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Abstract 

This paper studies how visual perception of a scene is 
affected by cognitive processes beyond the scene's 
bottom-up saliency. The game of SET is taken as an 
example where contrast-based salient parts of a scene 
are ignored in favor of a larger group of similar 
elements. Using results from a laboratory experiment 
and a model simulation we explain how three cognitive 
mechanisms, differential acuity, visual iconic memory 
and declarative retrieval, considered together help to 
explain player's visual perception in SET. 

Introduction 

Many studies describe how perception of a visual scene is 

governed by visual bottom-up mechanisms (Rayner, 1998). 

The conclusions derived in those studies are often based on 

results from relatively simple tasks involving free scanning 

or target search. It is widely accepted that visual attention is 

drawn toward a scene's salient parts (Egeth & Yantis, 1997). 

This bottom-up saliency is commonly used to explain pop-

out effect of items that are increasingly different from its 

surroundings (Theeuwes, 1992). However, these findings 

alone may lead to incorrect conclusions if used within a 

context of more complex problem-solving tasks. It is 

important to consider a relationship between salience and 

other cognitive mechanisms to properly understand the inner 

workings of human mind in such tasks. We use the game of 

SET
1
 as an example of a problem-solving task that gives 

results that can be interpreted initially as contradictory to the 

visual pop-out effect. Next, we describe how the same 

results can be explained within a framework that combines 

bottom-up saliency with top-down goal-directed attention. 

The deck in SET consists of 81 cards. Each card is 

uniquely defined by a combination of four attributes: color, 

shape, shading and number of shapes. Each attribute can 

have one of three distinct values: red, green, and blue for the 

color; open, solid and textured for the shading; one, two and 

three for the number; oval, rectangle and squiggle for the 

shape. At any moment in the game, 12 cards are dealt face 

up (Figure 1). From 12 cards, players should find any 

combination of three cards, referred to as a set, satisfying a 

rule stating that in the three cards the values for each 

particular attribute should be all the same or all different. 

Jacob and Hochstein (2008) studied how bottom-up 

components of the game, such as attribute value distribution 

among cards, influences player's strategy. They concluded 

                                                           
1
 SET is a game by Set Enterprises (www.setgame.com) 

that players prefer to search for a set inside the largest group 

of cards that share at least one common value. They referred 

to a common value as the Most Abundant Value (MAV) and 

the group of cards that contained it as a MAV group. Sets 

that were inside MAV group were found sooner than sets 

outside of the group with an observed probability being 

significantly higher than a chance probability. 

According to the bottom-up saliency mechanism it is 

expected that players should start a search with visually 

unique, hence most salient, cards. However, Jacob and 

Hochstein's finding suggests that player's visual attention is 

drawn toward larger group of cards that are visually similar. 

From a perspective of a bottom-up saliency, this is a highly 

counterintuitive result. Furthermore, another study by 

Nyamsuren and Taatgen (2013b) revealed that a similarity 

along particular attribute dimension plays more important 

role in players' strategy than the saliency of any individual 

card. Players are more likely to search for a set among 

larger group of cards with the same color than to attend a 

card, for example, with a unique shape. 

 

 
 

Figure 1: An example array of 12 cards. The cards with 

solid and dashed borders represent two valid sets. 

 

In this paper, we describe a more controlled experiment 

with set cards with an aim of more in-depth exploration of 

underlying cognitive processes. In order to use the MAV 

strategy, subjects must be able to recognize very quickly, 

which attribute values are most common. The goal of the 

study is to focus on this particular aspect of SET: to answer 

the question what cognitive processes facilitate such quick 

recognition in players. Based on experimental results and 

model simulations, we describe how three cognitive 

mechanisms that include visual acuity, visual memory and 

declarative memory retrieval help to explain MAV effect 

and bias toward similarity in color attribute.   
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Experiment 

