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Abstract. Artificial intelligence research on reasoning with crimi-
nal evidence in terms of arguments, hypothetical scenarios, and prob-
abilities inspired the approach in this paper. That research showed
that Bayesian Networks can be used for modeling arguments and
structured hypotheses. Also well-known issues with Bayesian Net-
work were encountered: More numbers are needed than are avail-
able, and there is a risk of misinterpretation of the graph underlying
the Bayesian Network, for instance as a causal model. The formal-
ism presented here is shown to correspond to a probabilistic inter-
pretation, while answering these issues. The formalism is applied to
key concepts in argumentative, scenario and probabilistic analyses
of evidential reasoning, and is illustrated with a crime investigation
example.

1 Introduction
Establishing what has happened in a crime is often not a simple task.
In the literature on correct evidential reasoning, three structured an-
alytic tools are distinguished: arguments, scenarios and probabili-
ties [1, 8, 11]. These tools are aimed at helping organize and struc-
ture the task of evidential reasoning, thereby supporting that good
conclusions are arrived at, and foreseeable mistakes are prevented.

In an argumentative analysis, a structured constellation of evi-
dence, reasons and hypotheses is considered. Typically the evidence
gives rise to reasons for and against the possible conclusions con-
sidered. An argumentative analysis helps the handling of such con-
flicts. The early twentieth century evidence scholar John Henry Wig-
more is a pioneer of argumentative analyses; cf. his famous evidence
charts [38, 39].

In a scenario analysis, different hypothetical scenarios about what
has happened are considered side by side, and considered in light of
the evidence. A scenario analysis helps the coherent interpretation of
all evidence. Scenario analyses were the basis of legal psychology
research about correct reasoning with evidence [2, 16, 37].

In a probabilistic analysis, it is made explicit how the probabilities
of the evidence and events are related. A probabilistic analysis em-
phasises the various degrees of uncertainty encountered in evidential
reasoning, ranging from very uncertain to very certain. Probabilistic
analyses of criminal evidence go back to early forensic science in
the late nineteenth century [23] and have become prominent by the
statistics related to DNA profiling.

In a Netherlands-based research project,2 artificial intelligence
techniques have been used to study connections between these three
tools [34]. This has resulted in the following outcomes:
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• A method to manually design a Bayesian Network incorporating
hypothetical scenarios and the available evidence [35];

• A case study testing the design method [35];
• A method to generate a structured explanatory text of a Bayesian

Network modeled according to this method [36];
• An algorithm to extract argumentative information from a

Bayesian Network modeling hypotheses and evidence [25];
• A method to incorporate argument schemes in a Bayesian Net-

work [24].

Building on earlier work in this direction [9, 10], these results show
that Bayesian Networks can be used to model arguments and struc-
tured hypotheses. Also two well-known issues encountered when us-
ing Bayesian Networks come to light:

• A Bayesian Network model typically requires many more num-
bers than are reasonably available;

• The graph model underlying a Bayesian Network is formally well-
defined, but there is the risk of misinterpretation, for instance un-
warranted causal interpretation [7] (see also [15]).

Building on the insights of the project, research has started on ad-
dressing these issues by developing an argumentation theory that
connects critical arguments, coherent hypotheses and degrees of un-
certainty [31, 32, 34]. The present paper expands on this work by
proposing a discussion of key concepts used in argumentative, sce-
nario and probabilistic analyses of reasoning with evidence in terms
of the proposed formalism. The idea underlying this theoretical con-
tribution is informally explained in the next section. The crime story
of Alfred Hitchcock’s famous film ‘To Catch A Thief’, featuring
Cary Grant and Grace Kelly (1955) is used as an illustration.

2 General idea

The argumentation theory developed in this paper considers argu-
ments that can be presumptive (also called ampliative), in the sense
of logically going beyond their premises. Against the background of
classical logic, an argument from premises P to conclusions Q goes
beyond its premises when Q is not logically implied by P . Many ar-
guments used in practice are presumptive. For instance, the prosecu-
tion may argue that a suspect was at the crime scene on the basis of a
witness testimony. The fact that the witness has testified as such does
not logically imply the fact that the suspect was at the crime scene.
In particular, when the witness testimony is intentionally false, based
on inaccurate observations or inaccurately remembered, the suspect
may not have been at the crime scene at all. Denoting the witness
testimony by P and the suspect being at the crime scene as Q, the
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argument from P to Q is presumptive since P does not logically im-
ply Q. For presumptive arguments, it is helpful to consider the case
made by the argument, defined as the conjunction of the premises
and conclusions of the argument [29, 30]. The case made by the ar-
gument from P to Q is P ∧ Q, using the conjunction of classical
logic. An example of a non-presumptive argument goes from P ∧Q
to Q. Here Q is logically implied by P ∧Q. Presumptive arguments
are often defeasible [17,26], in the sense that extending the premises
may lead to the retraction of conclusions.

Figure 1 shows two presumptive arguments from the same
premises P : one supports the case P ∧Q, the other the case P ∧¬Q.
The >-sign indicates that one argument makes a stronger case than
the other, resolving the conflict: the argument for the case P ∧ Q is
stronger than that for P∧¬Q. The figure also shows two assumptions
P and¬P , treated as arguments from logically tautologous premises.
Here the assumption ¬P makes the strongest case when compared
to the assumption P . Logically such assumptions can be treated as
arguments from logical truth >. These four arguments—two argu-
ments implicitly from >, and two from P— make three cases: ¬P ,
P ∧ Q and P ∧ ¬Q (the boxes in Figure 2). The sizes of the boxes
suggest a preference relation.

