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A theory of prospective time perception is introduced and incorporated as a module in an integrated
theory of cognition, thereby extending existing theories and allowing predictions about attention and
learning. First, a time perception module is established by fitting existing datasets (interval estimation
and bisection and impact of secondary tasks on attention). The authors subsequently used the module as
a part of the adaptive control of thought—rational (ACT–R) architecture to model a new experiment that
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the proposed integrated theory of prospective time interval estimation explains detailed effects of
attention and learning during time interval estimation.
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The ability to estimate short time intervals routinely plays an
important role in everyday life. Time estimates are important in
situations in which we take an action and expect a response, for
example, when we click on a link in a web browser or when we
judge whether we should brake for a yellow traffic light. It also
affects multi-tasking situations in which we have to switch be-
tween tasks after specific intervals, for example, when using a
mobile phone in a car (Kushleyeva, Salvucci, & Lee, 2005; Sal-
vucci, Taatgen, & Kushleyeva, 2006). This type of time interval
estimation in real life is often implicit, automated, and tightly
interwoven with other aspects of cognition such as perception,
learning, and decision-making. All these examples concern pro-
spective time estimation, because at the start of the interval it is
known that an estimate will have to be made. This can be con-
trasted with retrospective time estimation, in which one is asked to
estimate a duration after the time interval has passed. Prospective
time estimation is often implicit in nature, because for most tasks
the timing aspect is secondary to the real task being performed. For
example, Grosjean, Rosenbaum, and Elsinger (2001) found that

participants in a choice–reaction time experiment adapt to the
interval between stimuli without being aware that they are doing
so. The implicit aspect of prospective time estimation sets it apart
from many other forms of reasoning about time that involve
explicit reasoning and problem solving (see Michon & Jackson,
1985, for an overview). Thus, in retrospective time estimation, an
explicit reasoning process might be used that involves recalling
events that took place between the onset of the interval and its end
(Zakay & Block, 2004). In our view, basic prospective time
estimation is best explained as part of the human cognitive archi-
tecture in the same sense as visual perception is: Basic prospective
time estimation processes are provided by a separate time module,
and more complex and explicit forms of time estimation are
explained by more general cognitive strategies that build on this
basic capability.

Despite the fact that time estimation is, in general, only a
component of complex task performance, it is usually studied in
isolation. Zakay (1990) identified four paradigms to study interval
estimation: (a) verbal estimation: after exposure to a time interval,
reporting how much time has elapsed; (b) interval production:
producing an interval of a certain duration, for example, 1 min; (c)
interval reproduction: perceiving an interval of a certain duration
and then reproducing it; and (d) interval comparison: comparing
two intervals and reporting which is longer. In each of these
paradigms time estimation is the explicit focus of the task. It is
therefore quite possible that, analogous to the observation that
memory studies using explicit recognition and recall do not nec-
essarily tell the whole story of everyday implicit memory usage,
explicit time estimation paradigms do not provide a complete
picture of the role of time estimation within the cognitive system.
As an example of a real-world task that involves implicit timing,
consider sending a text message on a mobile phone. In order to
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send a text message with a numerical keyboard, multiple letters are
mapped onto a single number key. For example, the letters D, E,
and F are all under the number 3. In order to type the letter E, one
must press the 3 twice. In order to enter two consecutive letters
from the same key (e.g., to type DE), one must insert a pause of
about a second (3–pause–3–3) to disambiguate the two letters from
three key-presses that signify the third letter (F). An important
aspect in this task is learning: Even if the manual of the phone
states that the interval is 1 s, learning the exact interval is partly
characterized by trial-and-error. Only after sufficient practice does
pressing the key at the right moment become fully automated.

One experiment that did study timing as secondary task was
reported by Zakay (1989, Study 3). In this Stroop-type experiment,
the experimenter instructed participants to focus on either the
timing aspects of the task or on the word reading. This manipula-
tion showed that emphasis on timing influences accuracy. How-
ever, the two tasks discussed by Zakay are two clearly separate and
distinguishable tasks, instead of one single task in which timing is
an integrated but secondary aspect.

In this article, we present a model of prospective time estimation
as a module in a larger theory of cognition. We describe how this
module interacts with other aspects of cognition to explain a wide
variety of phenomena associated with time estimation. This em-
bedded approach is necessary to fully understand the role of timing
in both laboratory settings and in tasks like sending text messages,
driving a car, and others involving complex skills. We embedded
the timing model into the adaptive control of thought—rational
(ACT–R; Anderson et al., 2004) model, a cognitive architecture
that supplies mechanisms for learning, attention, perception, and
motor behavior and which has been applied to many different tasks
with a wide range of complexity. Before we present our own
model, we review the existing models of time estimation.

Existing Theories of Prospective Time Estimation

Two theories address interval estimation: the internal clock
theory and the attentional gate theory. Each of these theories has
been formalized in one or more models: internal clock models and
attentional gate models.

Figure 1 illustrates the pacemaker–accumulator model, of which
there is both an internal clock and an attentional gate version. The
pacemaker–accumulator internal clock model, as described by
Matell and Meck (2000), does not have the attentional gate.
Following Gibbon (1977), they identified a series of models that

share the property that the internal clock itself is unaffected by
outside processes. In one of these models, an internal pacemaker
produces a steady stream of pulses. An accumulator counts these
pulses, but only after a switch is opened by a start signal. After the
time interval has ended, the accumulated value of pulses is stored
in memory. When an interval of equal length has to be reproduced,
a start signal is sent to the switch and pulses are counted until the
same number of pulses has been reached as were stored in mem-
ory. In its most simple version, this model cannot account for
differences in timing accuracy in tasks in which attention is
(partly) directed away from the timing process. The attentional
gate theory (see the attentional gate in Figure 1; see also Hicks,
Miller, & Kinsbourne, 1976; Thomas & Weaver, 1975; Zakay &
Block, 1997) was developed to explain that prospective time
estimates tend to be longer if less attention can be paid to the
estimation process, and vice versa. The model associated with this
theory is an extension of the pacemaker–accumulator internal
clock model. In addition to the components of that model, the
attentional gate theory assumes that the accumulator is updated
only when attention is being directed to the timing process, open-
ing a gate. As soon as attention is directed elsewhere, the accu-
mulator is not augmented until attention has returned. This way,
attention determines the frequency by which the accumulator is
being updated.

The amount of attention that can be paid to time estimation
affects not only the mean of the estimate sometimes but also the
variability. In a series of experiments by Brown (1997), partici-
pants had to repeatedly produce intervals of 2 or 5 s, either as
single task or together with a second task. Brown found that in
most experiments the estimates of the intervals were somewhat
longer in the (more difficult) dual-task situations. However, the
main effect he found was in the variability of the estimates. In the
dual-task conditions, variability was increased by a factor of 2 to
3 compared with the single-task conditions.

The Internal Clock Theory

The internal clock theory is part of a long tradition of studying
time perception in animals and in psychophysics. In some of
Pavlov’s experiments, the reinforcement was delayed by a partic-
ular time interval. When dogs were trained with the delay, they
started salivating only at the end of the interval (Pavlov, 1927).
Many other animal studies have shown rats, dogs, pigeons, and

Figure 1. The pacemaker–accumulator model. The internal clock model does not have an attentional gate,
whereas the attentional gate model does.
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other animals to be capable of learning the temporal structure of
tasks.

Studies in psychophysics have shown that time perception
shares characteristics with other forms of perception, most notably
Weber’s law. The consequence of this law is that uncertainty in a
time estimate scales with the magnitude of the interval, which is
also called the scalar property of time estimation (Gibbon, 1977).

Matell and Meck (2000) gave an overview of three possible
models of the internal clock theory: a pacemaker–accumulator
model, a process-decay model, and an oscillator–coincidence de-
tection model. All three models are based on an internal clock that
is not affected by attention. Figure 1 depicts an example of a
pacemaker–accumulator model in which an accumulator counts
the pulses generated by a pacemaker. In a process-decay account,
decay of activation in memory is used to estimate elapsed time
(Staddon, 2005; Staddon & Higa, 1999, 2006). In the oscillator–
coincidence detection account, which is favored by Matell and
Meck because of its neurobiological feasibility, stimuli can syn-
chronize neurons in a certain area of the cortex, effectively acting
as a starting sign. As each of the neurons produces its own
particular pattern of activation over time, each interval is associ-
ated with a unique pattern of activation, which can serve as a basis
for later comparison. Although Matell and Meck’s three models
differ in their neurobiological plausibility, they are equivalent with
respect to time-estimation-related predictions, even though the
pacemaker–accumulator model has to make some additional as-
sumptions. Because we are, in the context of this article, primarily
interested in the behavioral characteristics of time estimation, we
consider these implementations as belonging to one family.

