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ABSTRACT
We study repeated normal form games where the number
of players is large and suggest that it is useful to consider
a neighbourhood structure on the players. The structure
is given by a graph G whose nodes are players and edges
denote visibility. The neighbourhoods are maximal cliques
in G . The game proceeds in rounds where in each round the
players of every clique X of G play a strategic form game
among each other. A player at a node v strategises based on
what she can observe, i.e., the strategies and the outcomes
in the previous round of the players at vertices adjacent to
v. Based on this, the player may switch strategies in the
same neighbourhood, or migrate to another neighbourhood.
Player types, giving the rationale for such switching, are
specified in a simple modal logic.

We show that given the initial neighbourhood graph and
the types of the players in the logic, we can effectively decide
if the game eventually stabilises. We then prove a charac-
terisation result for these games for arbitrary types using
potentials. We then offer some applications to the special
case of weighted co-ordination games where we can compute
bounds on how long it takes to stabilise.

Categories and Subject Descriptors
F.4 [Mathematical logic and formal languages]: Modal
logic, temporal logic

General Terms
Theory

Keywords
Game dynamics, neighbourhood structure, type specifica-
tion, potential.

1. SUMMARY
In Indian towns, it is still possible to see vegetable sellers

who carry vegetables in baskets or pushcarts and set up shop
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in some neighbourhood. The location of their ‘shop’ changes
dynamically, based on the seller’s perception of demand for
vegetables in different neighbourhoods in the town, but also
on who else is setting up shop near her, and on her percep-
tion of how well these (or other) sellers are doing. Indeed,
when she buys a lot of vegetables in the wholesale market,
the choice of her ‘product mix’ as well as her choice of lo-
cation are determined by a complex rationale. While the
prices she quotes do vary depending on general market situ-
ation, the neighbourhoods where she sells also influence the
prices significantly: she knows that in the poorer neighbour-
hoods, her buyers cannot afford to pay much. She can be
thought of as a small player in a large game, one who is af-
fected to some extent by play in the entire game, but whose
strategising is local where such locality is itself dynamic.

In the same town, there are other, relatively better off
vegetable sellers who have fixed shops. Their prices and
product range are determined largely by wholesale market
situation, and relatively unaffected by the presence of the
itinerant vegetable sellers. If at all, they see themselves in
competition only against other fixed-shop sellers. They can
be seen as big players in a large game.

What is interesting in this scenario is the movement of a
large number of itinerant vegetable sellers across the town,
and the resultant increase and decrease in availability of spe-
cific vegetables as well as their prices. We can see the veg-
etable market as composed of dynamic neighbourhoods that
expand and contract, and the dynamics of such a structure
dictates, and is in turn dictated by the strategies of itinerant
players.1

Such division into neighbourhoods need not be spatial or
physical, but can also be logical. Consider, for instance,
online stores such as Amazon, eBay, Yahoo Shopping, Rediff
Shopping etc. Sellers put their items up for sale on one or
more of these stores based on the demand of these items
and the outcomes so far. A seller who puts her item up on
eBay today may very well switch to Amazon tomorrow if the
demand there is higher. The buyers, on their part, would
generally want the best price on offer. Hence a buyer who
bought an item from Amazon today might buy another of
the same kind tomorrow from eBay.

We call games large when the number of players in them
is so large that it is hard to consider any player to be play-
ing against everyone else, and where a player may not even
know the number of players in the game, let alone how each

1In fact, the movement of these sellers may further depend
on the cost of transport between these places because of
small profit margins.
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of them play. The market and the Internet are often cited as
examples of large games. In such games, a flat structure of
all players as “equals” hides important detail: neither does a
player consider the detailed play of every other, nor does a
player consider all other players to be of one ‘average’ type.
We suggest that it is useful to group players into logical
neighourhoods in such games: within a neighbourhood play-
ers strategise interpersonally; across neighbourhoods their
visibility, and hence strategising, is limited. In the latter sit-
uation, heuristic play becomes significant. Moreover, game
dynamics alters neighbourhood structure, and conversely.

Though we speak of dynamic neighbourhood structure,
we note that static neighbourhood structure makes sense as
well. For instance, consider the game of chess. A player
can be a grandmaster, a national master, a professional or
an amateur. It is generally the case that the grandmasters
play among themselves, the national masters play each other
and so on. Moreover the lesser non-professional players are
also constrained by time, location, resources etc. Thus, for
instance, a medium rated player in New Delhi would usually
take part in tournaments in and around New Delhi. But
how do these players strategise? The same medium rated
player may not be able to take part in a tournament in
Moscow (say), but that doesn’t prevent her from following
what is going on in that particular tournament. If a player
in the tournament in Moscow is faring well by playing the
Hungarian defence, our player in New Delhi may well employ
the same strategy in her tournament in the hope of doing
better.

It can be meaningfully argued that the games in New
Delhi, Dortmund and Wijk an Zee are all subgames in one
large game, in the sense that strategising and play in one
is influenced by play in the other and become part of com-
munal memory. Once again, a neighbourhood substructure
abstracts such influence in the large game.

Similar structuring is seen in many other games. In foot-
ball, for instance, every team all over the world participates
only in three or four different leagues each year: the English
Premier League, La Liga, Serie A, Bundesliga etc. But ev-
ery team closely follows the unfolding of play in the other
leagues and strategises based not only on the outcomes of its
own league but also on those of the others. Here again, the
neighbourhoods may change dynamically as the game pro-
gresses. These changes are brought about by teams/players
switching allegiances. A player playing in league 1 today
may think that his strategy and style of play is more suited
for a different league and that he can do much better there.
Hence he might join the latter league tomorrow.

