
Structured strategies in games on graphs

R. Ramanujam and Sunil Simon

1 The Institute of Mathematical Sciences

C.I.T. Campus, Chennai 600 113, India.

{jam,sunils}@imsc.res.in

1 Summary

We discuss strategies in non-zero sum games of perfect information on
graphs. The study of non-zero sum games on graphs is motivated by
the advent of computational tasks on the world-wide web and related
security requirements which have thrown up many interesting areas of
interaction between game theory and computer science. For example,
signing contracts on the web requires interaction between principals
who do not know each other and typically distrust each other. Pro-
tocols of this kind which involve selfish agents can be easily viewed as
strategic games of imperfect information. These are complex inter-
active processes which critically involve players reasoning about each
others’ strategies to decide on how to act. In the case of interactng
web services, these games involve infinite plays as well. Developing a
game theoretic computational study of such interactions is an inter-
esting challenge. Admittedly, these are games of partial information,
but a theoretical analysis is interesting even in the more restricted
case of perfect information.

On one hand, zero sum games on graphs have been extensively
studied in logic and automata theory ([GTW02]), and on the other, a
rich theory of non-zero sum matrix form games has been developed by
game theorists ([OR94]). We call graph games large, to indicate that
plays consist of (long) sequences of moves, whereas matrix form games
are termed small, in the sense that a play is typically one simultaneous
move. We can have matrix form presentations for sequential plays as
well, but not very usefully for analysis.

While one talks of winning strategies in win / loss games, when
players have overlapping objectives, we consider the best response
each player can offer to moves of other players. In a small game
which consists of both players deciding on a move simultaneously, it
is best analyzed by considering pairs of moves. When we have a pair

(a, b) such that a is player 1’s best response to player 2 deciding on b,
as well as the other way about, they constitute a Nash equilibrium:
there is no incentive for rational players to unilaterally deviate from
such a decision. Thus equilibrium concepts predict rational play, and
games are so designed that equilibrium behaviour achieves desired
outcomes. Nash’s theorem asserts the existence of equilibria in the
space of randomized strategies and game theory offers similar theo-
rems for related notions of equilibria.

Equating equilibria with rational play rests on the following anal-
ysis: at a game position a rational player would choose the best
response to the opponent’s strategy which (by assumption of ratio-
nality of the opponent) must be his best possible choice of move.
Thus, the reasoning critically involves players reasoning about other
players’ strategies. When strategies consist of picking one move out
of a set of possible moves, such as in small games, this is clear. When
strategies use the current history of play to make a local move when
the eventual outcome is not as yet determined, the situation is much
less clear.

A strategy is a function from the set of partial plays to moves: it
advises a player at a game position on the choice she can make. In a
large game, this amounts to a complete specification of behaviour in
all possible game situations. But then in such a game, one player’s
knowledge of the strategies employed by the other is necessarily par-
tial. Rational play requires much finer analysis since strategies have
structure that depends on the player’s observations of game positions,
history of play and the opponent’s apparent strategies.

Such study of structure in strategies is relevant even in finite, de-
termined, but large, zero-sum games. A classic example of such a
game is the game of chess. Zermello showed in [Zer13] that chess is
determined, i.e. from every game position, either there exists a (pure)
strategy for one of the two players (white or black) guaranteeing that
she will win or each one of the two players has a strategy guarantee-
ing at least a draw. However, given any game position, we do not
know which of the three alternatives is the correct one. For games
like Hex, it is known that the first player can force a win [Gal79] but
nonetheless a winning strategy is not known. Again, in such situa-
tions, rather than be content with reasoning about games using the
functional notion of strategies, one needs to reason about strategies
themselves. For instance, most of the chess playing programs use
heuristics which are basically partially specified strategies. A library
of such specifications is developed and during the course of play, the

2

actual strategy is built up by composing various partial strategies.

Thus we are led to the idea of strategies specified in a syntax,
and composed structurally, with a player’s strategies built up using
assumptions about another. The notion of strategy composition is
inspired by an analogous notion of game composition proposed by
Rohit Parkh ([Par85]) who initiated the study of game structure using
algebraic properties.

In this paper, we suggest that standard automata theoretic tech-
niques can be employed to usefully specify and analyze partial strate-
gies in non-zero games on graphs. We propose a syntactic framework
for strategies in which best response can be algorithmically deter-
mined, and a simple modal logic in which we can reason about such
strategies. This proposal is intended more as an illustration of such
analysis; ideally, we need a “programming language” for strategies,
whose structure should be determined empirically by how well they
describe interesting heuristics employed in many classes of games that
arise in applications mentioned above.

1.1 Related work

Automata theoretic analyses of two-player zero-sum infinite games of
perfect information ([GTW02]) have led to interesting applications
in the design and verification of reactive systems and in control syn-
thesis. We use this technical machinery, but in the non-zero sum
context.

As remarked earlier, the logical structure we study is inspired
by propositional game logic ([Par85]). Pauly ([Pau01]) has built on
this to provide interesting relationships between programs and games,
and to describe coalitions to achieve desired goals. Bonnano ([Bon91])
suggested obtaining game theoretic solution concepts as characteristic
formulas in modal logic. van Benthem ([vB01]) uses dynamic logic to
describe games as well as (atomic) strategies.

On the other hand, the work on Alternating Temporal Logic
([AHK98]) considers selective quantification over paths that are possi-
ble outcomes of games in which players and an environment alternate
moves. Here, we talk of the existence of a strategy for a coalition of
players to force an outcome. [Gor01] draws parallels between these
two lines of work, that of Pauly’s coalition logics and alternating
temporal logic. In the work of [HvdHMW03] and [vdHJW05], van
der Hoek and co-authors develop logics for strategic reasoning and
equilibrium concepts.

The underlying reasoning, whether explicitly described (as in game

3

logics) or implicit (as in automata theoretic studies) is carried out in
a logic of games and the reasoning is about existence of strategies,
rather than about strategies themselves. For instance, the existence
of an appropriate strategy in sub-games is used to argue the existence
of one in the given game. Moreover, most of the techniques involve
win / lose games. Thus our departure consists in considering non-zero
sum games and (hence) structured partial strategies.

