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E. Hazeltine, D. Teague, and R. B. Ivry (2002) have presented data that have been interpreted as evidence
against a central bottleneck. This article describes simulations of their Experiments 1 and 4 in the ACT-R
cognitive architecture, which does possess a central bottleneck in production execution. The simulation
model is capable of accounting for the emergence of near-perfect timesharing in Experiment 1 and the
detailed data on the distribution of response times from Experiment 4. With practice, the central
bottleneck in ACT-R will be reduced to a maximum of 50 ms (1 production cycle) and can often be much
less, depending on timing of stages and variability in their times. The authors also show, with a
mathematical analysis of E. Hazeltine et al.’s Experiment 2, that the expected dual costs for these kinds
of highly practiced tasks will be small in many circumstances, often under 10 ms.
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Usually, people find it more difficult to perform two tasks at
once than to perform a single task, even when the tasks involve
different perceptual and response modalities. Such difficulties are
often taken as evidence for a central bottleneck (Pashler, 1994;
Welford, 1952). Recently, however, Schumacher et al. (2001)
provided evidence that with enough practice and with enough
incentive, participants could come to perform an aural–vocal task
and a visual–manual task simultaneously with very little cost. This
research was taken as evidence for the Meyer and Kieras (1997)
executive-process interactive control (EPIC) theory, which postu-
lates that central cognition is controlled by a parallel production
system that is not subject to capacity limitations. More recently,
Hazeltine, Teague, and Ivry (2002) followed up Schumacher et al.
with a more extensive series of experiments that addressed some
possible questions about the original research, and they also con-
cluded that there was very little if any central bottleneck after
considerable practice (a few thousand trials). The research in the
Hazeltine et al. article and its implications are the focus of this
article.

Byrne and Anderson (2001) published a model showing that the
basic Schumacher et al. (2001) results could be accommodated in
the ACT-R theory (Anderson & Lebiere, 1998), a production
system that postulates that production-rule execution is serial and,

therefore, constitutes a central bottleneck. Our purpose in the
present article is to show that the ACT-R theory is compatible with
the detailed data that Hazeltine et al. (2002) presented and that the
learning mechanisms in the theory are capable of accounting for
the reduction of dual-cost effects with practice. However, at the
outset, we want to say that we suspect the ACT-R model we are
offering is not correct in every detail. The real goal of this article
is to show that assumptions like those in ACT-R are compatible
with the Hazeltine et al. results and, in particular, that these results
do not contradict a detailed central bottleneck theory. The main
ACT-R-specific contribution of this article is to show how
ACT-R’s learning theory and its perceptual–motor theory can
combine successfully in a way that is compatible with the Hazel-
tine et al. data. At the end of the article, after having covered the
theory and the experiments, we note some details about the ACT-R
account that could be problematic.

First, we review the task used by Schumacher et al. (2001) and
by Hazeltine et al. (2002) and the basic ACT-R model that Byrne
and Anderson (2001) proposed for this task. Then, we elaborate on
how ACT-R can account for the learning results and the detailed
Hazeltine et al. data.

In the original Schumacher et al. (2001) version of the task,
which served as the basis for the first experiment described in
Hazeltine et al. (2002), participants responded to the presentation
of a circle and a tone. The circle appeared in one of three hori-
zontal locations, and participants made a spatially compatible
response with their right hand, pressing their index, middle, or ring
finger to the left, middle, or right location, respectively. The
150-ms tone was either 220 Hz, 880 Hz, or 3520 Hz, and partic-
ipants responded “one,” “two,” or “three.” In the single-task con-
dition, participants did just the visual–manual task or just the
aural–vocal task. In the dual-task condition, both stimuli were
presented simultaneously, and participants were asked to do both
tasks simultaneously. Over 5 days of practice, participants came to
respond virtually as fast at each task in the dual-task condition as
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they did in the single-task condition. Thus, participants were able
to perform two tasks at once with virtually no cost.

Figure 1 displays the original schedule chart for the task pub-
lished in Byrne and Anderson (2001). The line labeled Cognition
represents production firing in which each production takes 50 ms
(an assumption shared by ACT-R and EPIC). There is one pro-
duction that converts the visual stimulus into the manual response
and another production that converts the tone into the speech act.
The important observation is that because it takes longer to encode
the sound, the two productions are offset from one another and do
not interfere. (It did take participants considerably longer to per-
form the aural–vocal task than the visual–manual task.) The con-
ditions in the later experiments of Hazeltine et al. (2002) elimi-
nated this convenient offset of times by introducing a delay in
the presentation of the visual condition and by increasing the
difficulty of the visual–manual task either by making visual
discrimination more difficult (Experiment 2) or by making the
stimulus–response mapping incompatible (Experiments 3 and
4). Despite these changes, Hazeltine et al. continued to find
virtually perfect timesharing. Nonetheless, as we show below,
the ACT-R model does a fairly good job of simulating Hazeltine
et al.’s results.

The ACT-R Model for Hazeltine et al. (2002)

In this section, we do not attempt an elaborate explanation of the
ACT-R theory. Rather, we refer readers to Byrne and Anderson
(2001), in which the perceptual–motor details are developed, and
to Taatgen and Anderson (2002), in which the ACT-R assumptions
about production learning are specified (see also Anderson et al.,
2004, for the most current statement of the entire theory).