Design and Procedure 

14 subjects participated in the experiment. All subjects were 

students of University of Groningen. Subjects' age ranged 

from 18 to 27 (M=22). Subjects started each trial by looking 

at the center of a computer screen. Next, they were shown a 

3×4 array of SET cards for a predetermined duration of 

time. After image of cards disappeared, subject was 

prompted to select one of 12 possible attribute values 

subject perceived as being the most abundant. The 

experiment consisted of 336 unique trials generated semi-

randomly. Trials were divided into a short and a long 

condition block. The array of cards was shown to subjects 

for 600 and 2000 ms in the short and long conditions 

respectively. For half of the subjects, blocks were presented 

in a reverse order. Within a block, trials were presented in a 

random sequence. In each block, the MAV group size varied 

from 6 to 12. There were six trials in each combination of 

MAV group size and attribute type. Prior to experiment, 

subjects were asked to do eight, four from each block, trials 

to let them get familiar with an experiment setup. Results 

from those trials were not included in the analysis. In 

addition, subjects' eye movements were recorded. We used 

the EyeLink 1000, a desktop-mounted remote eye tracker 

with monocular sampling rate of 500Hz and spatial 

resolution of < 0.01° RMS. Exactly the same experiment 

setup and stimulus sizes as in Nyamsuren and Taatgen 

(2013b) were used in this study. 

Experiment Results 

Scanpaths The difference in trial durations also results in 

quite clear difference in scanpaths. Subjects on average 

make 8.8 (SE=0.38) fixations in the long condition 

compared to 2.9 (SE=0.17) fixations in the short condition. 

Figure 2 provides a more detailed look on the trials' fixation 

counts. There is an 87% probability that subject will make 

from seven to 11 fixations in the long condition. In contrast, 

subjects are likely to make only 2 to 4 fixations in 94% of 

all trials in the short condition. 

Figure 3a shows mean durations of fixations in a trial. All 

durations are measured in milliseconds. The last fixations 

are excluded from the calculation of these means since it is 

likely that those fixations were interrupted when the time 

limit was reached. The first two fixations do not show much 

difference between the short and long conditions. The 

durations for consecutive fixations in the long condition 

does not change much. In contrast, durations of third and 

fourth fixations in the short condition gradually become 

lower. There can two explanations to this. It may be an 

artifact of averaging. Smaller number of trials with three or 

four fixations may be resulting in lower mean. On the other 

hand, it is possible that shorter durations are deliberate. To 

test this hypothesis we have also calculated the average 

duration of fixations in the short condition trials with 

exactly four fixations. As we have expected, fixations in 

these trials have much shorter durations than respective 

fixations in the long condition trials. Therefore, it is indeed 

possible that subjects were deliberately making shorter 

fixations in the short condition. 

 

 
 

Figure 2: Frequencies of fixation counts subjects made 

during a trial. Frequencies are calculated separately for the 

(a) long and (b) short conditions. 

 

 
 

Figure 3: (a) Changes in mean fixation durations over 

course of a trial in the short and long conditions. (b) 

Changes in saccade amplitude over the course of a trial in 

the short and long condition. 

 

Figure 3b shows how saccade amplitude changes over the 

course of a trial in both long and short conditions. 

Amplitude is measured in number of pixels that the saccade 

covers. There is not much difference between the two 

duration conditions. However, there is an obvious gradual 

rise in saccade amplitude as trial progresses. It suggests that 

there is a specific pattern in subjects' scanpaths. 

 

Accuracy As Figure 4 shows, the overall accuracy increases 

as MAV group size increases. This is true for both short and 

long conditions. A test of proportions on pooled data 

indicate that subjects were more accurate in the long 

condition than in the short condition, χ
2
(1, N=4704) = 

35.63, p < 0.001. However, as Figure 4 shows, there are 

remarkably small differences in accuracies with respect to 

group sizes in two duration conditions. 