In ([RS06]), we presented an axiomatization of the logic we discuss
here. In this paper, the emphasis is more on showing how standard
automata theoretic techniques can be employed to solve the associ-
ated algorithmic questions.

2 Games and strategies

We begin with a description of the game arena. We use the graphical
model for extensive form turn-based games, where at most one player
gets to move at each game position.

Game Arena

Let N = {1, 2} be the set of players and Σ = {a1, a2, . . . , am} be a
finite set of action symbols, which represent moves of players.

A game arena is a finite graph G = (W 1,W 2,−→, w0) where W i

is the set of game positons of player i for i ∈ {1, 2}. Let W = W 1∪W 2.
The transition function −→: (W ×Σ) → W is a partial function also
called the move function and w0 is the initial node of the game. Let
i = 2 when i = 1 and i = 1 when i = 2.

Let the set of successors of w ∈ W be defined as
→
w= {w′ ∈ W |

w
a

−→ w′ for some a ∈ Σ}. We assume that for all game positions w,
→
w 6= ∅.

In an arena, the play of a game can be viewed as placing a token
on w0. If player i owns the game position w0 (i.e w0 ∈ W i), then
she picks an action ’a’ which is enabled for her at w0 and moves
the token to w′ where w0

a
−→ w′. The game then continues from

w′. Formally, a play in G is an infinite path ρ : w0a0w1a1 · · · where

∀j : wj

aj

−→ wj+1. Let Plays denote the set of all plays in the arena.

Games and Winning Conditions

Let G be an arena as defined above. The arena merely defines the
rules about how the game progresses and terminates. More interest-
ing are the winning conditions of the players, which specify the game
outcomes. Since we consider non-zero sum games, players’ objectives
need not be strictly conflicting, and each player has a preference re-

4

lation inducing an ordering over the set of valid plays. The game is
specified by presenting the game arena along with the preference rela-
tion for each player. Let ¹i⊆ (Plays×Plays) be a complete, reflexive,
transitive binary relation denoting the preference relation of player i
for i ∈ {1, 2}. Then the game G is given as, G = (G, {¹i}i∈{1,2}).

In general, the preference relation need not have a finite presen-
tation, and we restrict our attention to finite state preferences. (This
is because in the applications we have in mind, as in network games,
desired or preferred plays are easily expressed as formulas of temporal
logics.) Thus, the preferences of players are presented as finite state
evaluation automata, with Muller acceptance conditions.

Let M = (R,∆, r0) be a deterministic automaton with finite set of
states R, initial state r0 ∈ R and transition function ∆ : R×W×Σ →
R. The evaluation automaton is given by: E = (M, {¢i}i∈{1,2})
where ¢

i ⊆ (F × F) is a total order over F = 2R \ ∅ for i ∈ {1, 2}.

A run of E on a play ρ : s0a0 · · · ∈ Plays is a sequence of states
ϕ : r0r1 · · · such that ∀i : 0 ≤ i < n, we have ri+1 = ∆(ri, si, ai). Let
inf (ϕ) denote the set of states occurring infinitely often in ϕ. The
evaluation automaton E induces a preference ordering on Plays in the
following manner. Let ρ : s0a0s1 · · · and ρ′ : s0a

′
0s

′
1 · · · be two plays.

Let the run of E on ρ and ρ′ be ϕ : r0r1 · · · rn and ϕ′ : r0r
′
1 · · · r

′
n

respectively. For i ∈ {1, 2}, we have ρ ¹i ρ′ iff inf (ϕ) ¢
i inf (ϕ′). A

game is presented as G = (G, E).

We will also be interested in binary evaluation automata which
specify least outcomes for player i. Such a automaton is given by
E i

F , where F ∈ 2R: for every F ′ ∈ 2R, if F ¢
i F ′, it is taken to be

”winning” for player i, and every F ′′ 6= F such that F ′′
¢

i F is taken
to be ”losing”. Such an automaton checks if i can ensure an outcome
which is at least as preferred as F . Note that the terminology of win
/ loss is only to indicate a binary preference for player i, and applies
even in the context of non-zero sum games.

Thus we have game arenas, with players’ preference on plays. We
now discuss strategies of players.

Strategies

Let GT denote the tree unfolding of the arena G. We use s, s′ to
denote the nodes in GT . A strategy for player 1, µ = (Wµ,−→µ, s0)
is a maximal connected subtree of GT where for each player 1 node,
there is a unique outgoing edge and for the other player every move is
included. That is, for s ∈ Wµ the edge relation satisfies the following
property:

5

• if s ∈ W 1
µ then there exists a unique a ∈ Σ such that s

a
−→µ s′,

where we have s
a

−→T s′.

• if s ∈ W 2
µ , then for each s′ such that s

a
−→T s′, we have s

a
−→µ

s′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. We
will use µ to denote a strategy of player 1 and τ a strategy of player
2. A strategy profile 〈µ, τ〉 defines a unique path ρτ

µ in the arena G.
In games with overlapping objectives, the common solution con-

cept employed is that of an equilibrium strategy profile [Nas50]. A
profile of strategies, one for each player, is said to be in equilibrium if
no player gains by unilaterally deviating from his strategy. The no-
tion of equilibrium can be formally defined as follows. Let µ denote
a strategy of player 1 and τ denote a strategy of player 2.

• µ is the best response for τ iff ∀µ′ ∈ Ω1, ρτ
µ′ ¹1 ρτ

µ.

• τ is the best response for µ iff ∀τ ′ ∈ Ω2, ρτ ′

µ ¹2 ρτ
µ.

• 〈µ, τ〉 is a Nash equilibrium iff µ is the best response for τ and
τ is the best response for µ.

The natural questions that are of interest include:

• Given a strategy τ of player 2, what is the best response for
player 1?

• Given a strategy profile 〈µ, τ〉, is it a Nash equilibrium?

• Does the game possess a Nash equilibrium?

Clearly, if we can answer the first question, we can answer the
second as well. In any case, to study these questions algorithmically,
we need to be able to present the preferences of players and their
strategies in a finite fashion. We have evaluation automata presenting
preferences; we now proceed to a syntax for strategies.