In this paper, we study large games in which players are
arranged in certain neighbourhoods. The neighbourhood
structure is given by a finite undirected graph where the
vertices of the graph represent players and edges represent
their visibility. The cliques in the graph represent the dif-
ferent neighbourhoods of players. We prove a characteriza-
tion theorem on such games. Then we study weighted co-
ordination anonymous games. We consider both the varia-
tions: neighbourhood structures that are static as well as the
dynamic ones (where the neighbourhood structure changes
after every round).

Our model is that of an infinite repeated game. In every
round every player plays a strategic form game with the
players of her clique. The players are among a fixed set of
types, which determine their strategies. In every strategic

form game in a neighbourhood, the payoffs of the players
are determined by the action profile of the players of that
neighbourhood in that particular round.

We are interested in the dynamics of such games and their
eventual stability. What action profiles, strategies, config-
urations etc. eventually arise? We call a game eventually
stable if eventually a set of configurations repeat cyclically
forever (e.g. a set of localities in the town for the vegetable
seller in an Indian town). This set might be a singleton in
which case the actions of the players don’t change anymore;
the configuration is static. We are also interested in how
long it takes for such a game to eventually stabilise. We
show the following:

• We define a simple modal logic in which a player’s
rationale for type switching can be specified. When
the types of the players are specified in this logic, we
show that it can be effectively decided whether the
game eventually stabilises.

• When the types of the players are unknown, we show
that one can associate a potential with every configu-
ration such that the potential becomes constant if and
only if the game eventually stabilises.

• We study an application to weighted co-ordination games
and explore the consequences when the players play
simple imitative strategies. We show that in such cases
the game always stabilises and one can compute an up-
per bound on the number of rounds needed to attain
stability.

A valid objection at this point, at least in the case of
static neighbourhoods, is the following. If the players of ev-
ery neighbourhood play normal form games in every round
among themselves why is it not the case that the expected
outcome is a Nash equilibrium of every normal form game in
every neighbourhood? There are two explanations for this.
First, since the model is that of repeated normal form, there
might be action tuples other than the Nash equilibrium tu-
ples that are in equilibrium (as for example in tit-for-tat
in repeated prisoners’ dilemma). But the more potent argu-
ment is that when the game is large, players hardly have the
expertise, knowhow or even resources to compute and play
the Nash equilibrium tuple. They play based on heuristics
and employ simple strategies such as imitation, tit-for-tat,
follow-the-leader etc. Hence the outcome may be much more
varied than the Nash equilibrium tuples. Thus, we feel that
a more natural question to ask in the setting of large games
is on the dynamics of the game given the types of the players
and their eventual stability and also on what configurations
eventually arise. See [14, 13, 12] for more on this.

Related Work
Analysis of eventual dynamics in games is of course not new
in game theory. In the study of dynamical systems, re-
searchers analyse games where the dynamics is given by cer-
tain differential equations and the various parameters of the
equation control the dynamics. The solution to the equation
gives the stable behaviour. Evolutionary game theory [18,
17] studies how games evolve by the successive elimination
of dominated strategies and the emergence of evolutionary
stable strategies.

We study games where the players are represented by the
vertices of a graph and the edges of the graph give the other
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players they can interact with. Such games have been stud-
ied, for instance, in [10, 9, 7, 8]. They analyse games where
the payoff of players depend only on her own action and the
actions of her adjacent players as given by the graph struc-
ture. They study the existence and computation of Nash
equilibria in such games. Young ([15, 16]) studies how inno-
vations spread through society by observation and interac-
tion. He too models the interaction structure of the players
by a finite undirected graph. Imitation dynamics in conges-
tion games have been studied, for instance, in [2, 1], where
they study asymptotic time complexities of the convergence
or non-convergence to Nash equilibrium in congestion games
when the players play imitative strategies.

In the weighted co-ordination games we study in this pa-
per, in every round and in every neighbourhood, the payoffs
of the strategic form games do not depend on the actual
action profile of the players in the neighbourhood but only
on the distribution of the actions. As the actions come from
a common set, such a distribution, in every round, is well-
defined and non-trivial. Games where the payoffs depend on
the action distributions of the players are called anonymous
games and have been extensively studied in the literature.
See, for instance, [3, 4, 5, 6] and the references therein.

2. PRELIMINARIES
Let N = {1, 2, . . . , n} be the set of players. The players

are arranged in a neighbourhood structure given by a simple
undirected graph G = (V [G], E[G]) without self loops called
the neighbourhood graph. Every vertex of G stands for a
player and we use the letters i, j, k etc. to denote both the
vertices of the graph and players from N . The neighbour-
hood graph G is topologically described as follows.

Let clq [G] be the set of maximal cliques of G. For simplic-
ity, we assume that the maximal cliques are non-overlapping,
that is, every vertex i ∈ V [G] is part of exactly one maximal
clique. The results of this paper go through even we drop
this assumption. These maximal cliques are the neighbour-
hoods of the players. Moreover, a vertex i in any clique X
may have edges to vertices in some other clique X ′. For a
player, i these edges give the visibility structure of i. Thus
the player i can view the moves and outcomes of all the
players that are in her clique and also that of some players
from other neighbourhoods.

Let A = {a1, a2, . . . , a|A|} denote the common set of ac-
tions of all the players. Given a neighbourhood graph G, we
denote by X[G](i) the maximal clique (neighbourhood) that
player i belongs to. As usual, we let iE[G] = {j | (i, j) ∈
E[G]} be the set of vertices adjacent to i, that is iE[G] is the
set of players visible to player i. Note that iE[G]∩X[G](i) =
X[G](i)\{i}. Let nbd [G](i) be the set of neighbourhoods vis-
ible to player i. These are the neighbourhoods, at least one
player of which i can view. Thus nbd [G](i) = {X[G](j) | j ∈
iE[G]}. See Figure 1 for an example.