Figure 5 shows a boxplot of accuracy variations based on 

attribute type and duration. We did logistic mixed-effect 

regression analysis using the duration condition, attribute 

type and the interaction between the two as predictors. The 

intercept in the regression model reflects expected accuracy 

in a short condition trial where the MAV belongs to 

shading. Relative accuracy increased when MAV belonged 

to color (z = 3.19, p = 0.001) and decreased when MAV 

(b) (a) 

(b) (a) 

3182



belonged to either number (z = -4.142, p < 0.001) or shape 

(z = -2.577, p = 0.01). Overall performance in the long 

condition increased significantly (z = 2.093, p < 0.036). 

However, there were no significant interactions between 

duration conditions and attribute types. 

Chi-square tests confirmed that subjects were 

significantly better at identifying the MAV with a color 

attribute than any other attribute type. Subjects showed little 

difference in accuracies in the short and long conditions 

with respect to color (χ
2
(1, N=1176) = 2.91, p = 0.088). It is 

surprising that, despite the significant difference in average 

number of fixations made, subjects are equally good at 

identifying color value in both duration conditions. In 

contrast, accuracies in the long condition were significantly 

higher for number (χ
2
(1, N=1176) = 15.283, p < 0.001), 

shape (χ
2
(1, N=1176) = 16.94, p < 0.001) and shading 

(χ
2
(1, N=1176) = 4.12, p = 0.04) than in the short condition. 

 

 
 

Figure 4: Mean accuracies averaged over all combinations 

of MAV group sizes and duration conditions. 

 

 
 

Figure 5: Mean accuracies averaged over all combinations 

of attribute types and duration conditions. 

Experiment Discussion 

Effect of MAV Group Size on Accuracy This effect can 

be explained by the priming of declarative memory by the 

visual system. There are several studies indicating that the 

human visual system has some form of iconic memory 

(Kieras, 2009). It is a low-resolution high-capacity memory 

where visual information is stored pre-attentively for a short 

duration of time. The process of gathering information is 

massively parallel and almost instantaneous. However, 

information about a visual object is stored as a collection of 

separate feature channels (such as color or shape) rather 

than single coherent object (Treisman & Gelade, 1980). 

Therefore, iconic memory has just enough resolution to 

guide further attention shifts and encoding. 

There is evidence that visual perception can influence 

processes of memory retrieval (Wais, Rubens, Boccanfuso, 

& Gazzaley, 2010). It is reasonable to assume that visual 

stimuli can facilitate memory retrieval of items that are in 

some form related to the stimuli. Furthermore, we assume 

the same process applies to iconic and declarative 

memories. Items in iconic memory facilitate retrieval of 

similar or related items in declarative memory. In other 

words, items in declarative memory get activated by items 

in iconic memory. The strength of such activation depends 

on the number of items in iconic memory that are related to 

the item in declarative memory. 

This interaction between iconic and declarative memories 

can explain why subjects find it easier to identify the MAV 

among larger group of cards. Subjects need to do two tasks: 

(1) gather visual information through attention shifts and (2) 

retrieve the MAV from memory when prompted. The 

second retrieval step is influenced by the content of iconic 

memory that was gathered during the first step. When MAV 

group size is large, more values enter iconic memory, and 

corresponding MAV value in declarative memory receives a 

higher activation during the retrieval. 

 

Effect of Attribute Type and Duration on Accuracy The 

exchange of activations from iconic to declarative memories 

also helps to explain why subjects are better at identifying 

color values than values from any other attribute type.  

However, there are studies showing that an ability to 

capture finer details of a visual scene becomes worse as the 

distance from a foveal region increases (Nelson & Loftus, 

1998). This introduces limitations on what visual features 

can be gathered into iconic memory. As an object is further 

away from the foveal region it becomes more likely that 

some of its features will not enter iconic memory due to 

limitations of peripheral vision. A feature's acuity threshold 

defines the maximum distance from a foveal point at which 

the feature is still recognizable (Kieras, 2009). Compared to 

other features, color has a higher threshold making it easier 

to recognize in the peripherals. Thus, color values have a 

higher chance of entering iconic memory thereby spreading 

more activation to the same values in declarative memory. 

