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Abstract

We propose an explicit logic of strategies (SDGL) in
the Dynamic Game Logic (DGL) framework and provide
a complete axiomatization for this logic. Some discussions
are put forward regarding SDGL and DGL, raising an
interesting issue about their combination.

1. Introduction: cudos for strategies

Many events that happen in our daily life can be thought
of as games. In fact, besides the ‘games’ in the literal sense,
our day-to-day dialogues, interactions, legal procedures,
social and political actions, biological phenomena - all
these can be viewed as games together with their goals and
strategies. The theory of games has its various applications
in the areas of economics, logic, computer science as
well as linguistics. Games play a very important role in
modelling intelligent interaction. In Rubinstein’s words, ‘I
view game theory as an analysis of concepts used in so-
cial reasoning when dealing with situations of conflict’ [16].

As evident from the existing literature, much of game
theory deals with strategic equilibriums. Various equi-
librium theories have been developed till date both for
zero-sum as well as non zero-sum games, starting from the
initial concept of Nash [12], which have their implications
in the studies of the society. They help in providing a ‘plan
of action’ to the agents participating in the state of affairs,
which could be articulated as ‘games’, when faced with
strategic decision making in situations of conflict.

Over the past few decades a lot of work has been done
in the epistemic foundations of game theory, studying
the formal logics of knowledge and belief. The formal
systems expressing players’ knowledge and beliefs about
themselves as well as their competitors were looked at
in much details - a tremendous amount of work is still
going on. But a very related and relevant issue - players’

strategies/plan of actions to play the game, which they base
on their epistemic states almost have rarely been looked
upon, until very recently. To mention a few, [15] proposes
a logic of strategies in games over finite graphs, whereas
[17] makes strategies explicit in Alternating-time Temporal
Logic. The incorporation of ‘strategies’ within the logical
language would very well aid in the currently popular
ventures into social choice mechanism designs.

Strategies of the players playing the game form a basic
ingredient of game theory, whether looked upon from the
winning point of view or from the best-response one. A
lot of other issues like the rationality of the players, their
goals and preferences are also very important issues, but
they are outside the scope of this work, though we plan to
incorporate them in the future.

Our main goal in this work is to incorporate explicit
notions of strategies in the framework of Dynamic Game
Logic (DGL) [13]. Not unlike other logics talking about
game and coalition structures [1, 14], DGL suffers from
‘∃-sickness’ : the detailed level of game structures getting
suppressed by existential quantifiers of “having a strategy”
[7]. We intend to provide a logic (SDGL) that makes the
game structures explicit to a great extent.

In general, strategies are partial transition relations and
hence dynamic modal logic provides a good framework to
talk about them, as mentioned in [4, 5]. But the main chal-
lenge here is to combine the strategy calculus together with
the game calculus. As one can easily guess, the constructs
of Propositional Dynamic Logic [11] play an important
role in achieving this amalgamation. In this regard, we
should mention that, a lot of discussions and proposals have
already been put forward by van Benthem [9, 8]. This effort
can be looked upon as a follow-up of one of these proposals.

After providing a brief overview of DGL in the next sec-
tion, we propose a logic for strategizing DGL (SDGL)
in section 3 with a complete axiomatization. Section 4



provides some discussions over the two logics DGL and
SDGL, with several pointers towards future work men-
tioned in the last one.

2. Dynamic Game Logics : an overview

We now give a brief review of DGL, the dynamic game
logic of two-person sequential games in this section, which
was first proposed in [13], and further developed by [14],
[6], [10] and others. DGL talks about ‘generic’ games
which can be played starting from any state s on the ‘game
boards’ and the semantics is based on the ‘forcing relations’
describing the powers each player has to end in a set of final
states, starting from a single initial state.

sρi
GX : player i has a strategy for playing game G

from state s onwards, whose resulting final states
are always in the set X , whatever the other play-
ers choose to do.

To exemplify, let us move onto real extensive games for
once. Consider the game tree:
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In this game, player E has two strategies, forcing the sets of
end states {1, 2}, {3, 4}, while player A has four strategies,
forcing one of the sets {1, 3}, {1, 4}, {2, 3}, {2, 4}.

These forcing relations satisfy the following two simple
set-theoretic conditions [3]:

(C1) Monotonicity: If sρi
GX and X ⊆ X ′, then sρi

G X ′.

(C2) Consistency: If sρE
GY and sρA

GZ, then Y , Z overlap.

