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Abstract 

This paper introduces a new vision module, called 
PAAV, developed for the cognitive architecture ACT-
R. Unlike ACT-R’s default vision module that was 
originally developed for top-down perception only, 
PAAV was designed to model a wide range of tasks, 
such as visual search and scene viewing, where pre-
attentive bottom-up processes are essential for the 
validity of a model. PAAV builds on attentive 
components of the default vision module and 
incorporates greater support for modeling pre-attentive 
components of human vision. The module design 
incorporates the best practices from existing models of 
vision. The validity of the module was tested on three 
different tasks. 

Keywords: vision; iconic memory; cognitive architecture; 
ACT-R. 

Introduction 

This paper introduces a general purpose vision module 

called PAAV, which stands for Pre-attentive And Attentive 

Vision. As the name suggests, the new module incorporates 

a greater support for bottom-up visual components that are 

considered pre-attentive in nature, such as multiple feature 

dimensions to describe visual objects, peripheral vision with 

differential acuity, iconic visual memory and a decision 

threshold. The module was developed as an integral part of 

ACT-R cognitive architecture (Anderson, 2007) that 

provides a necessary top-down, attentive layer. By being 

part of ACT-R, PAAV should be able to model wide range 

of tasks where both top-down and bottom-up visual 

guidances are important. ACT-R already has a default vision 

module and a few extensions for it. However they have 

drawbacks that PAAV is aimed to solve. 

ACT-R’s default vision module can be described in terms 

of a visicon and two buffers: visual-location and visual. 

Visual-location and visual buffers essentially represent 

WHERE and WHAT components of a visual system. The 

visicon represents the visual scene containing visual objects 

with which an ACT-R model can interact. The visicon is 

considered to be a part of the environment (a monitor 

screen) rather than part of the model. A model can send a 

WHERE request to the visual-location buffer to find the 

location in the visicon of a potential visual object to encode. 

Within this request, the model can specify criteria for visual 

object such as its kind, color, coordinates or size. Given this 

request vision module randomly chooses one of the visual 

objects from the visicon that exactly matches the given 

criteria and puts its location information in the visual-

location buffer. This entire process is instantaneous with no 

time cost. Next, model can send a WHAT request to the 

visual buffer to encode the object at the chosen location of 

visicon. A WHAT request assumes fixed execution times for 

both saccade and encoding that in total require 85 ms. 

EMMA (Salvucci, 2001) is arguably the most used 

extension to ACT-R’s default vision module. EMMA 

explicitly models saccades including preparation and 

execution times, path generation and variable landing 

points. However, EMMA’s major contribution is in its 

ability to model covert attention shifts through variable 

encoding time dependent on visual object’s frequency and 

eccentricity. 

The disadvantage of the default vision module and 

EMMA is in their optimization toward tasks that involve 

reading or working with items of a user interface. Those are 

the tasks with relatively a simple visual environment where 

bottom-up perceptual processes can be ignored without 

sacrificing model’s plausibility and performance. However, 

ACT-R’s vision module is not suitable for tasks where 

visual stimuli are described with multiple feature 

dimensions. Such tasks often require theories of scene 

perception and visual search that are not part of current 

vision module. The issue is more pressing if one considers 

the importance of embodied cognition (e.g., Clark, 1997) in 

problem-solving tasks (Nyamsuren & Taatgen, 2011) and in 

everyday human activities in general (Land, Mennie & 

Rusted, 1999). Embodied cognition assumes that cognitive 

control is not purely goal based, but it is also driven 

perceptually. The simplest example of it is an interference 

of the salient feature during the task (Theeuwes, 1992). 

When subjects are asked to look at the scene they tend to 

look at the most salient parts first. Those salient parts of the 

scene can interfere with task even if subjects are explicitly 

asked to not to look at them. 

Architecture of PAAV Module 

Feature dimensions 

In PAAV every visual object can be characterized by five 

basic features: color, shape, shading, orientation and size. 

The features are chosen because of their pop-out nature and 

importance in guiding visual attention (Wolfe & Horowitz, 

2004). Each of those features can have a wide range of 

values, such as, red and green for color; oval and rectangle 

for shape and etc. Currently, PAAV does not support 

modeler specified custom features. However, it is included 

as a future implementation milestone. 