In contrast to the attentional gate theory, internal clock models
do not require any attention, and errors in time estimation are due
to noise in the system. In a typical interval timing experiment,
participants were trained on an interval of either 8, 12, or 21 s by
being exposed to it multiple times, which they then had to repro-
duce (Rakitin et al., 1998). Each participant produced 80 estima-

tions and was given feedback about the true durations every few
trials. Figure 2 shows the distributions of the responses. Although
the variance increased for larger intervals, the peak of each of the
distributions aligns with the duration of the target interval. Con-
sistent with Weber’s law, these distributions exhibit the scalar
property: The standard deviation in the estimation increases ap-
proximately linearly with the length of the interval. If we were to
divide the times on the x-axis in Figure 2 by 8, 12, and 21,
respectively, and readjust the proportions on the y-axis, the three
curves would fall on top of each other (see Rakitin et al., 1998,
Figure 2). The pacemaker–accumulator model can reproduce this
scalar property if equality judgments are based on the ratio of the
current interval and the target interval (Gibbon, 1977; Matell &
Meck, 2000).

The Attentional Gate Theory

In experiments associated with time estimation, the estimation
task itself is almost always accompanied by an unrelated second-
ary task. The purpose of the secondary task is to prevent explicit
counting, because counting makes time estimation much more
accurate (e.g., Rakitin et al., 1998, Experiment 2). However, the
nature of this secondary task turns out to have an influence on the
estimation of the interval. If the secondary task is very demanding,
people’s estimation of duration tends to be shorter than when the
secondary task is less demanding (Block & Zakay, 1997, offer a
meta-analysis of 20 experiments). The attentional gate theory
accounts for this by assuming that fewer pulses accumulate when
another task demands attention, leading to a shorter estimate.

Here, we focus on an experiment by Zakay (1993), in which
participants had to estimate and reproduce a single interval (12 s)
once. Each participant was required to perform a second task. This
task had to be performed either during the presentation of the
interval, when participants had to determine the duration, or during
the reproduction of the interval, when participants had to use their

Figure 2. Distribution of estimates of intervals of 8, 12, and 21 s by participants in the Rakitin et al. (1998)
study. Vertical lines indicate 8, 12, and 21 s. The solid lines are adaptive control of thought—rational (ACT–R)
model fits discussed in the section A Model of Perception and Reproduction of Time Intervals. sec! seconds.
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perceived duration estimation for reproduction. The attentional
gate theory predicts that a demanding task during the reproduction
leads to an estimate that is too long, because during the reproduc-
tion the timer is slowed down. In contrast, a demanding task during
the presentation leads to an estimate that is too short, because
fewer pulses have been counted during presentation (see Figure 3,
right). The secondary tasks were, in increasing complexity, (a)
empty time (ET): no secondary task; (b) words (W): reading color
words printed in black; (c) color words (CW): naming the color of
color words printed in incongruent ink (the Stroop task); and (d)
color–word associations (CWA): like the Stroop task, but partic-
ipants had to name a word associated with the ink color. In the
relatively easy ET and W conditions there is no effect of the
secondary task on time estimates, but in the more demanding CW
and CWA tasks, time estimates are affected in the way the atten-
tional gate theory predicts (see Figure 3, left).

However, a weakness of the attentional gate model is that the
impact of attention has not been quantified precisely. The model
has no basis on which the proportion of time spent with the
attentional gate opened versus closed can be assessed. In addition,
the attentional gate model assumes that the value of the accumu-
lator can be stored in memory for later comparisons, but it has no
detailed account on how multiple experiences interact. The model
generally does not need such an account because in most experi-
ments supporting the attentional gate theory, participants make
only a single estimate of a time interval they have perceived once.
(A single estimate is one of the criteria that Block & Zakay, 1997,
used for inclusion in their meta-analysis.)

Recent Additions to the Internal Clock Theory

Lejeune (1998) has argued that the attentional gate is not nec-
essary because its functional characteristics can be modeled by the
switch that starts the estimation process, leading to a debate of
switching versus gating (Lejeune, 1998, 2000; Zakay, 2000). Ac-
cording to Lejeune (1998), the detection of the onset of a time
interval depends on how much attention is being paid to the
external signal that signifies the onset. If less attention is being
paid, the start of the timing process can be delayed. In addition to
that, Lejeune discussed the possibility that the switch can be
opened and closed during the time estimation process, making the
model’s functional characteristics potentially very similar to the
gating theory.

Buhusi and Meck (2006) proposed a model in which the values
in an accumulator are subject to decay and showed that this model
is able to account for multiple phenomena associated with animal
and human time estimation. In this model, the amount of decay is
assumed to be in proportion to secondary events’ salience, explain-
ing the increased time estimation in settings in which participants
are confronted with a more demanding secondary task. Buhusi and
Meck presented a computational implementation of their theory, in
which the amount of decay was estimated separately for different
conditions. In this way, the model could be used for explaining
observed time estimations but provides only limited information
when predicting time estimation distributions in the context of new
secondary tasks.

Figure 3. Left: Results of Zakay’s (1993) experiment and the adaptive control of thought—rational (ACT–R)
model fits discussed in the section A Model of Perception and Reproduction of Time Intervals. Right: A depiction
of the attentional gate theory explanation. Error bars are standard deviations. ET ! empty time: no secondary
task; W ! words: reading color words printed in black; CW ! color words: naming the color of color words
printed in incongruent ink (the Stroop task); CWA ! color–word associations: like the Stroop task, but
participants had to name a word associated with the ink color.
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Overview of the Article

Internal clock models focus mainly on the estimation of the
interval itself and have only an approximate theory on how this
connects to other aspects of cognition. The attentional gate model
incorporates one of these aspects, attention, but the extent of the
model is limited primarily to explicit, one-shot time estimates.
Even in those situations the model’s predictions are mainly qual-
itative. We take the approach of considering time estimation as a
module in a more extensive cognitive system. In this approach, the
timing module accounts for all primary aspects of time estimation.
Secondary and more complex aspects of time estimation, such as
dividing attention with other tasks and how time intervals are
learned, are explained by how timing interacts with the rest of
cognition. The impact of attention can be explained by general
models of divided attention. In addition, existing theories of learn-
ing and skill acquisition account for specific learning effects found
in interval estimation.

In order to be able to understand interval estimation in a broader
cognitive context, we have embedded the time estimation module
within the ACT–R cognitive architecture (Anderson et al., 2004).
The basis for the module is a pacemaker-based internal clock, with
functional characteristics similar to the internal clock accounts
proposed by Matell and Meck (2000). Interaction with the rest of
the system allows explanations for the role of attention and learn-
ing, without the need to incorporate the latter into the timing
module itself.

We build our case as follows: On the basis of the distributions
of time responses found by Rakitin et al. (1998), we constructed an
internal clock module that reproduces these distributions. We then
validated this module by reproducing the results of the bisection
experiments of Penney, Gibbon, and Meck (2000). To test the
module in a context in which attention, learning, perception, and
motor actions interact, we constructed a task in which keeping
track of time intervals is only a single aspect of what participants
had to do. The goal of this experiment was not only to test the
quantitative accuracy of the model but also to find support for the
role of attention and learning as they are hypothesized by the
incorporation of the temporal module in ACT–R. To this end, we
first conducted the experiment and then constructed the model to
fit the data. To test whether our account also holds when the
to-be-explained data are not known beforehand, we changed the
setup of the experiment to make attending to the time harder than
in the first experiment. Before conducting the experiment itself, we
applied the model to this new task to predict the outcome. The
experiment then confirmed the predictions made by the model.1

The Basic Internal Clock Module

In this section we establish the internal clock module and make
only minor assumptions about processing in the rest of the archi-
tecture. The larger architecture and its impact on time perception
are discussed in The Dual-Task Timing Task section.

The internal clock module is based on the pacemaker–
accumulator model. This facilitates comparisons with existing
models, most of which also use a pacemaker and an accumulator.
According to the pacemaker–accumulator model, a pacemaker
generates pulses at certain intervals, which are counted by an
accumulator. A reset event sets the accumulator to zero, after

which it starts counting pulses anew. Instead of assuming a pace-
maker with a constant rate, we chose to increase the interval
between the pulses as the interval progresses, like a metronome
that ticks more and more slowly with time. The interval estimate
is based on the number of pulses the accumulator has counted. This
process implicitly creates a logarithmic time scale in which longer
intervals have counts that are closer together than those of shorter
intervals. Because the gradual slowing of the pacemaker occurs in
both perception and reproduction, it will lead to the same estimate,
although less precise with longer time intervals as the time be-
tween pulses gets longer. In our approach, the temporal system is
considered a module with an internal process that runs indepen-
dently of other cognitive processes. The cognitive system as a
whole (i.e., the ACT–R architecture) has access only to the result
of this process, that is, the current value of the accumulator.
Because the temporal module is encapsulated, any other model
with the same behavioral characteristics can in principle replace it
and produce the same behavior.2

The duration of the first pulse is set to some start value: t0 !
startpulse. Each pulse is separated from the previous pulse by an
interval that is a times the interval between the previous two
pulses. Noise from a logistic distribution is added to each pulse.
The distribution of this noise is determined by the current pulse
length, modified by a parameter b:

tn"1 ! atn " noise#M ! 0, SD ! b ! atn$.