The comparison of arguments and of cases are closely related in
our approach, which can be illustrated as follows. The idea is that a
case is preferred to another case if there is an argument with premises
that supports the former case more strongly than the latter case.
Hence, in the example in the figures, ¬P is preferred to both P ∧Q
and P ∧ ¬Q, and P ∧Q is preferred to P ∧ ¬Q. Conversely, given
the cases and their preferences, we can compare arguments. The ar-
gument from P to Q is stronger than from P to Q′ when the best
case that can be made from P ∧ Q is preferred to the best case that
can be made from P ∧Q′.

3 Formalism and properties

We use a classical logical language L with BNF specification
ϕ ::= > | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ↔ ψ, and the associ-
ated classical, deductive, monotonic consequence relation, denoted
|=. We assume a language generated by a finite set of propositional
constants.

First we define case models, formalizing the idea of cases and their
preferences. The cases in a case model must be logically consistent,
mutually incompatible and different; and the comparison relation
must be total and transitive (hence is what is called a total preorder,
commonly modeling preference relations [21]).

Definition 1 A case model is a pair (C,≥) with finite C ⊆ L, such
that the following hold, for all ϕ, ψ and χ ∈ C:

1. 6|= ¬ϕ;
2. If 6|= ϕ↔ ψ, then |= ¬(ϕ ∧ ψ);
3. If |= ϕ↔ ψ, then ϕ = ψ;
4. ϕ ≥ ψ or ψ ≥ ϕ ;
5. If ϕ ≥ ψ and ψ ≥ χ, then ϕ ≥ χ.

The strict weak order > standardly associated with a total preorder
≥ is defined as ϕ > ψ if and only if it is not the case that ψ ≥ ϕ (for
ϕ and ψ ∈ C). When ϕ > ψ, we say that ϕ is (strictly) preferred to
ψ. The associated equivalence relation ∼ is defined as ϕ ∼ ψ if and
only if ϕ ≥ ψ and ψ ≥ ϕ.

Example. Figure 2 shows a case model with cases ¬P , P ∧Q and
P∧¬Q.¬P is (strictly) preferred to P∧Q, which in turn is preferred
to P ∧ ¬Q.

Although the preference relations of case models are qualitative,
they correspond to the relations that can be represented by real-
valued functions.

Corollary 2 Let C ⊆ L be finite with elements that are logically
consistent, mutually incompatible and different (properties 1, 2 and
3 in the definition of case models). Then the following are equivalent:

1. (C,≥) is a case model;
2. ≥ is numerically representable, i.e., there is a real valued function
v on C such that for all ϕ and ψ ∈ C, ϕ ≥ ψ if and only if
v(ϕ) ≥ v(ψ).

The function v can be chosen with only positive values, or even with
only positive integer values.

Proof. It is a standard result in order theory that total preorders on
finite (or countable) sets are the ones that are representable by a real-
valued function [21]. QED

Corollary 3 Let C ⊆ L be finite with elements that are logically
consistent, mutually incompatible and different (properties 1, 2 and
3 in the definition of case models). Then the following are equivalent:

1. (C,≥) is a case model;
2. ≥ is numerically representable by a probability function p on the

algebra generated by C such that for all ϕ and ψ ∈ C, ϕ ≥ ψ if
and only if p(ϕ) ≥ p(ψ).

Proof. Pick a representing real-valued function v with only positive
values as in the previous corollary, and (for elements of C) define
the values of p as those of v divided by the sum of the v-values of all
cases; then extend to the algebra generated by C. QED

Next we define arguments. Arguments are from premises ϕ ∈ L
to conclusions ψ ∈ L.

Definition 4 An argument is a pair (ϕ,ψ) with ϕ and ψ ∈ L. The
sentence ϕ expresses the argument’s premises, the sentence ψ its
conclusions, and the sentence ϕ∧ψ the case made by the argument.
Generalizing, a sentence χ ∈ L is a premise of the argument when
ϕ |= χ, a conclusion when ψ |= χ, and a position in the case made
by the argument when ϕ∧ψ |= χ. An argument (ϕ,ψ) is (properly)
presumptive when ϕ 6|= ψ; otherwise non-presumptive. An argument
(ϕ,ψ) is an assumption when |= ϕ, i.e., when its premises are logi-
cally tautologous.
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Note our use of the plural for an argument’s premises, conclusions
and positions. This terminological convention allows us to speak of
the premises p and ¬q and conclusions r and ¬s of the argument
(p ∧ ¬q,r ∧ ¬s). Also the convention fits our non-syntactic def-
initions, where for instance an argument with premise χ also has
logically equivalent sentences such as ¬¬χ as a premise.

Coherent arguments are defined as arguments that make a case
logically implied by a case in the case model.

Definition 5 Let (C,≥) be a case model. Then we define, for all ϕ
and ψ ∈ L:

(C,≥) |= (ϕ,ψ) if and only if ∃ω ∈ C: ω |= ϕ ∧ ψ.

We then say that the argument from ϕ to ψ is coherent with respect
to the case model. We say that a coherent argument from ϕ to ψ
is conclusive when all cases implying the premises also imply the
conclusions.

