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Abstract—This paper presents a method for extracting
rotation-invariant features from images of handwriting samples
that can be used to perform writer identification. The proposed
features are based on the Hinge feature [1], but incorporating the
derivative between several points along the ink contours. Finally,
we concatenate the proposed features into one feature vector to
characterize the writing styles of the given handwritten text. The
proposed method has been evaluated using Firemaker and IAM
datasets in writer identification, showing promising performance
gains.

I. INTRODUCTION

Writer identification based on scanned handwriting is a
useful behavioral biometric modality. It has extensive ap-
plications in forensic and historical document analysis. The
hypothesis behind writer identification is that people have
their own writing style which can be characterized based on
the information present in their handwritten patterns [1],
[2], [3], [4]. According to this basic hypothesis, a writer
identification system based on a machine should consist of two
main parts: representation of the writer shape information and
the computation of similarity. Generally speaking, the measure
of similarity is largely dependent on the feature representation
of the writing styles. Therefore, the core task of designing
a writer identification system is to design an effective and
discriminative feature.

Writer identification is a hard problem which attracts
scientific research in the area of pattern recognition. Over
the recent years, a wide variety of methods are proposed in
the literature. Based on the context of the features they used,
the systems of writer identification are traditionally divided
into two broad categories: text-dependent and text-independent
methods [1], [2], [3], [4]. Text-dependent methods focus on
the text content, while text-independent methods study some
statistical features extracted from the entire image of a text
block [5]. The proposed approach in this paper falls in the text-
independent class, due to the fact that features are designed
and extracted from the entire document images for writer
identification.

Automatic writer identification can also be categorized into
two groups: on-line and off-line methods [2] according to the
type of documents they used. On-line (tablet based) recordings
contain temporal information such that the velocity of the
pen movements.The additional temporal information is useful
both in writer identification and handwriting recognition [6].
Although the feature method that will be proposed in this paper

is used in off-line document classification, it is easily extended
to on-line writer identification, which is one of the noticeable
advantages.

As mentioned above, the representation of writing style
takes an important role in writer identification. Although
the existing features have achieved high accuracy based on
carefully scanned documents, to our best knowledge, none of
them has been reported to be rotation-invariant. However, a
small rotation angle can be easily introduced into the images
of handwriting samples. In the real-world, poor scanning
practices result in a small rotation angle, which may have
a serious impact on the performance of writer identification
system based on the rotation-variant features. To overcome
this problem, this paper introduces rotation-invariant features
for writer identification.

We present new features for off-line and text-independent
identification of handwriting, which has several advantages:
1) The proposed features are rotation-invariant, which are,
to our best knowledge, the first rotation-invariant features in
identification of writers; 2) Although the proposed features
are computed from offline documents, they are indicative of
temporal events. There is a lawful relation between curvature
and pentip velocity that has been extensively studied [7],
[8], [9], [10]. The features proposed here, therefore, are also
directly applied to on-line handwriting.

II. RELATED WORK

In previous studies, a wide variety of features have been
proposed that serve to distinguish the writing of individual
persons. There are two main types of features reported in the
literature: codebook-based and contour-based features.

Codebook-based features are widely used in writer
identification system. Schomaker et.al. has proposed to
build a codebook using fragmented connected-component
contours(FCO3) [1], [12], [11]. Based on their methods, Ghi-
asi et al. used curve fragment and line fragment code extraction
methods to build the codebook [13]. Code patterns in small
windows are used to train the codebook in [3], which works
on a much smaller scale of writing shapes. After construction
of the codebook, a probability density functions(PDF) for
handwriting can be computed based on the codebook and
agglomerated in a histogram.

For high quality images, the edge-based or contour-based
features have shown more effective performance in writer
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Fig. 1. Schematic description for the Δ0Hinge, which is the original Hinge [11], Δ1Hinge,Δ2Hinge and Δ3Hinge, on the left in a piece of a contour
with the points P1, P2, P3, P4, P5. The proposed method consists of computing angular difference in steps, increasing the order n of the ΔnHinge.

identification [3], [14], than the codebook (fraglets) approach,
but combining both methods is beneficial, especially in vari-
able quality images. The contour-based feature are assumed
to represent biometrical aspect rather than trained copybook
character shapes [15]. The best contour-based features reported
in the literature are the Hinge [1] and Quill-Hinge [4] features.

