Information (PHI).
The Rule’s complexity can hinder compliance and lead to potentially
huge penalties for parties that violate the Rule. Thus, providing clar-
ity using a computational contract scheme can be immediately valu-
able to all parties involved. Because the core of HIPAA privacy com-
pliance is what covered entities can and cannot do with a patient?s
PHI, we modeled a couple of situations that resemble hypothetical
analysis and validity checking, where using a computational con-
tract scheme can help covered entities navigate their legal options.
The prototype is available at http://compk.stanford.edu/
hipaa.html.

Scenario 1 Covered Entity, X , wants to disclose patient Y ’s in-
formation to third party Z, who is a healthcare startup that wants to
market its products to Y . Under HIPAA, such disclosure is only le-
gal if Y provides explicit written authorization in plain language for
X to issue such disclosure. Any type of non-written authorization
would not be valid. In this situation, in order for the covered entity
to comply with this constraint, our prototype provides only the op-
tion of disclosing PHI for marketing purposes available for X , if a
written authorization is issued by Y , allowing X to analyze what are
its legal courses of action. This dynamic is modeled by the following
rules:

legal (X, market(Phi, Z), N) :-
true(written_authorization(Y, X), M) &
true(plain_language(Y, X), M) &
phi (Y, Phi) & ce(X) &
thirdparty(X, Z) &
successor (M, N)

true (plain_language(Y, X), M) :-
does (Y, write_plain_lang(X), M)

true (plain_language(Y, X), N) :-
true (plain_language(Y, X), M) &
successor (M, N)

true (written_authorization(Y, X), M) :-
does (Pa, write_authorization(X), M)

true (written_authorization(Y, X), N) :-
true (written_authorization(Y, X), M) &
successor(M, N)

legal (X, market(Phi, Y), M) :-
step(M) &
does (X, exceptcomm(Y, exception), M) &
ce(X) & phi(Y, Phi) & successor

Figure 3. Screenshot showing a health provider’s options when it does not
have a written permission of a patient

Figure 3 illustrates the scenario, in which the three actors are Zack
(the patient), Kantor (Zack’s health provider), and Athena (a third
party, healthtech startup). Kantor wants to disclose Zack’s age, which
is a type of PHI specified in HIPAA, to Athena for marketing pur-
poses. In order for Kantor to do this legally, Zack must provide writ-
ten authorization to Kantor, permitting this disclosure. (Note: non-
written permission would not work.) Thus, in state 0, the beginning,
when Kantor has not obtained Zack’s written permission, Kantor?s
options do not include ‘marketing’.

However, if Zack does provide written authorization in state 0 (in
our product, you would select Zack in the patient box, select the
”writtenauth” option under Zack, then click ”Perform Selected Ac-
tions”), it will move things to state 1, the next state, and Kantor will
have the marketing option available to disclose to a third party, like
Athena (see Figure 4)



Figure 4. Screenshot showing a health provider’s options when it has a
written permission of a patient

Scenario 2 this situation models an interaction between Covered
Entity, X , and the U.S. Department of Health and Human Services
(HHS), which is the main federal agency that regulates and enforces
HIPAA compliance. Under the law, if HHS requests PHI from a cov-
ered entity, regarding say patient Y , for the purpose of investigating
a compliance case, the covered entity must disclose the information
to HHS. To depict this constraint in our demo, as soon as HHS issues
a request for PHI, X’s options are limited to just one: disclose. In
fact, if X chooses any other option, our system will conduct validity
checking and not allow the step to proceed. Instead, it will immedi-
ately alert X that it must disclose the requested PHI. This dynamic
is modeled by the following rules:

illegal ("Must Disclose PHI") :-
true(requestment(HHS, X, Phi), M) &
true(investigation(HHS, X), M) & ce(X) &
˜does (X, disclose (Phi, HHS), N) &
phi(Y, Phi) & successor (M, N)

illegal ("Must Disclose PHI") :-
does(Y, request(X, Phi), M) & ce(X) &
phi (Y, Phi) & successor (M, N)&
˜does (X, disclose (Phi, HHS), N)

illegal ("Must Disclose PHI") :-
does (Rep, request(X, Phi), M) &
phi (Y, Phi) & ce(X) &
rep (Y, Rep) & successor (M, N) &
˜does (X, disclose (Phi, HHS), N)

This scenario illustrated in Figure 5 is between Kantor and HHS.
In HIPAA, when HHS requests PHI from a covered entity like Kan-
tor, for example, if HHS received complaints by patients regarding
potential HIPAA violations and wanted to investigate Kantor, Kantor

Figure 5. Screenshot showing HHS requesting a health provider to
disclose a patient’s age.

is required to disclose the requested information to HHS, which lim-
its Kantor’s legal options. Here in state 2, HHS is requesting Kantor
to disclose Zack’s age as a part of its investigation.