The type of a player specifies how she strategises. These
are functions that will be defined below, but we assume a set
Γ of player types, and a type map typ : N → Γ. As a rule,
|Γ| << |N |, reflecting the intuition that in a large game,
the number of players may be large but there are only a few
player types. We use γ, γ′ etc. to range over Γ, and specify
typ by an n-tuple 〈γ1, . . . , γn〉.

Next, we need to talk about the outcomes of the games.
For that, rather than work with payoffs, we use a proposi-
tional language. Fix P , a countable set of atomic proposi-

Figure 1: A neighbourhood graph. A, B, C are the
neighbourhoods (maximal cliques in the graph) and
1, 2, . . . , 12 are the players (vertices)

tions. P consists of propositions which stand for statements
of the form:

• action a is played,

• payoff is greater than a threshold c,

• payoff is greater than all neighbours,

and so on. Every game will involve only a finite set P ⊆ P of
these propositions. The game proceeds in rounds. In every
round k, the players of every neighbourhood play a normal
form game among themselves. The outcome of the entire
game in that round k, is thus the outcomes of these normal
form games.

Since the games are large (both in terms of the number
of players and their logical structure), it is natural to as-
sume that the outcome in any round does not depend on
the identity of the players or the profile of actions played
by them. Rather in any round k, given the neighbourhood
graph Gk for that round, the payoffs of the players depend
only on the distribution of the actions in the various neigh-
bourhoods given by Gk. Such games are called anonymous
games [3, 4, 5, 6].

An action distribution for a neighbourhood X of size k is
an |A| tuple of integers y = (y1, . . . , y|A|) such that yj ≥ 0

and Σk
j=1yj = k, 1 ≤ j ≤ |A|. That is, the jth component of

y gives the number of players in the neighbourhood X who
play action aj . Let Y[k] denote the set of all action distribu-
tions of a neighbourhood of size k and let Y =

⋃n
k=1 Y[k].

We have an outcome function out : Y → 2P which gives
the truth of the outcome propositions P at any neighbour-
hood X of size k according to the action distribution of the
players of that neighbourhood.

Now given a neighbourhood graph G, we can lift out to a
valuation function at the vertices of G: valout [G] : N → 2P

valout [G](i) gives the truth of the propositions which talk
about the outcomes of {i} ∪ nbd [G](i).

Thus formally, a game G is a tuple G = (typ, P, out), where
typ is a type map, P a subset of P and out an outcome
function. A configuration of the game is a pair c = (G,a)
where G is a neighbourhood graph and a ∈ An is an action
profile. Let C be the set of all configurations. Note that
the size of C, that is, the total number of configurations, is(

n
2

)
× |A|n.
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When an initial configuration c0 is specified, we call the
pair (G, c0) an initialised game. A play (history) in an ini-
tialised game (G, c0), where c0 = (G0,a0), is a sequence
ρ = (G0,a0), . . . , (Gk,ak), k > 0, of configurations, where
for all i ≥ 0, V [Gi] = V [G0]. Let H denote the set of all
histories. We call a game static neighbourhood if, in ev-
ery history in H , for all i ≥ 0, Gi = G0; otherwise it is a
dynamic neighbourhood game.

Given a neighbourhood graph G, and a player i ∈ N , a
choice for player i is a pair (X, a) where X ∈ nbd [G](i) and
a ∈ A. Let χ[G](i) denote the set of choices of i in G. A

type γ is then a map γ : H → 2(2N×A) such that for all
ρ ∈ H , γ(ρ) ⊆ χ[G](i) where G = G|ρ|.

Remark Note that the notion of types in our setting is
a bit different from the notion of strategies in the classical
sense. The type of a player prescribes her a set of choices
after every history whereas, a strategy usually prescribes
a unique choice. In the case of types, the action that the
player plays is a non-deterministic choice from this set.

In a static neighbourhood game, players cannot switch
neighbourhoods between rounds (but can switch strategies).
Thus in a static neighbourhood game, given a neighbour-
hood graph G, if (X, a) ∈ χ[G](i), then X = X[G](i). How-
ever, in a dynamic neighbourhood game, a player i can de-
cide to move to a different neighbourhood from round k to
round k+1 provided the new neighbourhood is in nbd [G](i).
Thus in the dynamic neighbourhood game, the underlying
neighbourhood graph keeps changing.

We say that a history ρ = (G0,a0), . . . , (Gm,am) is co-
herent with respect to the player types 〈γ1, . . . , γn〉 if the
following conditions hold. Let ρk be the length k prefix of
ρ. Then for every k : 0 ≤ k < m:

• For every i ∈ N , if ak+1(i) = a then (X, a) ∈ γi(ρk).

• Given that Gk = (V, E1) and Gk+1 = (V, E2) there
exists a choice tuple 〈(X1, a1), . . . , (Xn, an)〉 such that
for all i, (Xi, ai) ∈ γi(ρk), and for all l, m ∈ N :

– (l, m) ∈ E2 \ E1 implies m ∈ Xl, and

– (l, m) ∈ E1 \ E2 implies m �∈ Xl.

In other words, every player i that joins a neighbourhood
X in round k + 1, has an edge in the neighbourhood graph
Gk+1 to all the other players who also decide to join (or
stay put) in the same neighbourhood X in round k + 1. In
addition, her visibility structure changes, in that, she may
be able to view the outcomes and actions of new players in
some neighbourhood other than X after joining X whereas,
some of the players that she could view in round k, may not
be visible to her anymore. Note that the process is non-
deterministic. See figure 2 for an example.

Some typical types of players are

• Play the action played by the maximum number of
visible players in the previous round.

• Play the action played by the player who, among the
visible ones, received the maximum payoff in the last
round.

• Play the action played by the player who, among the
visible ones in the last round, received the maximum
average payoff in the previous k rounds.