The Hinge feature was designed to capture the curvature of
the ink trace of the document images, which is considered to be
very discriminatory between different writers [1], [3]. The core
idea is to consider two contour fragments together attached
at a common end pixel and compute the joint probability
distribution of the orientations of the two legs of the obtained
“contour-hinge”. The Quill-Hinge feature [4] is the combina-
tion of the Quill feature and Hinge feature. It is a probability
distribution of the relation between the ink direction and the
ink width. Therefore, its performance on the handwriting using
different instruments is higher than others.

In this paper, we proposed a new set of features called
ΔnHinge based on Hinge feature. Although the Hinge
feature has been successfully used in some applications,
such as Groningen Intelligent Writer Identification Sys-
tem(GIWIS) [16], there is an obvious drawback: it is sensitive
to the rotation of the documents. To overcome this problem,
we generalize the Hinge to ΔnHinge features, which have
the rotation-invariant property when n = 1, 2, 3.... On the
other hand, when n = 0, Δ0Hinge is exactly the Hinge
feature. Therefore, the proposed ΔnHinge features can be
considered as the generalization of the Hinge, and contain
more information.

III. ΔnHINGE FEATURE

The Hinge feature captures the joint probability distribution
of the orientations of two legs of the obtained “contour-
hinge” [1] along the ink contours. Given an arbitrary starting
point, a counter-clockwise evaluation follows. If we assume
that the points on the contour are generated one by one, like the
on-line handwriting, with a writing direction ϕ, the two legs of
the hinge can be defined as “previous” orientation ϕ1, which
is the opposite to the writing direction ϕ, and as “succeeding”
orientation ϕ2, which follows the writing direction ϕ. Here we
denote one point pj associated with two orientations ϕ1{pj}

and ϕ2{pj} as a “Hinge kernel”(see Δ0Hinge{p3} in Figure
1).

The Hinge feature can be considered as a statistical de-
scriptor of the contours, which acount the probability of each
pattern appeared in the contours. For each point pj which has
pair angles(ϕ1{pj}, ϕ2{pj}), the probability of such pattern
in a given document is calculated by:

p(ϕ1, ϕ2) =
c(ϕ1,ϕ2)

C
(1)

Here, ϕ1 and ϕ2 means the possible value of the two
orientations in all points along the ink contours. c(ϕ1,ϕ2) is
the number of the pattern (ϕ1, ϕ2) appeared in the given
document image, and C is the total number of points in
all the ink contours of the document image. p(ϕ1, ϕ2) is a
bivariate probability distribution capturing both the orientation
and the curvature of contours [1]. Finally, the probability
distribution is agglomerated in a q × q histogram, where q
is the number of angle bins. The histogram was built using
bilinear interpolation to avoid distortions caused by measures
close to bin boundaries.

In this paper, we propose a new set of features based
on the Hinge feature for writer identification, which is called
ΔnHinge. A sequence of pixels with fixed interval of distance
along the ink contours are considered simultaneously to con-
struct the probability of angle derivative on the “previous” and
“succeeding” directions. We denote such sequence with fixed
interval of Manhattan distance Δl as {pj , pj+1, ..., pj+n−1},
where Δl = |pi − pi−1|, i = j + 1, j + 2, ..., j + n − 1.
The starting point of the sequence is pj , and the end point
is pj +n− 1. Given this sequence, the n− 1 derivative of the
two orientations in Hinge kernel is denoted as:

jΔ
n−1ϕi = ϕi{pj , pj+1, pj+2, ..., pj+n−1}

i = 1, 2
(2)

Here, ϕ1 and ϕ2 are the two “previous” and “succeeding”
orientations in Hinge kernel respectively. jΔ

n−1ϕi is the n−1
derivation along the ϕi orientation with starting point pj .

When the n − 1 derivative of the two orientations is
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obtained, the n derivative is computed as:

jΔ
nϕi =

j+1Δ
n−1ϕi −j Δ

n−1ϕi

Δl
i = 1, 2 (3)

There are two sequences with different stating points pj+1

and pj subjected to |pj+1 − pj | = Δl are involved in the
computation of n derivation in two orientations of the Hinge
kernel. From Eq(3), we can find that the computation of n
derivative relies on the n − 1 derivative. From Eq(2), when
n − 1 = 0, we can get the initial value of “previous” angle

jΔ
0ϕ1 = ϕ1{pj} and “succeeding” angle jΔ

0ϕ2 = ϕ2{pj},
which are the Hinge kernel on point pj (see Δ0Hinge on
point p3 in Figure 1).