3 Strategy specification

We conceive of strategies as being built up from atomic ones using
some grammar. The atomic case specifies, for a player, what con-
ditions she tests for before making a move. We can associate with
the game graph a set of observables for each player. One elegant
method then, is to state the conditions to be checked as a past time

6

formula of a simple tense logic over the observables. The structured
strategy specifications are then built from atomic ones using connec-
tives. We crucially use an implication of the form: “if the opponent
is apparently playing a strategy π then play σ”.

Below, for any countable set X, let Past(X) be sets of formulas
given by the following syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3- ψ.

Syntax

Let P i = {pi
0, p

i
1, . . .} be a countable set of observables for i ∈ {1, 2}

and let P = P 1 ∪ P 2. The syntax of strategy specifications is then
given by:

Strat i(P i) := null | [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1

where π ∈ Strat i(P 1 ∩ P 2) and ψ ∈ Past(P i).

Semantics

Given any sequence ξ = t0t1 · · · tm, V : {t0, · · · , tm} → 2X , and k
such that 0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k,
denoted ξ, k |= ψ can be defined as follows:

• ξ, k |= p iff p ∈ V (sk).

• ξ, k |= ¬ψ iff ξ, k 6|= ψ.

• ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.

• ξ, k |= 3- ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

We consider the game arena G along with a valuation function for
the observables V : W → 2P . We assume the presence of two special
propositions τi for each i ∈ {1, 2} which specify at a game position,
which player’s turn it is to move, i.e. τi ∈ V (w) iff w is a player i
game position. Given a strategy µ of player i and a node s ∈ µ, let
ρs : s0a0s1 · · · sm = s be the unique path in µ from the root node
to s. For a strategy specification σ ∈ Strat i(P i), we define when µ
conforms to σ (denoted µ |=i σ) as follows:

• µ |=i σ iff for all player i nodes s ∈ µ, we have ρs, s |=i σ.

where we define ρs, sj |=i σ for any player i node sj in ρs as,

• ρs, sj |=i null for all ρs, sj .

7

• ρs, sj |=i [ψ 7→ a]i iff ρs, sj |= ψ implies outρs
(sj) = a.

• ρs, sj |=i σ1 + σ2 iff ρs, sj |=i σ1 or ρs, sj |=i σ2.

• ρs, sj |=i σ1 · σ2 iff ρs, sj |=i σ1 and ρs, sj |=i σ2.

• ρs, sj |=i π ⇒ σ1 iff for all player i nodes sk ∈ ρs such that
k ≤ j, if ρs, sk |=i π then ρs, sj |=i σ1.

Above, π ∈ Strat i(P 1 ∩ P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m,
outρs

(si) = ai and outρs
(s) is the unique outgoing edge in µ at s.

Remarks

Note that we do not have negation in specifications. One reason is
that they are partial, and hence the semantics is not immediate. If
we were to consider a specification of the form π ⇒ σ, we could
interpret this as: if player has seen that opponent has violated π in
the past, then play σ. This seems rather unnatural, and hence, for the
present, we are content to leave negation aside. Note that we do have
negation in tests in atomic specifications, and later we will embed
these specifications into a modal logic (with negation on formulas).

When we consider repeated or multi-stage games, we have strat-
egy switching, whereby players receive payoffs at specified points,
and depending on the outcomes, decide on what new strategies to
adopt later. Then it makes sense to include specifications whereby a
player conforms to a strategy until some observable change, and then
switches to another strategy. In this context, we have (a form of)
sequential composition as well as iteration. However, operators are
best added after a systematic study of their algebraic properties. We
stick to a simple presentation here since our main aim is only to de-
scribe the framework. As we will see below, any set of specifications
that allows effective automaton consruction will do.

Clearly, each strategy specification defines a set of strategies. We
now show that it is a regular set, recognizable by a finite state de-
vice. In the spirit of prescriptive game theory, we call them advice

automata.

Advice Automata

For a game graph G, a nondeterministic advice automaton for player
i is a tuple A = (Q, δ, o, I) where Q is the set of states, I ⊆ Q is the
set of initial states, δ : Q × W × Σ → 2Q is the transition relation,
and o : Q × W i → Σ, is the output or advice function.

8

The language accepted by the automaton is a set of strategies of
player i. Given a strategy µ = (Wµ,−→µ, s0) of player i, a run of
A on µ is a Q labelled tree T = (Wµ,−→µ, λ), where λ maps each
tree node to a state in Q as follows: λ(s0) ∈ I, and for any sk where

sk
a

−→µ s′k, we have λ(s′k) ∈ δ(λ(sk), sk, ak).
A Q-labelled tree T is accepted by A if for every tree node s ∈ W i

µ,

if s
a

−→T s′ then o(λ(s)) = a. A strategy µ is accepted by A if there
exists an accepting run of A on µ.

It is easy to see that any bounded memory strategy can be repre-
sented using a deterministic advice automaton. In such a framework
we can ask, given a bounded memory strategy for player 2 represented
by a deterministic strategy automaton B, can we compute the best
response for player 1?

Proposition 3.1. Given a game G = (G, E) and a deterministic
advice automaton B for player 2, the best response for player 1 can
be effectively computed.

The proposition is proved easily. For each F ∈ 2R, we can con-
struct a nondeterministic automaton AF which explores paths of G
as follows. It consults B to pick player 2’s moves and simply guesses
1’s moves. It runs the binary evaluation automaton E1

F for player 1
in parallel and checks if the run is winning for player 1. Now, we can
enumerate the F ∈ 2R in such a way that those higher in ¢

1 appear
earlier in the enumeration. We try automata AF in this order.

Therefore, given an strategy profile presented as advice automa-
ton for each of the players, we can also check if a strategy profile con-
stitutes a Nash equilibrium. However, we are interested in strategy
specifications which are partial and hence constitute nondeterminis-
tic advice automata. The following lemma relates structured strategy
specifications to advice automata.

