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An Object-oriented Visual Saliency Detection
Framework Based on Sparse Coding
Representations

Junwei Han, Sheng He, Xiaoliang Qian, Dongyang WaergGuo, and Tianming Liu

Abstract—Saliency detection aims at quantitatively predictig
attended locations in an image. It may mimic the $ection
mechanism of the human vision system, which processa small
subset of a massive amount of visual input while ghredundant
information is ignored. Motivated by the biological evidence that
the receptive fields of simple-cells in V1 of theision system are
similar to sparse codes learned from natural imageshis paper
proposes a novel framework for saliency detectionybusing image
sparse coding representations as features. Unlikeamy previous
approaches dedicated to examining the local or glabcontrast of
each individual location, this paper develops a pifmabilistic
computational algorithm by integrating objectness ikelihood
with appearance rarity. In the proposed framework,image sparse
coding representations are yielded through learningon a large
amount of eye-fixation patches from an eye-trackinglataset. The
objectness likelihood is measured by three genericues called
compactness, continuity, and center bias. The appesace rarity
is inferred by using a Gaussian Mixture Model. Theproposed
work can serve as a basis for many techniques suak image/video
segmentation, retrieval, retargeting, and compressn. Extensive
evaluations on benchmark databases and comparisongith a
number of up-to-date algorithms demonstrate its efictiveness.

Index Terms—Visual attention, Saliency, Sparse coding,
Independent Component Analysis, Gaussian Mixture Mdels

[. INTRODUCTION
he advancement of computer vision technology iseidn

top-down attention which is driven by task, bottamattention
is driven by saliency. So far, much less is knovow
top-down attention and its quantitative calculatisn still
practically impossible since it involves numerousgmitive
cues like the observer's background, expectatiogsg
preferences. In contrast, bottom-up attention sp&r and
plays a critical role under the scenario of freewing.
Therefore, the study of computation of bottom-ugerstton is
becoming popular. The core component of computation
models is called the saliency map invented by Ketcal. [1],
which is defined as a 2D topographical map encodirey
conspicuity at every location of the image. In réogears, the
use of saliency map has benefited a broad rangppications
such as image segmentation [2], image/video retiagy4],
video summarization [6], image retrieval [7], imagslage [8],
video coding [9], and so on.

A. Previous works

Most approaches to calculating saliency map aredas
the observation that locations in the visual fi¢ktht are
distinctive from their contextual background arereniikely to
attract human attention. The distinctiveness oityraran be
measured by contrast. A milestone work was preddiytéiti et
al. [10]. It developed a biologically plausible ®m that
invented a “center-surround” operation implementisthg a
“Difference of Gaussians” (DoG) across multiple Iesato
model the contrast. The final saliency map wasvedrby the
linear summation of color, intensity, and oriergaticontrast.

largely by the profound challenge of automatically |ikewise, Ma et al. [11] adopted the “DifferenceWfndows”

identifying the object of interest in an image. Atiempt at
simulating the human visual attention mechanisne iy
promises to resolve this problem. The intrinsicilagte of
visual attention is its selection procedure, whéctables our
vision system to select a subset of interestingitspn the
visual field for further cognition. This selectigalies on the
synergy of both bottom-up and top-down factors. ikénl
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(DoW) to calculate color distribution distance beén a
location and its surrounding location within a womd to
measure contrast. A work similar to [11] was prambdy
Achanta et al. [12], which also leveraged DoW ttedaine
visually salient regions. Recently, Klein et aBJ4letected the
saliency in an information-theoretic paradigm, whistimates
the distribution difference of visual features betw the center
and its surround regions by Kullback-Leibler divemge. Other
representative works using center-surround mecimsnis
include those in [13-15] and [32]. The works of [H8d [17]
investigated the use of Gaussian Mixture Models {G&Yfor
the saliency computational model. The former metfig]
adopted GMMs to represent the dominant hue in whheh
inter-cluster distance between components indicates
saliency. The overall saliency map was automaticslected
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as either a color saliency map or an orientatidiersey map.
The latter approach [17] involved two GMMs thatnesented
attention regions and background, respectively.ixelpvas
classified into salient regions or background dejpenon a
Bayesian framework. Harel et al. [31] exploitedragi model
in which each node represents a lattice and theezion
between two nodes is proportional to their dissnity. The
contrast was inferred by a Markov chain. Gofermaal.€29]
combined local contrast, global contrast, visugloizational
rules, and high-level cues to form a new type bésay called
context-aware saliency.

Another school of methods [18-20] explored supedis
learning methodologies for saliency detection. Anber of
attention features were firstly extracted. Afterdgrthe feature

extensively, many existing approaches still suffem such
drawbacks as low resolution, ill-defined salientubdary,
non-uniform entire salient object, and so on, asrearized in
[23]. Most of these drawbacks result from the fhat existing
algorithms only take the appearance rarity or wiisiveness
into consideration and ignore the objectness dissentially,
the underlying purpose of saliency detection isldoate
meaningful objects that are more likely to attréw user’s
attention. From the viewpoint of considering obijess,
saliency detection is related to the extractiorvidBo object
planes (VOPs). Some first works for VOP extractiwiude [3,
5, 49]. In [49], Doulamis et al. proposed to extrfaceground

VOPs such as head and shoulder of speakers in video
developed a

conference applications. Gu et al. [5]

weights were learned based on a ground truth dsgaba semi-automatic system where the precise object segttion

manually labeled or obtained by eye-tracking expenits. The
data in the ground truth indicates the objectsntérest or
human eye fixations. Finally, the saliency map waserated
according to the weighted combination of featurébe

supervised learning algorithms used in previouske/§t8-20]

include Conditional Random Fields [18], Support Wec
Machines (SVMs) [19], and Mixture of SVMs [20].