Example (continued). In the case model of Figure 2, the arguments
from > to ¬P and to P , and from P to Q and to ¬Q are coherent
and not conclusive in the sense of this definition. Denoting the case
model as (C,≥), we have (C,≥) |= (>,¬P ), (C,≥) |= (>, P ),
(C,≥) |= (P,Q) and (C,≥) |= (P,¬Q). The arguments from a
case (in the case model) to itself, such as from ¬P to ¬P , or from
P ∧ Q to P ∧ Q are conclusive. The argument (P ∨ R,P ) is also
conclusive in this case model, since all P ∨ R-cases are P -cases.
Similarly, (P ∨R,P ∨ S) is conclusive.

The notion of presumptive validity considered here is based on the
idea that some arguments make a better case than other arguments
from the same premises. More precisely, an argument is presump-
tively valid if there is a case in the case model implying the case
made by the argument that is at least as preferred as all cases imply-
ing the premises.

Definition 6 Let (C,≥) be a case model. Then we define, for all ϕ
and ψ ∈ L:

(C,≥) |= ϕ; ψ if and only if ∃ω ∈ C:

1. ω |= ϕ ∧ ψ; and

2. ∀ω′ ∈ C : if ω′ |= ϕ, then ω ≥ ω′.

We then say that the argument from ϕ to ψ is (presumptively) valid
with respect to the case model. A presumptively valid argument is
(properly) defeasible, when it is not conclusive.

Example (continued). In the case model of Figure 2, the arguments
from> to ¬P , and from P to Q are presumptively valid in the sense
of this definition. Denoting the case model as (C,≥), we have for-
mally that (C,≥) |= > ; ¬P and (C,≥) |= P ; Q. The coher-
ent arguments from> to P and from P to ¬Q are not presumptively
valid in this sense.

Corollary 7 1. Conclusive arguments are coherent, but there are
case models with a coherent, yet inconclusive argument;

2. Conclusive arguments are presumptively valid, but there are case
models with a presumptively valid, yet inconclusive argument;

3. Presumptively valid arguments are coherent, but there are case
models with a coherent, yet presumptively invalid argument.

The next proposition provides key logical properties of this notion
of presumptive validity. Many have been studied for nonmonotonic

inference relations [13,14,27]. Given a case model (C,≥), we write
ϕ |∼ ψ for (C,≥) |= ϕ ; ψ. We write C(ϕ) for the set {ω ∈
C | ω |= ϕ}.

(LE), for Logical Equivalence, expresses that in a valid argu-
ment the premises and the conclusions can be replaced by a clas-
sical equivalent (in the sense of |=). (Cons), for Consistency, ex-
presses that the conclusions of presumptively valid arguments must
be consistent. (Ant), for Antededence, expresses that when certain
premises validly imply a conclusion, the case made by the argu-
ment is also validly implied by these premises. (RW), for Right
Weakening, expresses that when the premises validly imply a com-
posite conclusion also the intermediate conclusions are validly im-
plied. (CCM), for Conjunctive Cautious Monotony, expresses that
the case made by a valid argument is still validly implied when an
intermediate conclusion is added to the argument’s premises. (CCT),
for Conjunctive Cumulative Transitivity, is a variation of the related
property Cumulative Transitivity property (CT, also known as Cut).
(CT)—extensively studied in the literature—has ϕ |∼ χ instead of
ϕ |∼ ψ ∧ χ as a consequent. The variation is essential in our set-
ting where the (And) property is absent (If ϕ |∼ ψ and ϕ |∼ χ,
then ϕ |∼ ψ ∧ χ). Assuming (Ant), (CCT) expresses the validity of
chaining valid implication from ϕ via the case made in the first step
ϕ ∧ ψ to the case made in the second step ϕ ∧ ψ ∧ χ. (See [29, 30],
introducing (CCT).)

Proposition 8 Let (C,≥) be a case model. For all ϕ, ψ and χ ∈ L:

(LE) If ϕ |∼ ψ, |= ϕ↔ ϕ′ and |= ψ ↔ ψ′, then ϕ′ |∼ ψ′.
(Cons) ϕ 6|∼ ⊥.
(Ant) If ϕ |∼ ψ, then ϕ |∼ ϕ ∧ ψ.
(RW) If ϕ |∼ ψ ∧ χ, then ϕ |∼ ψ.
(CCM) If ϕ |∼ ψ ∧ χ, then ϕ ∧ ψ |∼ χ.
(CCT) If ϕ |∼ ψ and ϕ ∧ ψ |∼ χ, then ϕ |∼ ψ ∧ χ.

Proof. (LE): Direct from the definition. (Cons): Otherwise there
would be an inconsistent element ofC, contradicting the definition of
a case model. (Ant): When ϕ |∼ ψ, there is an ω with ω |= ϕ∧ψ that
is≥-maximal inC(ϕ). Then also ω |= ϕ∧ϕ∧ψ, hence ϕ |∼ ϕ∧ψ.
(RW): When ϕ |∼ ψ∧χ, there is an ω ∈ C with ω |= ϕ∧ψ∧χ that
is maximal in C(ϕ). Since then also ω |= ϕ ∧ ψ, we find ϕ |∼ ψ.
(CCM): By the assumption, we have an ω ∈ C with ω |= ϕ∧ψ ∧ χ
that is maximal in C(ϕ). Since C(ϕ ∧ ψ) ⊆ C(ϕ), ω is also maxi-
mal in C(ϕ∧ψ), and we find ϕ∧ψ |∼ χ. (CCT): Assuming ϕ |∼ ψ,
there is an ω ∈ C with ω |= ϕ ∧ ψ, maximal in C(ϕ). Assuming
also ϕ ∧ ψ |∼ χ, there is an ω′ ∈ C with ω |= ϕ ∧ ψ ∧ χ, maximal
in C(ϕ ∧ ψ). Since ω ∈ C(ϕ ∧ ψ), we find ω′ ≥ ω. By transitivity
of ≥, and the maximality of ω in C(ϕ), we therefore have that ω′ is
maximal in C(ϕ). As a result, ϕ |∼ ψ ∧ χ. QED

We speak of coherent premises when the argument from the
premises to themselves is coherent. The following proposition pro-
vides some equivalent characterizations of coherent premises.

