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Abstract 

The human ability to accurately estimate time intervals in the 
order of 0 to 20 seconds can be explained by two seemingly 
incompatible theories: the internal clock and the attentional 
counter theory. Based on a dual timing task experiment we 
conclude that a symbiosis of both theories is necessary to 
explain all the phenomena found in our experiment and in the 
experiments we review. This conclusion is supported by the 
computational models we present of the experiments. 

Interval Estimation 
The human ability to routinely estimate short time intervals 
plays an important role in everyday life. Time estimates 
play a role in situations where we take an action and expect 
some response, for example when we click on a link in a 
web-browser, in real-world decisions, for example judging 
whether we should brake for a yellow traffic light or not, 
and in multi-tasking situations where we have to 
strategically switch between tasks, for example using a 
mobile phone in a car. 

There are at least two theories that address interval 
estimation, the attentional counter theory and the internal 
clock theory. The attentional counter theory (Hick et al, 
1977; Thomas & Weaver, 1975) assumes that there is a 
cognitive timer that counts subjective time events. 
Increasing the counter is a process that requires attention. 
As a consequence, if there are other processes competing for 
attention, the counter is increased less often, “stretching” 
time. For example, in an experiment by Zakay (1993), 
participants had to estimate a 12 second interval. In one 
condition, they had to estimate the interval while doing a 
secondary task, and had to reproduce it while doing nothing 
else. In the other condition, they had to estimate the interval 
while doing nothing else, but had to reproduce it while 
doing a secondary task. The secondary tasks were, in 
increasing level of complexity: 

- No secondary task (ET, empty time) 
- Reading color words (printed in black) (W) 
- The Stroop task: Naming the color names of color 

words printed in incongruent ink (CW) 
- Color-word associations: like the Stroop task, but now 

participants had to name a word associated with the 
ink color (CWA) 

Figure 1 shows the results of this experiment. In the 
relatively easy ET and W conditions there is no effect of the 
secondary task, but in the more demanding CW and CWA 
tasks, time estimates are affected. According to the 
attentional counter theory, when the participants have to do 
a demanding secondary task during presentation of an 
interval, they can devote less attention to keeping track of 
time, resulting in a lower cognitive count and a shorter 

reproduced interval. On the other hand, if they have to do a 
demanding task during the reproduction of the interval, their 
cognitive counting is slower resulting in a longer interval. 

 
Figure 1: Results of Zakay’s (1993) experiment. 

 
The internal clock theory (i.e., Matell & Meck, 2000) 

states that the brain has devoted several areas that 
implement a time estimation system. The general idea is that 
certain stimuli can synchronize neurons in a certain area of 
the cortex, effectively acting as a starting sign. As each of 
the neurons produces its own particular pattern of activation 
over time, each interval is associated with a unique pattern 
of activation. These patterns can then be read out by other 
brain areas in the basal ganglia. Contrary to the attentional 
counter theory, the timing system does not require any 
attention, and errors in time estimation are mainly due to 
noise. In a typical interval timing experiment (Rakitin et al, 
1998) participants were presented with intervals of 8, 12 and 
21 seconds, which they then had to reproduce. Figure 2 
shows the results of this experiment in terms of the 
distributions of the responses. Although the variance 
increases for larger intervals, the peaks of each of the 
distributions are exactly at the duration of the interval that 
the participants had to estimate.  

An important difference between the Zakay (1993) and 
Rakitin et al. (1998) experiments is that in the Zakay 
experiment each participant produced exactly one time 
interval, while in the Rakitin et al. experiment they 
produced 80 intervals with feedback on the true duration 
every few trials. Although in the Rakitin task there is a 
secondary task to prevent participants from counting, this 
task is always the same and doesn’t produce the distortions 
in time perception in the Zakay experiment. When just 
looking at these two experiments, the attentional counter 
theory is consistent with both, but the internal clock theory 
only with the Rakitin experiment. On the other hand, many 



practical examples of time perception seem to be highly 
automated (for example many timing aspects of driving a 
car), giving some credibility to an internal clock 
mechanism. The Zakay experiment mainly proves there is 
some effect of attention, but not necessarily that the role of 
attention is to keep an explicit cognitive count. The internal 
clock theory by itself does not really deal with attention, or 
other aspects of cognition. With this in mind we (Taatgen, 
van Rijn & Anderson, 2004) designed an internal clock 
module for the ACT-R architecture. This module can not 
only model timing experiments like the Rakitin et al. (1998) 
experiment, but can also shed some light on how timing 
interacts with other aspects of cognition, including attention. 