Given handwritten contours, each pixel on the con-
tour is considered as the jth start point and the pattern
(jΔ

nϕ1,j Δ
nϕ2) is obtained by Eq(3). All the patterns are

quantized into a histogram, and finally the ΔnHinge feature
is given by:

ΔnHinge = p(Δnϕ1,Δ
nϕ2)

n = 0, 1, 2, 3, ...
(4)

Here, the p(Δnϕ1,Δ
nϕ2) is defined as same way as

Eq(1). From the Eq(2), Eq(3) and Eq(4), we can find that
the ΔnHinge feature is built on Δn−1Hinge, which can be
recursively computed by Δn−2Hinge and Δn−3Hinge and
so on. The initial Δ0Hinge is the Hinge [1]. Therefore, the
proposed ΔnHinge is the generalization of the Hinge feature,
and the Hinge feature is the special case of the ΔnHinge
feature when n = 0.

Corollary 1: Properties of ΔnHinge feature:

(1) When n = 0, the Δ0Hinge is the Hinge feature [1].

(2) When n = 1, the Δ1Hinge works similarly as the first
derivative(alike to the angular velocity long the contours) of
the pen coordinates in signature verification [17], [18].

(3) When n = 2, the Δ2Hinge works similarly as the
second derivative(alike to accelerations) of the pen coordinates
in signature verification [17], [18].

(4) When n > 2, the ΔnHinge contains high order
derivative information of the contours in the document images.

Corollary 2: The proposed ΔnHinge has the rotation-
invariant property when n > 0. Assume that the document
has a small rotation angle φ, and the probability of the rotated

document is denoted as p( ˜Δnϕ1, ˜Δnϕ2). Then we have

p( ˜Δnϕ1, ˜Δnϕ2) = p(Δnϕ1,Δ
nϕ2)

n = 1, 2, 3, ...
(5)

Proof: According to Eq(3), if there is a small rotation angle
φ on the whole document, when n > 0, the n derivative of
the Hinge kernel is computed as:

˜

jΔnϕi =
(jΔ

n−1ϕi + φ)− (j+1Δ
n−1ϕi + φ)

Δl

=
jΔ

n−1ϕi −j+1 Δ
n−1ϕi

Δl
=j Δ

nϕi

i = 1, 2; n = 1, 2, 3, ...

(6)

We can conclude that the probability distribution is not
changed after rotation.

A. Ho2Dn feature

Previous studies have shown that the performance of
combined different feature sets is better than individual fea-
tures [11], [3], [1], [5]. Inspired by this observation, the
different components of the proposed ΔnHinge feature are
concatenated into one feature vector to form the Histograms
of Hinge over Derivative with n, dubbed HoHoDn,or
Ho2Dn, which is defined as:

Ho2Dn = {Δ0Hinge,Δ1Hinge, ...,ΔnHinge} (7)

From this definition, the Ho2D0 is the Hinge probability
feature, which is sensitive to rotation. If the rotation-invariant
feature is required, the Δ0Hinge should be excluded from
Ho2Dn, here we denote as Ho2Dn+, which is a rotation-
invariant feature.

IV. WRITER IDENTIFICATION

A. Dissimilarity measure

The proposed features belong to the class of probability
distribution functions(PDF) features, For which special dis-
tance function exist in [1], [3]. The χ2 was found to perform
best. Thus the experimental results reported in the subsequent
sections will be based on χ2 distance.

B. Writer identification

Nearest-neighbor classification with a “leave-one-out”
strategy is often used in writer identification system [11], [1],
[3], [4]. Given a query document Q, the system will sort all
the documents in the train set based on the distance to the
query Q. Ideally, the sample with the minimum distance should
be the pair produced by same writer. Not only the nearest
neighbor(Top-1), but also a longer list up to a given rank(Top-
10) are used to measure the performance of the identification
system. In our experiments, we also use the nearest-neighbor
method with the “leave-one-out” strategy to perform writer
identification, and use the identification rate of both Top-1
and Top-10 to evaluate our method.