The production-learning model developed for ACT-R is one that
takes declarative task instructions that are interpreted to perform
the task and, with practice, converts them into production rules for
directly performing the task. Early on, the task is heavy in demand
on central cognition to interpret these instructions, but later, central
cognition becomes a minimal bottleneck (as shown in Figure 1).
This accounts for both the speedup in performance of the task and
the elimination of much of the dual-task cost. The key to under-
standing the ACT-R learning model for this task is to understand
the beginning and end states of the model as it learns to perform in
the dual task. The model starts out with instructions for the task
represented declaratively. These instructions can be rendered in
English as follows:

a. When doing a pure aural block, prepare to respond to
the detection of an aural stimulus with the aural task
instructions.

b. When doing a pure visual block, prepare to respond to
the detection of a visual stimulus with the visual task
instructions.

c. When doing a mixed block, prepare to respond to the
detection of a visual stimulus with the visual task instruc-
tions and to respond to the detection of an aural stimulus
with the aural task instructions.

d. To perform the visual task, translate the visual location
into a key, press that key, and check for success.

e. To perform the aural task, translate the aural tone into a
word, say that word, and check for success.

Figure 1. Byrne and Anderson’s (2001) ACT-R schedule chart for Schumacher et al. (2001). VM !
visual–manual task; Prep ! preparation; Init ! motor initiation; RS ! response selection; AV ! auditory–vocal
task; P ! initiate perception. From “Serial Modules in Parallel: The Psychological Refractory Period and Perfect
Time-Sharing,” by M. D. Byrne and J. R. Anderson, 2001, Psychological Review, 108, Figure 6, p. 856.
Copyright 2001 by the American Psychological Association.
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In addition, the model has committed to memory the mappings of
the locations and sounds:

f. A left location translates to the index finger of the right hand.

g. A middle location translates to the middle finger of the
right hand.

h. A right location translates to the ring finger of the right
hand.

i. A low tone (220 hz) translates to saying “one.”

j. A middle tone (880 hz) translates to saying “two.”

k. A high tone (3520 hz) translates to saying “three.”

As described in Anderson et al. (2004), ACT-R has general inter-
pretative procedures for converting such declarative instructions
into task behavior. Figure 2A illustrates the sequence of produc-
tions involved in interpreting these instructions in the mixed con-
dition, in which both tasks are presented. Below, we step through
the production rules.

A. Set Up

1. Retrieve Instruction: This retrieves Instruction c above.

2. Retrieve Steps: This retrieves the steps involved in that
instruction—in this case, preparing to respond to stimuli
in both modalities.

3. Prepare Visual: This sets the system to respond with
Instruction d above when the visual stimulus is encoded.

4. Prepare Aural: This sets the system to respond with
Instruction e above when the aural stimulus is encoded.

5. Ready: The system notes that it is finished processing
the instruction and ready to respond to a stimulus.

6. Attend Visual: This requests encoding of the visual
stimulus.

7. Attend Aural: This requests encoding of the aural
stimulus.

B. Perform Visual–Manual Task

1. Focus on Visual: When the location is encoded, it
requests retrieval of instruction (in d above).

2. Retrieve Instruction: This retrieves Instruction d above.

3. Retrieve Steps: This retrieves the steps involved in that
instruction—in this case, translating the location into a
finger, pressing that finger, and checking the result.

4. Translate Position: A request is made to retrieve the
finger corresponding to the location.

5. Retrieve Finger: One of Facts f–h is retrieved.

6. Press Finger: That finger is pressed.

7. Retrieve Assessment: In response to the step of check-
ing, first a check is made whether the result is known.1

8. Retrieval Failure: At this starting point in the experi-
ment, nothing can be retrieved.

9. Subgoal to Check: Therefore, set a subgoal to check the
outcome.

1 Both the visual–manual and the aural–vocal task end with an assess-
ment of whether the task has been performed successfully. This assessment
is critical to production learning. The task can be judged successful either
by setting a subgoal to judge it or by retrieving information that this action
has been successful in the past. The retrieval route is tried first but, initially,
will fail until a reliable memory is built for the outcome of such a check.
This enables us to model the process by which an explicit check is dropped
out and built into the learned production rules.

Figure 2. The operations of the ACT-R model at the beginning of the
learning of Hazeltine et al. (2002) task (A) and at the end of the learning
of the task (B). The lengths of the boxes reflect the average time for each
operation. Those operations concerned with the aural–vocal task are
shaded.
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10. No Problems: There is no negative feedback from the
experiment.

11. Return to Goal: Return this determination to the main
goal.

12. Task Successful: The task has been successfully
accomplished.

13. Get Ready: The system notes that it is finished process-
ing the instruction and ready to respond to a stimulus.

C. Perform Aural–Vocal Task

1. Focus on Aural: When the tone is encoded, it requests
retrieval of instruction (in e above).

2. Retrieve Instruction: This retrieves Instruction e above.

3. Retrieve Steps: This retrieves the steps involved in that
instruction—in this case, translating the tone into a
word, saying that word, and checking the result.