These equations have three parameters: startpulse, a, and b. As
the behavior of the timing module is assumed to be independent
from the task that the architecture currently executes, these param-
eters should be estimated to fit a single “benchmark task” and then
be left untouched. As a benchmark task we used the Rakitin et al.
(1998) experiment whose results are presented in Figure 3. We
have left the parameters at the estimated values for all other
models presented here.

A Model of Perception and Reproduction of Time
Intervals

The basic model for perceiving and reproducing intervals is
simple. During the perception of an interval, the accumulator will
first be reset and the pacemaker starts at the beginning of the
interval. The value of the accumulator is read at the end of the
interval and stored in memory. If there are multiple presentations
of the interval, the stored values are averaged to obtain a more

1 For the implementation details of the models in this article, we refer to
the complete model code available on the Internet at http://act-r
.psy.cmu.edu/models

2 For example, the process-decay model by Staddon and Higa (1999)
assumes time is represented by a function that decreases logarithmically
with time. Our model has a representation of time that increases logarith-
mically with time. However, because the representations are used only for
comparisons, the fact that they increase or decrease is functionally irrele-
vant. Therefore, using a value that decreases logarithmically with time,
instead of an accumulator, would lead to the same model results.
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accurate estimate.3 Reproducing an interval means starting the
timer, waiting until the accumulator has reached the stored value,
then making the response. Figure 4 illustrates this process. When
the stimulus appears, the counter is started. As soon as the stimulus
disappears, the value of the counter, equaling six pulses, will be
read out and stored in memory. When the interval has to be
reproduced, the timer is started again, and when the counter
reaches the stored value, the model assumes that the same amount
of time has passed.

In Experiment 3 of Rakitin et al. (1998), participants were first
trained on a certain time interval (8, 12, or 21 s). Training con-
sisted of 10 trials in which a blue rectangle appeared on the screen
and changed to magenta when the time interval had elapsed. In the
80 test trials, participants had to predict the interval by pressing a
key when they expected the rectangle to change color. To make
sure that participants’ representation of the interval would not drift,
the rectangle changed color when the interval had elapsed in 25%
of the test trials. The results are based on the remaining 75%, in
which the rectangle stayed blue. Participants were instructed not to
count during the experiment.

The model of this experiment closely resembles the example in
Figure 4. In the learning phase the number of pulses in the interval
was estimated (the model took the average of the 10 presentations),
and during the testing phase the model waited until the appropriate
number of pulses had passed and then made a response. Based on
least-square estimations of fit between model and data, we esti-
mated the following values for three model parameters: 11 ms for
startpulse, 1.1 for a, and 0.015 for b. Figure 2 shows the fit
between this model and the three conditions of the Rakitin et al.
(1998) experiment. The fit between model and data is overall very
good. This is no surprise considering there are three parameters to
fit the data. The only aspect of the data the model did not predict
perfectly is the shape of the tail of the distribution for the 8- and
12-s conditions. However, in similar experiments (e.g., Experi-
ment 1 in Rakitin et al., 1998) the tails of the distributions were
much shorter. We therefore decided against complicating the tem-
poral module with a mechanism to simulate this aspect of the data
and made the assumption that these tails were produced by factors
outside of the temporal module itself.

Application of the Module to Bisection Experiments

Another paradigm in time perception concerns so-called bisec-
tion experiments. In these experiments, participants are trained on

two time intervals: one short interval and one long interval. After
this learning phase, they are exposed to new time intervals that are
either equal to the short or the long interval or somewhere in
between. Participants are then asked to judge whether the pre-
sented interval is closer to the short or to the long interval. To test
whether the estimated parameters fit this timing paradigm equally
well, we modeled Experiment 2 from Penney et al. (2000). In this
experiment, three short–long pairs of intervals were used: 3 and
6 s, 2 and 8 s, and 4 and 12 s. During the training phase, 10 tones
of either the short or the long duration were presented to the
participant. After that, participants were tested for 100 trials, 30%
of which were anchor point intervals (short or long), and 70% were
tones of different durations in between the anchor points.

The model used the training phase to determine the timing for
both the short and the long interval. During testing, it counted the
number of pulses during the presented interval then compared the
value to the number of pulses associated with both anchor inter-
vals. If the value was closer to that of the short interval, it
answered “short”; if it was closer to the long interval, it answered
“long.” The parameters for the model were identical to those used
to fit the interval estimation experiment earlier. Figure 5 shows the
results of the experiment and the model. A typical result in
bisection experiments is that an interval exactly in between short
and long is judged to be long considerably more often than chance.
For example, in the 2–8-s version of the task (Figure 5, top), 5 s
is judged to be long 80% of the time. According to the model, this
happens because 2 s corresponds to an average of 33 pulses, 5 s to
an average of 42 pulses, and 8 s to an average of 47 pulses. In
terms of pulses, 5 s (42 pulses) is much closer to 8 s (47 pulses)
than to 2 s (33 pulses). As can be seen in Figure 5, this mechanism
yields results very similar to those observed by Penney et al.
(2000). The fact that the model predicted that the mid-point be-
tween long and short intervals is before the actual mid-point is
directly attributable to the logarithmic scale of perceived time.
However, the fact that all the other points on the graph are fit well
by the model indicates that noise in the estimate is also modeled
correctly. For example, the model correctly predicted that in the
3–6-s experiment, in 9% of the cases a pure 3-s interval was
judged as long, and a 6-s interval as short in 5% of the cases.

The interval estimation and bisection models demonstrate that
the theory can accurately fit existing timing data, but nothing
beyond what existing models can already account for. We now
proceed to cases in which attention and learning play a role and
show how an integrated approach is needed to account for them.

An Alternative Model of Zakay’s (1993) Results

In the introduction we discussed the experiment by Zakay
(1993) in which time estimates were influenced by the difficulty of
a secondary task. This effect was reason for Zakay and others to
propose the attentional gate theory, introducing a modulating ef-
fect of attention on the timing mechanism (Hicks, Miller, &
Kinsbourne, 1976; Thomas & Weaver, 1975; Zakay & Block,

3 For the models discussed in the Learning the Time Interval Through
Instance Learning section below, a more sophisticated learning technique,
instance learning, is used. However, for this experiment and the bisection
experiment discussed next, instance learning and averaging produce similar
results.Figure 4. Illustration of perceiving and reproducing a time interval.
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Figure 5. Comparison between the adaptive control of thought—rational (ACT–R) model and data in three
bisection experiments by Penney et al. (2000). sec ! seconds.
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1997). However, an important aspect in the experiment is that all
participants made only a single estimation of an interval. This
might have made them prone to all sorts of “startup” mistakes. One
possible mistake is that the temporal module is accidentally used
for one of the secondary tasks. The temporal module could be used
implicitly to estimate the inter-stimulus intervals in the secondary
task (of the type manipulated in the Grosjean, Rosenbaum, &
Elsinger, 2001, experiment). This means the value of the timer is
lost for the primary task. The probability for this becomes larger as
the secondary task becomes more demanding. Because the task
demands that some response is made at some point, the model’s
strategy is to reset the counter and proceed from there. A reset
during the presentation means fewer pulses are counted, leading to
shorter estimates, whereas a reset during reproduction leads to a
restart of the estimate somewhere partway and therefore longer
estimates. In order to reproduce the Zakay (1993) data, we set the
interruption probability for each pulse to 0% for empty time (ET),
to 1% for word reading (W), to 3.5% for the Stroop task (CW), and
to 5.5% for Stroop with association (CWA). On the basis of these
estimates, the model produced the results in Figure 3, essentially
producing a fit that is very similar to what the attentional gate
theory would predict using the same number of free parameters.
However, our alternative model can also fit the standard deviations
of the experiment. Although Brown (1997) showed that manipu-
lations in attention influence variability of time estimates, it is not
clear to what extent the attentional gate theory can explain the
magnitude of this effect.

Although the model based on the temporal module presented
here requires the estimation of disruption parameters for each of
the four tasks, it is similar to an attentional gate model in explan-
atory power, as the attentional gate model would require an esti-
mate of the proportion of attention available for interval estimation
for each task. The model based on the temporal module can be
considered slightly better, because it also fits the variability in the
estimates. The two explanations are remarkably similar on the
surface, despite the fact that the internal structures that produce
them are quite different. The alternative model can therefore be
easily adapted to model other experiments in which participants
have to make a single time estimate. The fact that two conflicting
models can both fit the data shows that the validity of both theories
(attentional gate and the temporal module) cannot be decided on
the basis of experiments with single estimates.

Summary

We have described a temporal module that was designed to
reproduce the distribution of estimates in a simple timing experi-
ment. A model based on this module proved to be capable of
explaining a second class of timing experiments, the bisection
experiments, without adjusting any parameters of the underlying
module. To fit the model to the Zakay (1993) data, we made some
assumptions about the possibility that timing is disrupted. On the
basis of these cases, we can conclude that the temporal module is
quite successful in explaining data from existing time-estimation
tasks.