V. EXPERIMENTS

A. Datasets

In this paper, two dataset are used to test our method:
Firemaker [19] and IAM [20]. The Firemaker set contains
handwriting collected from 250 Dutch subjects, who were
required to write four different A4 pages. In this dataset,
lowercase pages are commonly used to test writer identifi-
cation methods [11], [1]. In our experiments reported in this
paper, we performed searches/matches of page 1 versus page
4 (lowercase pages). We modified the IAM dataset as [1]:
We selected randomly two documents for those writers who
contributed more than two documents, and we have split the
document roughly in half for those writers with a unique
page. Finally, the dataset from IAM used in the experiments
contains lowercase handwriting from 650 people, two samples
per writer.
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Fig. 2. Rotation study on firemaker dataset. The left figure shows the top rank, i.e.(Top-1) identification rate with rotation angle (o), and the right one shows
the Top-10 performances

0 2 4 6 8 10

20

40

60

80

Rotation angle(o)

Id
en

ti
fi

ca
ti

o
n

R
at

e(
%

)

Δ0Hinge: Top-1

Δ1Hinge: Top-1

Δ2Hinge: Top-1

Δ3Hinge: Top-1

0 2 4 6 8 10

40

60

80

100

Rotation angle(o)

Id
en

ti
fi

ca
ti

o
n

R
at

e(
%

)
Δ0Hinge: Top-10

Δ1Hinge: Top-10

Δ2Hinge: Top-10

Δ3Hinge: Top-10

Fig. 3. Rotation study on IAM dataset. The left figure shows the Top-1 identification rate with rotation angle (o), and the right one shows the Top-10
performances. Note that the Firemaker data set is based on a single type of ball point pen, whereas the IAM data set contains many writing instruments.

TABLE I. PERFORMANCE OF ΔnHinge FEATURES

ΔnHinge n 0 1 2 3 4 5 6 7 8 9 10

Firemaker [19]
Top-1 89.2 84.4 79.8 72.6 75.0 60.2 65.0 57.6 57.0 45.6 40.1

Top-10 95.8 97.4 95.0 91.6 93.4 84.6 86.8 85.0 86.2 73.8 70.5

IAM [20]
Top-1 91.6 84.8 83.5 66.8 67.3 49.9 50.8 38.6 43.0 30.3 35.5

Top-10 96.0 95.3 94.9 87.5 87.2 76.6 78.2 66.7 71.9 58.5 63.4

B. Experimental setting

The images of the Firemaker and IAM datasets are bina-
rized using Otsu thresholding [21], which is a widely used and
efficiently computed binarization method. After thresholding,
the ink contours are extracted by tracing method proposed
in [4]. Given the ink contours, the two orientations ϕ1 and ϕ2

of Hinge kernel are computed at all pixels on those contours.

There are four parameters in the proposed method, number
of angle bins q, leg length r, Manhattan distance Δl, and
the number of derivative n. It was shown in [4] that the
performance is insensitive to the value of q, as long as it is at
least about 30, and to value of r as long as it is between 10
and 100. Therefore, in our experiment we set q = 40, r = 15.
We experimentally set the Manhattan distance Δl = 7 and
found that it works quite well. The experiment shows that the

better choice for n is n = 2 or n = 3 which is dependent on
the specifical dataset.

C. Rotation-invariant study

In this section, we perform a rotation-invariant study on
the two datasets. In both datasets, one writer has two samples.
Therefore, we keep the first one and rotate the second one
with a small ϕ angle. In our experiment, we just evaluate
the rotation angle ϕ � 10. For those documents which have
rotation angle greater than 10, some rotation operators can
be used manually or automatically to adjust it to the normal
ones. The results are presented in Figure 2 and Figure 3, on
the Firemaker and IAM dataset respectively. The figures show
that, with the increase of rotation angle from 0 to 10, the Top-1
performance of Δ0Hinge decrease significantly from 89.2%
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to 25.6% in Firemaker, a drop of 63.6%, and from 91.6% to
17.1% in IAM, a drop of 74.5%. However, the performance
of Δ1Hinge, Δ2Hinge and Δ3Hinge decreases slightly, by
14.4%, 18.6% and 21.6% in Firemaker respectively, and by
4.5%, 6.6%, 11.5% in IAM respectively. The slight decrease
is partly caused by quantization artifacts introduced by the
rotation operator, since the image is defined on a discrete grid.
The same trend can be found on the Top-10 performance on
both Firemaker and IAM datasets. Therefore, the proposed
ΔnHinge, n > 0 are less sensitive to rotation.

D. Performance of ΔnHinge features

In this section, we evaluate the performance of each part
of ΔnHinge. Table I contains the achieved performances for
both datasets, with different n from 0 to 10.