After HHS commits this request, we move to state 3, where Kan-
tor is legally obligated to disclose Zack’s age to HHS. If Kantor does
not disclose and instead chooses to commit another action, it is con-
sidered illegal; therefore, our system will show an alert stating that
PHI must be disclosed and will not move on to the next state until
Kantor commits the correct, legally required action (see Figure 6).

Figure 6. Screenshot showing the enforcement of a health provider’s
obligation to disclose a PHI of a patient.



5 Related Work
One of the first approaches for formalizing regulations with Logic
Programs was presented in [13]. One of the major differences be-
tween CDL and the approach presented in [13] is that with CDL one
can also express a multi-actor dynamic system and constraints over
multiple states.

The formalism presented in [2] can reason over data types (but
not over data values) of single individuals (but not of groups), and
cannot express certain norms precisely due to lack of parameterized
roles. A formalism called pLogic presented in [7] does not allow
reasoning over history and future possibilities of actions of various
actors. In contrast, CDL can reason over types and (complex logi-
cal) interdependencies of objects. CDL can also express and reason
over past states and possible actions of an actor in a state in the fu-
ture. Our formalization technique is also more general than the one
presented in [3] as the latter can express only finite state automata.
The formalisms presented in [?] can describe contracts in terms of
deontic concepts such as obligations, permissions and prohibitions.
CDL does not directly have special constructs for deontic modali-
ties. However, since deontic modalities can be reduced to temporal
modalities and CDL can express dynamic constraints, it is possible
to express deontic modalities with CDL.

The term Computable Contracts has been used with various differ-
ent meanings in the past. In some cases it refers to computer-aided
contract formation tools to support a legal professional in drafting
a contract in natural language. Such softwares range from simple
extensions to popular text processing systems to collaborative web-
based contract drafting such as Beagle 6, ClauseMatch 7, and Nitro 8

or more efficient contract readers such LegalSifter 9. In some other
cases such as Kira 10 and LegalRobot 11, natural language contracts
are analyzed by extracting terms from contracts. Such analysis tech-
niques are statistics based and cannot do reasoning over complex log-
ical interrelationships of artifacts appearing in a contract. Since such
a reasoning capability is a prerequisite for reasoning over dynam-
ics described in a contract, such techniques can also not reason over
dynamic constraints on the behavior of the contracting parties.

Recently, the so-called Smart Contracts in Blockchain 2.0, e.g.
Ethereum [6, 10], have received a lot of attention [9]. An Ethereum
Blockchain is essentially a state-transition system that is managed
without central control and secured with cryptographic techniques.
Currently, Ethereum Smart Contracts are mostly programmed in a
procedural language called Solidity, and thus suffer from the already
mentioned problems of procedural hard-coding of contracts. CDL
on the other hand is declarative as well as allow for usage of shared
vocabulary (e.g. a domain ontology) in multiple contracts. Since the
execution semantics of CDL is based on a mapping to state-transition
system, we believe that CDL lends itself as a promising alternative
to Solidity.

6 Conclusion and Outlook
Our FERPA and HIPAA prototypes have demonstrated two core
strengths of making law computable: consistent accuracy and ease of
use. Instead of relying on lawyers, whose knowledge on specific sub-
ject matters may vary, a service backed up by computable contracts

6 http://beagle.ai
7 http://clausematch.com
8 https://www.gonitro.com
9 https://www.legalsifter.com
10 https://kirasystems.com/
11 https://www.legalrobot.com

encoded with accurate information can consistently lay out the avail-
able legal options for organizations who need help planning their
actions, consequently increasing access to justice in particular reg-
ulatory areas. This service is also easy to use, for both laypeople and
lawyers, because the options being laid out are essentially translated
from legalese to plain language that people can understand without
prior training. If this type of computable contracts services were to
expand, it would not only be valuable to organizations who operate
in highly regulated industries, like the covered entities in HIPAA, but
also regulatory agencies of these industries, who are in charge of sift-
ing through hundreds of thousands of compliance complaints. For ex-
ample, from 2003-2013, the number of HIPAA violation complaints
sent to HHS increased by more than 900%, and approximately 80%
of these complaints are illegitimate, due to simple definitional rea-
sons, e.g. whether the alleged organization falls under the category
of covered entities. An extended version of our HIPAA prototype
can provide immediate and significant efficiency for HHS, or similar
agencies in other countries, to process these types of faulty claims.