4. Translate Tone: A request is made to retrieve the word
corresponding to the tone.

5. Retrieve Word: One of Facts i–k is retrieved.

6. Say Word: That word is generated.

7. Retrieve Assessment: In response to the step of check-
ing, first a check is made whether the result is known.

8. Retrieval Failure: At this starting point in the experi-
ment, nothing can be retrieved.

9. Subgoal to Check: Therefore, set a subgoal to check the
outcome.

10. No Problems: There is no negative feedback from the
experiment.

11. Return to Goal: Return this determination to the main
goal.

12. Task Successful: The task has been successfully
accomplished.

13. Get Ready: The system notes that it is finished process-
ing the instruction and ready to respond to a stimulus.

When the task is a single task, only B or C will be performed,
and when it is a pure block, the preparation in A will be simpler.
However, in all cases, the above is a rather laborious (if logical)
interpretation of the instructions. As Figure 2A illustrates, produc-
tion execution at this point in time will pose a significant central
bottleneck. All of the productions for the aural task have to wait for
completion of the productions from the visual task (or vice versa—
there is no requirement that the visual task be performed first). In
Figure 2A, there are perceptual encodings and motor actions, but
they are not part of the critical path.

Production compilation will collapse pairs of productions to-
gether. In the limit, only three productions are required to do this
task. All of the productions in Part A above can be collapsed into
a single production that responds to the simultaneous presentation
of a tone and a location with a request to encode them. The
acquired production can be paraphrased as follows:

Production A
IF the goal is to perform in a mixed block

and a tone has been sounded
and a circle has appeared,

THEN encode the frequency of the sound
and encode the location of the circle
and prepare to respond to an encoding of the frequency with

the aural task instructions
and prepare to respond to an encoding of the location with the

aural task instructions
and note that things are ready.

Similarly, all of the productions in Part B above can be col-
lapsed into a single production that responds to the appearance of
the location with an appropriate keypress. This requires learning
that the keypress will be successful. There are three productions
learned for the three locations. The one for the left location can be
paraphrased as follows:

Production B
IF the location has been encoded on the left,
THEN press the index finger

and note that things are ready.

Similarly, Part C above can be compressed into single produc-
tions like the following:

Production C
IF the frequency of the tone has been encoded as 220 Hz,
THEN say “one”

and note that things are ready.

Figure 2B illustrates the situation after production compilation.
The situation is like that in Figure 1, in which the two productions
for the two tasks are offset and do not interfere with one another.2

Figure 2B shows the extent to which learning can effectively
proceed. On the one hand, neither of these perceptual–motor
productions (B or C) can be collapsed with the first preparation,
Production A, because the preparation production makes percep-
tual requests that require encoding from the environment before
Productions B or C can fire. This is one example of how the
perceptual events define the limits on combining productions. On
the other hand, the system can attempt to create a combination of
the last two productions:

Production B and C
IF the location has been encoded on the left

and the frequency of the tone has been encoded as 220 Hz,

2 There are some slight differences between this and Figure 1, because
the production rules ACT-R learns are not identical to those Byrne and
Anderson (2001) hand coded, but the differences do not affect the basic
explanation of perfect timesharing.
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THEN press the index finger
and say “one”
and note that things are ready.

However, because the location and sound are never encoded at the
same moment in Hazeltine et al.’s (2002) first experiment (but see
our model of Hazeltine et al.’s, 2002, Experiment 4), this produc-
tion never gets to fire. This result, which is a natural outcome of
the production-compilation mechanism, is critical to explaining
one of the Hazeltine et al. results in their first experiment—
namely, that participants trained on a subset of six of the nine
possible combinations of three locations and three tones were able
to transfer to the remaining three without showing any deficit.
Separate productions are always required in this experiment to
handle the two modalities, and such combination rules never get to
be used.

There were a number of critical parameters determining the
behavior of the models for these experiments. Among these are the
timings of the operations shown in Figure 2. We assumed that (a)
each production took an average of 50 ms, (b) the time to encode
a visual location will be 50 ms, (c) the time to encode the auditory
stimulus will be 130 ms, (d) the time to complete a fingerpress will
be 100 ms, and (e) the time to trigger the voice key with an
utterance will be 50 ms. The production-execution time is a basic
parameter of ACT-R and EPIC, and the visual encoding time and
manual times are close to their standard values in ACT-R (85 ms
and 100 ms, respectively). The aural and vocal times were esti-
mated in light of the data but are within the constraints suggested
by Hazeltine et al. (2002). In addition, we assumed that all times
had a 100% variability (the EPIC model has 67% variability3)—
that is, if the mean time was T, the actual times on a trial varied
uniformly between T/2 and T " T/2. For instance, production
times, with a mean of 50 ms, vary between 25 and 75 ms. These
assumptions, especially those about variability, are a bit arbitrary,
but they serve to establish plausible benchmarks for showing that
the basic results of Hazeltine et al. can be predicted within the
ACT-R framework, which is not that different from the EPIC
framework, except for the assumption of a central bottleneck. In
addition, two parameters controlled the rate of production learning:
the learning rate for production utility was .05, and the s parameter
controlling noise in utilities was .056. The first is a standard value
for many models (e.g., Anderson et al., 2004), but the second was
estimated to fit the learning data.

