
Learning When to Switch Tasks in a Dynamic Multitasking Environment

Dario D. Salvucci (salvucci@cs.drexel.edu) 1
Niels A. Taatgen (taatgen@cmu.edu) 2

Yelena Kushleyeva (yk45@drexel.edu) 1
1 Department of Computer Science, Drexel University

3141 Chestnut St., Philadelphia, PA 19104, USA
2 Department of Psychology, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA

Abstract

When performing concurrent tasks of non-trivial durations,
people balance task processing by interleaving segments of
one task with another. In this paper we describe a cognitive
model of multitasking and interleaving for such extended
concurrent tasks, specifically focusing on learning when to
switch from one task to another. To explore this issue, we
performed an empirical study of “discrete driving” in which
participants used a keyboard to steer a vehicle while entering
navigation information as a secondary task. We then
compare and contrast two models of this task that learn task-
switching behavior based on the (changing) characteristics of
the discrete driving task.

Introduction
Human multitasking arises in many flavors and contexts.
Much of the experimentation and modeling for multiple task
performance has focused on short-duration tasks in
paradigms such as psychological refractory period (PRP)
tasks and alternating choice tasks. Scaling such tasks up to
common scenarios in the real world, many real domains
involve complex multitasking where multiple tasks are
executed for extended periods of time. This type of
multitasking is ubiquitous in our everyday lives, from a
receptionist managing walk-in clients while answering
phones, to a cashier totaling up purchases while bagging
goods, to an air-traffic controller monitoring air traffic while
communicating with multiple aircraft.
 Cognitive models, especially those developed using
today’s larger-scale cognitive architectures, have accounted
for this type of extended multitasking in at least two ways.
Most commonly, models of complex tasks such as game
playing (e.g., Laird & Duchi, 2000) and air-traffic control
(e.g., Taatgen & Lee, 2003) have incorporated task-
interleaving and scheduling mechanisms to manage
component subtasks in their respective domains; as such,
these models have specialized mechanisms, also called
“customized executives” (Kieras et al., 2000), fine-tuned for
the particular task. Other modeling efforts have focused on
characteristics of domain-independent multitasking, such as
a computational “general executive,” for integration of
component task models into larger multitasking models.
Kieras et al. (2000) discuss issues of customized versus
general executives at length in their treatment of many types

of multitasking. Also, Salvucci (2005) has posited a queue-
based general executive for the ACT-R architecture
(Anderson et al., 2004), and Taatgen (2005) has described a
general way in which this architecture can account for
optimized performance of multiple concurrent tasks.
 This paper explores a specific issue that arises in
extended multitasking: how people determine when to
switch tasks and how task interleaving may evolve in
changing task conditions. To observe people’s task
interleaving behavior, we use a novel “discrete driving” task
in which people steer a simulated vehicle with simple
keystrokes while, at the same time, entering navigation
information with the mouse as a secondary task. The
motivation for this task arose from earlier studies of real
driving and driver distraction: while realistic driving (in a
driving simulator or instrumented vehicle) provides data
clearly relevant to real-world scenarios, the points at which
drivers switch between driving and the secondary task are
obscured by the continuous steering input signal. The
discrete driving task, by requiring separate discrete inputs
for steering (i.e., the individual keystrokes), more clearly
elucidates interleaving exhibited in the task. In addition, the
task allows us to manipulate the difficulty of the steering
task (by perturbing the vehicle more or less often, as
described shortly), thus providing data for whether and how
drivers adapt to changing conditions in the primary task.
 Our modeling approach for this task is guided by the
idea that time — or more accurately, a person’s perception
of time — has a significant influence on task interleaving.
To this end, we demonstrate how the ACT-R cognitive
architecture along with a new temporal module for time
estimation (Taatgen et al., 2005) and general executive for
goal interleaving (Salvucci, 2005) account well for certain
aspects of human performance in the discrete driving task.
In particular, we compare and contrast two models based on
the same component task models but utilizing different
methods for interleaving tasks, one that emphasizes bottom-
up control and another that emphasizes top-down control.
These models aim to demonstrate how, for an interesting set
of complex task domains, cognitive models with a perceived
sense of time can sense and adapt to the temporal
characteristics of the component tasks.