 
Figure 2: Distribution of responses adapted from Rakitin 

et al. (1998) for intervals of 8, 12 and 21 seconds. 
 
The goal of our present study is to reconcile the 

experimental results from the attentional and internal clock 
theories. Our model will use an internal clock that will keep 
track of time on its own account. To keep track of time, 
however, this clock has to be explicitly attended, at least in 
the initial stages of learning. 

The Temporal Module 
The general idea, based on Matell and Meck (2000), is 

that an internal timer can be started explicitly to time the 
interval between two events. A reset event sets an integer 
counter to zero, after which it is increased as time 
progresses. The temporal module acts like a metronome, but 
one that starts ticking slower and slower as time progresses. 
The interval estimate is based on the number of ticks the 
metronome has produced. More precisely, the duration of 
the first tick is set to some start value: 
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Each tick is separated from the previous tick by an interval 
that is a times the interval between the previous two ticks. 
Each interval has some noise drawn from a logistic 
distribution added to it. The distribution of this noise is 
determined by the current tick-length. 
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Suppose we want to reproduce a time interval, as 
represented in the first horizontal bar in Figure 3 that is 

defined as the time between the start of a trial and the 
moment a light comes on.  

 
Figure 3: Illustration of the temporal module 

 
The timer is initiated at the start of the trial. When the light 
comes on, the value of the timer (5 in the example) is read 
and stored. When the interval has to be reproduced, the 
value of the timer perceived earlier is used. We have 
estimated values for the parameters in these equations to 
obtain an optimal fit to the Rakitin et al. (1998) experiment 
of interval estimation (reported in Taatgen, van Rijn & 
Anderson, 2004). We found 11 ms for start tick, 1.1 for a, 
and 0.015 for b. These values also provided excellent fits to 
the other experiments discussed in that paper. 
 

 
 

Figure 4: Outline of ACT-R 
 

Figure 4 illustrates the role of the temporal module within 
the ACT-R architecture (Anderson et al., 2004). ACT-R is a 
cognitive architecture based on production rules. What is of 
importance in relationship to the issue of attention is that 
production rules have to start and read the timer in the 
temporal module. This means that errors in time estimates 
are not only due to noise in the temporal module itself, but 
also due to the production system not initiating or reading 
the module at the right moment. This latter type of “noise” 
is especially important in the initial stages of skill 
acquisition, when the length of the interval has not been 
established yet. In order to investigate the various 
contributions to time estimation, we designed the following 
experiment. 

Experiment 

Method 
Participants 17 males and 15 females from the Carnegie 
Mellon student population volunteered to participate in the 
experiment 