Peripheral Vision 
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The current implementation of ACT-R’s vision assumes that 

everything in a visicon is visible to the vision module and 

consecutively available for information processing. 

However, human vision is limited in what it can see, 

especially in the extra-foveal region (Rayner, 1998). PAAV 

introduces limitations on visibility by assuming that a visual 

object is only visible if at least one of five features of that 

object is visible. Visibility of a feature is calculated with an 

acuity function. We have adopted a modified version of the 

psychophysical acuity function proposed by Kieras (2010). 

Kieras’ original acuity function states that for an object’s 

feature to be visible the object’s angular size , with some 

Gaussian noise added to it, must exceed a threshold 

calculated as a function of eccentricity : 
 

 

 

The free parameters , ,  and  are to be adjusted for 

each particular feature. The function works quite well for 

modeling differential acuity of features. However, the 

quadratic form in the function makes it less suitable when 

the object size is particularly small. For example, in their 

feature search experiment for color, Treisman and Gelade 

(1980) used visual stimuli of 0.8
○
x0.6

○
 in size scattered over 

area of 14
○
x8

○
. This feature search experiment cannot be 

replicated with the above acuity function for color unless 

parameter  is assigned an extremely low value that is well 

below the 0.035 used by Kieras (2010). 

PAAV uses a modified version of the acuity function to 

mitigate issue above: 
 

 

The constant  has been removed since it has no 

significant influence when object size is reasonably large 

and too much influence when object size is quite small. 

Similarly, the Gaussian noise has been removed because of 

its tendency to introduce too much or too little acuity 

variation depending on the object size. Next, the coefficient 

 has an opposite sign. It results in less steeper increase in 

threshold when an eccentricity increases. It also removes the 

necessity of giving unreasonably small value to coefficient 

 when object size is small. The free parameter  has been 

refitted again to 0.035 and 0.1 for color and shape 

respectively. The parameter  has been fitted to 0.601 for 

both color and shape. We are still in process of refitting 

parameters for the rest of the features. 

Iconic Visual Memory 

Everything PAAV perceives from the visicon is stored in 

iconic memory. Visual features of every object visible via 

peripheral vision are stored in this memory. As such, the 

content of iconic memory is not necessarily a complete or 

even a consistent representation of the objects in the visicon. 

Information in iconic memory is not treated as 

consciously perceived visual properties. It is rather 

perceived as bottom-up visual stimuli on which bottom-up 

processes can operate. Iconic memory is trans-saccade 

persistent. Items in iconic memory are persistent for a short 

duration of time if they are not visible through peripheral 

vision anymore. This persistence time is currently set to 4 s 

determined by Kieras (2009) to be a lower bound for a 

visual memory. 

Iconic memory is a model’s internal representation of a 

visicon, otherwise visual scene. As such, all WHERE 

requests are handled with respect to the content of iconic 

memory via a newly defined abstract-location buffer. A 

request may include desired criteria including any of the 

five feature dimensions or location. 

Visual Activation 

Each visual object in iconic memory is assigned an 

activation value. The location of the visual object with the 

highest activation value is returned upon a WHERE request. 

The activation value is calculated as a sum of bottom-up and 

top-down activation values. It is adapted from the concept 

of an activation map used by Wolfe (2007) in his model of a 

visual search. 

 

Bottom-up activation The bottom-up activation for a visual 

object i is calculated based on its contrast to all other objects 

in iconic memory with respect to each feature dimension k: 

 

The dissim(vik, vjk) is the dissimilarity score of two feature 

values of the same dimension. It is a simplification of a 

bottom-up activation based on the difference in channel 

responses used in Guided Search 4.0 (Wolfe, 2007). If two 

values are the same then dissim(vik,vjk)=0, otherwise 

dissim(vik,vjk)=1. The dissimilarity is weighted by a square 

root of a linear distance dij between two objects. Thus the 

objects farther away contribute less to a contrast-based 

saliency of the visual object i than the objects closest to it. 