The simplicity of the tasks in this section allowed explanations
in terms of the temporal module and a few additional assumptions.
Although the temporal module is successful in the sense that it can
offer explanations for experiments that have been studied in the

context of both the internal clock theory and the attentional gate
theory, it has not yet offered any details of larger integration with
other aspects of cognition. Both the attentional gate theory and our
temporal module can explain Zakay’s (1993) data, but neither
provides an account in terms of attention as a general cognitive
process. Furthermore, most studies on timing have neglected the
effects of learning. Do time estimations get better over time? And
if so, how does attention modulate this effect? To answer these
questions, we designed an experiment that incorporates both learn-
ing and attention. To account for the data from this experiment, we
have incorporated the temporal module into the ACT–R architec-
ture. ACT–R already provides mechanisms for learning and atten-
tion. This provides us with an appropriate test-bed for assessing
our claim that timing is an integral aspect of cognition and that the
interplay of different cognitive mechanisms results in the observed
timing effects.

The Dual-Task Timing Task

The purpose of the dual-task timing task (DTT) is to study the
effects of attention and learning on interval estimation in a fairly
complex task, in which time estimation, at least from the partici-
pant’s perspective, is just one of the many prerequisites to achiev-
ing accurate performance. The task is supposed to mirror real-life
situations in which people have to discover the temporal structure
of a situation or a device.

In the DTT, participants worked on two simultaneous subtasks
that were either both hard (verify additions) or both easy (recog-
nize letters). Points were awarded for each correct response. A
time interval had to be estimated as part of one of the tasks. The
participant had to determine the duration of this interval by trial-
and-error while doing the other task. One aspect of the task is that
the primary goal from the perspective of the participant is to
respond to the stimuli (because that scores points directly), and
estimating the interval is only secondary (because it helps in
scoring more points). To be successful at the task, it is necessary
to spread attention over all the subtasks. To study the specific
effects of attention, we switched the difficulty of the task at some
point from easy to hard in one of the conditions and vice versa in
one of the other conditions. This change in task difficulty modified
the amount of attention that could be spent on estimating the
interval. Because the task involved many repetitions, it also al-
lowed us the study of the effects of learning.

Figure 6 shows the task display and an example of a single trial.
The display was divided into two halves. The left half contained a
high-profit box, and the right half a low-profit box. Stimuli, to
which participants could respond, appeared in each of these boxes.
Stimuli were buttons with either an addition (with one-digit num-
bers) or a letter, depending on the condition. Additions were either
correct or wrong by one, and letters were either A or B. Participants
had to respond to correct additions and to As by clicking on them
with the mouse when they were in the right box or by pressing the
space key on the keyboard when they were in the left box.
Incorrect additions and Bs had to be ignored. Stimuli in the left box
did not appear automatically: They were available only during
certain time periods and after the participant had pushed the Test
High button. Each trial was 13 s long and built up as depicted in
Figure 6, bottom. To indicate the previous trial had ended, the text
end of high profit appeared in the left box. During the next 7 s the
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interface would present stimuli only in the right box. Correct
responses (clicking on As or correct additions) in the right box
scored 30 points. Clicking on the Test High button (we call this
the test button from here on) during this interval had no effect.
When the test button was clicked after 7 s had passed (but
before the end of the 13-s trial), stimuli started appearing on the
left side. Testing for the high-profit period by clicking on the
test button always cost 10 points. Participants had to respond to
targets in the left box by pressing the space key on the key-

board. Correct responses in the left box scored 100 points.
Because stimuli also kept appearing in the right box, it was
possible to work on both boxes at the same time. After a total
of 13 s had passed, the text end of high profit appeared in the
left box and a new 13-s trial was started. The text end of high
profit also appeared when the participant had not clicked the
test button at all. Optimal behavior was to click the test button
exactly 7 s after the word end appeared in the left box. Partic-
ipants were informed only that high-profit periods would appear

Figure 6. The dual-task timing task. Top: A screenshot of the Addition task. Bottom: Example of a single trial
with the Letter task. sec ! seconds.
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at fixed durations but not of the length of the interval, which
they had to discover themselves.

Experiment 1

The experiment had four between-subject conditions. Each con-
dition consisted of three phases. In each phase the task was either
Letter (easy) or Addition (hard). The four conditions were as
follows: three phases with the Letter task (LLL), three phases with
the Addition task (AAA), two phases with the Letter task followed
by one phase with the Addition task (LLA), and two phases with
the Addition task followed by one phase with the Letter task
(AAL). Each phase consisted of five 120-s blocks of nine 13-s
trials. Additional details on the experiment can be found in the
Appendix.

Although the model was constructed and fitted to the data after
the first experiment with the DTT, we did have some expectations
of the results on the basis of the timing module and general
ACT–R characteristics. A first expectation was a learning effect in
the sense that participants would become increasingly better at
estimating the interval and improving their score. The reason for
this is that ACT–R generally learns from experience by storing and
retrieving examples of past behavior. Thus, as the model gains
experience it is able to approximate the time interval with increas-
ing accuracy.

A second expectation, contrary to the attentional gate theory’s
prediction, is that the interval transfers perfectly from one task to
the other. That is, when the duration of the interval is learned
during one task, this knowledge can be used to estimate the
interval for a different version of the task that places higher or
lower demands on attention. As a consequence, we expected that
the effects of changing task difficulty on time estimates would be
small. As we show, the main impact of task difficulty is similar to
that in our model of Zakay’s (1993) experiment (i.e., losing track
of timing). But the behavioral manifestation is different. In the
Zakay experiment, a response had to be made at some point, even
if the participant had lost track of time. In the DTT task, partici-
pants can just skip a trial and try again on the next one. Instead of
leading to late responses, timing errors lead to non-responses in the
DTT task. And whereas in our model of the Zakay experiment the
“resetting” of the timer had to be explicitly modeled, missing an
estimate in the DTT task is a side effect of performing the main
task.

Time Estimation

The two solid lines in each side of Figure 7, top, plot the
distributions of the moments at which participants first clicked the
test button within a trial. These time points are defined as the
deviation from the optimal time, that is, the time at which new
high-profit stimuli became available (which is 7 s into the trial, so
%7 is the beginning of the trial). A negative value represents a
click that is too early, and a positive value a click that is too late.
The data are averaged over the two conditions that start with the
Addition task (AAA and AAL) and the two conditions that start
with the Letter task (LLL and LLA) and are plotted separately for
Phase 1 and Phase 2. The higher peaks for Phase 2 suggest that
participants were more accurate in Phase 2, indicating that a more
accurate estimate had been learned. The proportions plotted in

these and all subsequent histograms are based on the total number
of trials in the phase (instead of the total number of first clicks).
This means that trials in which no attempt at all was made to make
a time estimate also weigh into the proportions (we discuss these
non-response trials below). The dotted lines plot the distributions
that would be expected if this were a pure interval estimation
experiment like the Rakitin et al. (1998) experiment (see Figure 2).
We derived this expectation by scaling the distribution according
to the scalar property for the 8-s interval from the Rakitin et al.
experiment to the 7-s interval of this experiment. The wider
empirical distributions indicate that participants performed worse
than ideally—that is, they deviated more from the optimal time—
which could be expected because participants first had to discover
the duration of the interval. Analyses of variance (see the Appen-
dix) of the moment of the first click revealed that the only signif-
icant factor was phase, indicating that participants improved their
time estimates with practice. No effect was found for condition or
the interaction between condition and phase.

In the discussion of the Zakay (1993) model, we assumed that
inaccuracies in time estimation were caused partly by participants
forgetting about time estimation and restarting it at some point
later. In the present task, forgetting to estimate results in making
no estimate at all. This can be assessed by analyzing how often
participants failed to make any estimate in a given trial. Figure 8
shows the proportions of non-responses by phase and condition. A
logistic regression of the non-response proportions (see the Ap-
pendix) did show an effect of condition (together with an effect of
phase). Combined with the analyses of the estimation accuracy,
this suggests that the task difficulty did not affect the accuracy of
the time estimate itself, but it does cause people to increasingly
omit making an estimate at all.

Changes in the Accuracy of Time Estimation Due to
Changes in Task Difficulty

An interesting question is what happens to the distributions of
time responses when the task difficulty changes. According to the
attentional gate theory, a major change in estimate should occur
after the shift. This follows from the idea that fewer ticks reach the
accumulator when the task is more difficult. One can compare this
with a slower or faster ticking clock (see Figure 3, right). If the
estimate of the interval is based on the clock that ticks quickly, and
the clock is slowed due to a more difficult task, the estimate should
be too long. On the other hand, if the estimate is based on a slow
clock that speeds up due to an easier task, the estimate should be
short. Figure 9, top, shows what this theory would predict if the
clock ticks 25% more slowly on the Addition task than on the
Letter task.