Hazeltine et al.’s (2002) Experiment 1

Hazeltine et al. (2002) performed four experiments. The first
involved 9 participants. Seven of these participants continued to
work through the remaining three experiments. We are concerned
with modeling in detail the results of the first and fourth experi-
ments. The first experiment followed a procedure very similar to
that in the first experiment of Schumacher et al. (2001). On the 1st
day, participants practiced just the single tasks. There then fol-
lowed up to seven sessions on different days in which participants
performed dual-task and single-task blocks. In the dual-task
blocks, participants experienced six of the nine possible combina-
tions of tone–location pairs. The goal was for participants to reach
the point of performing as well in the dual task as in the single task.
Seven of the participants reached this goal, but the data reported

for this experiment were from all 9 participants. After completing
this phase of the experiment, participants performed two more
sessions during which they had to deal with the three remaining
combinations of locations and tones that had been withheld as well
as the other six. Our simulation of this experiment involved seven
sessions—the first just a single task, followed by four sessions in
which dual-task blocks were intermixed with single-task blocks,
followed by two more sessions in which the transfer stimuli were
introduced. In each session, the simulation experienced the same
presentation sequence as the participants. We ran 20 simulated
participants, which resulted in standard errors of less than 1 ms per
estimated mean.

The learning results from Hazeltine et al.’s (2002) first experi-
ment are illustrated in Figure 3A, and the results of the simulation
are shown in Figure 3B. In Hazeltine et al.’s experiment and in our
simulation, there were two kinds of single-task trials: trials that
occurred in homogeneous blocks, in which participants were only
responsible for these items, and trials that were interspersed among
dual-task trials. Because there was virtually no difference between
these two trial types in the data or in our simulation, we collapsed
over these. Also, there were two types of dual-task trials: those that
involved the original six pairings and those that involved the new
ones. Because Hazeltine et al. found no difference between these
two types of items and our model produced none, we also col-
lapsed over those. Thus, Figure 3 only presents performance on
single-task trials and dual-task trials for the visual–motor task and
the aural–vocal task. Hazeltine et al. reported data for three periods
of the experiment—the first two sessions, in which dual tasks were
used; the last two sessions; and the two, even later transfer ses-
sions. In our simulation, we collected the means of Sessions 2 and
3, Sessions 4 and 5, and Sessions 6 and 7, respectively, to corre-
spond to these sessions.

The simulation reproduced the overall trend of reduced differ-
ences among conditions, particularly the reduced dual-task cost.
The model starts out somewhat better in the single-task aural–
vocal condition and somewhat worse in the single-task visual–
manual condition, but it ends up at close to the same point as
Hazeltine et al.’s (2002) participants. Although the correspondence
is not perfect, we have reproduced the magnitude of the learning
effects (both data and simulation show approximately a 100-ms
improvement) and the dropout of the dual-task cost with practice
(in both data and simulation, the average dual-task cost effect
dropped from approximately 50 ms to approximately 10 ms). Also,
the model predicts no difference between the new and old stimulus
combinations in transfer, as was observed. Given the variability
among participants contributing to these data, getting such ballpark
effects is all that we would expect from the learning model. The

3 One must be careful in comparing the EPIC and ACT-R variance
assumptions, even if they both use uniform distributions. This is because
the variability across stages in EPIC is perfectly correlated. That is, if one
stage is 50% longer than the average, all stages are. In contrast, the
variability in the times of different components in ACT-R is totally
uncorrelated. Curiously, if the total response time involved three equal-
length components, the predictions of the two models would be approxi-
mately the same. EPIC with its 67% assumptions predicts the standard
deviation of times should be 19.2% of the mean, whereas ACT-R with its
100% assumption predicts the standard deviation will be 16.7% of the
mean.
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simulation of Experiment 4 deals with data in which participants
are apparently more uniform and in which there is much more
detail reported. There, we are concerned with more precise
matches. From this simulation, we simply conclude that ACT-R
can produce a reduction in dual-task cost that is qualitatively
similar to what was observed.

Hazeltine et al.’s (2002) Experiment 2

The reason the model predicted more of a dual-task cost effect
for the aural–vocal than for the visual–manual task is that the
visual–manual task can complete its encoding more quickly than
the aural–vocal task and, therefore, its central bottleneck produc-
tion has a better chance of occurring in a position to block the
production of the aural–vocal task. The second experiment of

Hazeltine et al. (2002) used a discriminability manipulation (the
introduction of distractor circles of a different intensity) to slow
the visual–manual task without much effect on the dual-task cost
for these materials. We do not provide a detailed simulation of this
experiment but, rather, a mathematical analysis of its potential
dual-task cost, to show—perhaps more transparently—why
ACT-R does not predict much of a dual-task cost even when there
is not a convenient offset in the average encoding times for the two
tasks.