In the semantics of DGL as proposed in [13, 14], another
extra condition is assumed :

(C3) Determinacy: If it is not the case that sρE
GX , then,

sρA
GS-X , and the same for A vis-a-vis E.

Both [13] and [14] talks about determined games. This
simplifies things a lot, but fails to express the roles of
the players in the games. The dynamic logic for non-
determined games was studied extensively in [10] which
also introduced the notion of parallel games in the syntax.
For the present work the concurrent game construct has not
been dealt with. The iteration operation for repeated play as
present in [13] has also not been considered here. We only
consider the following constructs which form new games:

choice (G ∪ G′), dual (Gd), and sequential composition
(G; G′). The readers could easily guess the intuitive mean-
ings of these constructs. For the sake of continuation to the
next section, in what follows, the DGL for non-determined
games has been briefly discussed. To start with, it should be
noted here that the players’ powers have a recursive struc-
ture in the complex games:

Fact 2.1 Forcing relations for players in complex sequen-
tial two-person games satisfy the following equivalences:

sρE
G∪G′ X iff sρE

G X or sρE
G′X

sρA
G∪G′ X iff sρA

GX and sρA
G′X

sρE
GdX iff sρA

GX
sρA

GdX iff sρE
GX

sρi
G;G′X iff ∃Z : sρi

GZ and for all z ∈ Z, zρi
G′X.

The basic models that play the role of game boards are
defined as follows:

Definition 2.2 A game model is a structure M = (S, {ρi
g |

g ∈ Γ}, V ), where S is a set of states, V is a valuation
assigning truth values to atomic propositions in states, and
for each g ∈ Γ, ρi

g ⊆ S × P(S). We assume that for each g,
the relations are upward closed under supersets (the earlier
Monotonicity), while also, the earlier Consistency condition
holds for the forcing relations of the players A, E. /

The language of DGL (without game iteration) is defined
as follows:

Definition 2.3 Given a set of atomic games Γ and a set of
atomic propositions Φ, game terms γ and formulas φ are
defined inductively:

γ := g | φ? | γ; γ | γ ∪ γ | γd

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ,

where p ∈ Φ, g ∈ Γ and i ∈ {A,E}.
/

The truth definition for formulas φ in a model M at a
state s is standard, except for the modality 〈γ, i〉φ, which is
interpreted as follows:

M, s |= 〈γ, i〉φ iff there exists X : sρi
γX and

∀x ∈ X : M, x |= φ.

The complete axiomatization of this logic has been pro-
posed and proved in [10] :

Theorem 2.4 DGL is complete and its validities are ax-
iomatized by the following axioms:

a) all propositional tautologies and inference rules

b) if ` φ → ψ then ` 〈g, i〉φ → 〈g, i〉ψ



c) 〈g, E〉φ → ¬〈g, A〉¬φ

d) reduction axioms:

〈α ∪ β, E〉φ ↔ 〈α, E〉φ ∨ 〈β, E〉φ
〈α ∪ β, A〉φ ↔ 〈α,A〉φ ∧ 〈β, A〉φ
〈γd, E〉φ ↔ 〈γ, A〉φ
〈γd, A〉φ ↔ 〈γ,E〉φ
〈α; β, i〉φ ↔ 〈α, i〉〈β, i〉φ
〈δ?, E〉φ ↔ (δ ∧ φ)

〈δ?, A〉φ ↔ (¬δ ∧ φ).

This logic is also decidable. As can be noticed, the truth
definition of the modal game formulas of the form 〈γ, i〉φ
is given in terms of existence of strategies, without going
into their structures. In what follows, the strategy structures
have been explicitly dealt together with the game structures.

3. Strategizing DGL

3.1. A logic for strategies

Mentioning strategies explicitly in the dynamic game
logic framework prompt us to divert from the usual DGL
semantics that takes into consideration ‘generic’ games on
game boards. The whole point is to bring strategies within
the logical language which till now have their place in giv-
ing meaning to the game as well as coalition modalities
[14]. Adding explicit strategy terms to DGL, the language
of Strategized DGL (SDGL) is defined by,

Definition 3.1 Given a set of atomic games Γ, a set of
atomic strategies Σ, a finite set of atomic actions Π and a
set of atomic propositions Φ, game terms γ, strategy terms
σ, action terms π and formulas φ are defined inductively in
the following way:

γ := g | φ? | γd | γ; γ | γ ∪ γ
σ := s | σ ∪ σ | σ; σ
π := b | π ∪ π | π∗
φ := ⊥ | p | ¬φ | φ ∨ φ | [π]φ | 〈π〉φ | 〈σ, i, γ〉φ

where p ∈ Φ, s ∈ Σ, g ∈ Γ, b ∈ Π, and i ∈ {A,E}. /

Regarding the intuitive understanding of the strategy
terms, ‘∪’ corresponds to the choice of strategies, and ‘;’
to the composition of strategies. It should be mentioned
here that, the way the semantics is given later, it would
have been enough to use just one combination operation
of the strategy terms. The use of both of them aids in
understanding the intuition behind their usage.