Figure 2: The neighbourhood graph of figure 1 after
player 8 has joined the neighbourhood of players 1,2
and 3. The dashed edges are the visibility of player 8
retained from her old neighbourhood and the dotted
ones are the players newly visible to her.

• Switch from the current neighbourhood to a neigh-
bourhood where a player of the same type received
a higher payoff in the previous round.

and so on.
Let c, c′ ∈ C be configurations. c′ is said to follow c,

denoted c → c′ if c′ is derived from c as above (that is,
when all players play according to their types specified by
the game). Let →∗ be the transitive closure of the follows
relation. The graph C = (C,→) will be referred to as the
configuration graph of the game. Let c ∈ C; we then speak
of TC(c), the tree unfolding of the configuration graph from c
defined in the standard manner. TC(c) = (T, E) is an infinite
tree where the nodes are labelled with configurations from
C. For a node t ∈ T , we let c(t) denote this configuration.

3. TYPES
We have spoken of players switching strategies or migrat-

ing to other neighbourhoods. What is the rationale for such
switching? In general, this is to improve payoffs over the
course of play. In large games, since players have only a
partial knowledge of the game, the rationale is likely to
be based on a host of heuristic strategies, like “follow the
leader”, “imitate the player with the maximum payoff” and
so on. These strategies, though suboptimal, are easy to
employ and switch between, and have the property that in
most cases, they do not perform much worse than the op-
timal strategies. See [14, 13, 12] for more on this. Rather
than consider a specific heuristic, we find it convenient to
introduce a logical language to talk about the types of the
players. The syntax should be able to specify the properties
of the games that the players observe and the actions they
play based on these observations.

Let X be a countable set of variables. Let the terms of
the logic be defined as

τ ::= i | x, i ∈ N, x ∈ X

That is, a term is either a player (vertex) or a variable (which
takes players as its values). Then the types of the players
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are built using the following syntax:

Φ ::=τ1 = τ2 | τ1 ↔ τ2 | [τ1, τ2] | p@τ, p ∈ P | ¬ϕ |
ϕ1 ∨ ϕ2 | . ϕ | © ϕ | �- ϕ | �ϕ | ∃x · ϕ(x)

where τ1 and τ2 are terms.
Let (G, c0) be an initialised game. The formulas in Φ are

evaluated at the nodes of TC(c0). The truth of a formula
ϕ ∈ Φ at a node t ∈ TC(c0) is denoted by t |= ϕ and is defined
inductively as follows. Let c(t) = (G,a) be the configuration
associated with t. The truth of the atomic formulas τ1 =
τ2, τ1 ↔ τ2 and [τ1, τ2] are derived from c(t):

• t |= τ1 = τ2 iff π(τ1) = π(τ2).

• t |= τ1 ↔ τ2 iff (π(τ1), π(τ2)) ∈ E[G].

• t |= [τ1, τ2] iff ∃X ∈ clq [G] such that π(τ1) ∈ X and
π(τ2) ∈ X.

For the rest of the formulas, we define truth by:

• t |= p@τ iff p ∈ valout [G](π(τ )).

• t |= ¬ϕ iff t � ϕ.

• t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2.

• t |= .ϕ iff t is not the root of TC(c0) and t′ |= ϕ where
t′ is the parent of t in TC(c0).

• t |= ©ϕ iff there exists a child t′ of t in TC(c0) such
that t′ |= ϕ.

• t |= �- ϕ iff there exists an ancestor t′ of t in TC(c0)
such that t′ |= ϕ.

• t |= �ϕ iff there exists a successor t′ of t in TC(c0) such
that t′ |= ϕ.

• t |= ∃x·ϕ(x) iff there exists j ∈ N such that t |= ϕ[j/x].

Above ϕ[j/x] denotes the result of replacing every free
occurrence of x by j. The notions of satisfiability, validity
etc are standard. Note that the following formula is valid:

∃x© ϕ(x) ≡ ©∃ϕ(x)

The following are examples of some typical types that can
be specified in the syntax:

• Play action a and b alternatively:

(.pa@i ⊃ pb@i) ∧ (.pb@i ⊃ pa@i)

where pa and pb stand for “play action a” and “play
action b” respectively.

• Play the action played by the visible player who re-
ceived the maximum payoff in the previous round:

∃x(i↔ x ∧ r@x ∧ pa@x) ⊃ ©(pa@i)

where r and pa stand for “payoff is greater than that
of all neighbours of i” and “plays action a (for some
a ∈ A)” respectively.

• If there exists a player j within the visibility of i who
is in a different neighbourhood X ′ but plays the same
action and gets a better payoff in round k, player i
joins the neighbourhood X ′ of such a player with the
maximum such payoff.

∀x((i↔ x ∧ q@x ∧ r@y ∧ ¬[i, x]) ⊃ ©[i, x])

where q and r are propositions which say, “payoff is
greater than that of i” and “payoff is greater than that
of all neighbours of i”.

and so on.
Call two formulas ϕ1, ϕ2 ∈ Φ equivalent, denoted ϕ1 ≡ ϕ2

if t |= ϕ1 if and only if t |= ϕ2 for all t ∈ TC(c0). Since π is a
fixed map and every neighbourhood graph is finite, we can
show the following:

Proposition 1. Every formula ϕ ∈ Φ is equivalent to a
quantifier free formula ϕ′ ∈ Φ.

Corollary 1. The satisfiablity problem for the logic Φ
is decidable.

Remark We remark here that the logic is a standard modal
logic on trees, extended to speak of players and neighbour-
hoods. Our proposal here is not to initate a logical study
of neighbourhood switching, but use standard logical ma-
chinery to specify a wide variety of rules that constitute the
rationale of players for switching strategies or neighbour-
hoods. The expressiveness of the logic has a critical bearing
on game dynamics and hence needs a more careful study.
Note that the modalities are branching (as they are inter-
preted on tree nodes); path connectives like until would be
meaningful but require a different technical development.