Proposition 9 Let (C,≥) be a case model. The following are equiv-
alent, for all ϕ ∈ L:

1. ϕ |∼ ϕ;
2. ∃ω ∈ C : ω |= ϕ and ∀ω′ ∈ C: If ω′ |= ϕ, then ω ≥ ω′;
3. ∃ω ∈ C : ϕ |∼ ω.
4. ∃ω ∈ C : ω |= ϕ.

Proof. 1 and 2 are equivalent by the definition of |∼. Assume 2. Then
there is a ≥-maximal element ω of C(ϕ). By the definition of |∼,
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then ϕ |∼ ω; proving 3. Assume 3. Then there is a ≥-maximal ele-
ment ω′ ofC(ϕ) with ω′ |= ϕ∧ω. For this ω′ also ω′ |= ϕ, showing
2. 4 logically follows from 2. 4 implies 2 since L is a language that
generated by finitely many propositional constants. QED

Corollary 10 Let (C,≥) be a case model. Then all coherent argu-
ments have coherent premises and all presumptively valid arguments
have coherent premises.

We saw that, in the present approach, premises are coherent when
they are logically implied by a case in the case model. As a result,
generalisations of coherent premises are again coherent; cf. the fol-
lowing corollary.

Corollary 11 Let (C,≥) be a case model. Then:

If ϕ |∼ ϕ and ϕ |= ψ, then ψ |∼ ψ.

We now consider some properties that use a subset L∗ of the lan-
guage L. The set L∗ consists of the logical combinations of the cases
of the case model using negation, conjunction and logical equiva-
lence (cf. the algebra underlying probability functions [21]). L∗ is
the set of case expressions associated with a case model.

(Coh), for Coherence, expresses that coherent premises corre-
spond to a consistent case expression implying the premises. (Ch),
for Choice, expresses that, given two coherent case expressions, at
least one of three options follows validly: the conjunction of the case
expression, or the conjunction of one of them with the negation of
the other. (OC), for Ordered Choice, expresses that preferred choices
between case expressions are transitive. Here we say that a case ex-
pression is a preferred choice over another, when the former follows
validly from the disjunction of both.

Definition 12 Let (C,≥) be a case model, ϕ ∈ L, and ω ∈ C. Then
ω expresses a preferred case of ϕ if and only if ϕ |∼ ω.

Proposition 13 Let (C,≥) be a case model, andL∗ ⊆ L the closure
of C under negation, conjunction and logical equivalence. Writing
|∼∗ for the restriction of |∼ to L∗, we have, for all ϕ, ψ and χ ∈ L∗:

(Coh) ϕ |∼ ϕ if and only if ∃ϕ∗ ∈ L∗ with ϕ∗ 6|= ⊥ and ϕ∗ |= ϕ;
(Ch) If ϕ |∼∗ ϕ and ψ |∼∗ ψ, then ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or

ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ;
(OC) If ϕ ∨ ψ |∼∗ ϕ and ψ ∨ χ |∼∗ ψ, then ϕ ∨ χ |∼∗ ϕ.

Proof. (Coh): By Proposition 9, ϕ |∼ ϕ if and only if there is an
ω ∈ C with ω |= ϕ. The property (Coh) follows since C ⊆ L∗ and,
for all consistent ϕ∗ ∈ L∗, there is an ω ∈ C with ω |= ϕ∗.
(Ch): Consider sentences ϕ and ψ ∈ L∗ with ϕ |∼∗ ϕ and ψ |∼∗ ψ.
Then, by Corollary 11, ϕ ∨ ψ |∼ ϕ ∨ ψ. By Proposition 9, there is
an ω ∈ C, with ω |= ϕ ∨ ψ. The sentences ϕ and ψ are elements of
L∗, hence also the sentences ϕ ∧ ¬ψ, ϕ ∧ ψ and ¬ϕ ∧ ψ ∈ L∗. All
are logically equivalent to disjunctions of elements of C (possibly
the empty disjunction, logically equivalent to ⊥). Since ω |= ϕ ∨ ψ,
|= ϕ ∨ ψ ↔ (ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ψ), and the elements of
C are mutually incompatible, we have ω |= ϕ ∧ ¬ψ or ω |= ϕ ∧ ψ
or ω |= ¬ϕ∧ψ. By Proposition 9, it follows that ϕ∨ψ |∼∗ ¬ϕ∧ψ
or ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ.

(OC): By ϕ ∨ ψ |∼∗ ϕ, there is an ω |= ϕ maximal in C(ϕ ∨ ψ).
By ψ ∨ χ |∼∗ ψ, there is an ω′ |= ψ maximal in C(ψ ∨ χ). Since
ω |= ϕ, ω ∈ C(ϕ ∨ χ). Since ω′ |= ψ, ω′ ∈ C(ϕ ∨ ψ), hence
ω ≥ ω′. Hence ω is maximal in C(ϕ ∨ χ), hence ϕ ∨ χ |∼ ϕ. Since
χ ∈ L∗, ϕ ∨ χ |∼∗ ϕ. QED

inn ∧ ¬gui
¬inn ∧ gui ∧ evi

Figure 3. A case model for presumption

4 A formal analysis of some key concepts
We now use the formalism of case models and presumptive valid-
ity above for a discussion of some key concepts associated with the
argumentative, scenario and probabilistic analysis of evidential rea-
soning.