Moving away from the ‘generic’ game structures, the
models take the form of extensive game trees with a few
additional actions. Before going into all these, we need a
parent model which is given as follows.

Definition 3.2 A model is a structure M = 〈 S, {Rπ : π ’s
are actions}, ref, L, R, V 〉, where S is a set of states and V
is a valuation assigning truth values to atomic propositions
in states. For each π, Rπ is a binary relation on S. ref, L,
R are all reflexive relations over S, with 〈 S, {Rπ : π ’s are
actions}〉 forming a regular action frame. /

In this model, atomic and composite games from a spec-
ified ‘start’-state are defined in the following. It should be
mentioned that all these game structures are taken to be fi-
nite, defined over finite subsets of S.

Definition 3.3 Game(M, s, γ) is a structure defined recur-
sively as follows:

(i) For atomic games g, Game(M, s, g) is a structure
given as follows: 〈W ⊆ S, s ∈ W , {Rb ↓W : b ∈ Π},
V = VM ↓W , P : W → {E, A, end}〉.

(ii) For test games φ?, Game(M, s, φ?) is a structure
given as follows: 〈{s}, s, ref ↓{s}, V = VM ↓{s}, P :
{s} → {end}〉.

(iii) Given Game(M, s, γ), Game(M, s, γd) is the struc-
ture, 〈W ⊆ S, s ∈ W, {Rb ↓W : b ∈ Π}, V = VM ↓W , P :
W → {E, A, end}〉, where all the constituents of the struc-
ture are the same as the corresponding ones in Game(M, s,
γ), except for Pγd , which satisfies the property: Pγd (w) =
E/A, whenever Pγ(w) = A/E, respectively.

(iv) Given Game(M, s, γ) and Game(M, s, γ′),
Game(M, s, γ ∪ γ′) is the structure given by, 〈W ⊆ S, s ∈
W , {Rb ↓W : b ∈ Π}, L ↓{s,s}, R ↓{s,s}, V = VM ↓W ,
P : W → {E,A, end}〉, where W = Wγ ] Wγ′ , and P
extends both Pγ and Pγ′ .

(v) Given Game(M, s1, γ) and Game(M, s2, γ′),
Game(M, s, γ; γ′) is defined if for each t ∈ P−1

γ (end),
Game(M, t, γ′) can be defined. Suppose we have
Game(M, t1, γ′), . . ., Game(M, tn, γ′). In that case,
Game(M, s, γ; γ′) is the structure 〈W ⊆ S, s ∈
W, {Rb ↓W : b ∈ Π}, V = VM ↓W , P : W →
{E,A, end}〉, where W = Wγ ∪W 1

γ′ ∪ . . .∪Wn
γ′ ; s = s1;

P extends Pγ , P 1
γ , . . ., Pn

γ , with the restriction that for
w ∈ P−1

γ (end) ∩W , P (w) = Pγ′(s2).
/

Because of some technical reasons regarding satisfiabil-
ity, choice games can only be defined for the games with
the same initial state, which is not really a big issue. The
sequential composition game could also be defined under
certain restrictions as mentioned above. It is now time to



define strategies of the players in a game, which again has
a recursive definition. Note that we will only talk about full
strategies here and the definition is given likewise.

Definition 3.4 Given Game(M, s, γ), a strategy for a
player i, given by the relation Rγ

i is defined by,
(i) For Game(M, s, g), Rg

E [Rg
A] ⊆ ⋃{Rb ↓Wg

: b ∈ Π}
satisfying the following conditions:

(a) s ∈ Dom(Rg
E)[Dom(Rg

A)], and Ran(Rg
E)

[Ran(Rg
A)] ∩ P−1

g (end) 6= ∅
(b) For each t ∈ P−1

g (E, A)− {s}, t ∈ Dom(Rg
E)

[Dom(Rg
A)] iff t ∈ Ran(Rg

E)[Ran(Rg
A)].

(c) For each s ∈ P−1(E)[P−1(A)],∃ unique s′ such
that (s, s′) ∈ Rg

E [Rg
A].

