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Historical manuscript dating has always been an important challenge for historians but since countless
manuscripts have become digitally available recently, the pattern recognition community has started
addressing the dating problem as well. In this paper, we present a family of local contour fragments (kCF)
and stroke fragments (kSF) features and study their application to historical document dating. kCF are
formed by a number of k primary contour fragments segmented from the connected component con-
tours of handwritten texts and kSF are formed by a segment of length k of a stroke fragment graph. The
kCF and kSF are described by scale and rotation invariant descriptors and encoded into trained codebooks
inspired by classical bag of words model. We evaluate our methods on the Medieval Paleographical Scale
(MPS) data set and perform dating by writer identification and classification. As far as dating by writer
identification is concerned, we arrive at the conclusion that features which perform well for writer
identification are not necessarily suitable for historical document dating. Experimental results of dating
by classification demonstrate that a combination of kCF and kSF achieves optimal results, with a mean
absolute error of 14.9 years when excluding writer duplicates in training and 7.9 years when including
writer duplicates in training.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Handwritten historical documents are the most important
sources of information about the past, especially where the more
distant past is concerned, before the wide spread dissemination of
printing and semi-mechanical text production. Increasing num-
bers of such documents are currently being digitized and stored in
the computer, as in the Monk system [1], which contains more
than 100K scanned page images. Thanks to this development,
pattern recognition techniques can now be applied to solve his-
torical document problems, which has already been attempted at
length in the case of writer identification [2–5], word spotting
[6,7] and character recognition [8,9]. These methods aim to pro-
vide efficient tools for scholars in the humanities to discover
informative patterns in large digital collections. The Monk system
[1], providing a web-based search engine for characters and words
annotation, recognition and retrieval, can serve as an example.
er@ai.rug.nl (L. Schomaker).
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Historical manuscripts loose much of their usability as sources
if they cannot be dated with some accuracy. However, the fact is
that most of them, especially those from the Middle Ages, do not
carry any explicit date information. Often the only way to date
these manuscripts is by inferring the year or period of origin from
the characteristics of the handwriting they contain. Traditionally,
this type of historical document dating has been the prerogative of
paleographical specialists, basing themselves on years of experi-
ence and the non-verbal intuition acquired from it, rather than on
objective criteria. Manual script dating is not efficient, as paleo-
graphical expertise is comparatively rare and, moreover, it is no
exception for experts to arrive at conflicting conclusions when
dating the same manuscript. Therefore, automatic script dating
offers great promise for countless scholars working with undated
handwritten historical sources.

The main motivation of using the computer to date historical
manuscripts is to exploit patterns of handwritten texts that cor-
relate with temporal information. This problem is similar to the
“visual dating” problem in computer vision, such as historical color
image dating [10], estimating the date of historical cars [11] and
human age estimation based on face images [12,13]. The aim of
visual dating is to mine the visual patterns that are specific for a
anuscript dating using contour and stroke fragments, Pattern
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Fig. 1. An example of a charter in the MPS data set.
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certain period in time [10] and to track and trace visual styles that
change gradually over time [11].

We have proposed a number of features [2,14–16] to capture
handwriting styles. However, there is one aspect of the visual
appearance of handwritten samples that has not been addressed
yet. In Fig. 1, a sample is shown. As we can see, the visual
appearance is dominated by long curved stroke elements crossing
other ink stroke traces in an irregular manner. Such a complicated
thread structure was not covered by the junction feature [16,17]
nor by other methods [2,14,15]. In addition, the existing methods
concern low-level features, which cannot capture the properties of
mid-level graphemes or stroke information. The research ques-
tions then are as follows: (1) How to define a feature that
addresses the aspect of style at intermediate scale? (2) Which type
of properties of handwritten strokes in historical documents
contain the temporal information that can be used for dating?
(3) What degree of feature complexity is required to obtain the
optimal year estimation performance?

In this paper, we propose a family of local contour and stroke
features and their application to historical document image dating.
These features are small fragments of contours and strokes, called
k contour fragments (kCF) and k stroke fragments (kSF), respec-
tively. The fragments in kCF are the contour fragments resulting
from a combination of a number of k consecutive primary frag-
ments generated by the discrete contour evolution (DCE) [18] and
the fragments in kSF form a segment of length k of a stroke frag-
ment graph (SFG). The larger the number k of contour and stroke
fragments in kCF and kSF, the more complex the contour and
stroke fragment structures it can capture. We use the relative
coordinates of the fragment points of kCF as the feature vector and
use the polar stroke descriptor (PSD) proposed in [17] to describe
the kSF.

The proposed kCF and kSF can be considered as grapheme-
based representations and have several attractive properties: (1)
kCF and kSF cover short contour and stroke fragments of the
connected components in handwritten documents, which are
probably shared between different characters and allographes. The
statistical distribution of these small fragments can capture the
handwriting style of historical documents. (2) For a certain range
of k, both kCF and kSF can discover the meaningful and inter-
mediate complexity patterns in a large connected component
which may span several lines due to touching ascenders and
descenders in cursive handwriting. (3) The descriptors of the kCF
and kSF are insensitive to the scale and rotation of document
images, which are very important properties in historical docu-
ment analysis because historical documents are often digitized
with different resolutions and font sizes in different documents
are also different, making them sensitive to scale and rotation.

Inspired by the bag-of-words model [19], we construct code-
books of kCF and kSF with different complexity degrees k, each of
which capture statistical information with different degrees of
Please cite this article as: S. He, et al., Image-based historical m
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complexity of local fragments. All the kCF and kSF detected from
handwritten images are mapped into the trained corresponding
codebooks to form statistical histograms, the normalizations of
which are the final representations of handwritten documents. We
demonstrate the flexibility and power of kCF and kSF by applying
them to historical document dating using the MPS data set [20].

We organize the rest of the paper as follows. Section 2 provides
a review of related work on features used in writer identification
and historical document dating. We introduce our MPS data set in
Section 3. The details of the proposed kCF and kSF are outlined in
Section 4 and Section 5, respectively. We evaluate the kCF and kSF
on the MPS data set in Section 6. Finally, we conclude this paper in
Section 7.
2. Related work

Various features have been proposed for handwritten docu-
ment analysis in the previous studies. In this section, we first
provide a brief review of the features used for writer identification.
Previous studies on historical document dating are summarized in
the second part.