4.1 Arguments
In an argumentative analysis, it is natural to classify arguments with
respect to the nature of the support their premises give their conclu-
sions. We already defined non-presumptive and (properly) presump-
tive arguments (Definition 4), and—with respect to a case model—
presumptively valid and (properly) defeasible arguments (Defini-
tion 6). We illustrate these notions in an example about the presump-
tion of innocence.

Let inn denote that a suspect is innocent, and gui that he is
guilty. Then the argument (inn,¬gui) is (properly) presumptive,
since inn 6|= ¬gui. The argument (inn ∧ ¬gui,¬gui) is non-
presumptive, since inn ∧ ¬gui |= ¬gui.

Presumptive validity and (proper) defeasibility are illustrated us-
ing a case model. Consider the case model with two cases inn ∧
¬gui and ¬inn ∧ gui ∧ evi with the first case preferred to
the second (Figure 3; the surface of the cases measures their pref-
erence). Here evi denotes evidence for the suspect’s guilt. Then
the (properly) presumptive argument (inn,¬gui) is presumptively
valid with respect to this case model since the conclusion ¬gui fol-
lows in the case inn ∧ ¬gui that is a preferred case of the premise
inn. The argument is conclusive since there are no other cases im-
plying inn. The argument (>,inn)—in fact an assumption now
that its premises are tautologous—is presumptively valid since inn
follows in the preferred case inn ∧ ¬gui. This shows that the ex-
ample represents what is called the presumption of innocence, when
there is no evidence. This argument is (properly) defeasible since
in the other case of the argument’s premises the conclusion does
not follow. In fact, the argument (evi,inn) is not coherent since
there is no case in which both evi and inn follow. The argument
(evi,gui) is presumptively valid, even conclusive.

In argumentative analyses, different kinds of argument attack are
considered. John Pollock made the famous distinction between two
kinds of—what he called—argument defeaters [17, 18]. A rebutting
defeater is a reason for a conclusion that is the opposite of the con-
clusion of the attacked argument, whereas an undercutting defeater
is a reason that attacks not the conclusion itself, but the connection
between reason and conclusion. Joseph Raz made a related famous
distinction of exclusionary reasons that always prevail, independent
of the strength of competing reasons [19] (see also [20]).

We propose the following terminology.

Definition 14 Let (C,≥) be a case model, and (ϕ,ψ) a presump-
tively valid argument. Then circumstances χ are undercutting when
(ϕ ∧ χ, ψ) is not presumptively valid. Undercutting circumstances
are rebutting when (ϕ ∧ χ,¬ψ) is presumptively valid; otherwise
they are properly undercutting. Undercutting circumstances are ex-
cluding when (ϕ ∧ χ, ψ) is not coherent.
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sus ∧ ¬mis ∧ wit
mis ∧ wit

Figure 4. A case model for proper undercutting

Continuing the example of the case model illustrated in Figure 3,
we find the following. The circumstances evi undercut the pre-
sumptively valid argument (>,inn) since (evi,inn) is not pre-
sumptively valid. In fact, these circumstances are excluding since
(evi,inn) is not coherent. The circumstances are also rebutting
since the argument for the opposite conclusion (evi,¬inn) is pre-
sumptively valid.

Proper undercutting can be illustrated with an example about a
lying witness. Consider a case model with these two cases:

1: sus ∧ ¬mis ∧ wit
2: mis ∧ wit

In the cases, there is a witness testimony (wit) that the suspect was
at the crime scene (sus). In Case 1, the witness was not misguided
(¬mis), in Case 2 he was. In Case 1, the suspect was indeed at the
crime scene; in Case 2, the witness was misguided and it is unspec-
ified whether the suspect was at the crime scene or not. In the case
model, Case 1 is preferred to Case 2 (Figure 4), representing that
witnesses are usually not misguided.

Since Case 1 is a preferred case of wit, the argument (wit,sus)
is presumptively valid: the witness testimony provides a presump-
tively valid argument for the suspect having been at the crime scene.
The argument’s conclusion can be strengthened to include that the
witness was not misguided. Formally, this is expressed by saying
that (wit,sus ∧ ¬mis) is a presumptively valid argument. There
are circumstances undercutting the argument (wit,sus), namely
when the witness was misguided after all (mis). This can be seen
by considering that Case 2 is the only case in which wit ∧ mis
follows, hence is preferred. Since sus does not follow in Case 2,
the argument (wit ∧ mis,sus) is not presumptively valid. The
misguidedness is not rebutting, hence properly undercutting since
(wit ∧ mis,¬sus) is not presumptively valid. The misguidedness
is excluding since the argument (wit ∧ mis,sus) is not even co-
herent.

Arguments can typically be chained, namely when the conclusion
of one is a premise of another. For instance when there is evidence
(evi) that a suspect is guilty of a crime (gui), the suspect’s guilt
can be the basis of punishing the suspect (pun). For both steps there
are typical undercutting circumstances. The step from the evidence
to guilt is blocked when there is an alibi (ali), and the step from
guilt to punishing is blocked when there are grounds of justification
(jus), such as force majeure. A case model with three cases can
illustrate such chaining:

1: pun ∧ gui ∧ evi
2: ¬pun ∧ gui ∧ evi ∧ jus
3: ¬gui ∧ evi ∧ ali

In the case model, Case 1 is preferred to Case 2 and Case 3, modeling
that the evidence typically leads to guilt and punishing, unless there
are grounds for justification (Case 2) or there is an alibi (Case 3).
Cases 2 and 3 are preferentially equivalent.