 

Top-down activation In a WHERE request a model can 

provide feature values as desired criteria for the next visual 

object to be located. Those feature criteria are used to 

calculate the top-down activation value for each visual 

object in iconic memory. Given k feature criteria the top-

down activation for visual object i is calculated as: 

 

 is a similarity score of the feature value  in 

WHERE request to a value  with the same feature 

dimension in visual object i. This similarity score is 1 for an 

exact match and 0 for a mismatch. If the value  is not 

accessible from iconic memory then the similarity score is 

considered to be 0.5. Thus uncertainty is preferred to certain 

dissimilarity. 

 

Total visual activation The total activation for visual object 

i is the sum of bottom-up and top-down activations: 
 

 and  are the weights for the bottom-up and top-

down activations respectively. In correspondence with 

212



Wolfe (2007), those weights control the intentional and 

unintentional attentional captures. Those weights are set to 

1.1 and 0.45. The bottom-up activation is given a higher 

weight to compensate for the distance  adjustment, which 

results in the lower bottom-up activation value in 

comparison to the top-down activation value.  

Saccade and Encoding 

After a visual object has been located with a WHERE 

request, a model can send a WHAT request. This is 

essentially the same encoding processes of a visual object 

from the visicon as in ACT-R’s default vision module. 

However, PAAV assumes that the saccade that precedes the 

encoding has a variable execution time dependent on the 

saccade’s amplitude. Prior to a saccade execution, PAAV 

calculates its duration and landing point. Salvucci (2001) 

described a set of formulas to calculate those variables. For 

calculating the execution duration, we used 20 ms as a base 

execution time and additional 2 ms for an every degree of 

angular distance between gaze position and the center of the 

object to be fixated. This is exactly the same method used 

by Salvucci (2001). Differently from Salvucci (2001), we 

have used two Gaussian distributions around the center of 

the object to calculate saccade’s landing position. The 

standard deviation for distribution along X axis is calculated 

as 0.5 times of the object’s linear width. In a similar 

manner, the standard deviation for Y axis is calculated using 

object’s height. Such implementation is in accordance with 

theory that the saccade’s landing position depends on the 

size of a visual stimulus (Rayner, 1998). 

Upon completion of a saccade, PAAV starts encoding. 

The encoding time takes a fixed 50 ms. It is in line with 

findings that the sufficient information is encoded in the 

first 45-75 ms of a fixation for an object identification to 

occur (van Diepen, DeGraef, & d'Ydewalle, 1995). Except 

eccentricity, Salvucci (2001) used word frequency to 

calculate variable encoding time. However, we believe this 

approach is not applicable to PAAV where visual object is 

defined along multiple dimensions. Hence, further study is 

needed to investigate the object’s encoding process in more 

details sufficient for proper computational modeling. 

Visual Decision Threshold 

One of the challenging problems in a visual perception is 

how does the visual system recognize the absence of a 

desired visual object. For example, humans can spot the 

absence of a salient object as fast as its presence in a visual 

field (Figure 1). Similarly, given a WHERE request with 

specific criteria, how does PAAV know that the desired 

object is not in iconic memory. One obvious solution is to 

attend every object in visicon and stop when there are no 

more objects to attend. However, visual search paradigms, 

such as feature search, show that it is not the case. The 

visual system is much more efficient and does not require 

fixation on every item to detect an absence of a target 

(Treisman & Gelade, 1980; Wolfe, 2007). 

PAAV incorporates the concept of a visual decision 

threshold to decide whether any of the objects in iconic 

memory will match a given WHERE request. A partial 

solution is to ignore every object that has zero top-down 

activation due to complete mismatch. However, results from 

tasks, such as conjunction search, show that a visual search 

can be efficient even when distracters partially match the 

target. PAAV should also be able to filter out objects that 

match only partially. This is done via simulation of visual 

grouping based on top-down activation. Given a WHERE 

request, PAAV returns some object i. Let’s assume that, at 

the time of WHERE request, the distance between object i 

and the gaze position was dTh, and object i’s top-down 

activation was TATh. When object i is encoded these two 

values are stored and used as a threshold for the consecutive 

WHERE requests. In the following WHERE requests 

PAAV completely ignores every object j in iconic memory 

that has TAj ≤ TATh and djg ≤ dTh where djg is a distance 

between object j and gaze position. Top-down activation 

serves as a natural threshold for object selection. Every time 

a model encodes an incorrect object, the acceptance 

threshold for the next WHERE request increases up to the 

activation value of that object. The distance dTh provides a 

measure that PAAV uses to judge whether it can reliably 

compare two top-down activation values. It is a simulation 

of a visual grouping where a cluster of similar objects is 

grouped together. The dTh can be viewed as an approximate 

radius of the cluster. 