In this second experiment, the times were almost identical in the
hard visual discrimination condition and the aural condition. Al-
though this is probably not the exact model for each task, let us
assume that both the aural encoding and the visual encoding took
the 130 ms assumed for the aural encoding in Experiment 1. This
means that on average, the two tasks would complete at the same
time and should result in maximal interference. This is the worst-
case analysis of the experiment. Should one encoding complete
before the other on average (and we suspect that the visual encod-
ing was still a little quicker), there would be less interference. The
important complication concerns the variability in the encoding
times. Although the mean encoding time is 130 ms, our model
assumes a uniform distribution from 65 to 195 ms for each task,
and these two distributions are independent of one another. For
simplicity of analysis, we assume that the central bottleneck takes
a constant of 50 ms, but the simulation for Experiment 4 allows for
variability in the central bottleneck times as well.4

The following is an analysis of the delay that Task A will cause
to the central processing of Task B, assuming that the asymptotic
state in Figure 2B, in which each task only requires 50 ms of
central processing, has been reached. Note that Task A can be
either the visual–manual task or the aural–vocal task in this anal-
ysis, with Task B being the other.5 The advantage of assuming that
the encoding time for each task is 130 ms is that the analysis is
symmetric and gives us the expected dual-task cost for either the
visual–manual or the aural–vocal task. Task B will be delayed only
if its encoding (Encoding B) finishes 0–50 ms after the encoding
for Task A (Encoding A). If Encoding B finishes x (#50) ms after
the Encoding A, its central processing will be delayed by 50 $ x
ms. There are two cases to consider:

a. Encoding A completes between 65 and 145 ms, leaving a
full 50 ms for Encoding B to complete. Because the
distribution is uniform, the probability that Encoding A
will complete in this interval is 80/130 ! 8/13, and the
probability that Encoding B will complete in the follow-
ing 50 ms is 5/13. The mean delay will be 25 ms, because
any delay between 0 and 50 ms is equally likely.

4 But, in fact, there is virtually no difference if we include variability in
this central 50 ms. In the example that follows, there is 8.9 ms delay with
variability in the central bottleneck rather than 8.4 ms delay without
variability.

5 Please note that the terminology Task A and Task B are being used just
to allow us to analyze the impact of the auditory–vocal task on the
visual–manual task, and vice versa, in a single analysis. The terminology
carries no implication about which encoding finishes first. We are calcu-
lating the impact of Task A on Task B, averaged over which encoding
finishes first. Of course, Task B can have a negative impact on Task A only
if its encoding does occur first.

Figure 3. Learning to timeshare. A: Experiment 1 from Hazeltine et al.
(2002). B: ACT-R simulation.
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b. Encoding A completes between at time t between 145
and 185 ms, leaving just 185 $ t ms for Encoding B to
complete at a time that will result in a delay to Task B.
The probability of Encoding A completing in this period
is 5/13, the probability of Encoding B completing after-
ward is on average 2.5/13, and the mean expected delay
is 33.3 ms (a little calculus is required to establish this
last number).

Thus, the total expected delay is:

8
13

*
5

13
* 25 ms "

5
13

*
2.5
13

* 33.3 ms ! 8.4 ms.

Note that because this analysis is symmetric, there will be an
average 8.4-ms slowing in Task A as well as in Task B. Hazeltine
et al. (2002) observed a 19-ms slowing for the auditory task and a
1-ms slowing for the visual task. Thus, the average observed
slowing is 10 ms, and the average predicted is 8.4 ms. However,
empirically, there is an asymmetry in the sizes, suggesting the
visual encoding is still completing somewhat before the auditory
encoding.

The above analysis depends on a number of specific assump-
tions, and the reader might well wonder how much the expected
delay would vary if we changed these assumptions. We performed
a number of simulations to address this question:

a. We assumed that each encoding process lasted 130 ms
and had a 130-ms range from 65 to 185 ms (which
implies a standard deviation of 38 ms, or 29% of the
mean). What would happen if we changed these assump-
tions about length of the interval and range? Treating this
case as 100% range with a standard deviation that is .29
of the mean, Figure 4A shows the expected delay for
different range ranges from 20% (or .06 standard devia-
tion) to 180% (.52 standard deviation). As can be ob-
served, over a wide range of values, the expected delay is
below 15 ms and often below 5 ms. If we assume 67%
range, as in the EPIC model, but still 130-ms processes,
the expected delay is 11.7 ms. It is never more than 25
ms, because in the worst-case scenario, only one of the
processes will be delayed, and never more than 50 ms,
resulting in an average delay per process of 50/2 ! 25 ms.

b. One might wonder what would happen if we used a
nonuniform distribution more like a reaction time distri-
bution. Therefore, we simulated Weibull distributions
with means and standard deviations equivalent to the
distributions in Figure 4A. These results are displayed in
Figure 4B. Weibull distributions are determined by two
parameters, v and b, where v determines the shape, and b
largely determines the scale. The v and b values are
obtained in each case to get the corresponding standard
deviation to a curve in Figure 4A. In the case of b, it is
given as proportion of the mean—for example, if the
mean is 100 ms and b is listed as 1.11, the actual value of
b in this case is 111. As can be seen, there is virtually no
difference between the results in Figure 4A with the
uniform distribution and these results in Figure 4B. In the
reference case of 130-ms times and 29-ms standard de-

viation, the expected delay is 8.6 ms, as compared with
8.4 ms for the uniform distribution. We should note that
by assuming a Weibull distribution, our analysis becomes
more similar to the stage analysis of Lien, McCann,
Ruthruff, & Proctor (2005).