Figure 9, middle, compares the empirical distributions of the
first clicks before and after a switch in difficulty. Although the
changes in distribution are slight, there is a significant shift to
the left in the AAL condition, indicating that participants
clicked earlier after the change to an easier task, whereas there
is a significant shift to the right in the LLA condition, indicating
that participants clicked later after a change to a harder task.
Although the shift in the AAL condition can still be attributed
to a learning effect, the shift towards later responses in the LLA
condition seems to support the attentional gate theory. In order
to obtain a better idea of the nature of the shift, we compared
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the average response times before and after the shift in task
difficulty (see Figure 10). The attentional gate theory would
predict that the effect of the change would be most pronounced
on Trial 91, right after the shift, because that is where the

update rate of the accumulator suddenly changed and the par-
ticipant had no opportunity to adjust. Instead of a peak in click
time that leveled off afterwards, the click time increased grad-
ually after the shift. Moreover, the average click time con-

Figure 7. Distribution of first-click times in two subsequent phases for both tasks. Top: Empirical data of
Experiment 1. Bottom: Adaptive control of thought—rational (ACT–R) model fit. The dashed line is the
expected distribution for a pure interval estimation experiment. sec ! seconds.

Figure 8. Proportions of non-responses. Left: Empirical data of Experiment 1. Right: Adaptive control of
thought—rational (ACT–R) model fit. Error bars are standard errors. AAA condition ! three phases with the
Addition task; AAL condition ! two phases with the Addition task followed by one phase with the Letter task;
LLA condition ! two phases with the Letter task followed by one phase with the Addition task; LLL
condition ! three phases with the Letter task.
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verged to that in the AAA condition but did not exceed it. This
indicates that responses in the Addition task were all slightly
later than those in the Letter condition and independent of
switches in the task. A comparison of the average response

moment in Phases 1 and 2 for the Letter and the Addition tasks
confirmed this observation (mean response time for the Letter
task was %472 ms; mean response time for the Addition task
was 594 ms).

Figure 9. Distribution of first-click times in Phases 2 and 3 for the AAL and LLA conditions. Top:
Attentional-gate-theory-based prediction. Middle: Empirical data of Experiment 1. Bottom: Adaptive control of
thought—rational (ACT–R) model fit. The dashed line represents the distribution that would be expected if this
was a pure interval estimation experiment (cf. Figure 2). AAL condition ! two phases with the Addition (A) task
followed by one phase with the Letter (L) task; LLA condition ! two phases with the Letter task followed by
one phase with the Addition task. sec ! seconds.
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To summarize, task difficulty had hardly any impact on the
accuracy of time estimation as evidenced in the timing of the first
click. Instead it had an effect on how often a time estimate was
missed, which is similar to our account of Zakay’s (1993) results.
Time estimates for the Addition task were all slightly later than
those for the Letter task, without affecting the absolute accuracy of
the estimate.

The results up to here imply that task difficulty and shifts in task
difficulty have an impact on the task performance and the role of
interval estimation, but not in the way the attentional gate theory
would predict. The attentional gate theory would predict signifi-
cant and immediate shifts in timing after a task change (as in the
AAL and LLA conditions). The shift in the LLA condition was,
however, small and seemed to be more related to global properties
of the tasks than to changes between tasks.

Dual Tasking

A possible explanation for the small impacts of task on time
estimation is that the Addition task is too easy: Zakay (1993) found
attention effects only in the more difficult secondary tasks. If both
the Addition and the Letter tasks are easy, enough processing time
is left to keep track of the time. But if that were the case,

participants would also have enough processing time left to do a
secondary task when they do not have to attend to the time. A
measure of dual tasking can be obtained by looking at these
high-profit periods. We assume that as stimuli in the left box
produce higher scores, people will react only to stimuli in the right
box if they have spare capacity to do so. We therefore took as a
measure of dual tasking the proportion of target stimuli in the right
box to which the participant responded while there were also
stimuli in the left box. Participants turned out to be able to achieve
a level of 86% dual tasking in the Letter task but only 47% in the
Addition task (see Figure 11). This shows that the Addition task
does indeed require much more attention than the Letter task.
According to the attentional gate theory, this difference should
have an impact on time estimation. The quality of the estimate
was, however, unaffected by task difficulty, whereas a shift in task
difficulty (in the LLA and AAL conditions) caused only relatively
small changes in the estimate without affecting its quality.

Taken together, our results are not consistent with the attentional
gate theory, as this theory would predict a larger and different
impact of the task-difficulty and switch manipulations. On the
other hand, the internal clock theory does not cover this experi-
ment because it has no explicit theory on how the clock interacts

Figure 10. Average click time in the LLA condition (solid line) 10 trials before and after the change in task
difficulty (indicated by the vertical dashed line). For comparison the AAA condition is plotted with a dashed line.
LLA condition ! two phases with the Letter task followed by one phase with the Addition task; AAA
condition ! three phases with the Addition task.

Figure 11. Proportion dual tasking in the three phases for four conditions. Left: Empirical data of Experiment
1. Right: Adaptive control of thought—rational (ACT–R) model fit. Bars are standard errors. AAA condition !
three phases with the Addition task; AAL condition ! two phases with the Addition task followed by one phase
with the Letter task; LLA condition ! two phases with the Letter task followed by one phase with the Addition
task; LLL condition ! three phases with the Letter task.
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with aspects of cognition outside time management. The results
also show pronounced effects of learning that are covered by
neither theory. The results are, however, consistent with the ex-
pectations that we formulated at the beginning of this section: a
clear learning effect and an unbiased transfer of the time estimate
between tasks of different difficulty, as can be seen in Figure 9,
middle.

The Integrated Model of Prospective Time Interval
Estimation

In this section we discuss how the temporal module fits into a
cognitive architecture and how it allows a fit of the data from
Experiment 1. In addition to the temporal module, the cognitive
part of the model builds on the ACT–R cognitive architecture, or
more specifically, on earlier models of instance learning (Lebiere,
Wallach, & Taatgen, 1998; Logan, 1988) and of central bottleneck
theories of divided attention (Anderson, Taatgen, & Byrne, 2005;
Pashler, 1994).

The ACT–R Architecture and the Role of Attention

Figure 12 shows a general overview of the ACT–R architecture,
including the temporal module (Anderson et al., 2004). The center
of the architecture is procedural memory (the production system),
shown in the middle of the diagram. The production system has
access to all the other modules in the system through buffers, each
of which can hold only a single item of information. For example,
the temporal buffer holds the current value of the accumulator, the
visual buffer holds the currently attended visual stimulus, and the
retrieval buffer holds the last element retrieved from declarative
memory. The basic cycle of the central production system consists
of the contents of all the buffers being matched against the rules
stored in procedural memory. A single rule is then chosen on the
basis of its utility, and this rule carries out its set of actions, which

it communicates to the other modules through their respective
buffers.

In the discussion of the Zakay (1993) model, we proposed one
possible impact of attention: The secondary task also accesses the
temporal module and disrupts timing in the primary task. How-
ever, we assume this lack of coordination between the tasks is a
property of initial novice behavior that does not play much of a
role in the DTT, in which the two tasks have to be done over an
extended period of time.

A different impact of attention occurs when the contents of the
temporal buffer are accurate but are not used by the rest of the
system at the appropriate time because the system is too occupied
with other tasks. The temporal module’s output is only one of
many buffers that the production system can match, and if it is
busy with another subtask in a multi-tasking situation, it may fail
to integrate the information from the temporal module with other
processing. More specifically, during dual tasking, the model
might be busy attending visual stimuli and responding to them
with motor responses. Part of this process involves declarative
memory to determine whether the stimulus is a target or a foil. As
a consequence, attempts at reasoning about time (which also
involve declarative memory) can be postponed or disrupted, acting
like a system with a central bottleneck (Anderson et al., 2005;
Pashler, 1994). In summary, in the Zakay (1993) model the tem-
poral module itself is the contended resource, whereas in the
present model the contended resource is declarative memory.

In this experiment the model has to divide its attention between
three tasks: attending and responding to the left box, attending and
responding to the right box, and attending to the time. Only two of
these tasks are relevant at the same time: Either both the left and
the right box have to be attended, or both the right box and the
time. The model is mainly event-driven and responds to changes
on the screen. When a new stimulus appears on the screen, the
model attends to it and initiates a response. The only exception is

Figure 12. Interval timing as part of the adaptive control of thought—rational (ACT–R) architecture.
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when the model is busy with a stimulus in the left box. In that case
it will ignore stimuli in the right box until it is done with the
stimulus in the left box. A stimulus in the left box can, on the other
hand, interrupt processing in the right box. This reflects the fact
that the score for the left box is 100 points and for the right box
only 30 points. Attending to the time interval is initiated whenever
the model has no stimulus to process. Because retrieving a past
experience takes time, especially when these experiences are rel-
atively new and still have a low activation, attending to the time
will be interrupted when a new stimulus appears on the screen,
making it necessary to restart the time estimation process once the
stimulus has been processed.

Learning the Time Interval Through Instance Learning

Because the duration of the interval is initially unknown, the
model has to determine it by trying out various intervals. One of
the currently dominant theories of skill acquisition is instance
theory (Logan, 1988). Within ACT–R, instance theory—or in-
stance learning—is generally used to model situations of implicit
learning, in which people are not directly aware they are learning
something new but performance gradually increases with practice,
such as in sequence learning (Lebiere & Wallach, 2001). This
seems to fit the situation in this experiment, in which participants
gradually built up a representation of the duration of the interval.
Instance learning in ACT–R assumes that previous experiences, in
this case of a specific time interval, are stored in (declarative)
memory. For example, memory could contain an experience that
30 pulses is too short and another that 50 pulses is correct.