The performances are little different on the two datasets.
For Firemaker, the maximum identification rate of Top-10 is
achieved when n = 1. When n > 1, the identification rate
is decreased gradually. However, the performance in IAM
decreases gradually from n = 0. The main reason is that
the documents in IAM are pen-dependent. The writer used
different writing instruments to create the handwriting text,
which may cause a variative in the derivative along the ink
trace. We can conclude from the table that ΔnHinge contains
less information with higher value of n. For example, when
n > 100, the derivative of the two orientations will be closed
to zero. Another interesting observation is that, although the
performance of the features with different n varies in both two
datasets, ΔnHinge contains discriminative information when
n ≤ 3.

E. Performance of Ho2Dn feature

In this section, the performance of the proposed Ho2Dn

feature which concatenates the ΔnHinge is evaluated using
the two datasets. The results are presented in Figure 4, where
we can find that the maximum Top-1 identification rate is
90.4% in Firemaker when n = 1 and 97.2% in IAM when
n = 2. The corresponding Top-10 identification rates are
98.2% (n = 4) in Firemaker and 97.2% (n = 2) in IAM
dataset. The results support our conclusion we mentioned
before that the ΔnHinge contains discriminative information
when 1 ≤ n ≤ 4.

F. Performance of Ho2Dn+ feature

In this section, the performance of the Ho2Dn+ is eval-
uated in both databases. The results are shown in table II.
Without Δ0Hinge feature, the performance of Top-1 is down.
However, the results of Top-10 are still comparable to Ho2Dn

features.

G. Comparison with other studies

In this section, we present a performance comparison of
our method with some recent studies on writer identification.
Table III and table IV show the performance of recent studies
and ours in Firemaker and IAM datasets. The proposed feature
performs better than others on Firemaker data set, which
achieves 90.4%(Top-1).

TABLE II. PERFORMANCE OF Ho2Dn+ FEATURES

Ho2Dn+ n 1 2 3

Firemaker [19]
Top-1 84.0 84.0 81.4

Top-10 97.0 97.4 97.2

IAM [20]
Top-1 85.8 86.4 84.8

Top-10 96.0 95.3 94.9

TABLE III. COMPARISON OF WRITER IDENTIFICATION STUDIES ON

THE FIREMAKER DATABASE.

Study Top1(%) Top10(%)

Ghiasi and Safabakhsh [13] 89.2 98.6

Bulacu and Schomaker [1] 83.0 95.0

Brink and Smit [4] 86.0 97.0

Proposed 90.4 98.2

Comparing the performance on 650 writers of IAM data
set, we achieve an identification rate of 93.2%(Top 1) and
97.2%(Top 10), which is better than the results in [1], [3], and
comparable to the results in [13]. Note that Top-1 performance
of Quill-Hinge [4] is higher on IAM data set due to the fact that
Quill-Hinge feature is designed for pen-dependent documents.

TABLE IV. COMPARISON OF WRITER IDENTIFICATION STUDIES ON

THE IAM DATABASE.

Study Top1(%) Top10(%)

Siddiqi and Vincent [3] 89.0 97.0

Ghiasi and Safabakhsh [13] 93.7 97.7

Bulacu and Schomaker [1] 89.0 97.0

Brink and Smit [4] 97.0 98.0

Proposed 93.2 97.2

H. Comparison with ICDAR2013 competition [22]

We evaluate the proposed method on ICDAR2013
database [22] which is used for writer identification competi-
tion. This database consists 250 writers with four documents
per writer. Two documents were written in Greek, the other
two in English. Ideally, the parameters in proposed method
should be learned from this dataset. However, in this experi-
ment, we just set Manhattan distance Δl = 15 and others is
same as previous experiments. The results in table V shows
that our proposed method is comparable to the state-of-the-art
method in ICDAR2013 competition.

VI. CONCLUSION

We propose a new set of features which generalizes the
Hinge method for writer identification in a rotation-invariant
manner. The results on two widely used data sets and a
comparison with the ICDAR2013 benchmark show that the
proposed method is promising and comparable to the state-
of-the-art techniques. The implication of this finding is that
not only the (absolute) slant angle distribution of handwriting
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Fig. 4. Performance of different n of Ho2Dn feature. The left figure is the performance on Firemaker dataset, and the right one is on IAM dataset.

TABLE V. COMPARISON OF WRITER IDENTIFICATION STUDIES WITH

ICDAR2013 COMPETITION [22].

method Top-1 Top-10

Greek Dataset
state-of-the-art in ICDAR2013 95.6 99.2

Proposed method 96.0 98.4

English Dataset
state-of-the-art in ICDAR2013 94.6 99.0

Proposed method 93.4 97.8

is biometrically informative; also the distribution of relative
angles along the trace provides writer-specific information,
capturing the curvature of the patterns.
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