When features, such as shape and shading, have a limited 

acuity, subjects need to fixate closer to respective visual 

objects to bring them within threshold distance. This 

explains why subjects perform better in the long condition 

trials. Subjects can make more fixations and gather a more 

complete gist of the visual scene in iconic memory, which 

then facilitates a more accurate declarative retrieval. 

 

Scanpaths There are two interesting effects in subjects' 

scanpaths. Firstly, subjects seem to react to time pressure in 

the short condition by having shorter fixation durations. 

This behavior also supports our assumption that iconic 

memory and peripheral vision play an important role. It is 

possible that subjects compensate for a shorter duration by 
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making as many fixations as possible and accumulating in 

iconic memory as much visual information as possible. The 

pattern of increasing saccade amplitudes provides a clue 

about preferences of possible fixation locations. Subjects 

start by fixating on the cards closest to the center of the 

screen and gradually switch to the cards on the peripherals. 

These fixations from inwards toward outwards should result 

in increasing saccade amplitudes shown in Figure 3b. In 

addition to providing more clues about subjects' behavior, 

scanpaths provide additional measurements besides 

accuracy against which model fit can be evaluated. 

Cognitive Model 

Cognitive Architecture 

We have used ACT-R cognitive architecture (Anderson, 

2007) to develop the model. An additional module called 

Pre-attentive and Attentive Vision (Nyamsuren & Taatgen, 

2013a) was used instead of ACT-R's default vision module. 

The PAAV module provides several extra functionalities 

that are otherwise not supported by ACT-R. 

PAAV can pre-attentively capture the gist of a visual 

scene and store it in iconic memory. The content of iconic 

memory is updated before and after each saccade and before 

each time the memory is accessed. The update process is 

instantaneous from a perspective of model's timeframe. 

Iconic memory may contain complete information for some 

visual objects, such as an object's color, shape, shading and 

size. However, for most visual objects the iconic memory 

will contain incomplete information (e.g. color only) due to 

limited acuity. PAAV recognizes that not everything in a 

visual scene can be resolved by model's peripheral vision at 

any given moment. In PAAV two parameters, a and b, 

define differential acuities of color, shape, size and shading 

with color having the highest acuity. Fitness of these 

parameters was tested on models of three different visual 

search tasks and the updated model of game of SET 

(Nyamsuren & Taatgen, 2013a). An object's feature in 

iconic memory, although persisting through saccades, 

decays after a short period of time (currently 4 sec) if not 

recognizable in peripheral vision anymore. 

The content of iconic memory is used to guide the 

model's visual attention. Visual objects with the highest 

saliency values are prioritized for visual attention and 

further encoding. In PAAV, the bottom-up saliency is a sum 

of saliency values calculated for each feature dimension as a 

function of contrast to its surrounding. For example, a single 

red card among green, otherwise similar, cards will be the 

most salient one and draw the model's attention. PAAV uses 

a binary measure of similarity: 1 for exact match and 0 

otherwise. No adjustable parameters are used in calculation 

of bottom-up saliency (Nyamsuren & Taatgen, 2013a). It is 

a simplified version of Wolfe's (2007) saliency function. 

In ACT-R knowledge chunks are stored in declarative 

memory. Each chunk has an activation value that usually 

reflects chunk's recency and frequency of use by a model. A 

chunk with the highest activation has the highest probability 

of retrieval. Besides frequency and recency, a chunk's 

activation can be increased by the content of iconic 

memory. Each visual object in iconic memory spreads 

activation to every declarative chunk with the same features. 

So depending on the content of iconic memory at the time 

the results of two same retrievals can differ. The model uses 

exactly the same set of parameters for declarative retrieval 

as in the original model of game of SET. Details of those 

parameters are described in Nyamsuren & Taatgen (2013b). 