 

 
 

Figure 1: Humans can spot an absence (a) of a red object in 

field of green objects as fast as its presence (b). 

Validation Models 

This section describes two models that do common visual 

tasks. The models are based on ACT-R where the default 

vision module was replaced with the PAAV module. The 

tasks are simple, yet demand complex cognitive and 

perceptual processes, and require most of the components of 

PAAV module described in this paper. Hence, those tasks 

serve as a good way to validate the PAAV module.  

The first model was created to do feature and conjunction 

searches. Both of these visual search tasks involve finding a 

target among a set of distracters. In a feature search task the 

target differs from distracters by a single feature such as 

color (Figure 2a). In a conjunction search the target can 

differ from distracters by either of two features (Figure 2b). 

A feature search is usually an efficient search with reaction 

time being independent of a number of distracters. On the 

other hand, reaction time in a conjunction search increases 

with a number of distracters. Those results are consistent 

(a) (b) 
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among different studies (e.g., Treisman & Gelade, 1980; 

Wolfe, Cave & Franzel, 1989; Wolfe, 2007). 

The second model does a comparative visual search, a 

paradigm proposed by Pomplun, Sichelschmidt, Wagner, 

Clermont, Rickheit and Ritter (2001). The task involves 

detecting a mismatch between two, otherwise equal, halves 

of a display referred to as hemifields (Figure 3). The task is 

a simplified version of the traditional picture matching task 

(Humphrey & Lupker, 1993) with a major difference that it 

does not require image processing. 

 

 
 

Figure 2: Examples of feature search (a) and conjunction 

search tasks (b). In both tasks the red rectangle is a target. 

 

 
 

Figure 3: An example comparative visual search task where 

targets are red triangle and red oval in left and right 

hemifields respectively. 

A Model of Feature and Conjunction Searches 

The goal in feature search was to find a red rectangle among 

green rectangles. In a conjunction search, the model had to 

find a red rectangle among green rectangles and red ovals. 

In each trial values for both shape and color were present in 

near equal amount. 

The following experimental conditions were set for the 

model. In both types of visual search tasks, the set size 

ranged from 1  to 30. For each set size, there were 500 trials 

where a target was present and another 500 trials where a 

target was replaced with a distracter. In total, there were 

6000 trials in each of feature and conjunction search tasks. 

The screen size was 11.3
○
x11.3

○
, and the size of each object 

was 0.85
○
 both in width and height. Within the screen, 

objects were positioned in a random pattern with the 

constraint that they should not overlap. The model had to 

press either “P” or “A” for target being either present or 

absent. The time of key press was considered as trial end 

time. The model was reset after each trial. 

Figure 4b shows the model’s mean reaction times in both 

feature and conjunction search tasks each averaged over 

trials of the same set size. The black solid line is for feature 

search task where target was present, and black dashed line 

is for feature search task where target was absent.  

In feature search task the model was asked to find any red 

object. The resulting RT is mostly independent of set size 

and averages to 439 ms when a target is present and 640 ms 

when a target is absent. It is consistent with experimental 

findings where RT for positive trials is also around 430 ms 

and for negative trials is 550 ms (Treisman & Gelade, 1980; 

Wolfe, 2007). The model RT remains the same in positive 

trials due to very high bottom-up activation the target 

receives due to its color contrast to homogeneous 

surrounding objects. Top-down activation from the 

matching color also contributes to the overall saliency of the 

target. However, bottom-up activation alone is enough to 

make the target salient enough to attract almost immediate 

attention. In negative feature search trials all objects in 

iconic memory have zero top-down activation. It takes the 

model few fixations to realize absence of a top-down 

activation after which the model stops searching. As a 

result, model also produces flat RT line independent of a set 

size, although slightly higher than in positive trials. 