2.1. Features used in writer identification

Features used in writer identification can be typically divided
into two groups: textural-based and grapheme-based features.
Textural-based features extract the texture, curvature or slant
information from the entire document image, while grapheme-
based features are the normalized histograms of individual gra-
phemes based on trained codebooks, following the bag-of-words
framework.

2.1.1. Textural-based features
Several types of textural-based features have been proposed in

the literature, which can be roughly categorized into contour-
based texture methods and filter-based texture methods.

The Hinge kernel on edges of the text can reflect the writing
style [21] and the corresponding Hinge feature which is a dis-
tribution of the Hinge kernel on the entire document image has
been used for writer identification in [14,15]. The Hinge feature
has been extended to ΔnHinge [22] to achieve the rotation-
invariant property. In order to capture the width of ink traces,
the Quill feature has been proposed in [2], which is a probability
distribution of the relation between the ink direction and the
ink width.

Spatial filtering techniques have been used to extract texture
features from a handwritten text block. In [23], the Gabor filters
and gray-scale co-occurrence matrices have been applied to writer
identification. XGabor filters [24] which are obtained by mod-
ulating a centered sinusoid with a Gaussian have been used in
Persian language writer identification. The oriented Basic Image
Features (oBIFs) at two scales have been proposed in [25], using a
bank of six Derivative-of-Gaussian filters.

2.1.2. Grapheme-based features
The COnnected-COmponent COntours (CO3) has been proposed

in [14] and applied to isolated uppercase handwritten documents
with clear character segmentation. This was extended to lower-
case handwriting in [15] by splitting cursive handwriting at the
minima in the lower contour that are proximal to the upper con-
tour, called Fraglets. Redundant small patterns of handwritten text
were proposed in [26]. Recently, synthetic graphemes based on
the beta-elliptic model were used for Arabic writer identification
[27]. Singular structural regions in handwriting texts, such as
junction regions, were extracted and a junction feature was
anuscript dating using contour and stroke fragments, Pattern
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proposed in [16] to capture the information in junction regions for
cross-script writer identification between Chinese and English.

Contour fragments are discriminative visual parts and are used
in many applications. The triple adjacent contour segments of
handwritten texts was used for language identification in [28]. In
[29], contour fragments with a fixed length were extracted from
contours of handwritten texts and used for writer identification. In
[30], a new shape representation called bag of contour fragments
(BCF) was proposed by describing shape contour fragments using
shape context [31] and encoding each contour fragment into a
shape fragment codebook for shape recognition. The contours of
leaf shapes have also been used for plant identification [32].

2.2. Historical document dating

The historical document dating problem has been studied
recently in [20,33–35]. Our previous work in [20] used a combined
global and local regression method based on the Hinge and Fraglets
features to estimate the year of origin of historical documents from
the MPS data set. A similar method was proposed in [33] based on
the “Svenskt diplomatariums huvudkartotek” collection, consisting
of scanned images of charters from the medieval period kept in the
Swedish national archive (but not necessary produced in Sweden).
A method to date Syriac documents was proposed in [34], using
inkball models on a collection of securely dated letter samples from
the period between 500 and 1100 CE. In [35] a method to infer the
date of printed historical documents from their scanned page ima-
ges was developed, using convolutional neural networks (CNN) on a
data set from the Google books corpus [36].
3. Medieval Paleographical Scale (MPS) data set

The Medieval Paleographical Scale (MPS) data set was first
introduced in [20] for historical document dating and the evolu-
tion of writing styles within this data set was studied from a
paleographical point of view in [37]. The MPS data set consists of
images of charters produced between 1300 and 1550 CE in four
cities in the Low Countries: Arnhem, Leiden, Leuven and Gronin-
gen. Geographically, these four cities can be regarded as a cross
section of the Medieval Dutch language area, and the development
of writing styles visible within this data set therefore as approx-
imating the development of writing within this area in general.
Fig. 1 shows an example of a charter (from Arnhem) in the MPS
data set.

As the evolution of writing is a rather slow process, not every
year in the period under consideration (1300–1550 CE) needed to
be taken into account. The charters were therefore collected
according to a sampling interval method. “key years” were set at
every quarter century such as 1300, 1325, 1350,…, 1550. Only
explicitly dated charters produced in these key years and within a
period of five years before or after them that were determined to
have been written in one of the four cities mentioned before were
Table 1
The number of documents in each key year of four cities in the MPS data set.

City Key year

1300 1325 1350 1375 1400 142

Arnhem 72 115 22 30 52 73
Leiden 2 5 37 101 111 158
Leuven 21 20 17 23 13 14
Groningen 2 3 15 20 56 81

Sum 97 143 91 174 232 326

Please cite this article as: S. He, et al., Image-based historical m
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included. There are currently 2858 charter images in the MPS data
set, grouped around 11 key years. Table 1 shows the numbers of
documents over the key years and the four cities. The frequencies
are the natural counts of appearance in archives, which have an
underlying (historical) cause.

There is a clear general trend discernable in the development of
writing styles. Fig. 2 shows four characters (“a”, “d”, “g”, and “p”)
written in consecutive key years. The handwriting style of these
characters shows a clearly datable evolution, for example, double
“a” being replaced by single “a” from 1375 onwards. The charters
were mostly written by professional scribes, whose working
careers could cover several decades. Each writer has an individual
writing style, resulting in a distinct average writing style for each
key year. There is, nevertheless, also, a general trend in the
development of writing styles – the evolution of writing styles
being a gradual process. The writing styles found in nearby key
years is always more alike than in key years further removed from
each other.
4. k contour fragments (kCF)

The contours of handwritten texts encapsulate the handwriting
style and a wide variety of approaches have been proposed to
extract features on writing contours, such as the CO3 [14], chain
codes [26] and contour fragments [29]. In this section, we propose
a novel framework to extract contour fragments, called k contour
fragments (kCF for short), on contours of handwritten texts in
historical document images. Our method is more flexible and
insensitive to scale and rotation transform. The computational
procedure will be presented in the following sections.

