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ABSTRACT 

Image saliency detection provides a powerful tool for predicting 
where human tends to look at in an image, which has been a long 
attempt for the computer vision community. In this paper, we 
propose a biologically-inspired model for computing image 
saliency. At first, a set of basis functions that accords with visual 
responses to natural stimuli is learned by using eye-fixation 
patches from an eye-tracking dataset. Three features are then 
derived based on the learned basis functions including continuity, 
clutter contrast, and local contrast. Finally, these three features are 
combined into the saliency map. The proposed approach is easy to 
implement and can be used in many image and video content 
analysis applications. Experiments on a large-scale benchmark 
dataset and comparisons with a number of the state-of-the-art 
approaches demonstrate its superiority. 

Categories and Subject Descriptors 
I.4.8 [Image Processing and Computer Vision]: Scene Analysis 
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Algorithms, Performance, Experimentation 
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1. INTRODUCTION 
Due to the ability of automatically estimating where human tends 
to focus on in the viewing field, computational modeling of visual 
saliency is gradually becoming the cornerstone of many 
multimedia applications such as video summarization [1], image 
resizing [2], and object segmentation [3]. It has been thus 
extensively studied in recent years. Existing algorithms can be 
broadly classified into two categories: biologically inspired and 
computationally inspired approaches. Inspired by the neuronal 
architecture of the early primate visual system, Itti [4] proposed 
the first biologically plausible framework, which implemented the 
saliency map by “center-surround” operating on three contrast-
based features across multi-scales. Motivated by the evidence that 
the receptive fields of simple-cells in the primary visual cortex 

(V1) are similar to sparse codes learned from natural image 
patches, another school of methods [5-7] built the saliency map 
based on sparse codes mining. The mining schemes include 
Information Maximization [5], Incremental Coding Length [6], 
and Site Entropy Rate [7]. 

More algorithms are purely computationally inspired. The work in 
[8-10] detected the saliency in the frequency domain. Yu et al. 
[11] proposed a complementary saliency map by combining 
sketch-like and envelop-like features. Ren et al. [12] considered 
super-pixels as the basic unit and adopted the clustering technique 
to improve the performance of saliency detection. More recently, 
Cheng et al. [15] developed an elegant histogram descriptor 
indicating global contrast under the assumption that large objects 
are more attentive than tiny ones. Other approaches pose saliency 
modeling as a classification problem. Supervised learning 
algorithms, such as Support Vector Machines [13] and 
Conditional Random Fields [14], were used to optimize features 
guided by a ground truth dataset labeled by human or obtained 
from human eye-tracking data. 

In some sense, the purely computationally inspired approaches are 
ad hoc. Their performance largely relies on the image database 
they work on since many attention factors, features, and the 
learning procedure are oriented towards the prior assumptions 
built on the image database. The human visual attention 
mechanism is much more complicated than what we can 
understand so far. This limits the performance of biologically 
inspired approaches to some extent.  However, this category of 
methods is to mimic the capability of human and attempts to 
discover the intrinsic cues of visual attention. As long as the 
related areas like biology, psychology, and neurology make the 
breakthrough in visual attention mechanisms, it is certainly to 
benefit the biologically inspired methods significantly. Therefore, 
biologically inspired methods are potentially more promising. 

The saliency maps computed by many current methods still suffer 
from such drawbacks as low resolution, ill-defined salient object 
boundary, non-uniform entire salient object, which also has been 
pointed out in [10] and [11]. These problems may arise from the 
fact that many existing approaches only take either local contrast 
or global contrast into consideration. They do not balance these 
two aspects of cues well. The emphasis on local contrast tends to 
produce higher saliency values near salient object boundaries. On 
the contrary, the use of global contrast leads to ill-defined 
boundaries. 
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In this paper, we propose a biologically inspired bottom-up 
computational model to detect image saliency based on sparse 
coding representations that have been acknowledged to be similar 
to the receptive fields of simple cells in V1. The proposed model 
is motivated by the following three commonly agreed biological Conference’10, Month 1–2, 2010, City, State, Country. 
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evidences: 1) According to Gestalt principles, continuous objects 
are more likely to attract attentions. The continuity is one of 
essential factors for saliency detection.  2) The clutter contrast of 
a visual scene can influence our visual search and perception of 
the stimuli [16]. 3) A neuron’s activities are mostly driven by its 
neighbors [4]. 