In a conjunction search task the model was asked to find 

any red rectangle. Figure 4 compares the RT produced by 

the model to the RT obtained by Treisman and Gelade 

(1980) from their experiment with human subjects. As the 

blue lines in Figure 4 indicate the RT in both positive and 

negative trials rise as the set size increases. The slopes, 

however, are different with negative trials having a 

significantly higher slope. Linear regression of model’s RT 

on set size gives intercept of 440 ms and 689 ms for positive 

and negative trials respectively. The slopes are around 19.6 

ms/item and 72.8 ms/item. The model results can be 

compared to those obtained in previous studies (Table 1). 

 

 
 

Figure 4: (a) Mean reaction times of human subjects in 

conjunction search as reported by Treisman and Gelade 

(1980); (b) Mean reaction times in feature and conjunction 

search tasks produced by our model. 

 

In this task the distracters are not homogenous. They vary 

by both color and shape. As a result, there is no guarantee in 

positive trials that a target will have a higher bottom-up 

activation than distracters. However, the target always 

receives higher top-down activation than any other object in 

iconic memory since it has both matching color and shape. 

When a set size is small the target’s top-down activation is 

enough to compensate for smaller bottom-up activation, and 

the target almost immediately attracts attention as the most 

salient object. When the set size is big, there is a higher 

(a) (b) 

(a) (b) 
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chance that the target will get significantly lower bottom-up 

activation than a distracter, which then cannot be 

compensated by higher top-down activation. Consecutively, 

those distracters with a higher overall activation are 

attended first which results in RT increasing with set size. 

The main challenge for the model in negative conjunction 

trials is to know when to stop the search and report the 

absence of the target. Since most of the distracters either 

match color or shape with a target, there are few objects that 

have zero top-down activation. Hence, the model had to rely 

on visual decision threshold to filter out partially matching 

distracters. The model requires on average 72.8 ms/item in 

negative trials indicating that the model does not need to 

fixate on every object to realize the absence of a target. 

Hence, top-down activation serves quite well as a visual 

decision threshold. 

Considering the variations between different studies, the 

model gives a good fit to experimental findings from 

previous studies with a slightly higher intercept for negative 

trials than that found in experiments with human subjects. 

This is probably due to the fact that the corresponding RT 

line (Figure 4b) is not completely linear, and the elevation 

for trials with set size of 15 and 20 results in an elevated 

intercept for an entire linear function. We are still in process 

of investigating what causes the slightly increased RT for 

those trials. 

 

Table 1: Comparison of the results of the model’s linear 

regressions of RT on set size to results of linear regression 

from similar experiments by Treisman and Gelade (1980) 

and Wolfe, Cave and Franzel (1989). 

 
 Trial type Slope (ms/item) Intercept (ms) 

Model data 
Positive 19.6 440 

Negative 72.8 689 

Treisman and 

Gelade, 1980 

Positive 28.7 398 

Negative 67.1 397 

Wolfe, Cave and 

Franzel, 1989 

Positive 7.5 451 

Negative 12.6 531 

A Model of Comparative Visual Search 

For the model of comparative visual search, we set the 

screen size to 24
○
x16

○
, and the size of each object was 0.6

○
 

both in width and height. Those are the same conditions 

used in the original experiment (Pomplun et al., 2001). The 

screen was divided vertically in two halves, hemifields. 

Each hemifield contained 30 objects varying in shape 

(rectangle, oval and triangle) and color (red, green and 

blue). Each color and shape value was represented in a trial 

in an equal quantity. Positions of the objects were generated 

randomly with minimum margin of 10 pixels from the 

boundaries of the screen. Two hemifields were identical 

except one object, the target, which mismatched in either 

color or shape. The target was chosen at random among 30 

objects as well as the type of mismatch. 

In total, the model had to do 10000 trials where half of the 

trials had targets that mismatched color and the other half 

that had targets with mismatched shape. The model was not 

aware of the type of mismatch it had to find in a trial. The 

model was reset after each trial.  