Lemma 3.2. Given a player i ∈ {1, 2} and a strategy specification
σ, we can construct an advice automaton Aσ such that µ ∈ Lang(Aσ)
iff µ |=i σ.

Proof. The construction of automata is inductive, on the structure of
specifications. Note that the strategy is implemented principally by
the output function of the advice automaton.

For a strategy specification σ, let SF (σ) denote the subformula
closure of σ and SFψ(σ) denote the Past subformulas in σ. Call
R ⊆ SFψ(σ) an atom if it is propositionally consistent and complete:

9

that is, for every ¬γ ∈ SFψ(σ), ¬γ ∈ R iff γ 6∈ R, and for every
γ1 ∨ γ2 ∈ SFψ(σ), γ1 ∨ γ2 ∈ R iff γ1 ∈ R or γ2 ∈ R.

Let AT σ denote the set of atoms. Let C0 = {C ∈ AT σ| there
does not exist any 3- ψ ∈ C}. For C,D ∈ AT σ,define C −→ D iff for
all 3- ψ ∈ SFψ(σ), the following conditions hold.

• ψ ∈ C ⇒ 3- ψ ∈ D

• 3- ψ ∈ D ⇒ ψ ∈ C or 3- ψ ∈ C.

We proceed by induction on the structure of σ. We construct au-
tomata for atomic strategies and compose them for complex strate-
gies.
(σ ≡ [ψ 7→ a]): The automaton works as follows. Its states keep
track of past formulas satisfied along a play as game positions are
traversed and that the valuation respects the constraints generated
for satisfying ψ. The automaton also guesses a move at every step
and checks that this is indeed a when ψ holds; in such a case this is
the output of the automaton. Formally:

Aσ = (Qσ, δσ, oσ, Iσ), where

• Qσ = AT σ × Σ.

• Iσ = {(C, x)|C ∈ C0, V (s0) = C ∩ Pσ, x ∈ Σ}.

• For a transition s
a

−→ s′ in G, we have:
δσ((C, x), s, a) = {(C ′, y)|C −→ C ′, V (s′) = C ′ ∩ Pσ, y ∈ Σ}.

• o((C, x), s) =

{

a if ψ ∈ C
x otherwise

We now prove the assertion in the lemma that µ ∈ Lang(Aσ) iff
µ |=i σ.

(⇒) Suppose µ ∈ Lang(Aσ). Let T = (W 1
µ ,W 2

µ ,−→T , λ) be the
Q-labelled tree accepted by Aσ. We need to show that for all s ∈ Wµ,
we have ρs, s |= ψ implies out(s) = a.

The following claim, easily proved by structural induction on the
structure of ψ, using the definition of −→ on atoms, asserts that the
states of the automaton check the past requirements correctly. Below
we use the notation ψ ∈ (C, x) to mean ψ ∈ C.

Claim 3.3. For all s ∈ Wµ, for all ψ′ ∈ SFψ(σ), ψ′ ∈ λ(s) iff
ρs, s |= ψ′.

10

Assume the claim and consider any s ∈ Wµ. From claim 3.3, we
have ρs, s |= ψ implies ψ ∈ λ(s). By the definition of o, we have
o(λ(s), s) = a.

(⇐) Suppose µ |=1 [ψ 7→ a]. From the semantics, we have ∀s ∈
W 1

µ , ρs, s |= ψ implies out(s) = a. We need to show that there exists
a Q-labelled tree accepted by Aσ. For any s let the Q-labelling be
defined as follows. Fix x0 ∈ Σ.

• For s ∈ W 1
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, out(s)).

• For s ∈ W 2
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, x0).

It is easy to check that λ(s) constitutes an atom and the transition
relation is respected. By the definition of o, we get that it is accepting.
(σ ≡ σ1·σ2): By induction hypothesis there exist Aσ1

= (Qσ1
, δσ1

, oσ1
,

Iσ1
) and Aσ2

= (Qσ2
, δσ2

, oσ2
, Iσ2

) which accept all strategies satis-
fying σ1 and σ2 respectively. To obtain an automaton which accepts
all strategies which satisfy σ1 ·σ2 we just need to take the product of
Aσ1

and Aσ2
.

(σ ≡ σ1 + σ2): We take Aσ to be the disjoint union of Aσ1
and Aσ2

.
Since the automaton is nondeterministic with multiple initial states,
we retain the intial states of both Aσ1

and Aσ2
. If a run starts in an

initial state of Aσ1
then it will never cross over into the state space

of Aσ2
and vice versa.

(σ ≡ π ⇒ σ′): By induction hypothesis we have Aπ = (Qπ, δπ, oπ, Iπ)
which accepts all player 2 strategies satisfying π and Aσ′ = (Qσ′ , δσ′ ,
oσ′ , Iσ′) which accepts all player 1 strategies satisfying σ′.

The automaton Aσ has the product states of Aπ and Aσ′ as its
states along with a special state qfree . The automaton keeps simulat-
ing both Aπ, Aσ′ and keeps checking if the path violates the advice
given by Aπ, if so it moves into state qfree from which point onwards
it is “free” to produce any advice. Till π is violated, it is forced to
follow the transitions of Aσ′ .

Define Aσ = (Q, δ, o, I) where Q = (Qπ × Qσ′) ∪ (qfree × Σ). The
transition function is given as follows:

• For s ∈ W 1
µ , we have δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈ δπ(qπ, s, a)

and q2 ∈ δσ′(qσ′ , s, a)}.

• For s ∈ W 2
µ , we have:

– If oπ(qπ, s) 6= a, then δ((qπ, qσ′), s, a) = {(qfree , a)|a ∈ Σ}.

11

– If oπ(qπ, s) = a, then δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈
δπ(qπ, s, a) and q2 ∈ δσ′(qσ′ , s, a)}.

• δ((qfree , x), s, a) = {(qfree , a)|a ∈ Σ}

The output function is defined as follows: For s ∈ W 1
µ , o((qπ, qσ′), s) =

oσ′(qσ′ , s) and o((qfree , x), s) = x.
The automaton keeps simulating both Aπ, Aσ′ and keeps checking

if the path violates π. If so it moves into state qfree from which point
onwards it is not constrained to follow σ′.

q.e.d.