Three features are derived based on the sparse coding theory to 
reflect the above evidences and then combined to yield the 
saliency map. The first two features emphasize the global 
consideration and the last one is to detect the local contrast. The 
major contributions of the proposed work can be summarized as 
follows: 1) The sparse codes are learned from eye-fixation 
patches obtained from eye tracking data rather than arbitrary 
patches, which is demonstrated to be able to achieve better results. 
2) All features are extracted based on sparse coding coefficients, 
which is simple, efficient, and analogous to neuron’s activities. 3) 
Clutter contrast features are modeled using sparse coding and 
formally applied to detect image saliency. 4) Empirical 
comparisons of the proposed work with a number of state-of-the-
art approaches are performed on a publicly available database.  

The remainder of this paper is organized as follows. Section 2 
describes sparse coding representations. Section 3 presents the 
development of the saliency map. Experimental results are given 
in Section 4. Finally, conclusions are drawn in Section 5. 

2. SPACE CODING RESPRESENTATIONS 
It has been mostly agreed that the sparse coding principle is an 
appropriate simulation to the intrinsic activation property of 
visual neurons in V1 [17]. An image patch I  can be represented 
as a linear superposition of a set of patch bases: 
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The sparse coding principle believes the receptive fields of simple 
cells in V1 can be characterized by basis functions each 
accounting for a neuron’s response. As studied in [17], finding a 
complete set of basis functions which spans the image space is a 
critical issue. Traditionally, basis functions are learned using 
Independent Component Analysis (ICA) from a set of general-
purpose image patches randomly selected from a large-scale 
database [5-7]. In principle, this strategy can obtain a complete set 
of bases approximately if we have boundless training data. 
However, in practice, with a view to limited computation resource, 
a task-oriented scheme may achieve better performance for the 
specific task. In this paper, we propose to learn basis functions 
using eye-fixation patches obtained from a publicly available eye 
tracking database [13], instead of using patches randomly selected 
from a general-purpose database. The learned bases account for 
image structures gaining attentions more likely. 

88918 eye-fixation patches which are more attractive from all 
1000 images in the eye tracking database proposed in [13] are 
collected. ICA algorithm is utilized to learn the basis functions 
with the size of 7×7×3 =147. Fig. 1 illustrates basis functions 

learned from fixation patches and learned from image patches 
randomly selected from the same database, respectively. 

 
Figure 1: The basis functions learned from (a) eye-fixation 
patches and (b) random-selection patches. 

3. THE SALIENCY MODEL 
3.1 Continuity-based Features 
According to Gestalt principles, continuity is an important 
property for attentive objects. This paper proposes to model it 
based on sparse codes. The framework is shown in Fig. 2.  

 
Figure 2: The proposed framework of generating continuity-
based features. 
At first, the input image is filtered by the set of learned basis 
functions (according to Eq. (2)) to obtain the corresponding 
coefficient maps. Afterwards, in the  coefficient map, we 
construct the coefficient histogram. The counts in the histogram 
bins are converted to a discrete probability distribution

thk

( , )kH x y , 

where ( , )x y is a location in the map. ( , )kH x y is modified by a 
Gaussian kernel as: 
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Since the coefficient histogram technique only models the 
coefficient coherence without taking spatial connectivity into 
account, a post-process is utilized to remove the isolated patch 
noise. Due to its simplicity, the minimum filter is applied within 
the neighborhood of 5 5× . Finally, the continuity-based feature 
map is generated as the summation of all coefficient maps: 

( , ) ( , )k
k
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3.2 Clutter Contrast Features 
As mentioned in [16], visual clutter contrast is one of inherent 
factors to decide the image saliency. In [16], a feature congestion 
measure is proposed to estimate the clutter of any scene. To the 
best of our knowledge, very little work of saliency detection has 
formally adopted clutter contrast as a feature. In this paper, we 
define clutter as the complexity of the structure of the patches in 
images, which is measured based on the sparse coding 
representations. 