The model used a very simple algorithm to do visual 

search. The model starts from a top-left corner of a screen 

and does following steps: 

1. Fixate on any unattended object (further referred to as 

O1) in the current hemifield. 

2. Fixate on any object (referred as O2) in the opposite 

hemifield that has the same y coordinate as the O1. 

3. If O1 and O2 are the same then go to step 1. 

4. If O1 and O2 are different then: 

a. Fixate on an object NO2 nearest to O2 

b. Fixate on O1 

c. Fixate on an object NO1 nearest to O1 

d. If NO1 and NO2 are the same then end the trial. 

e. If NO1 and NO2 are not the same then go to step1. 

The steps 4.a to 4.e are necessary to ensure that the 

module is comparing a correct pair of objects. This 

uncertainty comes from the fact that when locating a target’s 

twin in the opposite hemifield the model knows only its y 

coordinate and not the x coordinate. Therefore, it is possible 

for the model to fixate on a wrong object that by chance had 

the same y coordinate. To detect such mistakes model also 

compares two objects from two hemifields that are closest to 

respective target objects.  

The model’s mean RT over all trials was 9089 ms (Table 

2).  On average, the model needed 9007 ms and 9170 ms to 

finish trials where the difference was either in color or in 

shape respectively. This is a reasonable fit to reaction times 

reported by Pomplun et al. (2001). However, the current 

model was unable to show difference between trials where 

the mismatch was either in color or in shape. 

 

Table 2: Comparison of model’s mean RTs to those 

reported by Pomplun et al. (2001). All RTs are in ms. 

 
 Color Shape Total 

Model 9007 9170 9089 

Pomplun et al. (2001) 9903 11997 10950 

 

 
 

Figure 5: (a) Histogram of reaction times in original 

comparative visual search experiment (Pomplun et al., 

2001); (b) Histogram of reactions times from 10000 model 

trials in comparative visual search. 

 

Figure 5a shows a histogram of reaction times from 

original experiment done by Pomplun et al. (2001).  This 

histogram can be compared to a histogram of reaction times 

(a) (b) 
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produced by our model depicted in Figure 5b. Both graphs 

show a plateau of short reaction times between three and ten 

seconds, indicating that the distribution of RT produced by 

the model closely fits the distribution from the original 

experiment. On average, the model made 37.3 fixations 

during a trial. This is a close match to 39.6 fixations 

reported by Pomplun et al. (2001). The model produces 

nicely structured scanpath (Figure 6) even though there is no 

explicit control of which object should be chosen as O1. 

 

 
 

Figure 6: Example scanpath produced by the model. Open 

circles indicate fixations while arrows indicate saccade 

directions. Numbers are positions of fixations in the fixation 

sequence. Targets are blue and green triangles at 36
th

 and 

37
th

 fixations. 

Conclusion 

There are many existing models of the human visual system. 

We have greatly leveraged from those models by adopting 

different concepts and integrating them into one module that 

became PAAV. Our main goal is not to reinvent the wheel, 

but to create a tool that allows modelers to create 

cognitively plausible models of tasks that require 

comprehensive visual system. This is the major difference 

between PAAV and existing models of a visual system. 

Models, such as a three-level model of comparative visual 

search (Pomplun & Ritter, 1999) or Guided Search 4.0 

(Wolfe, 2007), were created to perform very specific set of 

tasks.  On the other hand, PAAV was developed to be 

general enough to model a wide range of tasks. This is why 

we prefer to call PAAV a module rather than a model. 

Furthermore, PAAV is not a stand-alone tool, but rather a 

part of a cognitive architecture. For example, Guided Search 

4.0 excels at modeling feature and conjunction search tasks. 

However, an absence of a general cognitive theory makes it 

hard to investigate top-down influence in these tasks. On the 

other hand, ACT-R imposes limitations on what PAAV is 

allowed to do, but it also gives additional layer of 

plausibility. The source code for the PAAV module and the 

models of the visual search tasks described in this paper can 

be downloaded via http://ai178174.ai.rug.nl/iccm2012/. 
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