Experimental task 

 
Figure 5: the dual timing task 

 
Figure 5 outlines the task. The display consists of two 
boxes, a high profit box on the left, and a low profit box on 
the right. In each of these boxes stimuli can appear, to which 
the participant has to respond. Stimuli are buttons with, 
depending on the condition, an addition with one-digit 
numbers or a letter. Additions can either be correct or wrong 
by one, and letters are either “A” or “B”. Participants have 
to respond to correct additions and “A”’s by clicking on 
them when they are in the right box, or by pressing space on 
the keyboard with the left hand when they are in the left 
box. In the right box stimuli appear for 1200 ms, with 
between 0 and 2000 ms in between. Stimuli in the left box 
do not appear by themselves: they have to be requested by 
the participant by pushing the “Test High” button. Stimuli in 
the left box are available in certain time periods, basically 
six seconds on and seven seconds off. So at the start of the 
experiment there are six seconds in which there are stimuli 
available, then seven seconds without available stimuli, then 
six seconds again with stimuli, etc. The end of a six second 
period is always marked in the left box with a brief 
appearance of the word “End”. Whenever the participant 
presses the “Test High” button during a period with stimuli, 
stimuli actually appear in the left box for the remainder of 
that period. When the participant presses the “Test High” 
button during the seven second period without stimuli, 
nothing happens. Optimal behavior is therefore to press the 
“Test High” button right at the beginning of the six second 
period, which is exactly seven seconds after the word “End” 
appeared in the left box. Stimuli in the left box appear for 
1200 ms with 300 ms in between. A trial lasts 120 seconds. 
Participants score 30 points for each correct response in the 
right box, 100 points for each correct response in the left 
box, they pay 10 points for each click on the “Test High” 
button, receive 30 penalty points for an incorrect response in 
the right box, and 100 penalty points for an incorrect 
response in the left box. Participants were instructed on all 
the aspects of the task, except the durations of the intervals, 
which they had to determine by trial-and-error. 
 
Design The experiment has four conditions: 15 trials of 120 
seconds with the letter task (LL), 15 trials with addition task 
(AA), 10 trials with the letter task followed by 5 trials with 
the addition task (LA), and 10 trials with the addition task 
followed by 5 trials with the letter task (AL).  

Results 
The two solid lines in Figure 6 plot the distributions of the 
moments at which participants first click the test button. 
These moments are defined as the deviation from the 
optimal time, that is, the time at which new high profit 

stimuli become available. The data are averaged over the 
two conditions that start with the letter task and the two 
conditions that start with the addition task, and are plotted 
separately for trial 1-5 (block 1) and trial 6-10 (block 2). 
The dotted line plots the distribution that would be expected 
if this were a pure interval estimation experiment like the 
Rakitin et al. (1998) experiment plotted in Figure 2. These 
plots show that participants do worse than that ideal, but 
also show that the task they are doing, letter or addition, has 
only a small impact.  

 

 
Figure 6: Distribution of first-click times for both tasks 

compared to an expected distribution of a pure interval 
estimation experiment. 

 
To get a more precise idea of the impact of learning and 

condition, we fit a linear mixed-effect model (Laird & 
Ware, 1982) with the absolute deviation of the time of first 
click from the optimal moment to click as dependent 
variable, and condition and trial number as independent 
variables. Averages for these absolute deviation values, 
aggregated in three blocks, are plotted in Figure 7. The 
analysis revealed a significant learning effect (p=0.001), no 
effect of initial task (Letter or Addition), no effect of 
changing from the Addition to the Letter task (condition 
AL), but significant slowing effect in the Letter to Addition 
condition (condition LA, p=0.013). Similarly, we looked at 
the average times relative to the click moment. Although the 
average time offers no indication of performance, it can 
reveal shifts in timing due to change in task. Figure 8 shows 
the basic outcomes. Again we fit a linear mixed-effect 
model to these data, revealing no learning effect, an effect 
of initial task with Addition producing later responses than 
Letter (p=.0011), no effect of changing from Addition to 
Letter, but a significant later response of changing from 
Letter to Addition (p<0.0001). 



 
Figure 7: Average absolute deviation from optimal click 

moment for the four conditions. Note that the change of task 
for the LA and AL conditions is between block 2 and  

block 3 
 

 
Figure 8: Average deviation from optimal click moment 

for the four conditions 
 

 
Figure 9: Proportion dual-tasking for the four conditions 

 
To summarize, the effect of task difficulty seems to be 

rather small. If the attentional mechanism theory would be 
right, we would expect to see a lower accuracy for the 
Addition task than the Letter task, because less attention can 
be devoted to keeping track of time, and we would also 
expect significant shifts in timing after a task change (in the 
LA and AL conditions). Such a shift can only be found in 
the LA condition, and it is relatively small compared to the 
deviations found in the Zakay (1993) experiment. A 
possible explanation is that both tasks are just too easy: 
Zakay only found an effect in the more difficult secondary 
tasks. It is therefore useful to look at the amount of dual 
tasking that participants manage to do at intervals that there 
are stimuli in both the left and the right box. A measure of 