4. STATIONARINESS
In this section we study the dynamics of the games with

neighbourhood structures. We are interested in finding out
what kind of neighbourhood structures eventually arise and
whether the players settle down to playing in such a way
that the neighbourhood structure and the actions do not
change any further. We look at games where the types of the
players are given as formulas. We show that in this case, it is
decidable whether the game becomes eventually stationary
for the notion of stationariness that we shall define presently.

Definition 1. A configuration c is said to be stationary
if c′ = c for all c →∗ c′.

Definition 2. A game is said to be eventually stationary
if it always reaches a stable configuration.

4.1 Types Specified as Formulas
Let ΓΦ be a subset of types where every type γ ∈ ΓΦ is

specified as a formula in Φ. Let 〈γ1, . . . , γn〉 be the types
of the players where γi ∈ ΓΦ for all i ∈ N . Given neigh-
bourhood graph G and such a type specification, what does
it mean for players to play according to their types? Note
that the configuration transition relation, c → c′, is derived
from player types. Hence, we say that the tree unfolding
TC(c0), where c0 is the initial configuration, conforms to the
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specification 〈γ1, . . . , γn〉 when t0 |= γ1 ∧ . . .∧γn where t0 is
the root of TC(c0).

The implication of such a definition of conformance is as
follows: suppose that the types of two or more players are
inconsistent. For example, it can be that the types γi and
γj of players i and j are ©[i, j] and ¬© [i, j] respectively.
But in that case the formula γ1∧ . . .∧γn is unsatisfiable and
hence there is no successor configuration at the node where
this formula must hold. This is equivalent to the convention
that the game terminates immediately in such situations.

We first study the stationariness of games when the types
are specified as formulas from the syntax Φ. That is, for
every i ∈ N , γi ∈ ΓΦ. In this case we have:

Theorem 1. Let (G, c0) be an initialised game where c0 =
(G0,a0) and player types γ1, . . . , γn specified as formulas in
Φ. Then it can be effectively decided whether the game un-
folding that conforms to this player types specification even-
tually becomes stationary.

Proof. Let for all i ∈ N , CL(γi) be the subformula clo-
sure of γi and AT (γi) be the set of atoms (propositional
consistent sets) of the type γi. We construct an atom graph
A = (V (A), E(A)) as follows:

• V (A) ⊆ C ×Πi∈NAT (γi) such that

(c, 〈D1, . . . , Dn〉) ∈ V (A)

iff for all i ∈ N, Di∩P = valout [G](i) where c = (G,a).

• A node w = (c, 〈D1, . . . , Dn〉) ∈ V [A] is called initial if
c = c0 and for all i ∈ N , Di does not have any formula
of the form .α. Let init(A) be the set of initial nodes.

• A node w = (c, 〈D1, . . . , Dn〉) ∈ V [A] is called final if
c is stationary and for all �β ∈ Di, β ∈ Di, and for all
©β ∈ Di, β ∈ Di.

• For w, w′ ∈ V (A) such that

w = (c, 〈D1, . . . , Dn〉)
w′ = (c′, 〈D′

1, . . . , D
′
n〉)

(w, w′) ∈ E(A) iff

– For all i ∈ N ,

∗ for all .α ∈ CL(γi), if α ∈ Di then .α ∈ D′
i,

∗ for all ©α ∈ CL(γi), if ©α ∈ Di then α ∈
D′

i,

∗ for all �α ∈ CL(γi), if �α ∈ Di then α ∈ D′
i

or �α ∈ D′
i and

∗ for all �- α ∈ CL(γi), if �- α ∈ D′
i then α ∈ Di

or �α ∈ Di.

We call a subgraph A′ of A good if for every node w =
(c, 〈D1, . . . , Dn〉) ∈ A′:

1. there exists w′ = (c′, 〈D′
1, . . . , D

′
n〉) ∈ A′ reachable in

A′ from w such that w′ is final, and

2. there exists w′ = (c′, 〈D′
1, . . . , D

′
n〉) ∈ A′ such that w

is reachable in A′ from w′ and w′ is initial.

Let reach(A) be the subgraph of A generated by all the
configurations reachable from init(A) in A.

Let A′ be a good subgraph of A and w0 be an initial node.
Let TA(w0) be the tree unfolding of A from w0. TA(w0)

is an infinite tree with nodes labelled with elements from
V [A]. Let t be a node of TA(w0) such that t is labelled with
(c, 〈D1, . . . , Dn〉). We can show by an easy induction that

Claim 1. For every i ∈ N , for every α ∈ CL(γi), t |= α
iff α ∈ Di.

Thus by the above claim, for a formula α ∈ CL(γi) for
some i ∈ N , to check if t |= α it is enough to check if
α ∈ Di.

Claim 2. The game is eventually stationary if and only
if reach(A) has a good subgraph.

Let us assume the claim. We see that the construction of
the configuration graph A, the reachable subgraph reach(A)
and checking whether reach(A) has a good subgraph can all
be effectively done. Hence the theorem follows. The claim
itself is easy to prove, by observing the connection between
good subgraphs and configuration graphs of eventually sta-
tionary games.

5. UNKNOWN TYPES
We have seen above that the restricted expressiveness of

types specified by the logic gives us an algorithm for checking
stationariness. Can we say anything about the stationari-
ness of games where the types of the players are not known?
In general, types may depend on history and hence require
unbounded memory. However, we can characterise these
games in terms of potentials á la Monderer and Shapley
[11]. We show that such games eventually stabilise if and
only if they are “well-behaved” in terms of the potentials of
configurations.