was done by human assistance in | frames followgd b
automatic object tracking in remaining frames. Ketal. [3]
combined temporal and spatial information to extNOPs,
which adopted temporal information to localize nmgvobjects
and spatial information to obtain precise boundarie
Appearance rarity and objectness are two criticalcepts
for attention modeling. Inspired by this insighlist paper

Based on the assumption that the global contrast iproposes an object-oriented approach for salieatsction by

preferable than the local contrast for saliencyeckn, a
newly emerging research stream on modeling imatiensg
with high computational efficiency in the frequerdgmain is
gaining interest. In [21], the Spectral Residu&®)8efined as
the difference between the log Fourier amplitudecspm of
an image and the prior knowledge was used for reafie
discovery. Nevertheless, Guo et al. [22] arguetl tthea SR of
the amplitude spectrum is indecisive. Alternativethey
explored the saliency using the phase spectrurheofburier
Transform. In [23], Achanata et al. provided a freacy-tuned
(FT) approach to capture global contrast. Altex@dyi, Hou et
al. [34] employed the sign of each Discrete Co3irensform
component, which is equivalent to the phase infoioneaof the
Fourier transformation. Recently, Li et al. [33]ndoined
global contrast from frequency domain and localtamst from
spatial domain for the generation of a saliency.map
Motivated by the biological evidence that the reep
fields of simple cells in the primary visual cortéXl) are
similar to sparse codes learned from natural inzatehes,
researchers [24-28, 44] have attempted to levesmgase
representations to compute visual saliency. Thlsitep was
to learn basis functions by performing Independrhponent
Analysis (ICA) on a large number of randomly sedecimage
patches. The learned basis functions were appliditer the
image, thus obtaining a set of coefficients adehéures. Then,
various principles such as Information Maximizat{tM) [24],
Incremental Coding Length (ICL) [25], Bayesian femork
[26], Site Entropy Rate (SER) [27], and Featureivation
Rate [44] were used to detect the distinctivenessages. The
sparse representation based methods are biolggidallsible.

B. Overview and contribution of the proposed approach

coupling appearance rarity and objectness intooagtilistic
framework using image sparse coding representatitins
consists of three major components as shown inlFigirstly,
images are characterized by a set of sparse ceaewt using
ICA. Secondly, the rarity probability is modeled ayGMM
and the salient objectness likelihood is inferrgdhteasuring
GMM components using compactness, continuity, asmter
bias. These two aspects are integrated to yieldatency map.
Finally, bounding boxes locating salient objects abtained
using an adaptive algorithm.

The novelties that distinguish the proposed workmfr
previous approaches are five-fold. 1) The proposedk
integrates appearance rarity with objectness hbeld in a
probabilistic paradigm based on sparse coding septations.
In contrast to previous work that considers contadane, the
combination of objectness attributes enables usxiwact
whole salient objects uniformly. 2) The sparse sodee
learned from a large number of eye-fixation patobig®ined
from an eye tracking dataset rather than randorhpat which
has been demonstrated to achieve better result§hBe
generic measurements are developed to charactéhze
objectness. These measurements are calculateidwetifjcand
effective for saliency detection. 4) It improves work [30]
and proposes an adaptive algorithm to create bogrulbxes
locating salient objects easily and effectively. Bjtensive
evaluations on publicly available datasets and eoispns
with 18 state-of-the-art algorithms are carried and results
demonstrate the effectiveness of the proposed work.

The rest of the paper is organized as follows. iGedi
describes image sparse coding representationsioseltt
reports the probabilistic framework involving rgritand
objectness measurement. Section IV introduces goritim

Although visual saliency detection has been studied
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that can locate salient objects with bounding bdxa&sed on
saliency maps. Section V presents experimentaltseginally,
conclusions are drawn in Section VI.

p—

Appearance
rarity
probability

Independent
feature
extraction

posterior
probability
X

Compactness,

continuity, and Objectness
P center bias likelihood
EFEn measurement

Fig. 1 The architecture of the proposed salien¢gali®n framework based on
sparse coding representations.

Il. IMAGE SPARSE CODING REPRESENTATIONS

It has been commonly acknowledged that the recefitlds
of simple cells in the primate primary visual cari@'1) are
spatially localized, oriented, and band-pass [34]s intrinsic
property can be accounted for by sparse codingseptations,
which attempt to represent a high-dimensional ndlbsignal
by using a few representative atoms on a low-dieas
manifold. The investigations in [24] and [25] haeeind that
the sparse coding principle is useful in understanthe cause
of saliency mechanisms in the brain. These findingsvate us
to detect visual saliency based on sparse codprgsentations.
Furthermore, the study of V4 and MT cortical regidoy [36,
37] has demonstrated that attention can be dediroed
particular features. These particular features larnnferred
from an eye tracking benchmark database. In spavdeng
representations, each atom or code is most eféediv
describing one type structure or a particular featim the
image. The generation of sparse codes is parthitdgnto the
training samples, of which, in practice, we havéy enlimited
number of. This naturally motivates us to learnrspacodes
using eye fixation patches from eye tracking dadabanstead
of random patches, which is biased in favor of ifigdimage
structures or features that are more likely to dagention.

Given an image patchl (x,y) centered at location

z, =(x,Y,), it can be represented as a linear superpositian o
set of sparse coding bases:

=18, )

Here B, indicates thej th basis function and,’ denotes its
associated coefficient, which is referred to as “fieature”.

Suppose the j th fiter function E, is the
inverse/pseudoinverse & and f’ is derived by:
fl=> E (xyl(xy) )

(x.y)
Finding a complete set of basis functions whichnspthe
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image space is a critical issue. ICA training igoad way to
approximately resolve this issue and thus is adbptemany
existing algorithms [24-28, 44, 38, 39]. As shown[89],
although this scheme is incapable of achieving regti
independent codes, the yielded codes are indeperiden
third-order statistics. Moreover, the investigasan [26, 35,
38] have demonstrated that the features obtainegdisnway
qualitatively resemble those observed found in tisuial
cortex. Accordingly, this paper also applies ICAdarn the set
of basis functions.