(d) For each s ∈ P−1(A)[P−1(E)], (s, s′) ∈⋃{Rb ↓Wg
: b ∈ Π} implies (s, s′) ∈ Rg

E [Rg
A].

(e) Nothing else is in Rg
E [Rg

A].

(ii) For Game(M, s, φ?), Rφ?
i = ref ↓{s}.

(iii) For Game(M, s, γd), Rγd

E = Rγ
A, and Rγd

A = Rγ
E .

(iv) For Game(M, s, γ ∪ γ′),
Rγ∪γ′

E = L ↓{s,s} ∪Rγ
E or, R ↓{s,s} ∪Rγ′

E ,

and, Rγ∪γ′

A = L ↓{s,s} ∪R ↓{s,s} ∪Rγ
A ∪Rγ′

A .

(v) For Game(M, s, γ; γ′),Rγ;γ′
i =Rγ

i ∪Rγ′
ij1
∪ . . .∪Rγ′

ijl
,

where the indices correspond to the number of times the
‘end’-state is reached in Rγ

i . /

For an example of the players’ strategies, consider the
simple extensive game tree:

s1, E
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s4, end s5, end s6, end s7, end

The strategies of E are {(s1, s2), (s2, s4), (s2, s5)},
and {(s1, s3), (s3, s6), (s3, s7)}, whereas the strate-
gies for A are {(s1, s2), (s1, s3), (s2, s4), (s3, s6)},
{(s1, s2), (s1, s3), (s2, s4), (s3, s7)}, {(s1, s2), (s1, s3),
(s2, s5), (s3, s6)}, and {(s1, s2), (s1, s3), (s2, s5), (s3, s7)}.

If we consider the choice operations of two such games,
the strategies of the players could be easily computed.
For the sequential composition, consider the following two
games:

s1, E
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s2, end G s3, end

t1, A
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t2, end H t3, end

The strategies of E in G are {(s1, s2)}, and {(s1, s3)},
and in H is {(t1, t2), (t1, t3)}, and similarly, that for A in G
is {(t1, t2), (t1, t3)}, and in H are {(t1, t2)}, and {(t1, t3)}.

Suppose, the model is such that G; H could be defined
and it is as follows:

s1, E
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t4, end t5, end t6, end t7, end

The readers can notice that it is just the game given
as example earlier, and hence could easily verify that
the strategies of the players in this complex game con-
form with the definition given to compute the strategies
of the sequential composition games, from the simpler ones.

Before going into the truth-definitions of formulas, let us
mention a few words about interpreting the strategy terms
of the language. The strategy terms are always interpreted
corresponding to some game structure Game(M, s, γ) and
player i. Let Rγ

i denote the set of all strategies for player i
in Game(M, s, γ).

Definition 3.5 Given Game(M, s, γ) and player i, a strat-
egy functionFγ

i is a partial function from the set of all strat-
egy terms to Rγ

i , satisfying the following conditions.

(i) For s ∈ Σ, Fγ
i (s) is defined, only when γ is an atomic

or a test game.

(ii) For the choice game α ∪ β, Fα∪β
i is given by,

Fα∪β
E (σ ∪ τ) = L ↓Wα∪β

∪Rα
E iff Fα

E(σ) = Rα
E ,

Fα∪β
E (σ ∪ τ) = R ↓Wα∪β

∪Rβ
E iff Fβ

E(τ) = Rβ
E ,

Fα∪β
A (σ ∪ τ) = Rα∪β

A iff Fα
A(σ) = Rα

A

and, Fβ
A(τ) = Rβ

A.

(iii) Fγd

E (σ) = Rγd

E iff Fγ
A(σ) = Rγ

A, and,

Fγd

A (σ) = Rγd

E iff Fγ
A(σ) = Rγ

A.

(iv) For the composition game α;β, Fα;β
i satisfies,

Fα;β
i (τ ; η) = Rα;β

i iff Fα
i (τ) = Rα

i

and, Fβ
i (η) = Rβ

i .
/

Note that the way these partial functions are given, it
takes care of the cases of mismatched syntax (like, 〈σ ∪
τ, E, α; β〉φ), which does not have any corresponding struc-
ture in the model. For the semantics of our language, we



define the truth of a formula φ in M at a state s in the
obvious manner, with the action modalities defined in the
usual PDL-style and the following key clause for the game-
strategy modality:

M, s |= 〈σ, i, γ〉φ iff for all s′ ∈ Ran(Fγ
i (σ)) ∩

P−1(end) in Game(M, s, γ), M, s′ |= φ.