In this case model, the following arguments are presumptively
valid:

1: (evi,gui)
2: (gui,pun)
3: (evi,gui ∧ pun)

Arguments 1 and 3 are presumptively valid since Case 1 is the pre-
ferred case among those in which evi follows; Argument 2 is since
Case 1 is the preferred case among those in which gui follows. By
chaining arguments 1 and 2, the case for gui∧pun can be based on
the evidence evi as in Argument 3.

The following arguments are not presumptively valid in this case
model:

4: (evi ∧ ali,gui)
5: (gui ∧ jus,pun)

This shows that Arguments 1 and 2 are undercut by circumstances
ali and jus, respectively. As expected, chaining these arguments
fails under both of these circumstances, as shown by the fact that
these two arguments are not presumptively valid:

6: (evi ∧ ali,gui ∧ pun)
7: (evi ∧ jus,gui ∧ pun)

But the step to guilt can be made when there are grounds for justifi-
cation. Formally, this can be seen by the presumptive validity of this
argument:

8: (evi ∧ jus,gui)

4.2 Scenarios

In the literature on scenario analyses, several notions are used in or-
der to analyze the ‘quality’ of the scenarios considered. Three no-
tions are prominent: a scenario’s consistency, a scenario’s complete-
ness and a scenario’s plausibility [16, 37]. In this literature, these
notions are part of an informally discussed theoretical background,
having prompted recent work in AI & Law on formalizing these no-
tions [3, 33, 36]. A scenario is consistent when it does not contain
contradictions. For instance, a suspect cannot be both at home and at
the crime scene. A scenario is complete when all relevant elements
are in the scenario. For instance, a murder scenario requires a victim,
an intention and premeditation. A scenario is plausible when it fits
commonsense knowledge about the world. For instance, in a mur-
der scenario, a victim’s death caused by a shooting seems a plausible
possibility. We now propose a formal treatment of these notions us-
ing the formalism presented.

The consistency of a scenario can simply be taken to correspond to
logical consistency. A more interesting, stronger notion of scenario-
consistency uses the world knowledge takes represented in a case
model and defines a scenario as scenario-consistent when it is a log-
ically consistent coherent assumption. Formally, writing S for the
scenario, S is scenario-consistent when S is logically consistent and
the argument (>, S) is coherent, i.e., there is a case in the case model
logically implying S.

The completeness of a scenario can here be defined using a notion
of maximally specific conclusions, as follows.

Definition 15 Let (C,≥) be a case model, and (ϕ,ψ) a presump-
tively valid argument. Then the case made by the argument (i.e.,
ϕ ∧ ψ) is an extension of ϕ when there is no presumptively valid
argument from ϕ that makes a case that is logically more specific.
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For instance, consider a case model in which the case vic ∧ int ∧
pre ∧ evi is a preferred case of evi. The case expresses a situa-
tion in which there is evidence (evi) for a typical murder: there is
a victim (vic), there was the intention to kill (int), and there was
premeditation (pre). In such a case model, this case is an exten-
sion of the evidence evi. A scenario can now be considered com-
plete with respect to certain evidence when the scenario conjoined
with the evidence is its own extension. In the example, the sentence
vic ∧ int ∧ pre is a complete scenario given evi as the sce-
nario conjoined with the evidence is its own extension. The sentence
vic ∧ int is not a complete scenario given evi, as the extension
of vic ∧ int ∧ evi also implies pre.

A scenario can be treated as plausible (given a case model) when
it is a presumptively valid conclusion of the evidence. Continuing
the example, the complete scenario vic ∧ int ∧ pre is then plau-
sible given evi, but also subscenarios such as vic ∧ int (leav-
ing the premeditation unspecified) and int ∧ pre (with no vic-
tim, only intention and premeditation). This notion of a scenario’s
plausibility depends on the evidence, in contrast with the mentioned
literature [16, 37], where plausibility is treated as being indepen-
dent from the evidence. The present proposal includes an evidence-
independent notion of plausibility, by considering a scenario as
plausible—independent of the evidence—when it is plausible given
no evidence, i.e., when the scenario is a presumptively valid as-
sumption. In the present setting, plausibility can be connected to the
preference ordering on cases given the evidence, when scenarios are
complete. A complete scenario is than more plausible than another
given the evidence when the former is preferred to the latter.

4.3 Probabilities
The literature on the probabilistic analysis of reasoning with evi-
dence uses the probability calculus as formal background. A key for-
mula is the well-known Bayes’ theorem, stating that for events H
and E the following relation between probabilities holds:

Pr(H|E) =
Pr(E|H)

Pr(E)
· Pr(H)

Thinking of H as a hypothesis and E as evidence, here the posterior
probability Pr(H|E) of the hypothesis given the evidence can be
computed by multiplying the prior probability Pr(H) and the Bayes
factor Pr(E|H)/Pr(E).

We saw that the preferences of our case models are exactly those
that can be realized by probability functions over the cases in the
model (Corollary 3). Given a realization of a case model, key con-
cepts defined in terms of the case model translate straightforwardly to
the probabilistic setting. For instance, a preferred case (given certain
premises) has maximal probability (conditional on these premises)
among the cases from which the premises follow. Also the premises
provide a conclusive argument for a case if there is exactly one case
from which the premises follow, hence if the probability of the case
given the premises is equal to 1. Also, clearly, Bayes’ theorem holds
for any such probabilistic realization of our case models.