One limitation we do acknowledge is our formalization tech-
nique’s inability to capture inherent nuances that exists in complex
legal frameworks. While we assume in our prototypes that every con-
cept has static legal meaning, in reality, many concepts are open to
interpretation. This ambiguity often exists by design, because a good
piece of law must both incorporate issues of the present day and re-
main relevant with new behaviors that arise in the future. It is this
ambiguity in law that gives rise to disputes and litigations, requir-
ing the input of experienced lawyers and policymakers, who could
better anticipate how certain ambiguities would be treated by leg-
islators or judges who have the power to decide what they should
mean. This challenge is not something a computable contract scheme
is suited to solve, though we can easily envision a future where com-
putable contracts can provide a solid baseline understanding that can
be complementary to the work of experienced lawyers, regulators,
and lawmakers.

Another area that we will continue to explore is the intersection
between computable contracts and the field of Human-Computer In-
teractions (HCI). With the right kind of user-centric, front-end de-
sign, the strength of the expert systems encoded in a computable con-
tract scheme can be easily accessed by ordinary people who need the
information contained in these systems, thus significantly enhanc-
ing the usability of computable contracts. A complementary partner-
ship between a sleek, intuitive front-end design powered by HCI-
principles, and a robust, adaptive back-end system powered by com-
putable contracts could unlock unimaginable benefits for improving
access to justice in all societies.

In another thread, we plan to implement a compiler to translate
our declaratively specified computable contracts to the EtherScript,
the assembly language of Ethereum Virtual Machine while preserv-
ing the execution semantics of the contracts. This would enable do-
main experts and other legal professionals to draft and execute their
Smart Contracts themselves instead of getting them programmed by
a software developer who may not be a domain expert.

REFERENCES

[1] K. Adams. Bringing innovation to the tradition of con-
tract drafting: An interview with ken adams. http:
//blog.scholasticahq.com/post/98149002813/
bringing-innovation-to-the-tradition-of-contract,
2014.

[2] Datta A. Mitchell J.C. Barth, A. and H. Nissenbaum. Privacy and con-
textual integrity: Framework and applications, 2006.



[3] M. D. Flood and O.R. Goodenough. Contract as automaton: The com-
putational representation of financial agreements, 2015.

[4] E. Gerding, ‘Contract as pattern language’, Washington Law Review,
88(1223), (2013).

[5] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated planning
- theory and practice, Elsevier, 2004.

[6] Evans Jon. Vapor no more: Ethereum has
launched. http://techcrunch.com/2015/08/01/
vapor-no-more-ethereum-has-launched/ (retrieved
May 2016),.

[7] Mitchell J.C. Lam, P.E. and S Sundaram, ‘A formalization of hipaa for
a medical messaging system’, in In Proc. of the 6th International Con-
ference on Trust, Privacy and Security in Digital Business (TRUSTBUS
2009), (2009).

[8] A.V. Lisachenko, ‘Law as a programming language’, Review of Central
and East European Law, 37, 115–124, (2012).

[9] Swan M., Blockchain: Blueprint for a New Economy 1st Edition,
O?Reilly Media, 2015.

[10] Arvind Narayanan, Bonneau Joseph, Felten Edward, Miller An-
drew, and Goldfeder Steven. Bitcoin and cryptocurrency tech-
nologies. https://d28rh4a8wq0iu5.cloudfront.net/
bitcointech/readings/princeton_bitcoin_book.
pdf?a=1 (Retrieved May 2016).

[11] Haapio H. Passera, S. and T. Barton. Innovating contract practices:
Merging contract design with information design, 2013.

[12] S. Peppet, ‘Freedom of contract in augmented reality: The case of con-
sumer contracts’, UCLA Law Review, 59(676), (2012).

[13] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and
H. T. Cory, ‘The british nationality act as a logic program’, Commun.
ACM, 29(5), 370–386, (May 1986).

[14] H. Smith, ‘Modularity in contracts: Boilerplate and information flow’,
Michigan Law Review, 104(5), 1175–1222, (2006).

[15] H. Surden, ‘Computable contracts’, UC Davis Law Review, 46(629),
(2012).

[16] G.G Triantis, ‘Improving contract quality: Modularity, technology, and
innovation in contract design’, Stanford Journal of Law, Business, and
Finance, 18(2), (2013).