When the model sees end of high period in the left box,
signaling the start of the interval, it starts generating time pulses,
as illustrated in Figure 4. Whenever the model has time in between
processing stimuli, it will attempt to retrieve a previous experience
of pressing the test button at approximately the present time. If a
successful experience is retrieved, the model will initiate a click on
the test button. If a “too short” experience is retrieved, the model
will do nothing. Finally, if no experience at all is retrieved for the
present time, the model randomly decides to click the button or
not. Experiences are then stored in ACT–R’s declarative memory,
which has an activation-based mechanism to model forgetting.
However, if two experiences are identical (i.e., concerning the
same judgment for the same number of pulses), their activations
are combined. Because of the decay in memory, a particular
experience sometimes has to be repeated a number of times before
it can be retrieved at all, and retrieval will become faster with
frequent use (see Anderson et al., 2004, for the details of declar-
ative retrieval).

After the button has been clicked, the model judges whether the
button click was successful. If stimuli appear in the left box, the
present time is stored as successful, but if nothing happens, the
present time is stored as “too short.” Note that because of the
nature of the task, late test clicks are judged as successful, even if
they are 4 s late. However, the model will not tend to wait 4 s too
long because it will tend to retrieve a successful time earlier. Early
presses, however, are judged as failures (“too short”), even if they
are early by only 100 ms. As the model accumulates more expe-
riences, it becomes more accurate at estimating the right interval,
but only within the boundaries of the accuracy of the temporal
module itself (i.e., what is depicted by the dotted pure interval

estimation distribution in Figure 7). In addition to that, experiences
of button clicks around the 7-s mark are a mixed set of successes
and failures, adding noise to the timing process.

Instance learning mainly captures the long-term effects of learn-
ing, a gradual accumulation of experience that slowly improves
performance, as witnessed in the timing accuracy and the reduction
of non-response trials over the experience. An alternative model
would be to respond more directly to the previous trial by respond-
ing later if the previous trial was too early, or earlier if the previous
trial was late. Such a strategy would result in short-term adaptation
instead of long-term learning. However, there is little evidence in
the data for short-term adaptation: When an estimate was made too
early, the next estimate was also early in 64% (1,134 out of 1,764)
of the cases, and when an estimate was late by 0.5 s or more, the
next estimate would be late by at least 0.5 s in 53% (813 out of
1,544) of the cases.

Model Results

We used the same parameters for the temporal module as in all
earlier models. The parameters that control the timing of the
interaction with the interface (time to attend stimuli on the screen,
timing of mouse actions) were left at their ACT–R default values.
We estimated the parameter that controls the threshold at which
elements in declarative memory are forgotten and the probability
that the test button is clicked when no previous experience could
be found to fit the score and time estimation data. The model was
run 100 times for each of the four conditions. The results of the
model were already shown in Figures 7–9 and 11 to make com-
parisons with the data easier.

Figures 7 and 9 show that the distribution of the time estimates
of the model was very similar to that found in the data. The
qualitative effects found in the analysis are also present in the
model fits: There is an effect of learning on timing accuracy in
terms of a 370-ms improvement in the absolute values of the
deviations from optimal time between Phases 1 and 2 (compared to
356 ms in the data) but only a 120-ms improvement between
Phases 2 and 3 (there was no improvement at all in the data). The
differences in time estimation accuracy between the two tasks
were very small in the model: On average the deviation on the
Letter task was 149 ms shorter than on the Addition task; this
corresponds well to the non-significant 94-ms difference in the
data.

The shifts in average click time due to changes in the task were
also produced by the model: After the task changed from Letter to
Addition, the average first-click time was 402 ms later (726 ms in
the data), and after the task changed from Addition to Letter, the
average first-click time was 158 ms earlier (330 ms in the data).
The model’s explanation for these shifts is that processing an
Addition stimulus takes more time than a Letter stimulus. When
the moment arrives to make a click, the model still has to complete
its response to the current stimulus, resulting in slightly earlier
clicks for the Letter task and slightly later clicks for the Addition
task. The main impact of the difficulty manipulation is on the
proportion of trials in which no response is made at all. The model
captured this phenomenon. Although the graphs in Figure 8 are
hard to compare due to the noisiness of the data, the model did
exhibit the two main effects of condition and learning, without an
interaction, that are present in the data. Finally, Figure 11 shows
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that the model also correctly captures the dual-tasking results,
confirming that accuracy of time estimation and the amount of
attention that can be devoted to it are relatively independent.

The two expectations we formulated before the experiment were
confirmed: There is a clear learning effect on the time estimates
that participants make, and the accuracy of the time estimate
transfers very well from one task to the other. The task difficulty
manipulation had very little impact on the accuracy of time esti-
mation: The distributions of the first-click times are very similar
for all conditions. Instead, the impact of task difficulty is an
increase in the proportion of non-response trials.

The key difference between the attentional gate theory and the
ACT–R model is that the former predicts that the main effect of a
harder secondary task is a shift in the time estimate, whereas the
latter predicts that the main effect is an increased probability that
there is no response at all. According to the attentional gate theory,
a shift to an easier secondary task would produce responses that
are too early, and vice versa, whereas the ACT–R model predicts
that there is a change in non-response trials instead. The ACT–R
model also predicts a small shift in time estimate due to the longer
processing time of Addition versus Letter tasks. Both ACT–R
predictions are confirmed by the data. Although the empirical
results are not consistent with the attentional gate theory, it can be
argued that it is not a strong test of the ACT–R model yet, because
the task difficulty did not have a large impact on time perception
and the model was fitted to the data. To build a stronger case, we
conducted a second experiment such that a strong effect of task
difficulty could be expected on the basis of the model, but one that
was different from what the attentional gate theory would predict.
Moreover, instead of fitting the model to the data, we made a
model prediction, thereby avoiding the criticism that insufficiently
constrained cognitive models can be made to fit any dataset
(Roberts & Pashler, 2000).

Experiment 2

The second experiment was identical to Experiment 1 with one
major change: There were now always stimuli in the left box,
instead of only during a high-profit period. Correctly identifying
the high-profit period now increased the score only for each hit in
the left box. Because participants could work on the two tasks all
the time, there were fewer opportunities to estimate the time
interval. Nevertheless there was slack time to attend to interval
estimation due to randomness in the task: The interval between
subsequent stimuli was randomized, producing occasional gaps in
presentation, and if both boxes displayed a foil, no response had to
be made. The general expectation on the basis of the ACT–R
model is that an increase in demand of the visual tasks produces an
increase in trials in which no time estimation response is made. As
we show in the model predictions, we expected that when partic-
ipants started with the Addition task they would not be able to
make enough estimates to determine the duration of the interval.

The Model

As indicated in the introduction, we used the model for Exper-
iment 1 to make a prediction for Experiment 2 before doing the
actual experiment,4 with one slight modification: In Experiment 1
the feedback for a successful press on the test button was that

stimuli started to appear in the left box, whereas in Experiment 2
it was the appearance of HIGH above the left box. We adjusted the
model to be able to interpret the changed feedback correctly.
Otherwise all parameters and production rules in the model were
kept the same. The main qualitative predictions were as follows:

1. The Addition task is so hard that it is almost impossible to
learn the correct interval. We expected the accuracy of the presses
on the test button in Phase 1 to be at chance level in the conditions
that start with the Addition task.

2. The Letter task leaves some time to attend and learn the
interval, and therefore the model predicted that participants would
be able to learn the interval and make reasonable estimates, al-
though at a lower level of accuracy than in Experiment 1.

3. Time estimation has to compete with two other tasks (the left
and the right box). The assumption in the model is that a new
visual stimulus will interrupt any ongoing reasoning about time.
Although reasoning about the time interval can be restarted as soon
as the stimulus has been processed, time has passed in the mean-
time, making it necessary to start over again. In practice, this
means that in many trials there will be no attempt to click the test
button at all. This is especially true with the Addition task, in
which the model predicts that in the majority of the cycles there
will be no attempt at estimation, but also with the Letter task, in
which the model predicts that no attempt will be made in approx-
imately a quarter of the opportunities.

4. For the event in which the task shifts from Letter to Addition
in the LLAA condition (see below), the model predicts no strong
shift in the interval estimate (contrary to the attentional gate
theory). The model even predicts that participants will do better on
the Addition task after two blocks of the Letter task than after two
blocks of the Addition task because the Letter task offers better
learning opportunities. The attentional gate theory would predict
the opposite, because it predicts that the estimate of the interval
during the Letter task does not transfer to the Addition task.