Model of MAV Task 

Model Strategy Model performed 50 times the same two 

blocks of trials subjects did. Model starts each trial while 

fixating at the center of the screen. When cards are shown, 

models need some time to create a working memory before 

the first saccade is made. At the same time, model updates 

its iconic memory with representations of cards. Then model 

follows with free scanning using bottom-up saliency values 

to calculate consecutive fixation points. Each fixation is 

followed by encoding of an attended card. Free scanning 

stops when time limit is reached and representations of 

cards disappear. At this point model retrieves any one of 12 

possible attribute values from declarative memory. Result of 

this retrieval depends on content of iconic memory the 

model has built up during the free scanning. The retrieved 

value is recorded as model's response for the trial. 

 

Model Accuracy Model is quite good at replicating 

subjects' accuracy. Figure 6 shows that model's accuracy 

increases linearly as the MAV group size increases. This 

effect is present in both the short and long condition. 

However, just like subjects, the model shows a better 

performance in the long condition. 

 

 
 

Figure 6: Mean accuracies averaged over all combinations 

of MAV group sizes and duration conditions. 

 

The model is also good at reflecting subjects' accuracy 

depending on combination of attribute types and duration 

conditions. Firstly, as Figure 7, there is a general increase in 

model's accuracy in the long condition. Except in color, the 

model clearly benefits from additional time in all other three 

attributes. Next, Figure 7 shows that model is much better at 

identifying MAV belonging to color attribute than to any 

other attribute type. Similar to human performance, model's 

accuracy for color in the short condition is higher than the 

accuracies for other three attribute types in the longer trials. 
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Figure 7: Mean accuracies averaged over all combinations 

of attribute types and duration conditions. 

 

Model Scanpaths Comparison of model's scanpaths to that 

of subjects should give additional measure of how well the 

model fits human data at the level of raw eye movements. 

Figure 8 shows distributions of fixation counts the model 

made in the long and short conditions. In 99% of all long 

condition trials, the model made 9-10 fixations. It is within a 

range of 7-11 fixations subjects made. In the short 

condition, the model made either two or three fixations. It is 

also within a range of 2-4 fixations subjects made. As 

Figure 9a shows, model's fixation durations do not differ in 

the long and short conditions. The lower duration for the 

third fixation in the short condition is a result of interruption 

due to duration limit. 

 

 
 

Figure 8: Frequencies of fixation counts model made during 

a trial. Frequencies are calculated separately for (a) long and 

(b) short conditions. 

 

The model was able to reproduce a pattern of increasing 

saccade amplitudes in long condition trials, as it is shown in 

Figure 9b. It was not completely expected since we have not 

incorporated into the model any deliberate mechanisms to 

promote this behavior. Because the model makes only one 

or two saccades in a short condition trial, it is hard to make 

any conclusive statements about the pattern of amplitude 

changes. The same model is used in both duration 

conditions. Hence, there is no reason to expect the model to 

show different scanpath pattern in the short condition. The 

lower amplitude for the second saccade in the short 

condition is most likely due to smaller number of 

observations from which the mean is calculated. For exactly 

the same reason, amplitudes for the 9th and 10th saccades 

drop in the long condition since there are fewer trials that 

have more than 10 fixations. 

 

 
 

Figure 9: (a) Changes in model's mean fixation durations 

over course of the trial in the short and long conditions. (b) 

Changes in model's saccade amplitude over the course of 

the trial in the short and long condition. 

Discussion on Model Results 

The point at which model has to decide on a choice of MAV 

is the retrieval from a declarative memory. As model shows, 

the spreading activation from iconic memory is a major 

factor deciding the result of this retrieval. However, it is 

possible to counter-argue that spreading activation from 

iconic memory is not necessary, and items in declarative 

memory are activated directly through visual encoding of 

similar items. Such mechanism is possible and used in our 

model. Cards with the MAV have a higher chance 

probability of getting visual attention and being encoded. As 

a result, the MAV in declarative memory receives more 

activation and is retrieved. Although this argument would 

explain subjects' behavior in the long condition, it does not 

explain why there is a similar effect of MAV group size in 

the short condition. Neither subjects nor model can encode 

more than two cards in the short condition, and it is not 

enough to influence the retrieval. Instead, it is likely that 

subjects rely on visual information in peripheral regions for 

choosing MAV. Furthermore, the fact that subjects are quite 

good at identifying the MAV even within 600 ms implies 

that process of gathering information from peripherals is 

very efficient. The model simulation suggests that it may be 

massively parallel and instantaneous. 