4.1. Detecting kCF

Contours are first extracted by the contour tracing method
proposed in [2], which extracts 8-connected circular trajectories of
black pixels that are adjacent to white pixels on the binary image.
Key points which have a higher curvature on a contour are
detected by the discrete contour evolution (DCE) approach [18]
and the contour can be approximately represented by a polygon
with these key points as vertices. We denote the detected key
points as:

p!¼ fp1; p2;…; pT g ð1Þ
where T is the number of vertices and can be controlled by a
threshold in the DCE method. Fig. 3 shows an example of detected
key points (the red points within the circles) on the contour of a
connected component.

The method proposed in [30] collects contour fragments
between every pair of key points on the shape contour. However,
we think that the context around key points (which are high cur-
vature points) contains useful information about the handwriting
style. In order to maintain the informative context around key
Sum

5 1450 1475 1500 1525 1550

78 38 36 27 42 585
275 170 122 69 51 1101
18 28 15 14 7 190
138 187 200 132 148 982

509 423 373 242 248 2858
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Fig. 2. (a) shows four labeled characters (“a”, “d”, “g”, and “p” from top to bottom) in different key years in our MPS data set and (b) shows their models, defined as the
average shapes of manually labeled characters in the Monk system [1]. While the individual allographes reveal style information, they miss the textural characteristic of
samples, such as given in Fig. 1.

Fig. 3. A contour extracted on the connected component. The red points (with
circle) are key points detected by the DCE [18] method and the green points (with
rectangle) are the break points, necessary for capturing curvature information. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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points, we define break points b
!¼fb1; b2;…; bT g as the midpoints

along the contour between two consecutive key points: the point bi
is the middle point on the contour fragment beginning at point pi
and end at point piþ1. Fig. 3 shows an example of break points (the
green points within the rectangles).

Given the contour and break points b
!¼ fb1; b2;…; bT g, primi-

tive contour fragments can be obtained by segmenting the contour
between pairs of consecutive break points ðbi; bjÞ, which are the
short-range contour fragments. The long-range contour fragments
can be obtained by concatenating k consecutive primitive contour
fragments, which refers to k contour fragments (kCF). Fig. 4 shows
kCF extracted from the contour in Fig. 3. From the figure we can
see that as k grows, more and more complex and informative
contour fragments can be obtained.
Please cite this article as: S. He, et al., Image-based historical m
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4.2. Describing kCF

It is important to develop a proper way to describe the detected
informative kCF to facilitate comparing. The shape context [31] is
used in [30] to describe contour fragments based on 5 reference
points sampled equidistantly on the normalized contour frag-
ments. However, determining the size of the shape context is
arbitrary. In order to achieve the scale-invariant property, we use
the relative coordinates of the fragment points as the feature
vector, following the methods in [14,29]. Each contour fragment in
a kCF is resampled such that it contains Nc coordinate points and
then they are normalized to an origin of ð0;0Þ and a standard
deviation of radius 1 by:

x!’ð x!�μxÞ=σx

y!’ð y!�μyÞ=σy ð2Þ

where x! and y! are the collections of x and y coordinates of a
contour fragment, μx and μy are averages of the x! and y! coor-
dinates of the contour fragments and the σx and σy are the cor-
responding standard deviations. The final feature vector contains
the normalized Nc x! and y! values and the dimension of the
feature vector is 2Nc.

There are two endpoints in each contour fragment (p1 and p2 in
Fig. 5) and two feature vectors can be produced by starting at
different endpoints. In order to make the final feature vector
insensitive to the starting point, we carefully select the starting
endpoint as follows. First, we find the midpoint M¼ ðxm; ymÞ of the
contour fragment and the normalized distance of the pixels in
anuscript dating using contour and stroke fragments, Pattern
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Fig. 4. Examples of contour fragments with different contour complexity degrees k extracted from the contour in Fig. 3. The red parts are the new added contour fragments
when k grows. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. An example of end point selection in a kCF. The red points p1 and p2 are two
end points and the blue point m is the midpoint. We select the starting endpoint p2
if ep2 oep1 . (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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each branch to the midpoint is given by:

ep1 ¼
Xm

i ¼ 1
ðjxi j þ jyi j Þ

ep2 ¼
XN

i ¼ mþ1
ðjxi j þ jyi j Þ ð3Þ

where N is the number of points on the contour fragment. We
select the starting endpoint p of the branch with the minimal
value ep.

Given a document from the MPS data set, we extract the con-
tour fragments and use the proposed description method to
represent the contour fragments. Fig. 6 shows four randomly
selected contour fragments with 4CF and contour fragments on
each row are found by the K nearest neighbor method with the
Euclidean distance function, from which we can conclude that
similar contour fragments may be from the same character or may
be shared between different characters. Therefore the detected
contour fragments can capture local contour structures and are
informative and repeatable as well.

Our proposed method is different from the method proposed in
[29], in which contour fragments with a specific length or number
of points are extracted from contours, making the extracted con-
tour fragments sensitive to image scaling. The proposed kCF is
scale-invariant because key points detected by DCE are insensitive
to scale changes. A connected component in historical documents
may span several words or even several lines due to the touching
Please cite this article as: S. He, et al., Image-based historical m
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strokes. Therefore, the CO3 [14] extracted on these large connected
components are sensitive to the touching strokes, making them
non-repeatable. Our proposed kCF can solve such problem and is
robust and more flexible than the CO3.

4.3. Encoding kCF

The detected kCF can be considered as basic handwriting con-
tours and the probability distribution of kCF can characterize the
handwriting style. We construct codebooks for kCF with different
k using clustering methods. It has been shown in [38] that the
same performance was obtained for k-means,1D Kohonen self-
organizing map (SOM) [39] and 2D SOM clustering methods. In
this paper, we use the standard 2D SOM clustering method to train
codebooks for kCF with Euclidean distance. Finally, one feature
vector can be obtained for one document image and the dimen-
sion of the feature vector is determined by the size of the
codebook.
5. k stroke fragments (kSF)

In general, handwritten characters are written by one or several
strokes and the writing style can be represented by structures or
shapes of strokes. In this section, we present three crucial steps to
extract, describe and encode handwritten stroke fragments in
document images.