Since the types of the players are arbitrary, we do not re-
quire the logical language to specify them. Hence the utility
of the normal form games is given as a function

ua : Y → Q

for every a ∈ A. For any neighbourhood X of size k and
given a distribution y of actions of the players in X, ua(y)
gives the utility to all the players in X who play action a.

A game now is a tuple G = (typ, {ua}a∈A) and an ini-
tialised game is a pair (G, c0) where c0 is a configuration
from the set of configurations C where a configuration as
before, is a neighbourhood graph labelled with the actions
of the players. The configuration graph C and the tree un-
folding of C from a configuration c ∈ C is denoted as TC(c)
and is defined as before.

5.1 Types of Types
A type γ of a player is said to be finite memory if there

exists a finite set M , the memory of the type, mI ∈ M ,
the initial memory and functions δ : C × M → M , the

memory update function and g : C × M → 2(2N×A), the
choice function where for every history ρ = c0 . . . ck ∈ H
if m0 . . . mk+1 is a sequence determined by m0 = mI and
mi+1 = δ(ci, mi) then γ(ρ) = g(ck, mk+1).

A type γ is memoryless if M is a singleton. A memoryless
type only depends on the current configuration. That is, if
for ρ, ρ′ ∈ H if last(ρ) = last(ρ′) then γ(ρ) = γ(ρ′).

5.1.1 Memoryless Types
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Theorem 2. Let (G, c0) be an initialised game such that
the type of every player is memoryless. (G, c0) is eventually
stationary if and only if we can associate a potential φk with
every round k such that if the game moves to a different
configuration from round k to round k + 1 then φk+1 > φk

and the maximum possible potential of the game is bounded.

Proof. One direction is trivial: if such a potential exists,
then the tree of possible configurations is finite, stabilising
at leaf nodes.

For the other direction, assume that the game eventually
stabilises. Then TC(c0) has the following properties:

1. From the definition of stationariness (definition 2) ev-
ery branch of TC(c0) eventually ends in a path such
that the associated configuration does not change. That
is for every branch b of TC(c0), there exists a node t at a
finite depth such that every successor of t has a unique
child and for every successor t′ of t, c(t) = c(t′). Call
t a leaf node and remove the subtree of TC(c0) rooted
at t. After removing such a subtree from every branch
of TC(c0) we get a finite tree T fin

C (c0) = (Tfin , Efin).

2. Along every branch of T fin
C (c0), for every node t on

that branch, there does not exist an ancestor t′ of t
such that c(t) = c(t′). Otherwise, we would have a
cycle on the configuration c(t) and since the types are
memoryless, this would contradict the assumed even-
tual stationariness of the game.

We now assign a potential φ to every node of T fin
C (c0) such

that when φ is lifted to the configurations C of the game,
φ is unique for every configuration c ∈ C. The potential φ
assigned inductively.

1. For the root node, t0 say, let φ(t0) = 1 and let C0 =
{t0}.

2a. Suppose Ck has been constructed where Ck is a prefix
closed set of nodes of T fin

C (c0). Let φmax = max{φ(t) | t ∈
Ck}. Let the boundary of Ck, B(Ck) be the nodes in
Ck which have a child outside Ck, i.e., B(Ck) = {t ∈
Ck | ∃t′ ∈ Tfin , t → t′, t′ /∈ Ck}. Let the inter-
face of Ck, I(Ck) = {t ∈ Tfin | t′ → t, t′ ∈ B(Ck)}.
Let clear(Ck) = Tfin \ {Ck ∪ I(Ck)}. We claim that
t ∈ I(Ck) such that there does not exist t′ ∈ clear(Ck)
such that c(t) = c(t′). Set φ(t) = φmax + 1.

2b. For all t′ ∈ I(Ck) such that c(t) = c(t′), let φ(t′) =
φ(t). Let Ck+1 = Ck ∪{t}∪{t′ ∈ I(Ck) | c(t) = c(t′)}.

After φ has been assigned to all the nodes in T fin
C (c0), we

let for every c ∈ C, φ(c) = φ(t), t ∈ Tfin such that c(t) = c.
Note that the potentials have been so assigned that they
satisfy the condition c(t) → c(t′) implies φ(t) < φ(t). To
complete the proof we have to show that step 2a can always
be performed.

Suppose, for contradiction, that step 2a cannot be per-
formed for a prefix closed set Ck during the induction. That
is, suppose for all t ∈ I(Ck) there exists t′ ∈ clear(Ck) such
that c(t) = c(t′).

Now let t1 ∈ I(Ck). By our assumption, there exists t′ ∈
clear(Ck) such that c(t′) = c(t1). Let t′1 be such a node.
Let t2 be the ancestor of t′1 such that t2 ∈ I(Ck). Again
by assumption there exists t′′ ∈ clear(Ck) such that c(t′′) =
c(t2). Let t′2 be such a node and let t3 be the ancestor of

Figure 3: Step 2a of the proof of theorem 2

t′2 such that t3 ∈ I(Ck). Continuing this way we have a
sequence

t1, t
′
1, t2, t

′
2, t3, t

′
3, . . .

Now as the tree T fin
C (c0) is finite, it is finitely branching.

Hence the above process cannot go on forever and a con-
figuration has to repeat. Suppose tr be such that the an-
cestor of tr in I(Ck) is tm for some m < r. But now since
the types of the players are memoryless, this means that
tm, tr, tr−1, . . . , tm forms a cycle of configurations when the
players play according to their types. This violates prop-
erty 2 of the tree unfolding TC(c0) of the game as mentioned
above (see figure 3).

5.1.2 Stability
The notion of stationariness introduced in the previous

section is a bit too rigid. As in the example of the vegetable
seller in section 1, a periodic visit to markets A, B and C
in that order is an instance of stable behaviour for us. We
wish to capture such a behaviour in our notion of stability.