dual-tasking can be obtained by looking at the periods that 
there are stimuli in both the left and the right box. As 
stimuli in the left box produce higher scores, we assume that 
people will only react to stimuli in the right box if they have 
spare capacity to do so. We therefore took as a measure of 
dual tasking the proportion of target stimuli in the right box 
to which the participant responded while there were also 
stimuli in the left box. Figure 9 shows the results: 
participants turn out to be able to achieve a high level of 
dual-tasking in the Letter task, but only around 50% in the 
Addition task. This shows that the Addition task does 
indeed require more attention than the Letter task, making a 
simplicity-based explanation unlikely.  

 
Our eventual result is consistent with neither the 

attentional mechanism theory (which would predict much 
larger impacts of the task-difficulty manipulations) nor the 
internal clock theory (which would predict no influence at 
all). However, it is consistent ACT-R’s temporal module, 
which predicts small influences of difficulty, because the 
temporal module cannot be attended as often as necessary 
when the task is more difficult. In order to show this in 
more detail, we have constructed a computational model of 
the task. 

The Model 
The model builds on earlier models of time estimation 
(Taatgen, van Rijn & Anderson, 2004), dual tasking 
(Anderson, Taatgen & Byrne, submitted) and skill 
acquisition (Taatgen & Lee, 2003). We will explain the 
model at a fairly global level. 

Time Estimation 
Because the duration of the interval is unknown, the model 
has to determine it by trying out various intervals. When the 
model sees “End” in the left box, signaling the start of the 
interval, it starts the internal clock, which starts generating 
time ticks as illustrated in Figure 3. Whenever the model has 
some slack time to think about time (the details of which we 
will discuss in the next section), it attempts to retrieve a 
previous experience of pressing the test button at 
approximately the present time. If a successful experience is 
retrieved, the model will initiate a click on the test button. If 
a failed experience is retrieved, the model will do nothing. 
Finally, if no experience at all is retrieved for the present 
time, the model randomly decides to press the button or not. 
After the button has been pressed, the model judges whether 
the button-press was successful. If stimuli appear in the left 
box, the present time is stored as successful, but if nothing 
happens the present time is stored as a failure. Note that late 
test-button presses are judged as successful, even if they are 
for example 4 seconds late, but that early presses are judged 
as failures, even if they are early by only 100 ms. As the 
model accumulates more experiences it will become more 
accurate at estimating the right interval, but only within the 
boundaries of the accuracy of the temporal module itself 
(i.e., what is depicted by the dotted pure interval estimation 
distribution in Figure 6).  

Multi Tasking 
The model has to divide its attention between three tasks: 
attending and responding to the left box, attending and 



responding to the right box, and attend the time. Only two 
of these tasks are relevant at the same time: either the left 
box and the right box have to be attended, or the right box 
and the time. The model is mainly event-driven, and will 
respond to changes on the screen. When a new stimulus 
appears on the screen, the model will attend to it and initiate 
a response. The only exception is when the model is busy 
with a stimulus on the left box, because then it will ignore 
stimuli in the right box until it is done with the stimulus in 
the left box. A stimulus in the left box can on the other hand 
interrupt processing in the right box. Attending to the time 
interval is initiated whenever the model has no stimulus to 
process. However, since retrieving a past experience takes 
time, especially when these experiences are relatively new 
and still have a low activation, attending the time can be 
interrupted if a new stimulus appears on the screen.  