5.1. Detecting kSF

In the literature, the term “stroke” in handwritten documents is
used in slightly different ways. In on-line handwriting, strokes are
determined by the velocity of the movement of the pen, or the
writing speed [40]. In this case, strokes are “the pieces of hand-
writing movement bounded by minima in the tangential pen-tip
velocity [41]”. That also means “a stroke is a trace of pen-tip
movement which starts at pen-down and ends at pen-up [42]”. In
order to provide clarity about the way the term “stroke” is used in
this paper, we define the stroke in off-line handwritten documents
as:

Definition 1. A stroke is a connected component of an ink trace
which has two end points (one corresponds to the pen-down
point and another to the pen-up point) on the stroke skeleton line.

One exception of this definition is the circle stroke, in which
there are no end points (the skeleton line is also a circle). In order
anuscript dating using contour and stroke fragments, Pattern
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Fig. 7. (a) shows an example of a connected component in a historical document.
The red line is the skeleton line of the ink, green points are the fork points and blue
points are the end points. The connected component can be decomposed into
seven parts segmenting at the fork points. (b) shows the corresponding stroke
fragment graph (SFG). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 6. A number of similar contour fragments with k¼4 (4CF) detected in documents in the MPS data set. The red contours are the detected contour fragments. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.).
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to integrate such circle strokes into our definition, we regard the
left-most point in the skeleton line as the shared end points [14].

In a cursive handwritten document touching characters often
form a large connected and complex structure and there is no
obvious way to dissect it into stroke fragments. Fig. 7(a) gives an
example of one connected component of the ink trace. The ske-
leton line of the connected component can be computed by
thinning methods and there are two types of feature points on the
skeleton line: end points and fork points. An end point refers to the
beginning or end of a stroke (blue points in Fig. 7(a)), and a fork
point (green points in Fig. 7(a)) is the location where at least two
strokes meet [43]. Similar graph structures have been used for the
temporal reconstruction of strokes from a static image [42].

In our paper, we consider fork points as the shared end points
between touching strokes. Thus, the connected component can be
decomposed into “strokes” segmenting at fork points, yielding
stroke fragments between end points and fork points according to
Definition 1 and these are called primary stroke fragments. For
example, Fig. 7(a) shows a connected component with five end
points and three fork points, and seven primary stroke fragments
can be obtained, which are denoted by numbers 1–7. We refer to
these stroke fragments as primitive stroke fragments because they
are the minimal fragments which can be segmented from the
connected component according to Definition 1.
Please cite this article as: S. He, et al., Image-based historical m
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This segmentation method is simple, intuitive and independent
from any line detection or segmentation methods. However, it also
yields fragments which are so small (especially the fragments
between two fork points) that they become meaningless and can
in some cases be regarded as noise (for example the 4th and 5th
stroke fragments in Fig. 7(a)). In order to detect longer and more
complex stroke fragments which are more informative, we build a
stroke fragment graph (SFG) inspired by [44,45] as follows. Each
node in the SFG corresponds to a primary stroke fragment and two
nodes are linked if the two primary stroke fragments connect to
each other, which means they share at least one fork point.
Fig. 7(b) shows the SFG built from the primary stroke fragments in
Fig. 7(a). The SFG reflects the relationship of connections between
primitive stroke fragments of one connected component.

One important observation is that any connected sub-graph in
the SFG without loops corresponds to a stroke according to our stroke
Definition 1. For example, the sub-graph containing nodes {1, 4, 2}
in the SFG in Fig. 7(b) can form a stroke which has two end points.
In contrast, the sub-graph containing nodes {2, 3, 4}, which con-
tains a loop, does not correspond to an effective stroke, because it
has three end points and cannot be drawn in one time. We refer to
strokes which contain a number of k primary stroke fragments
(the length of the path between two vertexes in the SFG) as k
stroke fragments or kSF. When k¼1, 1SF are primitive stroke
fragments. As k grows, more and more complex and informative
strokes can be obtained. Fig. 8 gives an example of stroke frag-
ments detected in the SFG in Fig. 7(b) when k¼3 (3SF). In practice,
given the value of k, all the connected paths without loops can be
efficiently computed using the depth-first search method on
the SFG.

5.2. Describing kSF

We use the polar stroke descriptor (PSD) proposed in our
previous work [17] to describe kSF. The computation of the PSD is
as follows: given a reference point pi ¼ ðx; yÞ and a direction ϕ, the
distance from pi to the ink boundary, called partial length dpðϕÞ,
can be easily computed by searching the ink pixels following a ray
in the direction ϕ [46]. A simple and efficient algorithm based on
Bresenham's algorithm [47] is used to compute the distance from
pi to the ink boundary inspired by [2]. The end point pe ¼ ðxe; yeÞ is
computed by

xe ¼ xþm � cos ðϕÞ
ye ¼ yþm � sin ðϕÞ ð4Þ
where the parameter m determines the maximum partial length
or the maximum search space from pi to pe. An approximated
linear path from pi to pe is constructed and the background point
anuscript dating using contour and stroke fragments, Pattern
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Fig. 8. Stroke fragments of 3SF generated in the SFG in Fig. 7(b). The corresponding
nodes are: (a) {1,2,4}, (b) {1,3,4}, (c) {1,5,6}, (d) {1,5,6}, (e) {2,4,5}, (f) {3,4,5}, (g)
{4,5,6}, and (h) {4,5,7}.

m m

Fig. 9. An illustration of the polar stroke distribution on a reference point (the blue
point in the center). The green rays are the partial length in each direction, and the
yellow curve is the distribution of the partial length in the polar space. The red line
is the skeleton line of the stroke ink. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Fig. 10. (a) shows the sampled reference points (blue points) with tangent direc-
tion (dashed green line). The solid green direction is the estimated relative hor-
izontal direction. (b) shows the PSD features (blue circles) on sampled points. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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pb ¼ ðxb; ybÞ is found by tracing points starting from pi towards to
the end point pe. The partial length is measured using a simple
Euclidean distance:

dpðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xbÞ2þðy�ybÞ2

q
ð5Þ

(More details of the computation of dpðϕÞ can be found in [2,16].)
A partial length distribution is built on the reference point pi by

computing the partial length in every direction ϕ in a discrete set
D¼ f2πk=N; k¼ 0;…;N�1g, where N is the number of directions
we consider. This distribution is considered as the PSD of the point
pi, which is a local descriptor. Fig. 9 shows two examples of the
PSD descriptors on the reference points in stroke fragments.
Finally, the descriptor is normalized in order to make it scale-
invariant.