To implement ICA training for sparse codes, manyiera
methods [24-28, 44, 38, 39] work on a collection of
general-purpose image patches randomly selectemh fi0
large-scale database [24-28, 44, 38, 39]. In thisep, we
utilized an eye-tracking databaseveloped by MIT Al lab [19]
to learn sparse codes. It consists of eye-tracttatg from 15
different viewers across 1,003 images randomlycsedefrom
Flickr and LabelMe. In this dataset, fixation Idoat were
generated by using an eye tracker to record vié\yaee path
as they watch images. The eye-tracking data ingscetere
viewers actually look in images. Learning sparseleso
specifically on these eye fixation patches canlifaté us to
discover which subset of features is more attradtivhumans.
This can certainly benefit the inference of visgaliency
detection task. In our implementation, we obtainad
large-scale collection of eye-fixation patches fromis
eye-tracking dataset, where each is of size ofahd’centered
at a fixation location. The ICA algorithm is utidid to learn 147
(7x7x3) basis functions based on these selectedhemt
Finally, given the image patch, (x,y), 147 coefficients
calculated according to Eq. (2) are used as femture
F ={f7% j=L1..,147 to detect visual saliency.

Fig. 2 shows the 147 basis functions learned from
eye-fixation patches. As reported in literatures, [25, 35, 48],
some of basis functions resemble Gabor filters aious
positions, orientations, spatial frequencies andsph, and
some others look like low-pass filters that presentopposite
colors. The work [35] has provided a quantitatiséreation of
the distribution of basis functions in space, d@éon, and
scale. Essentially, each basis function represantgpe of
structural primitive, which might be devoted toaastructing
geometrical structures in images. As stated in483, features
yielded via these basis functions resemble simelereceptive
fields. They intuitively contain much richer infoation than
typical pixel color. With this set of sophisticatéghtures, we
may discover more types of contrast rather thag ménsity
or orientation contrast used by traditional saljemeodels.
Moreover, our basis functions are learned from fxaion
patches, which reflect specific image structurefeatures that
are more likely to draw human attention. Accordingle
presume the use of sparse coding based featurbleens to

1

http://people.csail.mit.edu/tjudd/WherePeopleLoalefiactiv
eWebsite/seeFixations.html
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improve the quality of saliency detection.
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Fig. 2 Basis functions learned from eye-fixatiorichas.

Previous approaches [24-28, 44] using the spardingo
principle mainly concentrated on modeling
information of individual pixels or small areas. \wever, they
ignored the information that a pixel belongs to tigect,
which leads to difficulties in uniformly finding vahe salient
objects with well-defined boundaries. To tacklesthieakness,
this paper develops a probabilistic framework tenpate the
saliency map by taking both pixel rarity and objess into
consideration simultaneously. The rarity is charazed by the
global contrast. Three attributes reflecting sal@bjectness of
a pixel called compactness, continuity, and cebies are
measured using contextual information.

The inference of the saliency of a pixel is fornteith as
follows. Let z =(x,y) denote a pixel and

F={f%} j=1..,
based on sparse coding representations. We askarbaary

OBJECT-ORIENTED SALIENCY MAP

contrastin the proposed algorithnF;

147 denote its corresponding feature vector

location is distinctive from background. In thigpea, we adopt
global contrast to measure the rarity. Similar26][ according
to the Bayesian rulep(r, =1|F ) can be calculated by:

1
p(ri:]-lFi): NV p(F| |ri:l)p¢i:1) (7)
p(F' ) top-down knowledge Prior
bottom-up saliency
log p(r, =1|F, )=-logp €, )+ logE, F, = 1y cons (8)

There are three terms on the right side of Eq.T(f@. first item
measures the bottom-up saliency. The second iterasppnds
to the top-down knowledge. The last one is therptimder the
scenario of free viewing, only the first item neeids be
considered, which means:

logp(r =1|F )0~ logp € ) 9)
={f1}, j=1,..,147 is arandom
variable vector consisting of all filter responsggF,) is the

joint probability of filter responses. Since filsdlearned using
ICA are approximately independent, the joint praligbis
simplified to the product of probability of eacltdr response:

p(F) =1 n(f")
[l
147 . (10)
log p(F,)=>_logp(f,’)
j=1
We utilize GMMs with M components to estimate the
distribution of each filter response according to:

M
p(f) =2 AN(T' | 1.0.7)

where paramete rsrm, ,

(11

can be inferred using

/'Ic' ac

random variable, indicates whether the pixel stands out from expectation-maximization (EM) algorithm. Alternaly, the

its surroundings or not, and assume the binaryaanariable
o denotes whether the pixel belongs to an objecbbtrThey

are formalized as:

1 ifz, is distinctive,

r= . 3
0 otherwise
1 ifz, belongs to an objec

0= _ (4)
0 otherwise

Instead of taking only pixel rarity into account iasthe
earlier works [26, 15], the proposed approach igerto
integrate rarity with objectness in a probabilidtiamework.
The saliency values of z, is defined as a joint posterior

probability as below:
S =p(o =11, =1|F) )
It is reasonable to assume and o are conditionally
independent giverfr . Therefore, Eq. (5) can be rewritten as:
: p(o :Lri _1|Fi_) )
=p(o =1|F)p( =1|F,)
where p(o =1|F ) is called the “objectness probability” and
p(r =1|F ) is the “rarity probability”.

A. Rarity probability
Intuitively, the rarity probability reflects how roh a
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generalized Gaussian distribution used in [26] alao be
applied to estimatep(f') .