In this subsection we introduce another notion of stable
behaviour which we call eventual stability. A cycle C in a
graph is called simple if every vertex (except the first) occurs
at most once in C.

Definition 3. A set C of configurations is called stable if
C is either a simple cycle with respect to the follows relation
→ or a singleton. We say that a game eventually stabilises
if it always ends in a stable set of configurations.

Note that we do not allow complex cycles in a stable
set of configurations because then it would make even non-
deterministic plays stable. If a complex cycle C consists of
two simple cycle C1 and C2 then the players can eventually
settle down to C even by playing C1 and C2 without any
regular order. But for a simple cycle C, though the players
have a non-deterministic choice of whether to remain in C or
to exit C, note that once they exit C they cannot come back
to it again. Thus, they are eventually either in a (simple)
cyclic play or the configuration of the game doesn’t change
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anymore, both of which are accepted notions of stability for
us. But, of course, it is just a matter of choice. One may
have other, perfectly justifiable notions of stability.

5.1.3 General Types
In this subsection, we prove a theorem similar to theorem

2 for the case when the types of the players are unknown
but arbitrary (not just memoryless).

Theorem 3. Let (G, c0) be an initialised game. (G, c0)
eventually stabilises if and only if we can associate a poten-
tial φk with every round k such that the following holds:

1. If the game has not yet stabilised in round k then there
exists a round k′ > k such that φk′ > φk.

2. There exists k0 ≥ 0 such that for all k, k′ > k0, φk =
φk′ . That is, the potential of the game becomes con-
stant eventually.

3. The maximum potential of the game is bounded.

Proof. For the non-trivial direction, assume that the
game eventually stabilises. Then from the definition of even-
tual stability (Definition 3) the tree TC(c0) has the following
property. Along every branch b of TC(c0) there exists a node
t at a finite depth such that b is just a path from t onwards
and either of the following holds:

• b ends in a self-loop: that is, for every successor t′ of t,
c(t′) = c(t). Call t a leaf node and remove the subtree
rooted at t.

• b ends in a simple cycle of configurations: that is the
following holds. t has a successor t′ along b such that
c(t) = c(t′). Let tmin be the least such successor and
let t′′ be the parent of tmin. Let ρ be the path from t
to t′′ in TC(c0). It is the case that from t, the branch b
is just a sequence of sets of nodes ρρ1ρ2 . . . such that
|ρ| = |ρ1| = |ρ2| = . . . and for every i ≥ 1 and every
j : 0 ≤ j < |ρ|, c(ρi(j)) = c(ρ(j)). In other words, the
configurations along ρ keep repeating in b forever from
t in the same order.

Call t a leaf node and remove the subtree rooted at t.

After the above procedure we have a finite tree T fin
C (c0) =

(Tfin , Efin). We assign a potential φ to every node of T fin
C (c0)

such that when φ is lifted back to the configurations C of
the game, the requirements of the theorem are satisfied. The
potential φ is assigned inductively.

Initially let C0 = ∅ and φ0
max = 0. Suppose Ck has

been constructed where Ck is a prefix closed set of nodes
of T fin

C (c0) and let φk
max be the maximum potential of any

node in Ck. Let I(Ck) = {t ∈ Tfin | t /∈ Ck, t′ → t, t′ ∈ Ck}
be the interface of Ck as in the proof of Theorem 2. We con-
struct a set of critical nodes crit(Ck) ⊆ Tfin \Ck inductively
as follows.

• Let crit0(Ck) = {t} where t ∈ I(Ck) is an arbitrary
node.

• Suppose crit i(Ck), i ≥ 0 has been constructed. If
there exists t ∈ criti(Ck) be such that there exists
t′ ∈ Tfin \ (Ck ∪ crit i(Ck)) with c(t′) = c(t) then we
construct criti+1(Ck) as follows. We let Tt ⊆ Tfin \Ck

be Tt = {t′ ∈ Tfin \ (Ck ∪ criti(Ck)) | c(t′) = c(t)}.

Let cls(Tt) be the upward closure of the nodes in Tt

till the interface of Ck. That is, cls(Tt) = {t′ ∈
Tfin \ Ck | ∃t′′ ∈ Tt, t

′ is an ancestor of t′′}. We let
crit i+1(Ck) = crit i(Ck) ∪ cls(Tt).

Since T fin
C (c0) is finite, there exists a j ≥ 0 such that

critj+1(Ck) = critj(Ck). We set crit(Ck) = critj(Ck). Put
φ(t) = φk

max + 1 for every t ∈ crit(Ck) and set Ck+1 =
Ck ∪ crit(Ck). Note that Ck+1 is a prefix-closed set and for
every node t ∈ Ck+1, there does not exist t′ ∈ Tfin \ Ck+1,
such that c(t′) = c(t) (otherwise t′ would have been added
to crit(Ck) while processing t).

After φ has been assigned to all the nodes in T fin
C (c0), we

let for every c ∈ C, φ(c) = φ(t), t ∈ Tfin such that c(t) = c.
Note that the process of saturation in the construction of
the critical sets ensures that if a node t is assigned a poten-
tial at some iteration then all nodes t′ such that c(t′) = c(t)
are assigned the same potential in the same iteration. This
guarantees the uniqueness of the potential for every configu-
ration. Also the assignment of the potentials in a top-down
fashion on the unfolding T fin

C (c0) of the configuration graph,
makes sure that the other requirements of the theorem are
satisfied.

5.1.4 Finite Memory Types
From the proof of theorem 3 we easily have the following

theorem:

Theorem 4. Let (G, c0) be an initialised game. If (G, c0)
eventually stabilises then the types of all the players are finite
memory.