Here are some validities of this logic.

• 〈σ, i, γ〉φ → 〈σ, i, γ〉(φ ∨ ψ)

• 〈σ, i, γ〉(φ ∧ ψ) ↔ 〈σ, i, γ〉φ ∧ 〈σ, i, γ〉ψ

3.2. Axioms and completeness

We now provide a complete axiomatization of SDGL.

Theorem 3.6 SDGL is complete and its validities are ax-
iomatized by

a) all propositional tautologies and inference rules

b) generalization rule for the action modalities

c) axioms for the action constructs:

[π](φ → ψ) → ([π]φ → [π]ψ)

〈π〉φ ↔ ¬[π]¬φ

〈π1 ∪ π2〉φ ↔ 〈π1〉φ ∨ 〈π2〉φ
〈π∗〉φ ↔ (φ ∨ 〈π〉〈π∗〉φ)

[π∗](φ → [π]φ) → (φ → [π∗]φ)

d) 〈s, i, g〉φ → 〈b1 ∪ . . .∪ bn〉〈(b1 ∪ . . .∪ bn)∗〉φ, where
Π = {b1, . . . , bn}

e) 〈σ, i, γ〉(φ → ψ) → (〈σ, i, γ〉φ → 〈σ, i, γ〉ψ)

f) if ` φ → ψ then ` 〈σ, i, γ〉φ → 〈σ, i, γ〉ψ
g) reduction axioms:

〈σ ∪ τ, E, α ∪ β〉φ ↔ 〈σ,E, α〉φ ∨ 〈τ, E, β〉φ
〈σ ∪ τ,A, α ∪ β〉φ ↔ 〈σ,A, α〉φ ∧ 〈τ, A, β〉φ
〈σ,E, γd〉φ ↔ 〈σ,A, γ〉φ
〈σ,A, γd〉φ ↔ 〈σ,E, γ〉φ
〈τ ; η, i, α; β〉φ ↔ 〈τ, i, α〉〈η, i, β〉φ
〈σ,E, δ?〉φ ↔ (δ ∧ φ)

〈σ,A, δ?〉φ ↔ (¬δ ∧ φ)

h) strategy rules:

for each X ⊆ Π, the rule below:

if ` φ → 〈(∪X)〉〈(∪X)∗〉ψ then ` φ → 〈s, i, g〉ψ .

Proof. Soundness of some of the interesting reduction ax-
ioms and the strategy rules for the game-strategy modality
are shown below. The readers can easily verify the validity
of the rest.

1. 〈σ ∪ τ, E, α ∪ β〉φ ↔ 〈σ,E, α〉φ ∨ 〈τ, E, β〉φ
Suppose M, s |= 〈σ ∪ τ, E, α ∪ β〉φ. Then, for all s′ ∈

Ran(Fα∪β
E (σ ∪ τ)) ∩ P−1

α∪β(end) in Game(M, s, α ∪ β),
M, s′ |= φ. Now, Fα∪β

E (σ ∪ τ) = L ↓Wα∪β
∪Rα

E or,
R ↓Wα∪β

∪Rβ
E . W.l.o.g. suppose that Fα∪β

E (σ ∪ τ) =
L ↓Wα∪β

∪Rα
E . Then, for all s′ ∈ Ran(L ↓Wα∪β

∪Rα
E) ∩ P−1

α∪β(end) in Game(M, s, α ∪ β), M, s′ |= φ.
By definition of strategies in ∪ games, this implies that,
for all s′ ∈ Ran(Rα

E) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ. Hence, for all s′ ∈ Ran(Fα
E(σ)) ∩ P−1

α (end)
in Game(M, s, α), M, s′ |= φ.So, we have that, M, s |=
〈σ,E, α〉φ. Similarly, if Fα∪β

E (σ ∪ τ) = R ↓Wα∪β
∪Rβ

E ,
one can show that, M, s |= 〈τ, E, α〉φ. So, M, s |=
〈σ,E, α〉φ or M, s |= 〈τ, E, α〉φ. Hence, M, s |=
〈σ,E, α〉φ ∨ 〈τ, E, β〉φ.

For the converse, suppose that M, s |= 〈σ,E, α〉φ.
Then, for all s′ ∈ Ran(Fα

E(σ)) ∩ P−1
α (end)

in Game(M, s, α), M, s′ |= φ. So, for all
s′ ∈ Ran(Rα

E) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ, which implies that, for all s′ ∈
Ran(L ↓Wα∪β

∪Rα
E)∩P−1

α∪β(end) in Game(M, s, α∪β),
M, s′ |= φ. Hence, reasoning as earlier we have that,
M, s |= 〈σ∪τ, E, α∪β〉φ. The proof for the other disjunct
can be dealt with in a similar manner.