Changes to the Task

The task was identical to the task in Experiment 1 with the
following modifications. In Experiment 1, stimuli appeared in the
left box only after the participant had clicked the test button in the
high-profit period. In Experiment 2, stimuli appeared in the left
box all the time but yielded 100 points only after the participant
had clicked the test button in the high-profit period; otherwise they
yielded 30 points, the same score as for the right box. Stimuli in
both boxes appeared for 1,200 ms and were separated by a random
interval between 0 and 2,000 ms. Feedback with respect to the
high-profit period was given by the display of HIGH above the left
box after the participant had clicked the test button in the high-
profit period. The HIGH text was removed at the end of a high-
profit period.

The experiment had four between-subject conditions: four
phases of five blocks with the Letter task (LLLL), four phases of
five blocks with the Addition task (AAAA), two phases of five
blocks with the Letter task followed by two phases of five blocks

4 On March 7, 2005, an email was sent to all the members of the ACT–R
community with a web-link to the prediction. We started the experiment
the week after that.
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with the Addition task (LLAA), and two phases of five blocks with
the Addition task followed by two phases of five blocks with the
Letter task (AALL). To prevent participants from counting the
stimuli in the left box to help their time estimate, the inter-stimulus
intervals of the left box were randomized with the same random-
ization process as was used for the right box. Otherwise the
procedure was identical to the procedure of Experiment 1. Further
details on the experiment can be found in the Appendix.

Results

In this section we discuss the results of Experiment 2 alongside
the predictions of the model. As the model predictions are overall
similar to the experimental data, we highlight only the aspects of
the model that are of particular interest. Figure 13 shows the
distributions of first-click times for the first phase of the experi-
ment. Compared to those of Experiment 1, the distributions are
much flatter, indicating that on many trials no response at all was
made. This lack of response is made explicit in Figure 14, which
shows the non-responses over the whole experiment. Consistent
with the prediction of the model, participants had great trouble
making accurate time estimates at all in Phase 1 of the Addition
condition. This clearly shows that the task manipulation in this
modified experiment had a major impact on time estimation, which
was correctly predicted by the model. The explanation the model
offers is that in the Addition task, the time estimation process is
interrupted so often (much more often than in Experiment 1) that
the few experiences it gets are spaced apart too far to produce a
stable representation of the duration of the interval (in ACT–R
terms, the activation of the experiences has dropped below the
retrieval threshold at the time they are needed). When the model
does push the test button it is therefore a blind guess.

The non-response data concur with these findings: Both task
difficulty and learning have a significant impact on the non-
response proportion (see Figure 14). These results confirm what
was found in Experiment 1: The difficulty of the task influences
how often participants make a response at all. However, the
magnitude of the effect is much larger in this experiment. In
addition, here there is an interaction between phase and condition
(it was absent in Experiment 1 because by Phase 3 the non-
response rates were all low). The interaction in this experiment is
due to the fact that in two of the conditions the task changed

halfway, and this affects the non-response rate (fewer responses
when the task changes to Addition and more responses when the
task switches to Letter). The model predicted both of these effects
correctly, even though the exact fit between model and data is hard
to assess because the data are quite noisy. Instead of predicting a
shift in non-response trials, the attentional gate theory would
predict a shift in the estimate with a change in task difficulty. In
Experiment 1 we saw a small shift in the estimate, so according to
the attentional gate theory this shift should be much larger in
Experiment 2. However, as can be seen in the results (see Figure
15), there was no shift at all.

Discussion

In the introduction to Experiment 2, we stated that the ACT–R
model makes four general predictions. The first prediction was that
participants would not be able to make accurate time predictions in
the Addition task and that the estimates they make would be at
chance level. This prediction was confirmed by the data: In the
first phase with the Addition task, participants often failed to make
a prediction at all, and if they made one it was at chance level. The
second prediction was that participants would be able to make
proper time estimations in the Letter task, although at a lower level
of accuracy than in Experiment 1. This prediction was also con-
firmed by the data. The third prediction of the model was that the
main impact of the increased difficulty is an increase in the number
of non-responses, trials in which participants make no attempt at
all to give an estimate. This prediction was also confirmed by the
data. The fourth prediction concerned the shift from Letter to
Addition tasks in the LLAA condition, in which the model pre-
dicted no change in the time estimation after the shift. Moreover,
it stated that participants would perform better in Phases 3 and 4 of
the LLAA condition than in the AAAA condition. This prediction
was only partially confirmed: There was indeed no change in the
estimated interval after the shift, but participants’ performance
turned out to be the same in the AAAA and LLAA conditions with
respect to Phases 3 and 4. For all four predictions (apart from the
mispredicted part of Prediction 4), the model was able to make not
only a correct qualitative prediction but also an accurate quantita-
tive prediction.

Although the four predictions may not sound particularly
counter-intuitive, they either cannot be explained by or are incon-

Figure 13. Distributions of the moment of the first click on the test button in the first phase of the experiment.
Left: Empirical data of Experiment 2. Right: Adaptive control of thought—rational (ACT–R) model predictions.
sec ! seconds.
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sistent with the attentional gate theory. Consistent with the ACT–R
prediction, the main impact of the difficulty manipulation was on
the proportion of non-response trials. In the trial that started with
Addition, the model correctly predicted that only in about 30% of
the trials an estimate would be made and that this would not be
enough for instance learning to form a stable representation within
the first phase of the experiment. Although an absence of accurate
responses in the conditions that start with Addition is not incon-
sistent with the attentional gate theory, it is also not predicted by
it. However, the absence of a shift in mean response time in the
LLAA condition, in which participants do make reasonable time
estimations even after the change to the Addition task, is not
compatible with the attentional gate theory. Though we found
small effects in those directions in Experiment 1, they were absent
in Experiment 2, whereas according to the attentional gate theory
they should have been larger. We believe that with the four
difficulties of the task (Letter and Addition in Experiment 1 and
Letter and Addition in Experiment 2), we had good coverage of the
various levels of difficulty, none of which produced any large
shifts in time estimates. Instead the shifts had large impacts on the
number of non-response trials, something that is not predicted by
the attentional gate theory.

General Discussion

In this article we have presented a theory of time estimation that
is integrated into a larger theory of cognition with a focus on
attention and learning. The core of the theory is a simple

pacemaker–accumulator module that counts pulses as time passes,
similar to the theory described by Matell and Meck (2000). The
main twist in the mechanism is that the duration of the pulses
increases with the interval, producing a logarithmic scale, thereby
allowing the module to produce the scalar property of the variance
in the estimate. The behavior of the module is controlled by three
parameters that we estimated on the basis of the Rakitin et al.
(1998) data and which were confirmed in accurately predicting
bisection data (Penney et al., 2000).

In most time estimation studies, interval estimation is the main
task. However, time estimation should also be studied in contexts
in which time estimation itself is secondary to a main task, because
this corresponds to the natural role time estimation plays in ev-
eryday life. The success of the model presented here does not
depend on the actual mechanism of time estimation itself but on
the way it interacts with other aspects of cognition.

The variant of the pacemaker–accumulator mechanism we have
chosen accurately models the scalar property in the variance in
time estimation. Any mechanism with the same properties can in
principle replace it, for example, an oscillator–coincidence mech-
anism (Matell & Meck, 2000) or a process-decay mechanism
(Staddon & Higa, 1999; see our footnote 2). Once integrated into
a larger framework, it can be used to model complex tasks in
which time estimation is only a component and to make accurate
predictions on the outcome of these complex tasks.

The ACT–R architecture models attention, or more specifically,
divided attention, by having a control structure of the task that

Figure 14. Proportion of non-response by condition and block. Left: Empirical data of Experiment 2. Right:
Adaptive control of thought—rational (ACT–R) model predictions. AAAA condition ! four phases of five
blocks with the Addition task; LLLL condition ! four phases of five blocks with the Letter task; AALL
condition ! two phases of five blocks with the Addition task followed by two phases of five blocks with the
Letter task; LLAA condition ! two phases of five blocks with the Letter task followed by two phases of five
blocks with the Addition task.
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determines which cognitive modules participate in determining the
next action. This control structure is necessary for prioritization of
the subtasks and prevention of interference. It produces behavior
similar to central bottleneck theories of attention (Pashler, 1994).
In the model of Zakay’s experiment (Zakay, 1993), we assumed
that an improper task structure led to a situation in which both
tasks—time estimation and the secondary task—had access to the
timing module, giving the secondary task the opportunity to cause
shifts in the estimate. In the DTT task, in which there is enough
opportunity to acquire the right task structure, timing difficulties
occur because operations on the time module have to compete with
other operations. Both time estimation and processing of visual
stimuli need access to declarative memory, and if we assume the
latter takes priority, the model produces the effects of attention we
found in the experiments: an increase in variability of the estimate.
This is consistent with other experiments in which the same
estimate has to be made multiple times, like Brown (1997) and
Rakitin (2005). The model we have presented here manages to
capture all these aspects using general mechanisms of attention
from the ACT–R architecture. In addition, in the case of Experi-
ment 2, in which the task in the first phase was Addition, it
correctly predicted a situation in which timing attempts were made

but were too infrequent to obtain a clear representation of the
duration of the interval.