Proof. Assume that (G, c0) stabilises. Let T fin
C (c0) be

the finite tree as constructed in the proof of theorem 3. Then
the required finite memory type of each player i is γi such
that the memory of γi is the set of nodes Tfin of T fin

C (c0). The

initial memory is the root of T fin
C (c0). The memory update

function is given by the edge relation in T fin
C (c0) and the

choice function gi at a memory node t = (G, c) is given by
gi(c, t) = {(X, a) | (X, a) corresponds to the choice of i at a
child t′ of t}.

6. WEIGHTEDCO-ORDINATIONGAMES:
AN APPLICATION

To gain intuition into the dynamics of these games with
neighbourhood structures, in this section, we study a spe-
cial case of such games which we call weighted co-ordination
games under the assumption that all the players play simple
imitative strategies.

First, we formally define these games. For simplicity we
assume that the action set of every player is binary, that is
A = {0, 1}. The payoff of the players are determined by the
amount of co-ordination in the neighbourhood they belong
to. More precisely, let X be a neighbourhood and let X0[Gk]
be the set of players who play the action 0 in round k and
X1[Gk] be the set of players who play the action 1. Then
the payoff to a player i in X who plays 0 is given as

u0(|X0[Gk]|, |X1[Gk]|) =
|X0|
|X|

and the payoff of a player j in X who plays 1 is given as

u1(|X0[Gk]|, |X1[Gk]|) =
|X1|
|X| = 1− u0(|X0[Gk]|, |X1[Gk]|)
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Figure 4: An example of a weighted co-ordination
game. The players playing 1 in the neighbourhood
A receive a payoff of 2/5 whereas those playing 0
receive 3/5.

See Figure 4 for an example.
We show that when all the players are of a simple imitative

type (to be defined presently), we can associate a potential
to every configuration c which is bounded and such that if c′

follows c then its potential is strictly greater than c. Hence
by theorem 2, such games always stabilise. We can also give
an upper bound on the number of rounds required to attain
stability.

We first describe a simple imitative type t. We assume
that every player is of type t. Suppose player i plays a in
round k where a ∈ {0, 1}. If in round k player i receives a
payoff less than 0.5 and there exists a player j visible to her
who in round k received the maximum payoff among all the
players visible to her, then in round k + 1 i plays the action
of j. This type t is given by the following formula αs:

∀x.(p@i ∧ i ↔ x ∧ q@x ∧ r@x ∧ pa@x) ⊃ ©(pa@i)

where p, q, r and pa are propositions which say:

• p: payoff is less than 0.5.

• q: payoff is greater than that of i.

• r: payoff is greater than that of all neighbours of i.

• pa: plays action a (for some a ∈ A).

If it is a dynamic neighbourhood game, the type is the
following: if there exists a player j within the visibility of i
who is in a different neighbourhood X ′ but plays the same
action and gets a better payoff in round k, player i joins the
neighbourhood X ′ of such a player with the maximum such
payoff. This is given by a very similar formula αd:

∀x.(p@i ∧ (i↔ x ∧ q@x ∧ r@x ∧ ¬[i, x]) ⊃ ©[i, x]

Theorem 5. Let G be a game with initial neighbourhood
graph G and let all the players be of the same type t de-
fined by αs or αd, depending on whether the neighbourhood
structure is static or dynamic, respectively. Then:

1. In the static neighbourhood case, let m be the number
of neighbourhoods (cliques) and M = maxX∈clq(G) |X|.
Then the game always stabilises and it does so in at
most mM steps.

2. In the dynamic neighbourhood case, the game always
stabilises in at most nn(n+1)/2 steps.

Proof outline The proof is by assigning a potential to
every configuration in such a way that 2 can be used to
infer eventual stability.

In the static neighbourhood case, at any round k de-
fine the potential of a neighbourhood X to be φk(X) =
max{|X0|, |X1|}. Then define the potential of the game in
round k to be φk =

∑
X φk(X).

In the dynamic neighbourhood case, observe that possi-
ble payoffs of a player in any round are 1/n, 2/n, . . . , 1/(n−
1), 2/(n − 1), . . . , 1. We arrange them in ascending order.
We now define the potential of a payoff p in round k induc-
tively as follows: φk(1/n) = 1, φk(p′) = φk(p) + 1 where
p is the immediate predecessor of p′ in the ordering of the
payoffs. These potentials can be lifted to the vertices (play-
ers) as φk(i) = φk(ua(i)(X(i))). We define the potential
of a neighbourhood X in round k as φk(X) =

∑
i∈X φk(i).

Finally we define the potential of the game in round k as
φk =

∑
X φk(X) where the sum is over the set of all cliques

in the neighbourhood graph Gk for round k.2

Remark When there is an upper bound on the size of any
clique (say M) in a dynamic neighbourhood structure, then
the number of steps to stability can be bounded in terms of
M . In the worst case, this makes no difference, but may be
significant in some applications.

7. DISCUSSION AND FUTUREWORK
What we have presented here is merely a preliminary dis-

cussion on neighbourhood structures in games and a satis-
factory theory has some way to go. First, mixed strategies
and expectations of other players are more interesting in
such a framework. A player would then strategise based
on the expected payoffs of other players and we would talk
about the probabilities of players switching between different
neighbourhoods. Secondly, the logic we have introduced for
specifying the types of players is quite limited. What would
be more interesting is a logic with the power of quantifica-
tion over various cliques of the neighbourhood graph. Since
the cliques of the graph keep changing, such a logic would be
highly expressive and may lead to better logical foundation
for this study. A better approach would be to study the log-
ical structure of player types per se from an expressiveness
perspective and limit game dynamics accordingly.

Another important question is what the structures of the
stable configurations are; viz. whether it is a collection
of a large number of small neighbourhoods or is it a few
large neighbourhoods. Such questions are interesting for
economists as well.
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