B. Objectness probability

Instead of training object detectors for specifasses, for
example, faces, cars, or buildings, this paper Idpgea set of
measurements of objectness generic over classigglidates
how likely it is for a pixel to belong to an objetit contrast to
object detectors extensively trained from a largenimer of
samples, our measurements are relatively “weak”easy to
obtain, but they are effective to salient objededgon. In this
paper, the objectness of a salient object is ckeriaed using
three measurements: compactness, continuity, amerceias.
The first two measurements are inherent propesfias object.
The third measurement models a high-level attrifotea
salient object, which accounts for the fact thabbject closer
to the centre of the image is more likely to attiaterest.

Intrinsically, the objectness is a property of augr of pixels.
It is meaningless to estimate the objectness usivery
individual pixel alone. As shown in Eqg. (11), wédine GMMs
{m, u,o3? to model each filter's responses. The

components of the GMMs are regarded as the bagis tmn
calculate the objectness. The objectness of a @xmedicted
by a probabilistic combination of various compoisent
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1) Compactness

The compactness describes the global distributibam
object. Following Eq. (11), given theth filter response map,
every pixelz, =(x,y,) with the corresponding featurg’ is
assigned to a component with the probability:

: TN(f' |y, 07
p(clfij):Mc (| |lLlc c)

2 N(E | 4,.07)
c=1

(12)

Inspired by [40], this paper proposes to measure th

compactness of a component as follows. At firs, Ittation
variance of a componermt is calculated by:

__2upelfhx > el i,

- i i , = ! - 13

“Soertny s VS ey P
Ve =2 (6 =7+ (- )’ | (14)

Afterwards, values ofp(c|f’) are quantized intoK
non-overlapping ranges equally. Pixels are assidoettiese

K labels to form various class-maps based on their

correspondingp(c| ). As mentioned in [40], the class-map

can be viewed as a sort of texture composition. fdtal
variance of pixels belonging to the same classisputed as:

Z(xi,y.)DCMm p(c| fii)D(i
z(myi)ocmm p(c| fij)
v = zw

)_(m:

' (15)
= V')DCMmp(leiJ)Eyi m={,2,..K}
” D e, PELE) 2,
v, :iﬁm( > [(K -%. )2 +(y, -Y/m)zJ) (16)

m=1 (4.3 YCMm

Here, CM denotes the class-map arg] is the mean of
p(c| f') for pixels belonging to each class-map.
The compactness of the componentin the j th filter

response map is finally defined as:
CP/ :—VW a7)

V, -V,
The motivation of the compactness calculation igioally
from the Fisher's multi-class discriminant [40]s lvalue is
large when all pixels of various classes uniformigtributed

over the entire image. Otherwise, its value tendsetsmall.

2) Continuity

Objects normally appear to be continuous individuater
space. Spatial continuity is a powerful determinainbbject
persistence. Boundary information is a visual femathat can
indicate the object continuity. Accordingly, thisager
measures continuity based on gradients. Given gonentc
in the j th filter response map, its continuity is calcuthbsy:

- iy |9, o,
CT) =2 [p(c| ) (a)q) +(0M)]

As shown in Fig. 3, CT tends to be small when gixalonging
to its corresponding component are spatially comtirs.

(18)

3) Center bias

Generally speaking, objects closer to the centernaore
likely to attract human attention. Center bias nsedfective
factor to detect visual saliency. We compute thearebias of a
componentc in the j th filter response map as follows:

CB’ =
Y [Pl 1)+ O =27+ (v =971/, pel 1)

Fig. 3 displays an example where six componentstlagid
associated three objectness measures are indicated.

(19)

Oriainal CP=0.0876 CP=0.0451 CP=0.0150
riging CT=02934 CT=02727 CT=02316
2 CB=0.7370 CB=0.4906 CB=0.2410
- S L]

i e :
- w2 havra
Filter CP=0.0095 CP=0.1893 CP=0.2260
Ro CT=0.0833 CT=0.1448 CT=03158
spons CB=0.0303 CB=0.9472 CB=0.9826

Fig. 3 An example showing six GMM components anel dssociated three
objectness measurements. In the first column, dpeirhage is the original
image and the bottom image is the correspondingprese to a filter. In other
columns, six images show various objects formeddnpus components with
their compactness (CP), continuity (CT), and cehias (CB).

After the above three objectness measurementdtamed,
the objectness probability of a pixel can be detriby the
probabilistic combination of objectness measurerméetery
component in every filter response map as follows:

147

p(o :1|E>:Zi2p(o.:1|fﬂ)

1 )=

(20)

Here, Z, is a normalizer. As mentioned, our approach ténds
use the objectness of components to indicate tigemiess of a
pixel. Following this idea,p(o =1| f') can be estimated as:

PO =111/)=3 p0 =1lc)p € I1)

p(o =1|c) represents the likelihood of a component forming

(21)

an object. According to those three objectness oneagnts, it
can be formalized as an exponential distribution:

-2 —_—2 -2
1 CP' +CT! +CB'
p(o =1|c)=—-expt—= 5 —) (22)
Z, P
S Cch — Cch S CBCj
CPcJ T , CTcJ S , CBcJ S (23)

2.2.CP

j1 c=1
Here, Z, is a normalizer and the parametercan be regarded
as a scale controller. It controls the shape ofoegptial
functions and thus implies the importance of oljess
measurements to the overall saliency detection.4=ttisplays
the impact ofA on saliency maps. As can be seen from the
figure, the results obtained by using a very smallie of A
generally distribute quite compactly, whereas thaynot form
a whole object. In contrast, results obtained liygi®o large a
value of A may contain redundant points from background.