4 Best response

Since a strategy specification denotes a set of strategies satisfying
certain propeties, notions like strategy comparison and best response
with respect to strategy specifications need to be redefined.

Given a game arena G = (G, E) and a strategy specification π for
player i, we can have different notions as to when a specification for
player i is “better” than another.

• Better1(σ, σ′): if ∃F ∈ 2R,∃µ′ with µ′ |=i σ′ such that ∀τ with
τ |=i π, ρτ

µ′ is winning with respect to E i
F then ∃µ with µ |=i σ

such that ∀τ with τ |=i π, ρτ
µ is winning with respect to E i

F .

The predicate Better1(σ, σ′) says that, for some (binary) out-
come F , if there is a strategy conforming to the specification
σ′ which ensures winning E i

F then there also exists a strategy
conforming to σ which ensures winning E i

F as well.

• Better2(σ, σ′): if ∃F ∈ 2R such that ∀µ′ with µ′ |=i σ′, ∀τ with
τ |=i π, ρτ

µ′ is winning with respect to E i
F then ∀µ with µ |=i σ,

∀τ with τ |=i π, ρτ
µ is winning with respect to E i

F .

This notion is best understood contrapositively: for some (bi-
nary) outcome F , whenever there is a strategy conforming to
σ which is not winning for E i

F , there also exists a strategy con-
forming to σ′ which is not winning for E i

F . This can be thought
of as a soundness condition. A risk averse player might prefer
this way of comparison.

To algorithmically compare strategies, we first need to be able to
decide the following questions. Let σ and π be strategy specifications
for player i and player i and E i

F a binary evaluation automaton for
player i.

12

• Does player i have a strategy conforming to σ which ensures a
valid play which is winning for i with respect to E i

F , as long as
player i is playing a strategy conforming to π (abbreviated as
∃σ,∀π : E i

F)?

• Is it the case that for all strategies of player i conforming to σ,
as long as player i is playing a strategy conforming to π, the
result will be a valid play which is winning for i with respect to
E i

F (abbreviated as ∀σ,∀π : E i
F)?

We call this the verification question. The synthesis question is given
π and E i

F to construct a specification σ such that ∃σ,∀π : E i
F holds.

Once we can show that the verification question is decidable and
synthesis possible, the game theoretic questions of interest include:
For a game G = (G, E),

• Given strategy specifications σ and π, check if σ is a best re-
sponse to π.

• Given a strategy specification profile 〈σ, π〉, check if it is a Nash
equilibrium.

• Given a strategy specification π for player i and F ∈ F , syn-
thesize (if possible) a specification σ for i such that ∃σ,∀π : E i

F

holds.

• Given a strategy specification π for i, synthesize a specification
σ such that σ is the best response to π.

The main theorem of the paper is the following assertion.

Theorem 4.1. Given a game G = (G, E) and a strategy specification
π for player i,

1. The verification problem of checking whether for a player i strat-
egy specification σ and a binary evaluation automaton E i

F , if
∃σ,∀π : E i

F and ∀σ,∀π : E i
F holds in G is decidable.

2. For a binary evaluation automaton E i
F , it is possible to syn-

thesize (when one exists), a deterministic advice automaton Ai

such that Ai,∀π : E i
F holds.

3. For a specification σ, checking if σ is the best response to π is
decidable.

13

4. It is possible to synthesize a deterministic advice automaton Ai

such that Ai is the best response to π.

Proof. Without loss of generality we assume i = 1, i = 2 and σ, π to
be the strategy specification for player 1 and 2 respectively.

For an advice automaton Ai = (Qi, δi, Ii, oi), we define the re-
striction of G with respect to Ai to be G |\ Ai = (U,−→i, Si) where
U = W × Qi and Si = {s0} × Ii. In U , the nodes are partitioned
in the obvious way. i.e. u = (s, q) ∈ U i iff s ∈ W i. The transition
relation −→i: U × Σ → U is defined as,

• (s, q)
a

−→i (s′, q′) iff s
a

−→ s′, q′ ∈ δi(q, s, a) and (s ∈ W i implies
oi(q, s) = a).

For a node u = (s, q) ∈ U , let enabled(u) = {a|∃(s′, q′) ∈ U with

(s, q)
a

−→ (s′, q′)}. Note that for all u ∈ U i, |enabled(u)| = 1
G|\Aπ is the arena restricted with π. i.e. all strategies of player 2 in

G|\Aπ conform to π. The game arena G|\Aπ is no longer deterministic.
However, for any player 2 node in G |\ Aπ there is exactly one action

enabled (i.e.
∣

∣

∣
{a ∈ Σ | ∃u′ with u

a
−→ u′}

∣

∣

∣
= 1).

(1): To check if ∃σ,∀π : E i
F holds, we build a non-deterministic

tree automaton T which runs on G |\ Aπ. For a 1 node, it guesses an
action “a” which conforms to σ and branches out on all a edges. For
a 2 node, there is only one action enabled in G |\ Aπ, call the action
b. The automaton branches out on all b labelled edges. T runs E1

F

in parallel to verify that all plays thus constructed are winning for 1
with respect to E1

F . If T has an accepting run, then ∃σ,∀π : E i
F holds

in G. The details are as follows.
Consider ∃σ,∀π : E i

F in G. According to the proof of lemma
3.2, construct the advice automaton Aσ = (Qσ, δσ, Iσ, oσ) and Aπ =
(Qπ, δπ, Iπ, oπ). Let E i

F = (M, {¢i}i∈{1,2}) with M = (R,∆, r0).
Let G′ = G |\ Aπ = (U,−→π, Sπ). Its easy to see that all player

2 strategies in G′ is accepted by Aπ. Therefore we have ∃σ,∀π : E i
F

holds in G iff there is a strategy µ accepted by Aσ such that for each
strategy τ of 2 in G |\ Aπ, the resulting path is winning for 1 with
respect to E i

F . We give a nondeterministic top down tree automaton
T , which checks this property. Since Sπ in general has more than one
element, we add a new position called root and for all u ∈ Sπ add
edges labelled with ǫ between root and u.