Skill acquisition 
ACT-R’s rule learning mechanism, production compilation, 
will gradually learn rules that correspond to cognitive 
actions that are repeated often. For the present model, the 
main rules of importance are rules that are associated with 
retrieving previous experiences from memory. Initially, the 
process of judging whether or not to click at a certain time 
requires three steps: 

1. A production rule makes a retrieval request to 
declarative memory for a past experience about the 
present time (50 ms) 

2. Declarative memory tries to find a matching 
experience (can take up to 680 ms, depending on 
the activation of the experience) 

3. A rule that acts upon the retrieved experience fires 
(50 ms) 

At any moment this process can be interrupted by a new 
visual stimulus. However, once a certain experience has 
been retrieved often enough, the three steps are collapsed 
into a new rule specialized for that experience, for example: 
 
IF  the current time is 41 time ticks 
THEN press the test-button 
 
This new rule only takes 50 ms to execute, and has therefore 
a much higher probability to fire at the appropriate time. 

Model results 
We ran the model 200 times for each of the four conditions, 
and then averaged the results. The model produces time 
distributions that are quite similar to the distributions found 
in the experiment (Figure 10). Although the differences 
between the two distributions are subtle, it shares two 
characteristics with the experimental data: the peak of the 
distribution is slightly higher for the letter task, and there is 
a slight shift to the right in the distribution of the Addition 
task. These two aspects become also clear if we look at the 
average response times and average deviations from the 
optimal time. Figure 11 shows the average deviations from 
the optimal response time, and Figure 12 the average 
response times relative to the optimal response time. 
Although the model results are far less noisy than the data, 
we can see the same effects that we saw in the data: a 
learning effect in the deviations but not in the response 
times, a small effect of task difficulty, a small effect of 

making the task harder, and an even smaller (and in the data 
insignificant) effect of making the task easier.  

The model’s changes in behavior due to task difficulty are 
mainly due to the fact that the model has less (or more) time 
to occasionally check the time. Although the internal timer 
might have a good estimate of the time, this will not help if 
there is no production rule that reads it at the right moment. 
Later in the experiment, when the model starts learning 
production rules, this problem becomes smaller because it 
starts to learning specific timing rules that do not require 
retrievals from declarative memory, and are therefore less 
susceptible to interruption. 

 

 
Figure 10: Time distributions produced by the model 

 
Figure 11: Average absolute deviation from optimal click 

moment for the model 



 
Figure 12: Average deviation from optimal click moment 

for the model 
 

Figure 13, finally, shows the dual-tasking performance by 
the model, which is quite consistent with the dual-task 
performance by the participants. 

 
Figure 13: Proportion of dual tasking by the model 

Discussion 
The model shows the same small effects of task difficulty as 
the participants in the experiments. In the case of the model, 
the generally slightly longer times for the Addition task can 
be explained by the fact that the Addition task itself needs 
more time to finish, leaving smaller intervals in between 
stimuli in which the time-retrieval process tries to retrieve 
old experiences, and thus increasing the probability that this 
process is interrupted. 

Another interesting aspect of the model is that the model 
learns production rules that handle timing, reducing the need 
for attention in situations where time intervals are well 
practiced. This aspect is of importance we want to use it to 
model situation in which a sense of timing is automated 
(e.g., the traffic light situation).  

A final issue is how we can explain Zakay’s (1993) 
estimation effects with a clock model, as these effects are 
often quoted as supportive of an attentional counter theory. 
To do this, we have to make one extra assumption: given the 
fact that the participants estimate this interval just once, they 
are prone to making all sorts of “startup” mistakes. One 
possible mistake is that the temporal module used for one of 
the secondary tasks, effectively resetting it to zero, and the 
probability for this becomes larger as the secondary task 
becomes more demanding. Based on this assumption, the 
model results in Figure 14 can be produced (other 
assumptions could probably produce similar predictions in 
combination with the temporal module). 

 
Figure 14: Zakay task, comparison between model and data 

 
In summary, a model consisting of an internal clock 

combined with a general cognitive architecture attending 
this clock provides explanations for both the in general 
accurate human capacity for timing intervals and effects of 
attention due to secondary tasks. 
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