Z >.CT)

j-1 c=1

2,2 CB!

j-1 c=1
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This paper empirically determines an optimal valoe A,
which will be described in the later experimenttigec
The overall objectness probability is computedadievs:

1
o =1|F)=
p(o =1|F) 77,
—_—2 —_—2 —_—2
w7 u CP +CT) +CB . 7N(f'|u,0?) . (24
ZZ[eXp(_ c c c )D C (| |luc c) ]

M
2N | 1,.07)
c=1

Substantively, the calculation of the objectnessbability
comprises the selection procedure of filter respangp and
component, which leads to the discovery of a suludet
appropriate feature spaces to compose salienttsbjec

o IR e
EEENERENENERERENENES
@ .- - PP

Images A =0.1 A=0.2 A=0.3 A=0.4 >=0.5 A=0.6 »=0.7 A=0.8 A=0.9 A=1.0
Fig. 4 Examples illustrating the impact df on saliency maps. The first
column shows original images and the second telthenth column show the

corresponding saliency maps generated by sedintp values from 0.1 to 1.

o

[ 4
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IV. SALIENT OBJECT DETECTION

The last step in the saliency detection framewsitb idetect
salient objects based on the saliency map. Althcagew
efforts [2, 12, 23] have attempted to segment ateuobject
boundaries, they are not robust to complicated @sagith
cluttered background. Most other approaches sinfipiyd
bounding boxes that can cover most of salient pdiased on
further analyzing the saliency map. This detecstmategy is
also utilized by the proposed framework.

Luo et al. [30] presented an efficient algorithratthredicts
bounding boxes with maximum saliency density (MSD).
formulated the problem as follows. Given an imalye and
the corresponding saliency m&p, the objective is to find a

6

Z(x,y)ﬂw S(X’ y) _ Z(vam S(X- y)

Z(x,y)Dl S(X’ y) Z(x,y)ll S(X, y)

Here, S(x,y) = max@S .,y ))-S.y), which represents the
impact of background pixels. The first termh(W) ensures

that W contains more salient points in a similar manog80].
The second term ensures th&t contains fewer background
pixels. The maximization of these two terms simmétzusly
can achieve good performance. Afterwards, the opdition of

the objective function follows the branch-and-bowsehrch
method described by [45, 30]. The basic idea of the
optimization [45, 30] is to hierarchically splitehset of all
possible rectangles into disjoint subsets. An uggpmind is
calculated based on the objective function for ezarididate
rectangle set. The next search over candidatengletsets
works in a best-first manner, which preferentigkamines the
most promising candidate in terms of its upper lbourhe
search is terminated when the most promising caelid
contains only a single rectangle, which guarantestsa global
maximum can be achieved. The branch-and-bound tsearc
avoids the extensive search in a large number cthmgle
candidates whose upper bounds tell that they aneromising.
Therefore, comparing with the exhaustive seardaritfind the
optimal solution with the less cost.

h(W) = @27)

V.EXPERIMENTAL RESULTS

We construct experiments to demonstrate the pediocm
of the proposed framework, which mainly includes
evaluation of the proposed saliency map and comspanvith
state-of-the-art algorithms; 2) evaluation of thehesne of
sparse code learning from eye-fixation patchesvajuation
of the proposed salient object detection algorithm.

1)

A. Experimental settings

In this paper, two publicly available benchmarkadats
called MSRA dataset [18, 23] and Bruce dataset §2d]used
for evaluations. The first dataset consists of @ ,d8ages with
manually labeled ground truth [18, 23]. To our Besiwledge,

sub-imageW to locate area of maximum saliency density this dataset may be one of the largest test setsalency

where W OIM . This can be mathematically formalized as:

W =argmaxh W ) (25)
W) = 2 S | D SN
Zwﬂ S(x,y) D+ Area(W)

where W is the optimal sub-window an® is a positive
constant to balance the area W . In spite of good
performance reported in [30], it has a drawback tha value
the free parameted has to be determined empirically, which
consists of a tedious procedure of parameter tuihiy may
reduce the generality of the algorithm. Alternalijyéhis paper
proposes an elegant algorithm which removes thiarpeter
while achieving comparable performance. We tersbtee the
problem by presenting an alternative objective fiamcbelow:

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee

detection whose ground truth is in the form of nalydabeled
accurate object-contours instead of rough boundings as in
[18]. The benchmark dataset has been widely utilizg a
variety of up-to-date saliency detection approactbesst their
performance such as [18], [23], [17], [20], [29hda[26].

Details of this benchmark dataset can be foun@3hdnd [18].
The second dataset is an eye-fixation datasetgedviy [24].
It consists of 120 images with ground truth gerextdiy eye
tracking data from 20 different subjects.

Following [13], [15], [17], [19], [21], [23-24], [8-27], [29],
and [31-32], Receive Operator Characteristic (R@@)yes
and the areas under ROC (AUC) are used as thecmsétri
gquantitatively measure the performance. ROC and Ao
generated by classifying the pixels in a saliengpnnto
salience or non-salience by varying the quantiratiweshold
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within the range [0, 255]. The resulting false figsi rate
versus hit rate at each threshold value forms tB€ Rurve.

B. Evaluation of the saliency map

1) Parameters and components analysis of the proposed
model

In this section, we analyze the effect of paransetand
components of the proposed model. The evaluatiosie w
performed on the MSRA dataset. In our model, thalesc
parameterA is a free parameter. The estimation Afin
principle is a non-trivial problem. This paper swied it
empirically. We generated the saliency map usiegtioposed
approaches by varyingl between 0.1 and 1.0. Fig. 5
illustrates AUCs associated with different valuésia

0'88.1 0.2 03 04 0.5 0.6 0.7 0.8

Fig. 5 The AUC with differentd values.