Formally, the tree automaton T = (Q, δ, I) where Q = (Qσ ×
R) ∪ {qroot} and I = qroot . For T in a state q, reading node u,
δ(q, u) = 〈(q1, a, 1), (q2, a, 2)〉 means the automaton will branch out

14

into two copies, on the first a successor it goes into state q1 and

the second it goes into state q2. For a node u = (s, qπ), let
→
u ⌈a

have k elements and let the successors be ordered in some way. The
transition relation is defined as follows:

• If u ∈ U1, then δ((q, r), u) = {〈((q′, r′), a, 1), . . . , ((q′, r′), a, k)〉 |
oσ(q, s) = a, q′ ∈ δσ(q, s, a) and r′ = ∆(r, s, a)}.

• If u ∈ U2, then δ((q, r′), u) = {〈((q′, r′), a, 1), . . . , ((q′, r′), a, k)〉 |
q′ ∈ δσ(q, s, a) and r′ = ∆(r, s, a)}.

• If u = root , then δ(qroot , u) = {〈((q0, r0), ǫ, 1), . . . , ((q0, r0), ǫ, k)〉 |
q0 ∈ Iσ}.

To check if ∀σ,∀π : E i
F holds, it suffices to check if all plays in

(G |\ Aπ) |\ Aσ is winning for 1 with respect to E1
F . This can be done

easily.
(2): We want a deterministic advice automaton A1 which ensures

that for all strategies of 2 conforming to π the play is “winning” for
player 1. We construct a tree automaton T which mimics the subset
construction to synthesize A1. The states of T are the subsets of
states of Aπ. At game position of player 1, it guesses a move and for
every player 2 game position, it branches out on all the action choices
of Aπ where for each move the resulting new state is the subset of
states given by the nondeterministic transition relation of Aπ. T
runs E1

F in parallel and checks if all paths constitutes a valid play
and that the play is winning for 1 with respect to E1

F . If there is an
accepting run for T , then constructing A1 is easy. The state space of
A1 is the set of all subsets of the states of Aπ. The transition relation
is derived from the usual subset construction performed by T . The
output function basically follows the accepting run of T .

Let Aπ = (Qπ, δπ, Iπ, oπ) be the advice automaton corresponding
to the strategy specification π. Let B = (Qb, δb, Ib, G). We extend
the transition relation δπ as follows. For a set X ⊆ Qπ, δπ(X, s, a) =
∪q∈Xδπ(q, s, a). Let T = (Q, δ, q0) be the tree automaton where
Q = 2Qπ × R and the initial state q0 = Iπ × {r0} is the set of all
initial states of Aπ. For a tree automaton in state q reading node s
of the tree, δ(q, s) = 〈(q1, a), (q2, b)〉 means that the automaton will
branch out into two copies , on the a labelled outgoing edge of s it
goes into state q1 and on the b labelled outgoing edge, it goes into
state q2.

For game position s, and an automaton state q = ({q1
π, . . . , qk

π}, r),
the transition relation is defined as follows:

15

• if s ∈ W 1: δ(q, s) = {〈((p, r′), a)〉|∃s
a

−→ s′ in G, p = δπ(q, s, a)
and r′ = ∆(r, s, a)}.

• if s ∈ W 2: Let {a1, . . . , ak} = {oπ(q1
π), . . . , oπ(qk

π)}.
δ(q, s) = {〈((p1, r1), a1), . . . , ((pk, rk), ak)〉|pi = δπ(q, s, ai) and
ri = ∆(r, s, ai)}.

If T has a successful run on G, then let Tπ be the run tree with
λ being the labelling function from game positions to Q. We build
the advice automaton for 1 from this tree. The advice automaton
A1 = (q1, δ1, q

0
1 , o1) where Q1 = 2Q

π , q0
1 = Iπ, δ1(q1, s, a) = q′ if in

Tπ we have s
a

−→ s′ where λ(s) = (q, r) and λ(s′) = (q′, r′). By
definition of the transition function of T , δ1 is deterministic. The
output funciton o1, for each of the 1 nodes is dictated by the guess
made by T on the succcessful run Tπ.

(3): Given σ and π to check if σ is the best response to π, we use
the tree automaton construction in (1) with a slight modification.

We enumerate the elements of 2R in such a way that those higher
in ¢

1 appear earlier in the enumeration. For each F , we construct a
tree automaton as in (1), the only difference being that the guesses
made by T at player 1 game positions are not restricted by σ. T runs
E1

F in parallel to check if player 1 can ensure F for all choices of 2
which conform to π. Since the evaluation automaton is “complete”,
the play eventually settles down in one of F ′ ∈ 2R. Therefore, as we
try elements of 2R in order, the tree automaton succeeds for some
E1

F ′ . This gives us the “best” outcome which player 1 can guarantee.
We then check if ∃σ,∀π : E1

F ′ holds in G. If it does then Aσ is a best
response to Aπ.

This also implies that we can check whether a strategy profile
(presented as advice automata) constitutes a Nash equilibrium.

(4) is similar to (3). We enumerate 2R and find the “best” outcome
that can be achieved and using the synthesis procedure, synthesize
an advice automaton for this outcome. q.e.d.

5 A strategy logic

We now discuss how we may reason about structured strategies in a
formal logic. Formulas of the logic (also referred to as game formulas)
are built up using structured strategy specifications (as defined in
section 3). Game formulas describe the game arena in a standard
modal logic, and in addition specify the result of a player following
a particular strategy at a game position, to choose a specific move

16

a. Using these formulas one can specify how a strategy helps to
eventually win (ensure) an outcome β.

Syntax

Let P i = {pi
0, p

i
1, . . .} be a countable set of proposition symbols where

τi ∈ Pi, for i ∈ {1, 2}. Let P = P 1 ∪ P 2. τ1 and τ2 are intended
to specify, at a game position, which player’s turn it is to move.
Further, the logic is parametrized by the finite alphabet set Σ =
{a1, a2, . . . , am} of players’ moves and we only consider game arenas
over Σ.