2. 〈σ ∪ τ, A, α ∪ β〉φ ↔ 〈σ,A, α〉φ ∧ 〈τ,A, β〉φ
Suppose M, s |= 〈σ ∪ τ, A, α ∪ β〉φ. Then, for all s′ ∈

Ran(Fα∪β
A (σ ∪ τ)) ∩ P−1

α∪β(end) in Game(M, s, α ∪ β),
M, s′ |= φ. Now, Fα∪β

A (σ ∪ τ) = Rα∪β
A , i.e.

L ↓{s,s} ∪R ↓{s,s} ∪Rγ
A ∪ Rγ′

A . It follows that for
all s′ ∈ Ran(Rα

A) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ, and for all s′ ∈ Ran(Rβ
A) ∩ P−1

β (end) in
Game(M, s, β), M, s′ |= φ. Then, from the definitions it
follows that M, s |= 〈σ,A, α〉φ∧ 〈τ,A, β〉φ. The converse
can be proved by retracing the steps backwards.

3. 〈σ,E, γd〉φ ↔ 〈σ,A, γ〉φ
Suppose M, s |= 〈σ,E, γd〉φ. Then, for all

s′ ∈ Ran(Fγd

E (σ)) ∩ P−1
γd (end) in Game(M, s, γd),

M, s′ |= φ. By definition of strategies in the dual game,
this implies that, for all s′ ∈ Ran(Fγ

A(σ)) ∩ P−1
γ (end) in

Game(M, s, γ), M, s′ |= φ and so, M, s |= 〈σ,A, γ〉φ.
For the converse proof, retrace back.

4. 〈τ ; η, i, α; β〉φ ↔ 〈τ, i, α〉〈η, i, β〉φ
Suppose M, s |= 〈τ ; η, i, α;β〉φ. Then, for all



s′ ∈ Ran(Fα;β
i (σ; τ)) ∩ P−1

α;β(end) in Game(M, s, α; β),
M, s′ |= φ. Hence, for all s′ ∈ Ran(Rα

i ∪ Rβ
ij1

∪ . . .∪ Rβ
ijl

) ∩P−1
α;β(end) in Game(M, s, α; β), M, s′ |=

φ. Then, for k = 1, . . ., l, for all t ∈ Ran(Rβ
ijk

) ∩
P−1

βjk
(end) in Game(M, tjk

, β), M, t |= φ, and hence
for all t′ ∈ Ran(Rα

i ) ∩ P−1
α (end), in Game(M, s, α),

M, t′ |= 〈η, i, β〉φ. So, M, s |= 〈τ, i, α〉〈η, i, β〉φ.
For the converse part, suppose M, s |=

〈τ, i, α〉〈η, i, β〉φ. Then, for all t′ ∈ Ran(Rα
i )∩P−1

α (end),
in Game(M, s, α), M, t′ |= 〈η, i, β〉φ, where
Fα

i (τ) = Rα
i . This can be possible, only when, for each

t ∈ P−1
γ (end), Game(M, t, γ′) can be defined. Hence,

Game(M, s, α;β) is defined, and for all s′ ∈ Ran(Rα
i

∪ Rβ
ij1

∪ . . .∪ Rβ
ijl

) ∩P−1
α;β(end) in Game(M, s, α; β),

M, s′ |= φ. So, M, s |= 〈τ ; η, i, α; β〉φ.

The validity of the strategy rules follows from the
fact that, if there is a path from some state s to a state
satisfying some formula φ, then the Game(M, s, g) and a
corresponding strategy relation Rg

i can be defined in such
a way that 〈s, i, g〉φ holds at s.

The completeness of the axiom system is proved by
showing that every consistent formula is satisfiable. Let α
be a consistent formula. Let Cl(α) denote the subformula
closure of α, satisfying the FL-closure conditions for the
action modalities with the following extra conditions:

(i) If 〈σ ∪ τ, E, α ∪ β〉φ ∈ Cl(α), then 〈σ,E, α〉φ ∨
〈τ, E, β〉φ ∈ Cl(α).
(ii) If 〈σ ∪ τ, A, α ∪ β〉φ ∈ Cl(α), then 〈σ,A, α〉φ ∧
〈τ, A, β〉φ ∈ Cl(α).
(iii) If 〈τ ; η, i, α;β〉φ ∈ Cl(α), then 〈τ, i, α〉〈η, i, β〉φ ∈
Cl(α).
(iv) Cl(α) is closed under single negations.