The PSD is a rich descriptor, especially when the reference
points lie on the fork points. In this case, it reflects the junction
structure information in handwritten strokes, such as the radius
and the number of branches of the junction region [48] (see
example of Fig. 9(b)) which can be used for junction detection in
handwritten documents [16].

The features of each kSF are computed as follows: Ns reference
points on the skeleton line of kSF are sampled equidistantly and
described by the PSD descriptor. Finally, these Ns PSD descriptors
are concatenated into one feature vector to describe the
Please cite this article as: S. He, et al., Image-based historical m
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corresponding kSF. In principle, the large number of Ns leads to a
rich descriptor. However, when the Ns is too larger, the descriptor
contains too much redundant information and the dimension of
the descriptor is also high which needs a lot of computational
time. In practice, we suggest the NsA ½5;10�. Fig. 10 gives an
example of this method with 5 sample points.

In order to make kSF invariant to rotation, a relative horizontal
direction should be used instead of the absolute horizontal
direction in order to construct the PSD feature on each sampled
point. The relative horizontal direction can be estimated by aver-
aging the tangent angles of sampled points. Fig. 10 shows an
example of the estimated relative direction.

Fig. 11 shows a number of stroke fragments with k¼1 (1SF),
which is also known as Strokelets [17]. Similar to kCF, kSF are also
informative and repeatable and can be considered as mid-level
representations.

As a grapheme-based method, our proposed kSF has several
advantages: (1) Compared to the Junclets [16], the kSF captures the
stroke properties in a large area and can be considered as a macro
mid-level feature. (2) Compared to the Fraglets [15], our proposed
kSF is easy to compute. Most importantly, the kSF is a script-
independent grapheme-based method which can be used in any
script. The descriptor of the kSF reflects the stroke properties, such
as stroke width and stroke structures, which are lost in other
methods [14–16,26].

5.3. Encoding kFS

In order to build a global feature representation for a historical
document image, all kSF extracted from the image are mapped
into a common space (named codebook) using the bag-of-words
model [19]. As discussed in [15], there is no difference that existed
between the performance of the codebooks trained by k-means,
Kohonen SOM 1D and Kohonen SOM 2D. Similar to kCF, we use the
Kohonen SOM 2D method [39] to train the codebook.
6. Experiments

6.1. Experimental settings

In the computation of the kCF and kFS, a binary method is needed
to obtain the binary document image and compute contours and
skeleton lines of the ink traces. Although several binarization
methods have been proposed in the literature, such as [49–53], we
apply the simple and efficient Otsu threshold algorithm [54] in our
experiments, followed by the guided filter [55] to remove noise and
make contours smooth. Each contour fragment of kCF is resampled to
contain 100 points and the feature dimension is 100� 2¼ 200. The
number of directions of the polar stroke descriptor (PSD) N is set to
120, which is the dimension of the PSD. In this paper, 10 points are
sampled on each stroke fragment and each point is described by a
PSD. Therefore, the dimension of kFS is 120� 10¼ 1200.
anuscript dating using contour and stroke fragments, Pattern
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Fig. 11. A number of similar stroke fragments with k¼1 (1SF) detected in documents in the MPS data set. The red lines are the skeleton lines and white points are the
sampled reference points of PSD descriptors. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.).
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We employed two widely used measures for performance
evaluation: the mean absolute error (MAE) and cumulative score
(CS) [56]. The MAE is a Manhattan-type distance, which is typically
defined as:

MAE¼
XN

i ¼ 1

jKðyiÞ�KðyiÞj=N ð6Þ

where KðyiÞ is the ground-truth of the input document yi and KðyiÞ
is the estimated key year, while N is the number of test docu-
ments. The cumulative score (CS) is typically defined as [56]:

CSðαÞ ¼Nerα=N � 100% ð7Þ
where Nerα is the number of test images on which the key year
estimation makes an absolute error e no higher than the accep-
table error level: α years. For historians, an error of 725 is, more
often than not, acceptable when dating historical documents.
Therefore, we report the cumulative score with error level
α¼25 years in the experiments.

6.2. Historical document dating by general handwriting style
identification

As we mentioned before, writing charters in the Middle Ages
was a profession and the number of scribes simultaneously active
in each city was limited. Therefore, an undated document can be
dated by identifying the writer. This is reasonable because if we
know the writer and his active period, the date of the document
can be directly obtained [3,4]. We conduct experiments on writer
identification on the MPS data set as well as historical document
dating by handwriting style identification.

The writers of some charters are known in MPS and others are
not. We term the subset of documents with writers who produced
as least two samples as MPS-writer known with multiple samples
(MPS-WKM for short) in which 143 writers produced 1127 docu-
ments, and term the subset of documents with writers who pro-
duced only one sample as MPS-writer known with single sample
(MPS-WKS for short) and the rest of the documents without writer
labels as MPS-writer unknown (MPS-WU for short) which con-
tains 899 document images.