The syntax of the logic is given by:

Π := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉α | 3- α | (σ)i : c | σ ;i β

where c ∈ Σ, σ ∈ Strat i(P i), β ∈ Past(P i). The derived con-
nectives ∧, ⊃ and [a]α are defined as usual. Let 2- α = ¬3-¬α,

〈X〉α =
∨

a∈Σ

〈a〉α and [N]α = ¬〈X〉¬α.

The formula (σ)i : c asserts, at any game position, that the strat-
egy specification σ for player i suggests that the move c can be played
at that position. The formula σ ;i β says that from this position,
following the strategy σ for player i ensures the outcome β. These
two modalities constitute the main constructs of our logic.

Semantics

The models for the logic are extensive form game trees along with a
valuation function. A model M = (T , V) where T = (S,−→, s0) is a
game tree obtained by the unfolding of the arena G, and V : S → 2P

is the valuation function.
Given a game tree T and a node s in it, let ρs

s0
: s0

a1=⇒ s1 · · ·
am=⇒

sm = s denote the unique path from s0 to s. For the purpose of
defining the logic it is convenient to define the notion of the set of
moves enabled by a strategy specification at a node s (denote σ(s)).
For a strategy specification σ ∈ Strat i(P i) and a node s we define
σ(s) as follows:

• null(s) = Σ.

• [ψ 7→ a]i(s) =

{

{a} if s ∈ W i and ρs
s0

,m |= ψ
Σ otherwise.

• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).

17

• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).

• (π ⇒ σ)(s) =

{

σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj)
Σ otherwise.

We say that a path ρs′

s : s = s1
a1=⇒ s2 · · ·

am−1

=⇒ sm = s′ in
T conforms to σ if ∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path
constitutes a proper play, i.e. when s = s0, we say that the play
conforms to σ.

The following proposition is easy to see.

Proposition 5.1. Given a strategy µ for player i along with a spec-
ification σ, µ |=i σ (as defined in section 3) iff for all player i nodes
s ∈ µ we have out(s) ∈ σ(s).

For a game tree T , a node s let Ts denote the tree which consists
of the unique path ρs

s0
and the subtree rooted at s. For a strategy

specification σ ∈ Strat i(P i), we define Ts |
\ σ = (Sσ,=⇒σ, s0) to be

the least subtree of Ts which contains the unique path from s0 to s
and satisfies the following property.

• For every s′ in Sσ such that s =⇒∗
σ s′,

– s′ is an i node: s′
a

=⇒ s′′ and a ∈ σ(s′) ⇔ s′
a

=⇒σ s′′.

– s′ is an i node: s′
a

=⇒ s′′ ⇔ s′
a

=⇒σ s′′.

The truth of a formula α ∈ Π in a model M and position s
(denoted M, s |= α) is defined by induction on the structure of α,

as usual. Let ρs
s0

be s0
a0=⇒ s1 · · ·

am−1

=⇒ sm = s.

• M, s |= p iff p ∈ V (s).

• M, s |= ¬α iff M, s 6|= α.

• M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.

• M, s |= 〈a〉α iff there exists s′ ∈ W such that s
a
→s′ and M, s′ |=

α.

• M, s |= 3- α iff there exists j : 0 ≤ j ≤ m such that M, sj |= α.

• M, s |= (σ)i : c iff c ∈ σ(s).

• M, s |= σ ;i β iff for all s′ such that s =⇒∗
σ s′ in Ts |\ σ, we

have M, s′ |= β ∧ (τi ⊃ enabledσ).