Any maximal consistent subset of Cl(α) is said to be an
atom. Let A denote the set of all such atoms. For T ∈ A,
let T̂ denote the conjunction of all the formulas present in
T . For C, D ∈ A, define CRπD if Ĉ ∧ 〈π〉D̂ is consistent.
The regular canonical model C is defined to be the tuple
〈A, {Rπ: π’s are actions}, ref ,L,R,V〉, where, ref, L,R
are reflexive relations on A, and V(p) = {T ∈ A : p ∈ T},
and Rπ’s satisfy the regularity conditions. The existence
lemma for the modalities 〈π〉, can be proved in the usual
way, and we have that C, A |= φ iff φ ∈ A, for each
φ ∈ Cl(α), and each A ∈ C where φ is either an atomic or
a boolean or an action modal formula.

It remains to be shown that C, A |= 〈σ, i, γ〉φ iff
〈σ, i, γ〉φ ∈ A. Because of the reduction axioms, it suffices
to show that for each 〈s, i, g〉φ ∈ Cl(α), and each A ∈ C,

C, A |= 〈s, i, g〉φ iff 〈s, i, g〉φ ∈ A. In other words, we
have to show that 〈s, i, g〉φ ∈ A iff in Game(C, A, g),
Ran(Fg

i (s)) ∩ P−1(end) is the set of all atoms T , such
that φ ∈ T .

Suppose 〈s, i, g〉φ ∈ A. Then because of axiom (d),
Game(C, A, g), and Fg

i can be defined in such a way, that
the implication holds. The converse follows from the fact
that if < bi1 > . . . < bim

> φ is consistent, then so is
< bi1 > . . . < bim

> φ ∧ 〈s, i, g〉φ, which holds because
of the strategy rules. QED

4. DGL and SDGL - a comparison

As mentioned earlier, DGL talks about generic games
played on game boards, and the meaning of the game
modalities is given by existence of strategies. SDGL
brings out these strategies to the fore. Strategy combi-
nations for playing composite games are talked about in
this framework which brings out the extensional nature of
strategies, though according to certain views, strategies
are inherently intensional. As mentioned by van Benthem
[4, 5], strategies of the players in the game tree can be
talked about using the program constructs of the dynamic
modal logic. Some proposals for combining strategies to
achieve a certain goal are also made there.

The task was to combine the strategy constructs together
with the game constructs. SDGL proposes a way to do
it. As evident from the previous section, one has to resort
to the PDL-style action constructs. To make strategies
explicit, one can no longer talk about generic games.
Extensive game trees come into the treatise - games are
defined as tree structures, and strategies are defined as
subtrees.

In the tradition of DGL semantics, the so-called forcing
relations satisfy the conditions of upward-monotonicity
and consistency (determinacy also, in case of Parikh’s
and Pauly’s DGL). The sets of states forced by these
relations have an inherent ‘disjunctive’ interpretation.
A ‘conjunctive’ interpretation of these sets which is
needed when parallel game constructs are introduced,
has been taken in [10]. It is interesting to note that, the
way strategies are defined as relations between states, it
corroborates with the ‘conjunctive’ interpretation of the
set of ‘end’-states reached. Hence, this language rather
suggests ‘downward monotonicity’ at this conjunctive level.

It is clear that there are some sentences which could be
expressed in SDGL, but not in DGL. But it is also the
case that there are certain statements that can be expressed
in DGL, but not in SDGL : for example, ‘player i does



not have any strategy in the game g to achieve φ’ can be
expressed in DGL as ¬〈g, i〉φ. Under these circumstances
it would be ideal to have a logic that could express both.
This gives rise to the following issue:

Question What would be the complete axiomatization
of a logic that has both Parikh’s original game modalities
as well as the game-strategy modalities presented in the
earlier section of this paper?

In fact, for the set of strategy relations Rγ
i for player i in

Game(M, s, γ), one can easily define ρi
γ (cf.§2), as follows:

sρi
γX iff X = Ran(Rγ

i ) ∩ P−1
γ (end), for some Rγ

i ∈ Rγ
i .