The framework of generating clutter-based features is displayed 
in Fig. 3. Given an input image and a set of basis functions, each 
location ( , )x y can be represented by a set of coefficients  

( , )x yα according to the Eq. (2). Then, the clutter contrast 
features are calculated as follows: 
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Figure 3: The framework of generating clutter contrast 
features. 

Here, ( , )A x y and are entropy and energy over , 
respectively, which are formulated as: 
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In our implementation 0.4λ = . 

As pointed out in [20], there are two kinds of contrast patterns 
generally: smooth background with cluttered salient objects and 
smooth salient objects with cluttered background. The clutter 
contrast calculation by Eq. (5) can handle the former contrast 
pattern only but is inappropriate for the latter pattern for the 
purpose of highlighting salient objects. A saliency reversal 
procedure [14, 20] is utilized to refine the results, which is based 
on variance comparison between background and salient object. 

3.3 Local Contrast Features 
Local contrast is a major cue to detect saliency. It is normally 
obtained by center-surround differencing (CSD). This paper 
models local contrast by means of CSD over sparse coding 
coefficients, which is defined as follows: 
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Here  is the CSD operator and Ω  is the neighborhood of Θ
( , )x y , and  l  is the scale. In our implementation, the size of 

was set to 5 and the scale number was set to 5. The 
framework of obtaining local contrast is shown in Figure 4. 
Ω 5×

3.4 Feature Combination 
In visual attention modeling, the feature combination is a tricky 
problem as biological theories behind it are still unclear. Although 
many algorithms [13, 14] adopted learning-driven scheme, they 

are ad hoc and require an extensive training stage. In the proposed 
work, inspired by the conclusion in [21] that V1 cells tuned to 
different features interact through lateral connections and activity 
in cells responding to stimuli is suppressed through mutual 
inhibition, we develop a novel combination strategy to reveal the 
mutual interaction across features. 
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Here  is a normalizator. N

 
Figure 4: Framework of obtaining local contrast features.  

4. EXPERIMENTAL RESULTS 
Two evaluation studies were conducted to test the proposed work. 
The first evaluation is to compare the performance of two basis 
functions learning strategy: eye-fixation patches based and 
random patches based methods. The second test is to 
quantitatively evaluate the proposed saliency detection algorithm 
by comparing with a number of state-of-the-art algorithms. In our 
experiments, 1000 images in the benchmark dataset presented in 
[10] with their ground truth which is manually labeled by subjects, 
were utilized as testing data. 

4.1 Evaluations of Eye-fixation Patches based 
Learning 
Fig. 5 shows the ROC curves of saliency detection computing on 
all testing data by using basis functions learned from eye-fixation 
patches and learned from random patches, respectively. As can be 
seen from the comparison, eye-fixation patches learning strategy 
can improve the performance of sparse coding representations for 
the task of visual saliency detection. 

4.2 Evaluations of the Proposed Algorithm 
Fig. 6 displays some exemplar results that include corresponding 
feature maps, overall saliency maps, and ground truth. To 
objectively evaluate the proposed work, we compare it with a 
number of state-of-the-art algorithms including the Information 
Maximization (IM) [5], Coding Length Increments (CLI) [6], 
Special Residual (SR) [8], Frequency-Tuned (FT) [10], Feature 
Congestion Measure (FCM) [16], Self-ReSemble (SRS) [18], 
SUN [19].  Fig. 7 shows the comparison results and Fig. 8 shows 
the ROC curves of saliency detection calculating on all testing 
data. The comparison results can demonstrate the superiority of 
the proposed work. 

5. CONCLUSIONS 
In this paper, a computational model of visual saliency motivated 
by biological evidences was reported. Three attention-oriented 
features were derived based on sparse coding representations and 
then combined to generate the saliency map. Comprehensive 



experimental results on a benchmark dataset and comparisons 
with state-of-the-art approaches have demonstrated the 
effectiveness of the proposed work. 

 
Figure 5: The ROC curve of saliency detection by using Eye-
Fixation Learned Basis Functions (EFLBF) and Random-
Selection Learned Basis Functions (RSLBF). 

 
Figure 6: Examples of saliency maps and corresponding 
feature maps obtained by the proposed work. 

 
Figure 7: Saliency maps by different algorithms. 

 
Figure 8: ROC curves of saliency detection by different 
algorithms. 
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