We perform writer identification on the MPS-WKM data set
with χ2 difference using the K nearest neighbors (KNN) method,
following [15,26,16]. We utilize the “leave-one-out” strategy which
is widely used for writer identification: taking the query document
out and sorting the rest of the documents according to the dis-
tance function to output a hit list. The query document is recog-
nized as the writer of the document on the top x of the hit list,
corresponding to the top-x performance. Usually, the Top-1 and
Top-10 performances are reported.
Please cite this article as: S. He, et al., Image-based historical m
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We also carry out historical document dating by general
handwriting style identification. The combined MPS-WKM and
MPS-WKS data sets with writer labels are considered as the
reference data set. For each undated document in the MPS-WU
data set, we find the K nearest neighbors using KNN in the refer-
ence data set and we assign the year to the undated document as
the most represented years within the K nearest neighbors.

6.2.1. Performance of writer identification and dating
In this section, we present the performance of our proposed

methods for writer identification and dating. We explore the
degrees of complexity kAf2;3;4;5g for kCF and kAf1;2;3g for kSF.
We do not consider 1CF because they contain less discriminative
information as their lengths are too small. The feature dimensions
of kCF and kSF are discussed in Section 6.3.2. Table 2 shows the
performance of kCF and kSF for writer identification and dating, as
well as Hinge [15], Quill [2] and Junclets [16], from which we can
conclude that the writer identification rates increase for kCF while
they decrease for kSF when k grows. A similar trend can be found
for the dating performance. The writer identification performances
of kSF are better than kCF, except 3SF and 5C, while the dating
performances of kSF are worse than kCF, for all k. We can also find
that Hinge achieves the best performance for writer identification
and 3CF achieves the best performance for dating.

One interesting observation is that writer identification per-
formances of kCF are worse than with all other features (except
3SF), while its dating performances are better than all other ones.
The Hinge feature achieves the best performance for writer iden-
tification, while the dating performance is worse than Junclets, kCF
(k¼2,3,4,5) and kSF(k¼1,2). We can obtain the conclusion that:
Features which achieve a good performance on writer identification
are not necessarily suitable for historical document dating via writer
identification when there exists no sample for a target writer in the
training set. The main reason is that dating requires features to
capture the general writing style in a certain period whereas writer
identification needs features to capture the writing style characteristic
for individuals precisely.

From Table 2 we can also find that for features which are good
in writer identification, the dating performance increases when K
of KNN decreases, such as in the Hinge, Quill, Junclets, 1SF and 2SF
features. However, for kCF, the best dating performances are
mostly achieved when K¼20.

In practice, we have found that combining the kCF and kSF do
not improve the performance for both writer identification and
dating. Therefore, their performances are not reported in
this paper.
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Table 2
The performance of writer identification and dating by handwriting style identification in terms of MAEs and CS(α¼25) of the kCF, kSF and other features.

Method Writer identification Dating by writer identification (KNN)

K¼5 K¼10 K¼20 K¼50

Top-1 Top-10 MAEs CS(α¼25) (%) MAEs CS(α¼25) (%) MAEs CS(α¼25) (%) MAEs CS(α¼25) (%)

Quill [2] 61.7 82.2 45.1 60.0 45.9 59.6 48.6 54.9 52.3 50.5
Hinge [15] 71.8 85.9 30.3 68.5 30.6 66.9 32.9 64.2 34.4 62.0
Junclets [16] 59.9 79.3 27.4 73.6 25.6 73.6 27.9 70.2 32.7 64.0

2CF 37.6 73.6 22.9 76.3 22.2 77.3 21.1 78.3 22.1 78.5
3CF 42.9 77.9 18.7 80.9 18.4 80.9 17.9 81.0 19.5 79.4
4CF 45.3 77.9 20.4 78.4 18.8 80.9 19.5 79.6 19.4 79.5
5CF 48.6 78.2 19.8 80.0 18.5 80.9 18.0 81.6 19.7 78.9

1SF 64.3 84.6 26.0 73.2 26.3 71.6 30.3 68.2 34.6 63.5
2SF 56.6 78.8 27.5 73.3 27.4 71.7 29.0 69.8 33.6 63.8
3SF 47.6 71.3 36.8 63.7 35.6 63.6 38.6 59.0 39.8 57.1

Table 3
MAEs and CS(α¼25) of the kCF and kSF.

Method wr.excl. scenario wr.incl. scenario

MAEs CS(α¼25) (%) MAEs CS(α¼25) (%)

2CF 26.773.9 76.074.3 17.371.2 84.271.9
3CF 23.872.1 80.972.4 14.371.0 87.871.5
4CF 22.872.7 80.773.8 13.371.1 87.971.5
5CF 21.772.8 82.073.6 12.971.1 88.471.6

1SF 22.172.9 79.873.1 12.670.8 88.371.1
2SF 18.972.0 84.373.0 11.170.8 90.171.4
3SF 23.873.0 78.973.0 15.170.8 85.771.3
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6.3. Historical document dating by classification

The dating problem can be considered as either a classification
or a regression problem. In this paper, we regard it as a classifi-
cation problem because the document distribution in our data set
over the period of 1300–1550 CE has an obvious border between
nearby key years. All the documents from each key year form a
class and there are 11 classes which correspond to the 11 key years
in the MPS data set. We train 11 corresponding classifiers using a
linear SVM with a one-versus-all strategy and the undated docu-
ment is assigned to the key year which has the maximum value of
the 11 softmax output scores. The parameter C of the linear SVM is
estimated by a grid search method. We split the data set into
training (70%) and testing (30%) sets. The experiment is repeated
20 times and the average results are reported together with the
standard deviation in the following experiments.

We consider two different evaluation scenarios for historical
document dating. In the first one, we carefully split the data set
into training and testing subsets to make sure that the same writer
never appears in both training and test sets, which means that all
documents from the same hand should be only in the training set
or only in the test set. For documents without writer labels, we
randomly split them into the training and test set. We term this
scenario as excluding writer duplicates or wr.excl. for short. In the
second scenario, we randomly split the data set into training and
test sets without considering writer labels. We term this scenario
as including writer duplicates or wr.incl. for short. In the wr.excl.
scenario, the system performs the dating based on the general
writing style built by other writers. However, in the wr.incl. sce-
nario, the processing of writer identification is probably involved
in the dating.