019 1 A

As can be seen, the proposed algorithm is reaspnab

sensitive tod and settingd between 0.2 and 1.0 can yield
generally similar accuracy. In our implementatioh, was
fixed at 0.3. Another free parameter in our modéhe number
M of components in the GMM model. In the current
implementation, M was set to 6 empirically and we
additionally found settingVl to the value between 3 and 5 did
not degrade the performance significantly in theeginents. It

is worth mentioning that the proposed algorithmksarell on
all 1,000 test images using a fixed set of parametkies and
without any parameter tuning on individual imagesich
indicates the robustness of the algorithm.

In our model, rarity probability and objectness hability
are two major factors. Objectness probability fertkelies on
three components: compactness, continuity, anecbkrds. To
test the effect of each component, we quantitativalculated
the saliency detection performance by using ramybability
only and using rarity probability combined with baedividual
objectness component, respectively. Fig. 6 illusgr#he AUCs
associated with each combination, where “R” indisahe use
of rarity probability only, and “R+CP”, “R+CT", antR+CB”
indicate the combination of rarity probability acmimpactness,
continuity, and center bias, respectively, and “R*HAdicates
the combination of rarity probability and all threemponents.
It is easy to observe that the integration of ofniess
measurement is certain to benefit saliency detectio
significantly, which obtains the improvement of 80(8.5%)
in terms of AUC. The components of compactnesscamier
bias basically contribute to our model equally. Ebenponent
of continuity contributes less than other two comgats. The
integration of rarity probability and objectnessipability with
all three components achieves the best performance.
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Fig. 6 Quantitative evaluation of effect of eacimpmnent to the proposed
model in terms of AUCs.

2) Comparisons with state-of-the-art approaches on
benchmark databases

To demonstrate the effectiveness of the proposgatitim
in yielding the saliency map, we compared it wit@ 1
state-of-the-art approaches. These approacheslexdes for
comparison mainly because 1) they were publisheddant a
few years; 2) they were published in major computer
vision/machine learning conferences or journals,efcample
CVPR, ICCV, NIPS, and IEEE PAMI; 3) their sourcedes or
executable codes and parameter settings were peblig the
Iauthors themselves. The selected 18 state-of-ttegproaches
are AWS [41], FSDA [33], FT [23], GBVS [31], HC [#ACL
[25], IM [24], IS [34], ITTI [10], MSS [42], PWHL 19], RC
[47], SDSR [15], SER [27], SIM [32], SR [21], SR®?], and
SUN [26]. Notice that CA [29] is also a good satigdletection
approach. However, it mainly aims to extract sallenations
and meaningful context. Most other methods inclgdiars are
to detect salient locations only. In addition, thdacks an
appropriate database to fairly compare these tiferdnt types
of approaches so far. Therefore, we did not commane
method with CA in this paper.

Generally, the quality of saliency computation eglion
image content. In [29], Goferman et al. categorimmdge
content into three cases: single salient object onimteresting
background, salient object over salient context, iamages of
complex scenes. Since this paper does not aimxtoaaing
context of salient objects, we basically consider tases: one
obvious salient object over “clean” backgrounds iamages of
complex scenes, which have multiple salient objettts small
size, complex appearance, and complex backgromadjds of
the MSRA dataset basically correspond to the fiete and
images of the Bruce dataset correspond to the decase.
Therefore, we evaluate the saliency detection dlgos on
these two datasets, respectively. Fig. 7 displaysiraber of
results generated by the proposed method and other
state-of-the-art algorithms. From the left to tight, the first
six examples were from the MSRA dataset and thefoas of
examples were from the Bruce dataset. The subgectiv
evaluations by comparing with the ground truth sgghat the
proposed method can yield saliency maps correctig a
robustly in both cases. Our saliency detector gdlyecan
produce saliency maps with full resolution and tsedito
segment salient objects with well-defined boundary.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee
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The first quantitative comparison was performed tba
MSRA dataset. Fig. 8 shows the ROC curves and Flsts
AUCs of various approaches. Cheng et al. [47] psedawo
excellent approaches called HC and RC. Especitilly,RC
algorithm incorporates image segmentation techsigute the
contrast measurement, which can improve the pedooea As
can be seen from comparison results, our methadighktly
worse than RC while outperforming other 17 alganishin
terms of AUC. The AUC difference between our method
the RC is about 0.018 (1.8%). One possible intéagion is
that the image segmentation used in RC works reabéyion
the MSRA data that contains a simple salient olaedt clean
backgrounds. This point was also mentioned by [46]s
interesting to observe that the ROC curve of tloppsed work
intersects with the curve of GBVS. Comparing witB\&s, our
method shows higher accuracy for low false rat@s2s). This
is because our detected salient pixels fall wellrire salient
regions, have near uniform values, and form aceluratindary,
but sometimes do not cover the entire object. Intrest,
although the detected salient pixels of GBVS aré vesy
accurate and do not have uniform values withiresaliegions,
they can cover the entire object. In most casdignsaegions
detected by GBVS are larger than the true obj@tisrefore, it
detects more true salient pixels when false ratestne higher.
However, in terms of AUC that quantifies the averagality
of saliency maps, our method is better than GBVS.

Another quantitative comparison was performed oa th
Bruce dataset. Fig. 10 shows the ROC curves andLEitjsts
AUCs of various approaches. It can be seen thagpriby@osed
approach is better than 18 existing approachesdtly, our
method outperforms RC [47] by 0.09 (9%) in term3AGfC.
RC performs much worse on the Bruce database caupéth
the MSRA database. As pointed out in [46], the majo
explanation is that image content of the Bruce luhga
basically is much more complex and image segmemtati
algorithm may fail for this case, which resultghe significant
decrease of its performance. However, since ounodetdopts
features sparsely coded using eye fixation datatwbmbody
rich information and generic objectness rulesdiaatot rely on
image segmentation, it achieves good performancboth
databases. In summary, our evaluations and cornoparisn
two benchmark databases have demonstrated thatdhesed
model works effectively on images with simple contand
images with relatively complex content.