It remains to be seen what conditions have to be im-
posed on ρi

γ to maintain compatibility. This is precisely the
same issue as finding joint logics of proofs and provability
in arithmetic, on which a lot of effort has been made in the
recent past. For a detailed overview, one can have a look
at [2]. The most natural analogy that one can think of hav-
ing both such existential criterion, as well as the witnesses
conforming to it could be found in first order logic - ∃xφ
together with term substitutions like φ[σ/x].

5. Conclusions and intentions

This paper proposes a logic which makes strategies ex-
plicit in the dynamic game logic framework. The need
for the dynamic modal logic syntax for achieving such tar-
gets becomes apparent. An interesting issue of getting a
joint logic of complex game modalities together with game-
strategy modalities emerges. Some possible areas for future
investigations are given below.

Explicit strategies for other logics Several other lan-
guages talking about game structures and coalition struc-
tures like Alternating-time temporal logic and Coalition
logic could be investigated so as to add an explicit notion
of strategies, which merely occur as an existential notion in
the semantics of these logics. This could very well aid in
the social choice mechanism designs.

Adding knowledge and preference notions To come
closer to the real game scenario which are played by the ra-
tional players, one has to incorporate the knowledge/belief
as well as preference modalities in the existing framework,
i.e. epistemic versions of these game logics with explicit
strategies need to be explored.

Games with imperfect information It is evident that the
uniform strategies in the imperfect information games do
not conform with the compositional analysis that has been

done here. That study is inherently different taking into ac-
count the knowledge level of the players, which provides a
very interesting challenge.

Acknowledgements

I thank Johan van Benthem for introducing me to the log-
ics of games and strategies and providing me with constant
support and invaluable suggestions throughout this effort. I
have been greatly enriched with the many discussions I had
with Fenrong Liu and Cédric Dégremont during my stay in
Amsterdam in the year 2006-2007. R. Ramanujam, Sunil
Simon and Fernando R. Velázquez-Quesada went through
a preliminary draft of this paper and provided me with
thoughtful comments.

References

[1] R. Alur, T. Henzinger, and O. Kupferman. Alternating-
time temporal logic. Lecture Notes in Computer Science,
1536:23–60, 1998.

[2] S. Artemov and L. Beklemishev. Provability logic. In
D. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic, 2nd ed., volume 13. Kluwer, Dordrecht,
2004.

[3] J. v. Benthem. Logic in games. Lecture Notes, Amsterdam
and Stanford, 1999.

[4] J. v. Benthem. Games in dynamic-epistemic logic. Bulletin
of Economic Research, 53(4):219–248, 2001.

[5] J. v. Benthem. Extensive games as process models. Journal
of Logic, Language and Information, 11:289–313, 2002.

[6] J. v. Benthem. Logic games are complete for game logics.
Studia Logica, 75:183–203, 2003.

[7] J. v. Benthem. Logic games, from tools to models of inter-
action. In A. Gupta, R. Parikh, and J. v. Benthem, editors,
Logic at the Crossroads., pages 283–317. Allied Publishers,
Mumbai, 2007.

[8] J. v. Benthem. Strategizing dgl. working paper, ILLC, Am-
sterdam, 2007.

[9] J. v. Benthem. In praise of strategies. In J. v. Eijck and
R. Verbrugge, editors, Foundations of Social Softare, pages
283–317. Studies in Logic, College Publications, to appear.

[10] J. v. Benthem, S. Ghosh, and F. Liu. Modelling simultaneous
games with concurrent dynamic logic. In A Meeting of the
Minds, Proceedings of the Workshop on Logic, Rationality
and Interaction, pages 243–258, 2007.

[11] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
CUP, 2001.

[12] J. Nash. Equilibrium points in n-person games. Proceedings
of the National Academy of Sciences, 36:89–93, 1950.

[13] R. Parikh. The logic of games and its applications. In Se-
lected papers of the international conference on “founda-
tions of computation theory” on Topics in the theory of com-
putation, pages 111–139, New York, NY, USA, 1985. Else-
vier North-Holland, Inc.



[14] M. Pauly. Logics for Social Software. PhD thesis, University
of Amsterdam, 2001.

[15] R. Ramanujam and S. Simon. Axioms for composite strate-
gies. Proceedings of Logic and Foundations of Games and
Decision Theory, 2006.

[16] A. Rubinstein. Comments of the interpretation of game the-
ory. Econometrica, 59(4), 1991.

[17] D. Walther, W. v. d. Hoek, and M. Wooldridge. Alternating-
time temporal logic with explicit strategies. Proceedings
of XIth Conference (Theoretical Aspects of Rationality and
Knowledge), pages 269–278, 2007.