18

1
σ(s)∋a

~~~~
~~

~~
~~

x

²²

y

ÃÃ
AA

AA
AA

AA
s

2

x

¡¡¢¢
¢¢

¢¢
¢¢

y

²²

z

ÂÂ
@@

@@
@@

@@
β ¬β β

β β β

Figure 1.

where enabledσ ≡
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).

Figure 1 illustrates the semantics of σ ;1 β. It says, for an 1
node β is ensured by playing according to σ; for a 2 node, all actions
should ensure β.

The notions of satisfiablility and validity can be defined in the
standard way. A formula α is satisfiable iff there exists a model M
such that M, s0 |= α. A formula α is said to be valid iff for all models
M , we have M, s0 |= α.

Truth Checking

The truth checking problem is given a model M = (T , V ) and a
formula α0, determine whether M, s0 |= α0. The following theorem
shows the decidability of the truth checking problem.

Theorem 5.2. Given a model M = (T , V ) and a formula α0, we
can construct a nondeterministic Büchi tree automaton Tα0

such that
M, s0 |= α0 iff Tα0

has an accepting run on M .

Proof. Let {σ1, . . . , σm} be the strategy specification formulas ap-
pearing in α0 and Aσ1

, . . .Aσm
be the advice automata corresponding

to the specifications. The tree automaton keeps track of the atoms
(locally consistent sets of subformulas) of α0 and the states of each
of the advice automata. At any game position, it guesses a new atom
which is consistent with the game position and a state for each of
the advice automaton from its transition relation. For the subfor-
mula (σ)i : a in the atom, it only needs to check if a is the action
dictated by the output function of the advice automaton for σ. How-
ever, ¬(σ ;i β) is a requirement which says that there exists a game

19



position where enabledσ does not hold or β is false. We keep track of
such formulas in a “requirement set” U . When the tree automaton
branches, it guesses, for each branch, which requirements will be sat-
isfied on that branch. The Büchi acceptence condition is simply all
the states where the “requirement set” U is empty.

We will find some abbreviations useful:

• invσ
i (a, β) = (τi ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fact that

after an “a” move by player i which conforms to σ, σ ;i β
continues to hold.

• invσ
i
(β) = τi

⊃ [N ](σ ;i β) says that after any move of i,
σ ;i β continues to hold.

• enabledσ =
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).

For a formula α, let SF (α) denote the subformula closure of α.
In addition to the usual downward closure we also require that σ ;i

β ∈ SF (α) implies enabled i, invσ
i (a, β), invσ

i
(β), β ∈ SF (α). Call

C ⊆ SF (α) an atom if it is propositionally consistent and complete,
in addition we require the following to hold.

• σ ;i β ∈ C ⇒ enabledσ, invσ
i (a, β), invσ

i
(β) ∈ C.

• ¬(σ ;i β) ∈ C ⇒ (¬enabledσ or ¬β) ∈ C or (〈X〉¬(σ ;i

β)) ∈ C.

Let AT α denote the set of atoms. Let C0 = {C ∈ AT α| there

does not exist any 3- γ ∈ C}. For C,D ∈ AT α, define C
a

−→ D iff for
all 3- γ ∈ SF (α), the following conditions hold.

• γ ∈ C ⇒ 3- γ ∈ D.

• 3- γ ∈ C ⇒ γ ∈ C or 3- γ ∈ C.

• [a]γ ∈ C ⇒ γ ∈ D.

Let {σ1, . . . , σm} be the strategy specification formulas appear-
ing in α0 and let Aσ1

, . . .Aσm
be the advice automata correspond-

ing to the specifications. The tree automata T = (Q, δ, I, F ) where
Q ⊆ (AT α0

∪ reject) × (2SF(α0))3 × Qσ1
× . . . × Qσm

such that
(C,U,Z, Y, q1, . . . , qm) ∈ Q iff (σ)i : a, τi ∈ C ⇒ oσ(qσ) = a. The
sets Z and Y are used to keep track of the 〈a〉α formulas and ensure

20



that the edge relation is consistent with these formulas. The set of ini-
tial states I = {(C,U,Z, Y, q0

1 , . . . , q0
m)|C ∈ C0, V (s0) = C ∩Pα0

, U =
∅, Z = ∅ and q0

i ∈ Iσi
}, Y = {〈a〉α|a ∈ Σ and 〈a〉α ∈ C}.

For a node s, let s1, . . . , sk be its successors in G with s
aj

−→ sj

for 1 ≤ j ≤ k. For a state q = (C,U,Z, Y, q1, . . . , qm) at s, the
automaton guesses a partition of U = U1 ∪ . . . ∪ Uk and a parti-
tion Y = Z1 ∪ . . . ∪ Zk. The transition relation is then defined as:
〈((C1, U

′
1, Z1, Y1, q

1
1 , . . . q1

m), a1), . . . ((Ck, U ′
k, Z1, Y1, q

k
1 , . . . , qk

m), ak)〉 ∈
δ((C,U, q1, . . . , qm), s) iff

• Cj = reject if there exists 〈a〉α ∈ Zj such that α /∈ Cj or aj 6= a

• For 1 ≤ j ≤ k, C
aj

−→ Cj and V (sj) = Cj ∩ Pα0
.

• For 1 ≤ j ≤ k, 1 ≤ r ≤ m, qj
r ∈ δr(qr, s, aj).

• U ′
j =

{

{σ ;i β ∈ Uj | β, enabledσ ∈ Cj} if U 6= ∅

{σ ;i β ∈ Cj | β, enabledσ ∈ Cj} if U = ∅

• Yj = {〈a〉α | 〈a〉α ∈ Cj}

Once the automaton reaches the reject state then it remains in
that state for all transitions. The Büchi acceptence condition is, F =
{q = (C,U,Z, Y, q1, . . . , qm) ∈ Q | U = ∅ and C ∈ AT α0

}. q.e.d.

Complexity of truth checking

For the given formula α0, let |α0| = n. The states of the tree au-
tomaton are the atoms of α0 and the states of each of the advice
automaton. Since the number of strategy specifications occuring
in α0 is bounded by the size of α0, the size of the tree automaton
|T | = O(n · 2n). Let TG denote the tree automaton accepting G.
We want to check for emptiness of T ∩ TG . Since T is a Büchi tree
automaton this gives us a total time complexity of O(2n).

References

[AHK98] Rajeev Alur, Thomas A. Henzinger, and Orna Kupfer-
man. Alternating-time temporal logic. Lecture Notes
in Computer Science, 1536:23–60, 1998.

21



[Bon91] G. Bonanno. The logic of rational play in games of
perfect information. Economics and Philosophy, 7:37–
65, 1991.

[Gal79] David Gale. The game of hex and brouwer fixed-
point theorem. The American Mathematical Monthly,
86:818–827, 1979.

[Gor01] V. Goranko. Coalition games and alternating tempo-
ral logics. Proceedings of 8th conference on Theoretical
Aspects of Rationality and Knowledge (TARK VIII),
pages 259–272, 2001.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke,
editors. Automata, Logics and Infinite Games, volume
2500 of Lecture Notes in Computer Science. Springer,
October 2002.

[HvdHMW03] Paul Harrenstein, Wiebe van der Hoek, John-Jules
Meyer, and Cees Witteven. A modal characteriza-
tion of nash equilibrium. Fundamenta Informaticae,
57:2–4:281–321, 2003.

[Nas50] J.F. Nash. Equilibrium points in n-person games. Pro-
ceedings of the National Academy of Sciences, 36:89–
93, 1950.

[OR94] M.J. Osborne and A. Rubinstein. A course in game
theory. MIT Press, 1994.

[Par85] Rohit Parikh. The logic of games and its applications.
Annals of Discrete Mathematics, 24:111–140, 1985.

[Pau01] Marc Pauly. Logic for Social Software. PhD thesis,
University of Amsterdam, October 2001.

[RS06] R. Ramanujam and Sunil Simon. Axioms for compos-
ite strategies. Proceedings of Logic and Foundations
of Games and Decision Theory, July 2006.

[vB01] Johan van Benthem. Games in dynamic epistemic
logic. Bulletin of Economic Research, 53(4):219–248,
2001.

22



[vdHJW05] Wiebe van der Hoek, Wojtek Jamroga, and Michael
Wooldridge. A logic for strategic reasoning. Proceed-
ings of the Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AA-
MAS 05), pages 157–164, 2005.

[Zer13] E. Zermelo. Über eine Anwendung der Mengenlehre
auf die Theorie des Schachspiels,. In Proceedings of the
Fifth Congress Mathematicians, pages 501–504. Cam-
bridge University Press, 1913.

23