The average time costs taken by various algoritmadisted
on Table 1. It was estimated based on computingrgsl maps
of 100 randomly selected images from the MSRA dadab
with the resolution of 40€800. All algorithms were tested on a
24-core Lenovo Server with Intel Xeon CPU of 2.8 GlAs
can be seen, our algorithm has moderate compushitost.

3) Comparisons with state-of-the-art approaches on
categorized images

In the last subsection, we categorized image coitgarms
of the complexity of salient objects and imagesislitalso

8

interesting to define image content in terms of aetio

category and measure the performance of variousoappes
in each image category. To setup the experimerit@maent,
we asked three participants to manually categofifz00
images of the MSRA dataset into 12 semantic clessesrding
to image content, which are traffic sign, car, ainfruit,

flower, egg, building, human, dessert, leaf, toyd athers.
Every category contains several tens of images.

Fig. 12 displays a few samples of each categonyleT2lists
the AUCs achieved by various approaches in diffeirmage
categories. As can be seen, some approaches s&B asd
our method can generally obtain consistent gootbpaance
in all categories, whereas the performance of satner
methods for example, IM, SER, and SIM, appears ¢o
inconsistent across categories.

C. Evaluation of sparse code learning scheme

This experiment evaluates the performance of therse for
learning sparse codes from eye-fixation patchesdmyparing
it against the commonly used scheme for learniagsspcodes
from random image patches. The fixation-based itrgiset
consists of a large number of selected eye-fixgiaches from
1,003 images in the eye tracking database [19hddition,
more than 200,000 random patches from the sambatsa
were collected to form another training set. Thesetraining
sets were applied to learn sparse codes respeggtiaed
comparison results are shown in Fig. 13 (subje@iaduations)
and Fig. 14 (quantitative evaluations). The resid#tsonstrate
that the proposed learning scheme is effective.

As explained in section IlI, sparse codes learneun fr
eye-tracking data are expected to be able to faudiqular
image features or attributes that are more likelattract the
viewers' attention. This essentially account far thservation
that our proposed approach can achieve a betiensglmap
compared with the approach of learning sparse codeg
random patches. An experiment was constructed
guantitatively demonstrate this point. Since ouwsrsp codes
were trained using the MIT eye tracking benchmaatadase
[19], we utilized the MSRA benchmark database P13,as the
test data for the purpose of cross-validation.isst fall salient
pixels were collected from the saliency groundhtrof 1,000
images [23]. Afterwards, for each salient pixel, yielded a
quantized histogram to approximate the probability
distribution of its responses to filterd. ( in Eq. (2)) derived

from the learned sparse codes. Finally, the ShaEmtmopy is
calculated based on the histogram as:

H=-> plogp, (28)
Here, p indicates the probability of theth bin in the
histogram. In this way, we can obtain the meanopwtiof all
salient pixels. For the purpose of comparison, eaputed the

average entropy corresponding to sparse codeselkdrom
eye-tracking data and random patches, respectively.
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Fig. 7 A number of comparison results of 18 stdtthe-art approaches, ours, and the ground truth.
Their values are 6.78 and 6.08, respectively. daentropy scheme of learning sparse codes with random patthes
generally indicates its uncertainty is higher. Ur oase, it also  proposed scheme of learning sparse codes withraglitg

implies that more learned sparse codes are sensitiv can achieve around an 11% improvement in entropyeaely,
particular features of attentive objects. Compangth the  which demonstrates the sparse codes learned freffix@gion
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patches are more appropriate for accounting fotiquear
features that are more likely to attract humamtitia.
1
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Fig. 8 Saliency map quantitative comparison ofgheposed algorithm with
18 state-of-the-art approaches using ROC curvéh®MSRA dataset.
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Fig. 9 Saliency map quantitative comparison ofgheposed algorithm with
18 state-of-art approaches using AUC on the MSRAgi.

D. Evaluation of salient object detection

In order to demonstrate the effectiveness of theptike
approach for salient object detection proposeéaticn V, we
compared it with [30] on saliency maps generateddiyg the
proposed work. All 1000 images from [18] were uasdhe test
dataset. Its ground truth, which labels detecteslte using
bounding boxes, was provided by MSRA [18]. Simitaf30],
given the rectangle-like binary madk, detected by the

algorithm and the binary magg, by the ground truth, the

precision, recall, and F-measure were applied koutze the
performance, which are defined as:

n:ZGang :ZGaXGg
2.G. 2.G,
oz 1+ B)x precisionxrecall
B % precision +recall
Our implementation takeg =0.5 as suggested by [30].

Our experiments followed all settings in [30] to mrically
determine the value dD . Fig. 15 illustrates the relationships

precisio , recall (29)

F —measur

(30)
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D=1.1. Fig. 16 displays some sample results of the
comparison. Our method performs better than [30fhenfirst
five examples (from the left to the right) and wem the last
three examples. We also have done quantitative ansgm
evaluations on our test dataset. The F-measurewatfithe
proposed algorithm and MSD [30] are 0.84 and 0.83,
respectively. As can be seen from the comparissulte the
proposed algorithm can slightly improve on the perfance of
the MSD algorithm [30]. More importantly, the prceal
algorithm can eliminate the free paramelrin MSD and
remove the tedious procedure of parameter tuning.

1
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—SR
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s 0
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False Positive Rate(FPR) False Positive Rate(FPR)

Fig. 10 Saliency map quantitative comparison offtfeposed algorithm with
18 state-of-art approaches using ROC on the Bratasdt.