c. We have assumed so far that the two encoding processes
take the same mean time. In Figure 4C, we assume the
reference uniform distribution with a range equal to that
of the mean and a standard deviation 29% of the mean.
The different curves in Figure 4C give the mean delay of
the process when it is competing with an encoding pro-
cess that has a mean 50%, 75%, 100%, 150%, and 200%
as long as it, with a standard deviation similarly 29% of
its mean. As would be expected, the slower process is
more likely to be delayed, but in most cases, the mean
delay is under 15 ms, and in many cases it is under 5 ms.

d. Finally, just for completeness, we have included the same
analysis as in c (above), using the corresponding Weibull
distribution (i.e., v ! 3.88 and b ! 1.11 of the mean).
Again, there are not strikingly different results with this
distribution. We should note that one reason for using the
uniform distribution is that it is easy computationally,
and apparently the choice does not greatly matter for the
issue of mean expected delay.

In conclusion, although the exact dual-task delay depends on
assumptions, over a wide range of assumptions about distribution
of times and differences in encoding-process lengths, there is
relatively little expected delay assuming a maximum central bot-
tleneck of 50 ms. In most cases, one encoding process does not
finish often enough just before the other encoding process in a way
that will cause a significant delay in the central bottleneck that
follows the second encoding process.

Hazeltine et al.’s (2002) Experiment 4

To get a larger dual-cost one needs more central processing than
the 50-ms single production. Hazeltine et al.’s (2002) third exper-
iment introduced a stimulus–response compatibility manipulation
for the visual–manual task, which, as we detail below, does require
an additional rule in the ACT-R model. Still, that manipulation did
not have much of an effect on the dual-task cost. Hazeltine et al.’s
fourth experiment both used the compatibility manipulation and
involved a variation in the onset of the two tasks. Because this
fourth experiment was the most complex and reported the most
elaborate data, we attempt to model it in detail. This series of
experiments involved 7 of the participants from the original ex-
periment who also took part in the second and third experiments.
By the fourth experiment, they had come to display very rapid
(about 250 ms for the visual–manual task and under 300 ms for the
aural–vocal task) and stable responses. Thus, it is a good data set
to look for detailed matches with the simulation.

These participants, after using only compatible stimulus–
response pairings in the first two experiments, were asked to also
be responsible for incompatible pairings in the third experiment.
These incompatible mappings involved responding to the left
location with the index finger (mapping unchanged), the middle
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location with the ring finger (mapping changed), and the right
location with the middle finger (mapping changed). Two test
sessions were used in Experiment 4, and both involved compatible
mapping blocks and incompatible mapping blocks. Because par-
ticipants were responding so rapidly, we turned learning off in our
simulation and assumed it was always behaving according to the
terminal model in Figure 2B (thus speeding the simulation pro-
gram and allowing us to collect large numbers of observations).
The way we modeled the effect of compatibility was to assume
that, in the incompatible condition, the participants processed the
stimuli as the compatible condition and then converted their re-

sponse to the incompatible response. Asymptotically, this conver-
sion took just a single production, which made the incompatible
conditions 50 ms slower—close to the observed deficit.

As an added manipulation, Hazeltine et al. (2002) presented the
two stimuli either simultaneously or offset one from another by 50
ms. Thus, there were six dual-task conditions defined by whether
the visual task involved a compatible mapping or not, crossed with
whether there was a 50-ms head start for the visual task, or the two
tasks were simultaneous, or there was a 50-ms head start for the
aural task. In addition, there were two single-task aural conditions
(homogeneous and heterogeneous) and four single-task visual con-

Figure 4. Mean expected delay to the 50-ms bottleneck for (A) uniform distributions of different mean duration
(x-axis) and variability (different lines—range as percentage of mean and standard deviation as proportion of
mean); (B) Weibull distributions of different mean duration (x-axis) and parameters (different lines for v and b
given as proportion of b); (C) when the other distribution has different mean length (length as proportion of
mean) in the case of a uniform distribution whose standard deviation is .29 of mean; and (D) when the other
distribution has different mean length (length as proportion of mean) in the case of a Weibull distribution whose
standard deviation is .29 of mean.
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ditions (compatible vs. incompatible crossed with homogeneous
vs. heterogeneous). We ran 500,000 simulated trials in each con-
dition to reduce the error in the estimate of ACT-R’s predictions to
less than 0.1 ms. This is excess precision for predicting mean
times, but we also wanted to predict the distribution of times. To
achieve the 500,000 trials, we actually created a simulation of the
ACT-R simulation that just reproduced the keying timing relation-
ships and did not have the full generality of the ACT-R model,
because this is hardly required for modeling this experiment.

Figure 5A compares the predictions of the ACT-R model with
the data for the visual–motor task, and Figure 5B compares the
predictions and data for the aural–vocal task. For the visual task,
the model and data show a strong 50-ms effect of the compatibility
manipulation. The model does predict participants will be 7 ms
faster on the visual task when given a head start on that task than
when given a head start on the aural task, whereas there is no
significant difference in the data. However, in the case of the aural
task, participants averaged a significant 14 ms longer when the

tone came first, and the model predicts 12 ms. The model predicts
a disadvantage for both the aural–vocal and visual–manual task
when there is a head start for the tone because the head start speeds
up the aural task to the point at which the visual task is more likely
to overlap. The data also show a significant 13-ms slowing of the
aural–vocal task in the case of the incompatible visual mapping,
whereas the model predicts 9 ms. Again, in the model, this is
because the incompatible mapping slows the visual task to the
point at which there is more likely to be a conflict between the two
tasks.