A formula that is especially often encountered in the literature on
evidential reasoning is the following odds version of Bayes’ theorem:

Pr(H|E)

Pr(¬H|E)
=

Pr(E|H)

Pr(E|¬H)
· Pr(H)

Pr(¬H)

Here the posterior odds Pr(H|E)/Pr(¬H|E) of the hypothe-
sis given the evidence is found by multiplying the prior odds

↓ Evidence Hypotheses

res rob ¬rob

esc

fgt fou
¬fou

pro

cau dau ¬dau

con jew ¬jew

fin

Figure 5. Example: Hitchcock’s ‘To Catch A Thief’

Pr(H)/Pr(¬H) with the likelihood ratio Pr(E|H)/Pr(E|¬H).
This formula is important since the likelihood ratio can sometimes
be estimated, for instance in the case of DNA evidence. In fact, it is
a key lesson in probabilistic approaches to evidential reasoning that
the evidential value of evidence, as measured by a likelihood ratio,
does not by itself determine the posterior probability of the hypoth-
esis considered. As the formula shows, the prior probability of the
hypothesis is needed to determine the posterior probability given the
likelihood ratio. Just as Bayes’ theorem, the likelihood ratio obtains
in a probabilistic realization of a case model in our sense.

5 Example: Alfred Hitchcock’s ‘To Catch A Thief’

As an example of the development of evidential reasoning in which
gradually information is collected, we discuss the crime investigation
story that is the backbone of Alfred Hitchcock’s ‘To Catch A Thief’,
otherwise—what Hitchcock himself referred to as—a lightweight
story about a French Riviera love affair, starring Grace Kelly and
Cary Grant. In the film, Grant plays a former robber Robie, called
‘The Cat’ because of his spectacular robberies, involving the climb-
ing of high buildings. At the beginning of the film, new ‘The Cat’-like
thefts have occurred. Because of this resemblance with Robie’s style
(the first evidence considered, denoted in what follows as res), the
police consider the hypothesis that Robie is again the thief (rob),
and also that he is not (¬rob). Figure 5 provides a graphical repre-
sentation of the investigation. The first row shows the situation after
the first evidence res, mentioned on the left side of the figure, with
the two hypothical conclusions rob and¬rob represented as rectan-
gles. A rectangle’s height suggests the strength of the argument from
the accumulated evidence to the hypothesis. Here the arguments from
res to rob and ¬rob are of comparable strength.

When the police confront Robie with the new thefts, he escapes
with the goal to catch the real thief. By this second evidence (esc),
the hypothesis rob becomes more strongly supported than its oppo-
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site ¬rob. In the figure, the second row indicates the situation after
the two pieces of evidence are available. As indicated by the rect-
angles of different heights, the argument from the accumulated evi-
dence res∧esc to rob is stronger than that from the same premises
to ¬rob. Rectangles in a column in the figure represent correspond-
ing hypotheses. Sentences shown in a corresponding hypothesis in a
higher row are not repeated.

Robie sets a trap for the real thief, resulting in a nightly fight on
the roof with Foussard who falls and dies (fgt). The police con-
sider this strong evidence for the hypothesis that Foussard is the thief
(fou), but not conclusive so also the opposite hypothesis is consid-
ered coherent (¬fou). In the figure (third row marked fgt) the hy-
pothesis ¬rob is split into two hypotheses: one rectangle represent-
ing ¬rob∧fou, the other ¬rob∧¬fou. With the accumulated ev-
idence res∧esc ∧fgt as premises, the hypothesis ¬rob∧fou is
more strongly supported than the hypothesis ¬rob∧¬fou. The po-
lice no longer believe that Robie is the thief. This is indicated by the
line on the left of the third row in the figure. The premises res∧esc
∧fgt do not provide support for the hypothesis rob; or, in the termi-
nology of this paper: the argument from premises res∧esc ∧fgt
to conclusion rob is not coherent.

Robie points out that Foussard cannot be the new incarnation of
‘The Cat’, as he had a prosthetic wooden leg (pro). In other words,
the argument from res∧esc ∧fgt∧pro to ¬rob∧fou is not co-
herent. (Cf. the second line in the fourth row of the figure, corre-
sponding to the hypothesis that Foussard is the thief.)

Later in the film, Foussard’s daughter is caught in the act (cau),
providing very strong support for the hypothesis that the daughter is
the new cat (dau). The argument from res∧esc∧fgt∧pro∧cau
to dau is stronger than to ¬dau.

In her confession (con), Foussard’s daughter explains where the
jewelry stolen earlier can be found, adding some specific informa-
tion to the circumstances of her crimes (jew). The argument from
res∧esc ∧fgt∧pro∧cau ∧con to dau ∧ jew is stronger than
to ¬dau ∧ ¬jew.

The police find the jewelry at the indicated place (fin) and there
is no remaining doubt about the hypothesis that Foussard’s daughter
is the thief. The argument from res∧esc ∧fgt∧pro∧cau∧con
∧fin to ¬dau∧ ¬jew is incoherent, as indicated by the line on the
right of the bottom row of the figure. In the only remaining hypothe-
sis, Foussard’s daughter is the thief, and not Robie, not Foussard. In
other words, the argument from res∧esc ∧fgt∧pro∧cau∧con
∧jew to ¬rob∧¬fou∧dau is conclusive.