In the other side, acuity limitations of visual features in 

peripheral vision can result in incomplete and inaccurate 

iconic memory. This imperfect internal representation may 

explain why subjects fail to reach 100% accuracy. It also 

explains why subjects get better given opportunity to do 

more fixations in the long condition. More fixations negate 

the effect of low acuity and result in a more complete 

representation of the scene inside iconic memory. 

Furthermore, giving a higher acuity to color in model 

simulation increases model's accuracy in identifying the 

most abundant color values in both conditions. This result is 

similar to the result from the experiment, and, therefore, 

supports the assumption that human vision is affected 

significantly by different acuity properties of visual features. 

The model produces the same pattern of increasing 

saccade durations in the long condition without any 

deliberate mechanisms. It suggests that spatial arrangement 

(b) (a) 

(b) (a) 
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and the bottom-up salient parts of the visual scene define the 

topology of fixation points, more specifically the 

characteristic fixations from inwards to outwards. In the 

model, cards around the edges of the screen are not fully 

visible due to limited acuity. Those cards have reduced 

bottom-up activation compared to cards around the center of 

the screen. As a result, the model prefers to fixate on cards 

closer to the screen center at the early stages of the trial. We 

were not able to simulate the deliberate reduction in fixation 

durations subjects have shown in the short condition. Visual 

processes currently implemented in ACT-R do not provide 

appropriate mechanisms to simulate this effect. 

Discussion and Conclusion 

The model fits subjects' accuracies and scanpaths well 

supporting the hypothesis that the same cognitive processes 

simulated in the model may also be used by human subjects. 

More specifically, a combined effect of differential acuity, 

pre-attentive visual iconic memory and implicit 

communication with declarative memory can influence our 

visual perception of the world. 

The results from this study can explain player's behavior 

in game of SET. Player has to decide on a group of cards to 

be searched for a set. This choice is made through a 

declarative retrieval of an attribute value that is common 

among group cards. Similar to the experiment's task, this 

retrieval is influenced by a content of iconic memory 

introducing a bias toward a larger group of cards and cards 

with same color. The retrieved value is used to target 

attention to specific cards with that value. This top-down 

control over eye movements overrides the bottom-up 

saliency of the scene. It explains both why players are better 

at finding set within a group with many similar cards (Jacob 

& Hochstein, 2008) and the general preference toward cards 

with a similar color (Nyamsuren & Taatgen, 2013b). The 

model of SET player implemented on the same principles 

described here was able to simulate player's behavior 

(Nyamsuren & Taatgen, 2013a, 2013b). It is a good 

example of a case where cognitive mechanisms beyond 

bottom-up saliency can influence the behavior in a 

reasonably complex problem-solving task. It implies that 

not every eye movement pattern can be attributed to bottom-

up salient components of the scene. 

Subjects are far better in identifying the MAV even in the 

most difficult conditions. In 600 ms condition with smallest 

MAV group size, subjects show much higher accuracy than 

8% chance probability of success. This result indicates that 

capabilities of human visual system may be higher than 

previously expected. The ability to capture a gist of a visual 

scene from first few fixations is known for a long time 

(Loftus & Mackworth, 1978). However, it is commonly 

viewed that functionality of such gist is limited to 

attentional guidance and providing early structural 

information for encoding, a preview effect (Rayner, 1998). 

On the other hand, our study suggests that gist, in form of 

iconic memory, may be involved in decision-making. It is 

possible through connections between memories in human 

brain. In this study, we talked about similarity-based cross-

memory activations between iconic and declarative 

memories.  However, it may be possible that similar cross 

activations exist between other forms of memory. 

The model code and the data can be downloaded via 

following link: http://www.ai.rug.nl/~n_egii/models/. 
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