The correspondence between model and data is close if not
perfect. The model predicts that the condition in which the tone
sounds first will result in slower responses for both the visual–
manual task and the aural–vocal task. It also predicts a larger
dual-task deficit for the aural–vocal task. Although the observed
deficit is larger in the case of the aural–vocal task, as predicted,
there is basically no effect in the visual–manual task, unlike the
prediction.

We get the largest dual-task cost when the aural task comes first,
because giving it a 50-ms head start puts it into a range where its
central bottleneck is more likely to compete with the central
bottleneck for the visual task. This can be seen by inspecting
Figure 6, which displays the mean timing of the various operations
in the six dual-task conditions. Figures 6A–6C reflect the various
compatible conditions. When there is a delay between the onset of
the aural and visual stimuli (Figure 6A or 6C), separate produc-
tions are required to initiate the aural and visual encoding. Figures
6D–6F reflect the incompatible condition, in which the visual
condition requires two productions—B1 (which is basically the
same as B and produces the compatible mapping) and B2 (which
converts that mapping). In Figure 6D, note that Production B1 fires
but does not complete before the aural encoding is complete. In
this case, a composite production (B2 & C) fires, combining the
aural task and the second half of the visual task. Such composite
productions never got an opportunity to fire in the compatible task
(see Figures 6A–6C) because there was never a point at which
productions for both tasks were simultaneously applicable.

Looking at Figure 6, it might seem particularly straightforward
what the dual-task costs would be. The aural task is delayed 20 ms
in the conditions illustrated in Figures 6A, 6D, and 6E, and it is not
at all delayed in the conditions illustrated in Figures 6B, 6C, and
6F. The completion of the visual task is never delayed. Although
this analysis would rather roughly correspond to the data, it ignores
the complexities produced by the variability in the times. The
maximum delay in any condition can be as large as 50 ms and as
small as 0. It is also quite possible, when the aural task has a head
start, for its production to intrude on the visual task and delay that.

Hazeltine et al. (2002) reported a simulation to determine how
long the bottleneck could be to produce the dual-task deficits that
they observed. They estimated that the bottleneck most plausibly is
in the range of 20 to 30 ms. Their simulation did not allow for the
possibility of variable length of stages and distribution of costs
between both tasks. However, even so, their estimate was only a
factor of 2 smaller than our maximum bottleneck cost in this task,
which is the 50-ms production time, and only a factor of 2 larger
than the predicted differences between the conditions.

It is important to realize that there is relatively little bottleneck
possible in our model for the task. Bottlenecks become more

Figure 5. Comparison of data and simulation for Experiment 4 from
Hazeltine et al. (2002). A: Visual–manual task. B: Aural–vocal task.
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significant when there is more cognition, as in Figure 2A. When
one realizes that participants are producing only 250-ms latencies
in the compatible visual task and 300-ms latencies in the incom-
patible visual task and the aural task, it should be apparent that

there is not much time for central cognition to intervene between
perception and action. Byrne and Anderson (2001) described tasks
in which cognition is much more substantial and interference is
much more substantial (over 1 s). However, they did not provide

Figure 6. Timing of the ACT-R operations in the simulation of the six conditions in Experiment 4 of Hazeltine et
al. (2002): compatible, tone first (A); compatible, simultaneous (B); compatible, location first (C); incompatible, tone
first (D); incompatible, simultaneous (E); and incompatible, location first (F). The lengths of the boxes reflect the
average time for each operation. Those operations concerned with the aural–vocal task are shaded.
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the extensive training of the current task. In principle, with enough
practice, any task would be converted into one in which central
cognition is almost totally eliminated and there is at most 50–100
ms of overlap in the central component, depending on compatibil-
ity. However, this requires converting all knowledge and contin-
gencies into specific production rules. Although this is more than
possible for the Hazeltine et al. (2002) tasks, the combinatorics for
complex tasks would become overwhelming.

Our argument depends critically on the distribution of times for
the two tasks. Hazeltine et al. (2002) provided some data to allow
us to judge how closely our model corresponds to the variability in
the actual data. Although Hazeltine et al. did not report data on the
variability in times to reach the bottleneck, they did provide data
on the variability in the difference between the completion times
for the two tasks. These data are reproduced in Figure 7 for the six
conditions along with our simulation. Plotted there are the proba-
bilities that the difference between the visual and aural completion
times will fall in various 25-ms bins. Given our rather blunt
assumptions about stage variability, we think the correspondence
between the distributions of time is stunning. One thing we would
like to stress is the approximate correspondence between the
variance of our distributions and the observed distributions. Across
the six conditions, the average standard deviation for both data and
theory is 58 ms. This indicates that our assumptions about the
variability of the component processes are approximately correct.