We can use the constructions of the representation theorem to de-
velop a case model representing the arguments discussed in the ex-
ample. We distinguish 7 cases, as follows:

1. rob
∧ res∧esc

2. ¬rob∧fou
∧ res∧esc∧fgt

3. ¬rob∧¬fou∧dau∧jew
∧ res∧esc∧fgt∧pro∧cau∧con∧fin

4. ¬rob∧¬fou∧¬dau∧¬jew
∧ res∧esc∧fgt∧pro∧cau∧con

5. ¬rob
∧res∧¬esc

6. ¬rob∧¬fou
∧res∧esc∧¬fgt

7. ¬rob∧¬fou∧¬dau
∧res∧esc∧fgt∧pro∧¬cau

1
2

3
4

5

6
7

Figure 6. Case model for the example

Cases 1 to 4 are found as follows. First the properties of the
four main hypotheses are accumulated (rob, ¬rob∧fou,
¬rob∧¬fou∧dau∧jew, ¬rob∧¬fou∧¬dau∧¬jew). Then
these are conjoined with the maximally specific accumulated
evidence that provide a coherent argument for them (res∧esc,
res∧esc∧fgt, res∧esc∧fgt∧pro∧cau∧con∧fin, res∧
esc∧fgt∧pro∧cau∧con). The cases 5 to 7 complete the case
model. Case 5 is the hypothetical case that Robie is not the thief,
that there is resemblance, and the Robie does not escape. In case
6, Robie and Foussard are not the thieves, and there is no fight. In
case 7, Robie, Foussard and his daughter are not the thieves, and
she is not caught in the act. Note that the cases are consistent and
mutually exclusive.

Figure 6 shows the 7 cases of the model. The sizes of the rectangles
represent the preferences. The preference relation has the following
equivalence classes, ordered from least preferred to most preferred:

1. Cases 4 and 7;
2. Case 3;
3. Cases 2 and 6;
4. Cases 1 and 5.

The discussion of the arguments, their coherence, conclusiveness
and validity presented semi-formally above fits this case model.
For instance, the argument from the evidential premises res∧esc
to the hypothesis rob is presumptively valid in this case model
since Case 1 is the only case implying the case made by the ar-
gument. It is not conclusive since also the argument from these
same premises to ¬rob is coherent. The latter argument is not
presumptively valid since all cases implying the premises have
lower preference than Case 1. The argument from res∧esc∧fgt
to rob is incoherent as there is no case in which the premises
and the conclusion follow. Also arguments that do not start from
evidential premises can be evaluated. For instance, the argument
from the premise (not itself evidence) dau to jew is conclu-
sive since in the only case implying the premises (Case 3) the
conclusion follows. Finally we find the conclusive argument from
premises res∧esc∧fgt∧pro∧cau∧con∧jew to conclusion
¬rob∧¬fou∧dau∧jew (only Case 3 implies the premises), hence
also to dau.

6 Concluding remarks
In this paper, we have discussed correct reasoning with evidence us-
ing three analytic tools: arguments, scenarios and probabilities. We
proposed a formalism in which the presumptive validity of arguments
is defined in terms of case models, and studied some properties (Sec-
tion 3). We discussed key concepts in the argumentative, scenario
and probabilistic analysis of reasoning with evidence in terms of the
formalism (Section 4). An example of the gradual development of
evidential reasoning was provided in Section 5.

This work builds on a growing literature aiming to formally con-
nect the three analytic tools of arguments, scenarios and probabili-
ties. In a discussion of the anchored narratives theory by Crombag,
Wagenaar and Van Koppen [37], it was shown how argumentative
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notions were relevant in their scenario analyses [28]. Bex [3, 5] has
provided a hybrid model connecting arguments and scenarios, and
has worked on the further integration of the two tools [4,6]. Connec-
tions between arguments and probabilities have been studied by Hep-
ler, Dawid and Leucari [10] combining object-oriented modeling and
Bayesian networks. Fenton, Neil and Lagnado continued this work
by developing representational idioms for the modeling of evidential
reasoning in Bayesian networks [9]. Inspired by this research, Vlek
developed scenario idioms for the design of evidential Bayesian net-
works containing scenarios [35], and Timmer showed how argumen-
tative information can be extracted from a Bayesian network [25].
Keppens and Schafer [12] studied the knowledge-based generation
of hypothetical scenarios for reasoning with evidence, later devel-
oped further in a decision support system [22].

The present paper continues from an integrated perspective on
arguments, scenarios and probabilities [32]. In the present paper,
that integrated perspective is formally developed (building on ideas
in [31]) using case models and discussing key concepts used in ar-
gumentative, scenario and probabilistic analyses. Interestingly, our
case models and their preferences are qualitative in nature, while the
preferences correspond exactly to those that can be numerically and
probabilistically realized. As such, the present formal tools combine
a non-numeric and numeric perspective (cf. [32]’s ‘To Catch A Thief
With and Without Numbers’). Also the present work does not require
modeling evidential reasoning in terms of full probability functions,
as is the case in Bayesian network approaches. In this way, the well-
known problem of needing to specify more numbers than are reason-
ably available is addressed. Also whereas the causal interpretation of
Bayesian networks is risky [7], our case models come with formal
definitions of arguments and their presumptive validity.

By the present and related studies, we see a gradual clarification
of how arguments, scenarios and probabiities all have their specific
useful place in the analysis of evidential reasoning. In this way, it
seems ever less natural to choose between the three kinds of tools,
and ever more so to use each of them when practically applicable.
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