6.3.1. Performance of kCF and kSF
Table 3 shows the performance of historical document dating

in terms of MAEs and CS(α¼25) of the kCF and kSF in the wr.excl.
and wr.incl. scenarios. The codebook sizes of kCF and kSF are set to
50✕50 and 30✕30, respectively. The selection of sizes are dis-
cussed in the next section. From the table we can find that for kCF,
the MAEs decreases when k increases and the 5CF performs best.
The MAE of 5CF is lower than 2CF by 5 and 4.4 years in the wr.excl.
and wr.incl. scenarios, respectively. The same trend is also found in
terms of CS(α¼25) and 82.873.6% documents are correctly esti-
mated with error level no higher than 25 years in the wr.excl.
scenario and the corresponding percentage in the wr.excl. scenario
is 88.471.6%. The results demonstrate that kCF with a higher k in
Please cite this article as: S. He, et al., Image-based historical m
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a certain range offer informative, repeatable and discriminative
contour fragments which capture the handwriting style in his-
torical documents.

From the results of the three degrees of kSF complexity in
Table 3 we find that 2SF performs best overall. The average MAEs
of the 2SF are 18.9/11.1 (for the wr.excl./wr.incl. scenarios) versus
22.1/12.6 and 23.8/15.1 of 1SF and 3SF, respectively. The CS(α¼25)
scores of 2SF in the two scenarios are also higher than the ones of
1SF and 3SF. The following order can be obtained: 2SF41SF43SF,
by ranking kSF according to the average MAEs and CS(α¼25)
scores. The performance of 3SF is even worse than 1SF and the
reason may be that 3SF contains too much artificial stroke frag-
ments (see Fig. 8).

From Table 3 we also find that the performance of 2SF is better
than 5CF by 2.8 and 1.8 years in terms of MAEs in the wr.excl. and
wr.incl. scenarios, respectively. The descriptors of kSF do not only
contain the curvature information of strokes, but also the stroke
length distribution which reflects the stroke width and stroke
distribution around sample points and the informative and dis-
criminative information contained in the stroke fragments can be
found by SVM.

6.3.2. The effect of codebook size
In this section, we conduct experiments to evaluate the per-

formance of historical document dating by classification with dif-
ferent sizes of codebooks of the kCF and kSF. Figs. 12 and 13 show
the results of the kCF and kSF, respectively. The two figures show
that the MAEs of both kCF and kSF decrease as the size of the
codebook increases.
anuscript dating using contour and stroke fragments, Pattern
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Fig. 12. The MAEs of kCF (k¼2,3,4,5) with different codebook sizes. Note that the
ranges of the MAEs axes are different between two figures in order to make
them clear.
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Fig. 13. The MAEs of kSF (k¼1,2,3) with different codebook sizes. Note that the
ranges of the MAEs axes are different between two figures in order to make them
more clear.

Table 4
MAEs and CS(α¼25) scores of kCF and kSF combined.

Method wr.excl. scenario wr.incl. scenario

MAEs CS(α¼25) (%) MAEs CS(α¼25) (%)

(2þ3)CF 22.973.2 80.873.2 14.270.9 87.471.8
(3þ4)CF 22.473.3 81.773.5 12.170.9 89.471.5
(4þ5)CF 20.372.9 83.473.3 11.870.8 89.971.5
(2þ3þ4)CF 21.573.1 82.474.5 12.070.8 89.271.3
(3þ4þ5)CF 20.072.9 83.673.2 10.771.1 90.571.9
(2þ3þ4þ5)CF 19.273.5 85.872.8 10.870.9 90.871.1

(1þ2)SF 18.672.3 84.573.6 10.170.7 91.271.3
(1þ2þ3)SF 17.471.9 86.872.0 9.970.6 91.871.5

(1þ2þ3)SFþ
(2þ3þ4þ5)CF

14.971.7 89.272.4 7.971.0 93.271.3

S. He et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
Fig. 12(a) shows the performance of kCF with k¼ 2;3;4;5 in the
wr.excl. scenario. The best performances are achieved for kCF with
a codebook size of 50✕50, except the 2CF with 40✕40. Fig. 12
(b) shows the MAEs of kCF with k¼ 2;3;4;5 in the wr.incl. scenario
and the lowest MAEs are obtained when the codebook size is
50✕50. Therefore, the size of the codebook of kCF is set to 50✕50
for k¼ 2;3;4;5 in both the wr.excl. and the wr.incl. scenarios in the
following experiments.

Similarly, Fig. 13(a) and (b) shows the MAEs of kSF (k¼ 1;2;3)
in the wr.excl. and wr.incl. scenarios, respectively. From the two
figures we can find that the best performances are achieved with a
codebook size of 30✕30.

6.3.3. Performance of combined kCF and kSF
In this section, we evaluate performances when using several

degrees of kCF and kSF simultaneously in the feature space. Table 4
gives the results of combined kCF and kSF in both the wr.excl. and
wr.incl. scenarios. Generally, the kCF and kSF combined achieve
better results than each k of the kCF and kSF separately. In the wr.
excl. scenario, the {2345}CF achieves the lowest MAE (19.2 years),
Please cite this article as: S. He, et al., Image-based historical m
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which is better than other combinations. Although the best per-
formance in term of MAE is obtained by {345}CF in the wr.incl.
scenario, there is no obvious difference between the performance
anuscript dating using contour and stroke fragments, Pattern

http://dx.doi.org/10.1016/j.patcog.2016.03.032
http://dx.doi.org/10.1016/j.patcog.2016.03.032
http://dx.doi.org/10.1016/j.patcog.2016.03.032


Table 5
MAEs and CSs of the combination of other features with the proposed kCF and kSF.

Method wr.excl. scenario wr.incl. scenario

MAEs CS(α¼25) (%) MAEs CS(α¼25) (%)

Quill [2] 23.772.9 80.673.0 12.170.9 89.571.3
Hinge [15] 22.172.9 80.673.1 12.270.9 89.671.3
Junclets [16] 21.573.3 81.973.9 12.070.7 89.271.4
(2þ3þ4þ5)CF 19.273.5 85.872.8 10.870.9 90.871.1
(1þ2þ3)SF 17.471.9 86.872.0 9.970.6 91.871.5
(1þ2þ3)SFþ
(2þ3þ4þ5)CF

14.971.7 89.272.4 7.971.0 93.271.3
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Fig. 14. CS curves of the error level from 0 to 100 years of different methods
applied to the MPS data set. Note that the ranges of CS axes are different between
two figures in order to make curves clear.