Hit Rate(HR)
o

S O ¢

0.9

Q

g 08

07

1

2 06

E

Z 05

2 04

<

03

0.2

0.1

0

L ITE w2 2z 220 ez 2z
a = o = ="EFEZ¥2Iz2m=»wnc5 5
ZETgFRTTEEEEZEE gE S

Fig. 11 Saliency map quantitative comparison offifeposed algorithm with
18 state-of-art approaches using AUC on the Bratasgt.

VI. CONCLUSIONS

In this paper, we have reported a probabilistionaork for
visual saliency detection using sparse coding ssmations.
Two key contributions that distinguish the proposeak from
most previous works are summarized as follows: 1) A
probabilistic formalization is developed to integra
appearance rarity and objectness likelihood. Thyereric
measurements are proposed to estimate the objsctnes
likelihood; 2) Sparse codes are learned from exetibn
patches instead of randomly selected patches. Gdrapsive
evaluations and comparisons with 18 state-of-ther@thods

betweenD and the F-measure based on our test dataset angh publicly available benchmark datasets have dstrated

using the proposed saliency map. As can be seenFig. 15,

D =1.1 leads to the best performance. Accordingly, when w

compared the proposed algorithm with MSD [30], vet s
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Traffic sign
-

Fig. 12 Samples from various image categories.
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Leaf Toy Others

AVERAGE TIME TAKEN TO COMPUTE ;AS?AII__IIEEJI.\ICY MAP USING/ARIOUS APPROACHES
Method AWS FSDA FT GBVS HC ICL IM IS ITTI
Time (s) 4.0970 4.2653 0.011 1.4719 0.014 0.2376 8.6450 0.0071 0.2611
Code Matlab Matlab C++ Matlab and C++ C++ Matlab Matlab Matlab Matlab and C++
Method MSS RC SDSR SER SIM SR SRDS SUN Ours
Time (s) 0.0721 0.177 2.0238 37.9458 13718 0.0105 0.0855 1.9329 1.2106
Code C++ C+ Matlab C++ Matlab Matlab C++ Matlab Matlab and C++
TABLE 2
AUCs ACHIEVED BY VARIOUS APPROACHES IN DIFFERENT INGE CATEGORIES
Traffic sign Car Animal Fruit Flower Egg Building Human Dessert Leaf Toy Others

AWS 0.879 0.913 0.872 0.813 0.855 0.781 0.939 0918 0.844 0.832 0913 0.895
FSDA 0.811 0.840 0.810 0.838 0.825 0.809 0.851 0.868 0.835 0.817 0.836 0.813
FT 0.770 0.743 0.828 0.757 0.855 0.792 0.803 0.819 0.730 0.774 0.815 0.808
GBVS 0.883 0.937 0.944 0.883 0.927 0.903 0.937 0.947 0.935 0.894 0.934 0.930
HC 0.904 0.841 0.900 0.878 0.964 0.903 0913 0.893 0.838 0.933 0.936 0.908
ICL 0.803 0.823 0.764 0.734 0.804 0.675 0.819 0.810 0.699 0.767 0.805 0.769
IM 0.860 0914 0.879 0.802 0.832 0.734 0.924 0.895 0.833 0.794 0.900 0.856
IS 0.686 0.755 0.703 0.620 0.658 0.582 0.735 0.734 0.645 0.622 0.725 0.685
ITTI 0.876 0.905 0.906 0.795 0.844 0.826 0916 0915 0.822 0.813 0.908 0.881
MSS 0.857 0.864 0.893 0.868 0.908 0.882 0.878 0.898 0.854 0.858 0.915 0.892
PWHL 0.853 0.934 0.931 0.851 0.868 0.848 0.954 0.936 0.903 0.861 0.923 0.905
RC 0.946 0.956 0.962 0.958 0.974 0.958 0.953 0.962 0.926 0.961 0.969 0.965
SDSR 0.843 0.878 0.807 0.717 0.740 0.607 0.853 0.879 0.743 0.721 0.826 0.801
SER 0.923 0.937 0.865 0.821 0.908 0.799 0911 0.921 0.808 0.864 0919 0.886
SIM 0.820 0.881 0.840 0.686 0.732 0.613 0.827 0.893 0.634 0.724 0.810 0.790
SR 0.631 0.796 0.712 0.642 0.737 0.546 0.774 0.687 0.662 0.646 0.750 0.678
SRDS 0.835 0.838 0.803 0.742 0.763 0.699 0.818 0.860 0.710 0.762 0.824 0.795
SUN 0.724 0.838 0.715 0.730 0.800 0.589 0.798 0.762 0.661 0.697 0.794 0.718
Ours 0912 0.922 0.935 0.939 0.977 0.968 0.941 0918 0.943 0.918 0.948 0.938

In our current algorithm, inferring GMMs for each B47
filter responses took most of computation time. @xnsion
to this work is to selectively build GMMs for uséffilter
responses when generating the saliency map. Thdsldsh
reduce computational complexity. Another potenfiaiure
work is to incorporate reliable semantic-based dixjetectors
into the proposed work, which is presumed to improive
performance. In addition, we intend to apply thécome of
our work, which automatically predicts locationsimterest of
human perception to improve the performance of ntamgent
challenging problems like image object segmentatiorage
object retrieval and browsing, and image objectgatization.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes,
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Fig. 13 A number of examples obtained by two défgrschemes for learning
sparse codes. The top row shows the results basegparse codes learned
from eye-fixation patches with varying from 0.1 to 1, while the bottom row
is the results based on sparse codes learned &mtom patches.
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Fig. 14 The AUC comparisons of two different scheré learning sparse
codes by varying! from 0.1 to 1.
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Fig. 15 EvaluationD value on our test dataset. The x-coordinat® ivalue
measured in unitl0'xImageSze and the y-coordinate is F-measure.

Fig. 16 Some comparison samples. In each resalteihrectangle is detected results by our methedylue one is detected results by using MSD [80{ the

green rectangle is the ground truth.
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