One curious feature of the distributions (E. Hazeltine, personal
communication) is that, both in the data and the model, there is a
certain tendency for the distributions to be skewed with a negative
tail. In the model, this is produced by the fact that the central
bottleneck for the visual–manual task tends to occur before the
bottleneck for the aural–vocal tasks. On trials in which the visual–
manual task is by chance slower than usual or the aural–vocal task
is faster than usual, we will have negative interresponse times in
Figure 7. However, these trials will tend to move the aural–vocal
bottleneck to where it delays the visual–manual, accentuating this
effect and producing the negative skew. Just the opposite happens
on those trials in which by chance the aural–vocal task is fast or the
visual–manual task is slow. These are the trials that produce
positive interresponse times in Figure 7. However, these trials will
tend to move the auditory–vocal bottleneck beyond the range of
the visual–manual bottleneck, thus eliminating the potential for
large positive interresponse times.

Another interesting statistic reported by Hazeltine et al. (2002)
concerns the correlation between the completion times for the two
tasks. When the aural task came first, the correlation was .03; when
the tasks were simultaneous, the correlation was .20; and when the
visual task came first, the correlation was .24. Hazeltine et al.
expressed puzzlement at why the correlation was different in the
aural-first task. Our model’s correlations were $.04, .20, and .17
in the three conditions. Hence, we are able to reproduce this
pattern. The reason for the positive (if weak) correlation in the
simultaneous and visual-first conditions is that both processes wait
on the firing of the first production and will share its variability.
Although this is still true in the aural-first condition, the interfer-
ence in the bottleneck means that when one process is fast, it may
interrupt and delay the other process, producing a negative rela-
tionship between response times.

Conclusions

In their conclusions, Hazeltine et al. (2002) write that “these
results present a serious challenge to models of dual-task perfor-
mance that postulate a unitary [central bottleneck]” (p. 541). We
do agree that they pose a serious challenge, and we think we have
shown that the ACT-R theory is up to accounting for (a) the
learning trends, (b) the magnitude of the dual-task interference,
and (c) the distribution of response latencies. It is interesting that
ACT-R can achieve this despite the fact that it is really just a
special case of a classical response-bottleneck model, which Ha-
zeltine et al.’s data had been thought to contradict. However,
ACT-R has a set of assumptions, largely similar to those in EPIC
about stage duration and stage variability, that enabled it to predict
the actual magnitude of the interference effects and the latency
distributions (b and c above). What are most unique to ACT-R are
its learning assumptions, and these enabled it to do a fair job of
accounting for the learning trends in these data as well (a above).
Altogether, these results display the merit of having a precise
simulation model with a priori commitments to parameter values.
ACT-R allows us to discover things that can be surprising—we
had not anticipated capturing all of these trends and, indeed, had
claimed we could not in a prior publication (Anderson et al., 2004).
It also allows us to make exact value predictions so that we can
truly judge whether the theory is compatible with the data. Exact
value predictions are particularly important if one wants to judge
the significance of the small dual-task costs that Hazeltine et al.
found.

This being said, we would like to close by acknowledging that
it is unlikely that the model presented here corresponds exactly to
what is happening in the participants. We offer it to show that a
theory with a central bottleneck like ACT-R is compatible with the
reported data and that the ACT-R production-learning mechanisms
can produce the emergence of near perfect timesharing with prac-
tice. As a sign that the current model is not perfect, there are
effects in the data that our model does not account for. Notable in
our minds are two. First, in Figure 2, our model is unable to
explain the greater speedup that occurs with practice in the audi-
tory single task than in the visual single task. This may reflect
some perceptual learning that ACT-R does not model. Second, our
model predicts that there should be small dual-task costs for both
the visual–manual and the aural–vocal tasks in both Experiments 2
and 4. Although the dual-cost effects are on average about what
our model predicts, they are almost exclusively found in the
performance of the aural–vocal task. Although our model predicts
slightly smaller effects for the visual–manual task, it does not
produce the apparent 0 dual-task cost for that task. We should note
that this asymmetry between the two tasks does not seem to have
occurred in the original Schumacher et al. (2001) experiment.
Rather, both tasks showed some residual dual-task cost as pre-
dicted by our model.

Also, we would like to acknowledge that we have doubts about
the current ACT-R account of the stimulus–response compatibility
effects in this experiment. The two-production asymptotic behav-
ior of ACT-R in this task depends on having first learned the
compatible response. As a consequence, the compatible production
intruded first and had to be reversed by a second production. Had
participants been first trained up on the incompatible condition,
they would have suffered the same deficit in transferring to the
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Figure 7. Observed and predicted distribution of intervals between the two responses in Experiment 4 of
Hazeltine et al. (2002). These are computed by subtracting the reaction time for the visual task from the reaction
time for the aural task. The six panels reflect the six conditions of the experiment.
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compatible condition. This seems very unlikely. Basically, ACT-R
probably does not have the right explanation of why two produc-
tions are required in the incompatible condition and only one is
required in the compatible condition. However, given such a
two-production model, ACT-R does seem to fit the data reasonably
well and make the point that these results are not incompatible
with the assumption of a central bottleneck.

Finally, we would like to state what we see as the main point of
this article: If one assumes variable duration stages and a brief
central bottleneck, as ACT-R does for these tasks, it will be
difficult to discriminate such an account from an account without
a central bottleneck. These experiments were carefully designed to
serve that purpose, and we have shown that they are unable to rule
out an account like that in ACT-R.
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