Table 6
The dating accuracy (MAEs and CS(α¼25)) on the MPS data set for different
methods.

Method MAE CS(α¼25)

Random guess 85.3758.5 25.7%
Monk [1] 36.0720.6 –

Study [20] 35.4 63.5%
Study [17] 20.9 –

(1þ2þ3)SFþ(2þ3þ4þ5)CF (wr.excl.) 14.971.7 89.272.4%
(1þ2þ3)SFþ(2þ3þ4þ5)CF (wr.incl.) 7.971.0 93.271.3%

1 http://application02.target.rug.nl/monk/Overslag/date-histogram-MPS.html
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of {345}CF and {2345}CF and the CS(α¼25) score of {2345}CF is
higher than the one of {345}CF. Comparing the results of Table 4
with the ones of Table 3, we find that the combination of kCF
improves the best performance of single kCF from 21.7 to 19.2
(MAE) and from 82.0% to 85.8% (CS(α¼25)) in the wr.excl. scenario.
Correspondingly, in the wr.incl. scenario, the best performance
is improved from 12.9 to 10.7 (MAE) and from 88.4% to 90.8%
(CS(α¼25)).
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Although the performance of 3SF is worse than 1SF and 2SF,
combining it with {12}SF achieves the best results, which
demonstrates that 3SF can provide some useful information dis-
covered by SVM. Comparing Table 4 with Table 3, the MAEs and CS
(α¼25) in the wr.excl. and wr.incl. scenarios are improved by
1.5/2.5%, 1.2/1.7%, respectively.

We also combine {2345}CF and {123}SF together and the
results are shown in the bottom row of Table 4. The combined
performance outperforms all individual features ({2345}CF and
{123}SF) involved in the combination. The MAEs of the combined
{2345}CF and {123}SF are 14.9 and 7.9 in the wr.excl. and wr.incl.
scenarios, respectively, which are the best ones among all the
combinations. The results demonstrate that the kCF and kSF cap-
ture different types of information about handwriting styles and
combining them can improve performance.

6.3.4. Comparison with other features
In Table 5, we present the performances of other existing fea-

tures, such as the Quill [2], Hinge [15] and Junclets [16]. From
Table 5 we can see that the performances of {2345}CF, {123}SF and
the combined {2345}CF and {123}SF are better than performances
of Quill, Hinge and Junclets.

In practice, we have found that there is no significant difference
between the combination of {2345}CF and {123}SF and the com-
bination of {2345}CF and {123}SF with Quill, Hinge and Junclets.
The main reason is that kCF captures curvature information of
contours with Quill and Hinge that is similar to the stroke struc-
tures captured by kSF with Junclets. In fact, kSF contains junction
information because we consider fork points as the shared end
points and descriptors of these end points are included in kSF.
Furthermore, the proposed kCF and kSF are more flexible and
insensitive to the scale and rotation transform. Fig. 14 shows the
CS curves of Quill, Hinge and Junclets and the proposed {2345}CF
and {123}SF combined. From the figure we can find that the CS
curve of our proposed method is above that of Quill, Hinge and
Junclets and our proposed method improves performance, espe-
cially when the error level is small αr50ð Þ.

6.3.5. Comparison with other studies
In this section, we summarize all our results with historical

document dating and compare them with a random guess in
Table 6. Manually labeled characters were used for dating in the
Monk [1] system and the results can be found on our website.1 In
[20], a global regression method with a local adjust regression was
used to estimate the key year of document images based on the
combined Hinge and Fraglets features. Later in [17], the strokelets
(1SF), which is also a special case of kSF, were used with the KNN
method. Although it is not entirely fair to compare them because
many document images have been added to the MPS data set for
this paper and some low quality images were replaced by high
anuscript dating using contour and stroke fragments, Pattern
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quality images, Table 6 still shows the improvement achieved by
our proposed method.
7. Discussion and conclusion

We have introduced the kCF and kSF family of contour and
stroke fragment features and applied them to historical document
dating based on the MPS data set. The kCF and kSF are scale and
rotation invariant grapheme-based features which can capture the
handwriting style of handwritten documents. We approached
dating in two ways: by handwriting style identification and by
classification. Concerning dating by handwriting style identifica-
tion, we found that features which achieve good performances for
writer identification are not suitable for historical document dat-
ing by handwriting style identification by means of writer iden-
tification when there is no duplicated document existed in the
training set. For example, kCF performed worse for writer identi-
fication than other methods but better than others for dating.

As far as dating by classification is concerned, we evaluated the
performance of the proposed kCF and kSF in two scenarios:
excluding writer duplicates (wr.excl.) and including writer dupli-
cates (wr.incl.) and experimental results demonstrated that a
combination of kCF and kSF achieves state-of-the-art results on the
MPS data set. Several interesting conclusions can be drawn from
our experimental results. First, the performance of kCF increases
with an increasing complexity k. However, with a large k, the kCF
may contain long contour fragments which are not informative or
repeatable in the document images. This is also true for kSF and
2SF performs better than either 1SF or 3SF. Secondly, kCF and kSF
contain different information. kCF captures the curvature infor-
mation under different scales which contains both local (small k)
and intermediate (large k) contour information of the handwriting
style, while kSF captures the stroke structure caused by both the
writing instrument and handwriting style. Therefore, only by
combining them we achieved an optimal performance.

There are some specific requirements for paleographers and
historians when solving the dating problem by means of the
computer. For example, how to visualize the informative patterns
which correlate with temporal information and how to discover
the development or evolution of handwriting styles instead of
determining dates by classification or regression. Our proposed
kCF and kSF are grapheme-based features which can be visualized
and our future tasks include designing an interface for end users.
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