Learning of time estimates was modeled with an instance re-
trieval strategy: Experiences with a certain time interval were
stored in declarative memory and could be retrieved for future
decisions. Accumulating experiences improved the estimate and
increased its activation in memory, which sped up its retrieval.
This learning process played a role in all models discussed in this
article, even though we have simplified the process in the first two
models. Although the learning aspect of time estimation is not as
contended in the literature as the role of attention, we consider it
to be a vital part of a theory of time perception.

Although the model for the DTT was specifically designed for
one task, the principles of learning and attention are general
enough to be extended to other tasks. We have already successfully
modeled operating a typing device while driving a car based on the
temporal module introduced here and the same principles of in-
stance learning and dual tasking (Salvucci et al., 2006). This model
adapted the time it was willing to look away from the road to the
changing demands of the driving task. Other potential situations in
which timing is relevant include discovering how to interact with
new devices, for example, determining how long to turn the key

Figure 15. Changes in click time distributions for the conditions in which there was a change in task. Top:
Empirical data of Experiment 2. Bottom: Adaptive control of thought—rational (ACT–R) model predictions.
AALL condition ! two phases of five blocks with the Addition (A) task followed by two phases of five blocks
with the Letter (L) task; LLAA condition ! two phases of five blocks with the Letter task followed by two
phases of five blocks with the Addition task; sec ! seconds.
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before the car engine starts, how long to wait after pushing the
power button on a camera before it is ready to make a photo, and
how long to wait before putting the meat in the pan while the oil
heats.

An open question that remains is whether there is only a single
timer or whether our cognitive system can time multiple things at
the same time. For example, in some of the conditions in the
bisection experiments (Penney et al., 2000), participants had to
estimate two slightly staggered intervals at the same time and
performed almost identically to when they had to estimate only a
single interval. Although it is possible that separate timers track
both intervals, it is also possible a single timer is used to track all
the intervals in between events and that explicit reasoning is used
to find the answer. Such an explicit process cannot simply subtract
two time estimation counts, at least according to our model,
because of the logarithmic scale of the time representation. Studies
from the animal literature support the notion that animals, at least,
can track multiple intervals (e.g., Jozefowiez, Cerutti, & Staddon,
2006), although it is unclear whether multiple timers are involved
or other processes that reflect on time-related behavior.

Experiments by Rakitin (2005) suggest that explicit reasoning
about time intervals can play a role even in simple time estimation
experiments. Rakitin found that when participants had to do a
choice-reaction task together with estimating a time interval after
they had been trained on the interval first, they tended to serialize
the two tasks (first the choice-reaction task and then the time
estimation task). Because of the serialization, the internal estima-
tion process had to estimate a shorter interval (the original interval
minus the time to do the choice-reaction task). However, only the
variability of the time estimate was affected, and not the mean,
suggesting participants strategically shortened the interval using a
process Rakitin called temporal discounting. Temporal discount-
ing proved to be inaccurate in two of Rakitin’s final experiments
in which the start of the interval and the presentation of the
choice-reaction stimulus were separated by a variable stimulus-
onset asynchrony. Although participants in Rakitin’s experiments
serialized the tasks in a dual-task paradigm, participants in the
DTT task did not, suggesting that strategic choice is possible
depending on the task. It should be possible to capture Rakitin’s
results with an ACT–R model, which would adapt a serial control
structure for the task and an explicit strategy for temporal dis-
counting.

A related question is whether the timer can be stopped and
started again later. Fortin, Bédard, and Champagne (2005) found
that estimations of time intervals that were interrupted depended
on where in the interval the interruption was placed. This makes it
unlikely that the timer can just be stopped and restarted. Instead, an
explanation in which explicit reasoning about time determines the
estimate may be more appropriate to explain these results. Al-
though we do not offer a theory of explicit reasoning about time in
this article, the ACT–R architecture in general has many mecha-
nisms that can help in building such theories. However, we con-
sider it unlikely that a single theory of explicit reasoning about
time can cover all phenomena. Instead, each particular phenome-
non will have to be explained by assuming task-specific strategies,
for example, retrograde time estimation for which explicit reason-
ing instead of an internal mechanism is responsible (Block &
Zakay, 1997).

As a final note, a criticism of fitting cognitive models is that
given enough free parameters, any dataset can be modeled (Rob-
erts & Pashler, 2000). We have tried to counter this criticism by
estimating the three parameters of the temporal module for the
very first task only and using those parameters for all other models.
Complex tasks require complex models, which makes it necessary
to estimate additional parameters not related to time estimation.
For the DTT model, we used the data from Experiment 1 to
estimate the non-temporal parameters. This model was then used
to make a true prediction for Experiment 2. Although Experiment
1 guided this prediction, the predictions for Experiment 2 were
novel, for example, that time estimation in the Addition task
completely breaks down. Given the success of the model, we are
confident that the temporal module can be used in all situations in
which intervals on the order of 1–30 s have to be estimated.
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Appendix

Details and Analyses of the Two Experiments

Experiment 1

Participants

Thirty-two students from Carnegie Mellon University (17 men
and 15 women) volunteered to participate in the experiment.
Volunteers were paid for their participation.

Analysis of Variance of the Effect of Learning and Task
Difficulty on Quality of the Time Estimate

To determine the effects of learning and task difficulty on the
quality of the time estimates, we analyzed the absolute values of
the deviations from optimal time for the trials in which the
participant responded before the end of the trial was indicated
by the word end appearing above the left box. As taking the
absolute value introduced skew in the distribution of the data,
we log-transformed the absolute deviations. Analyses of vari-
ance with phase as within-subject factor, condition as between-

subject factor, and subjects as random factors revealed only a
main effect of phase, F(28, 3) ! 7.88, MSE ! 0.91, p ! .009.
Paired t tests showed that this effect is due to learning between
Phases 1 and 2 (an improvement of 356 ms), t(31) ! 3.16, p !
.004, but not between Phases 2 and 3 (t & 1). An alternative
indication of the quality of the estimate is the variability in the
time estimate (Brown, 1997). Analyses of variance of the stan-
dard deviation with phase as within-subject factor, condition as
between-subject factor, and subjects as random factors also
revealed only a main effect of phase, F(28, 3) ! 30.4, MSE !
1.86, p & .001. Paired t tests showed that this effect is due to
learning between Phases 1 and 2 (a decrease in standard devi-
ation from 229 to 177), t(31) ! 6.13, p & .001, but not between
Phases 2 and 3 (t & 1).

Logistic Regression of Non-Response Proportions

The data were subjected to a logistic regression (Harrell, 2001)
with proportion non-responses as response variable and phase and

(Appendix continues)
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condition as predictors. In addition to these main predictors, an
interaction between phase and condition was included so that we
could test for differential effects of task in different phases of the
experiment. A significant main effect was found for phase,
'2(4) ! 22.96, p & .001, indicating a decrease in non-responses
due to learning. A main effect was also found for condition,
'2(6) ! 21.33, p ! .002, but no effect was found for the interac-
tion.

Changes in the Accuracy of Time Estimation Due to
Changes in Task

A paired t test of the mean click-time in Phases 2 and 3 in the
AAL condition revealed that the shift in click moment was signif-
icant, from 701 ms to 371 ms, t(7) ! %2.61, p ! .035, as was the
shift between Phases 2 and 3 in the LLA condition, from %624 ms
to 102 ms, t(7) ! 3.63, p ! .008.

Dual Tasking

A Welch two-sample t test between the average dual-tasking
scores in Phases 1 and 2 for the two tasks showed significantly
more dual tasking in the Letter task than in the Addition task,
t(29.954) ! 4.252, p & .001.

Experiment 2

Participants

Forty students from Carnegie Mellon University (21 men and 19
women) volunteered to participate in the experiment. Volunteers
were paid for their participation.

The Effect of Task Difficulty on the Quality of the Time
Estimate

Of the 294 estimates that were made with the Addition task in
the first phase, 148 responses were within 3 s of the optimal time
and 146 responses were more than 3 s early or late, suggesting that
accuracy was indeed at chance level, because according to the
internal-clock distribution it is possible to make almost all esti-
mates within these 3 s. In the Letter condition, participants were
able to make slightly better estimates but performed at a lower
level than in Experiment 1. Nevertheless, 408 of the 590 responses
made were within 3 s of the optimum, and only 182 were outside
of it.

Logistic Regression of Non-Response Proportions

A logistic regression of the non-response data with proportion
non-responses as response variable and condition, phase, and the
interaction between condition and phase as predictors revealed a
significant interaction between condition and phase, '2(3) ! 8.89,
p ! .03, as well as significant main effects of phase, '2(4) !
14.48, p ! .006, and of condition, '2(6) ! 33.81, p & .001.

Changes in the Accuracy of Time Estimation Due to
Changes in Task

A paired t test on the mean first-click time in Phases 2 and 3 in
the AALL condition revealed that there was no significant shift in
first-click time, from %503 ms to %965 ms (t & 1), nor between
Phases 2 and 3 in the LLAA condition, from 245 ms to %345 ms,
t(7) ! 1.66, ns.
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