Discrete Driving: Task and Empirical Study
The discrete driving task was inspired by earlier studies of
driver behavior, especially those involving driver distraction
with a secondary task such as cell-phone dialing or radio
tuning (e.g., Salvucci, 2001, 2005; Salvucci & Macuga,
2002). While these studies were reasonably faithful to the
real-world task with data collected in a driving simulator,
the analysis of task switching was somewhat difficult
because of the continuous nature of the steering input: the
steering wheel is generally moving in a steady continuous
fashion (although the movement may be updated by discrete
signals that change its characteristics), and thus determining
when people were cognitively processing the driving task
versus the secondary task was a difficult inference. To
address this issue, the discrete driving task allows for
discrete driver “steering” by means of keystrokes on a
desktop keyboard. The secondary task, a navigation entry
task, requires mouse movements and clicks that mimic
pointing on an in-vehicle touch-screen. Because both tasks
provide discrete inputs (keystrokes and mouse clicks), the
data can be readily analyzed to determine when people are
performing actions in one task versus the other.

Task Overview
A sample screen of the driving task is shown in Figure 1.
As the vehicle moves down the road, it is perturbed by
discrete movements of 10 pixels to the left or right at semi-
random intervals. In the fast condition, the vehicle moves
after 0.5, 0.75, or 1.0 seconds with equal probability; in the
slow condition, the vehicle moves after 2.0, 2.5, or 3.0
seconds. To “steer” the vehicle back to center, the driver
uses two keys (‘a’ and ‘d’) to move left or right by 10 pixels
per keystroke, and any keystroke resets the perturbation
timer. When the vehicle sits in the road center, it moves left
or right randomly with equal probability. When the vehicle
sits to the right of center, it moves farther right with a
probability of 2/3, and to the left of center, farther left with
the same probability; this heuristic makes it more likely that
the vehicle will drift away from center as opposed to toward
the center, as is the typical case for real driving.
 The secondary task performed while driving, the
navigation entry task, asks drivers to enter street, city, and
state information into a mock-up navigation device. Figure
2 shows one screen of the navigation interface used in our
study (top), as well as the real navigation device (bottom) on
which our interface is based (Garmin StreetPilot 2620).

 Navigation entry begins with a screen in which the user
selects one of four information items to enter: street number,
street name, city, and state. When one of these is clicked,
the interface screen changes to a keyboard layout — the
alphabetic keyboard shown in Figure 2 for name/city/state,
or a numeric/alphabetic keyboard (not shown but similar to
Figure 2) for street number. The user clicks the individual
letters and clicks “OK” when done. This process continues
until all four items are entered, followed by a final “Done”
button click. The information to be entered is displayed as
simple text fields below the navigation interface.
 Six stimuli for the navigation-entry task were created
and standardized as follows. All street numbers contained
three digits (all digits randomized over the stimuli). All
street names contained six letters (e.g., “Sunset”, “Walnut”),
and all city names contained either nine or twelve letters
(e.g., “Baltimore”, “Philadelphia”). The state names
contained two letters and correctly corresponded to the
associated city name with no repeated states.
 The discrete driving task including navigation entry
task requires extended interleaving of two tasks, given that
the entry task requires approximately 30-90 seconds for
completion. While the task mimics real-world tasks, a much
more realistic version would put drivers in a real vehicle or
driving simulator while entering information on a real
touch-screen GPS device. (Although navigation entry
should never be performed during real driving, it has been
estimated that over 2100 crashes per year may result from
entry into these types of systems: Green, 1998.) However,
the simplicity and discrete inputs of this task represents a
balance of realism and simplicity as required to examine the
detailed nature of multitasking in such a complex task.

Figure 1: Sample screen of the discrete driving task.

Figure 2: Sample screen of the navigation entry task,
and the real navigation device on which it is based.

Experiment Overview
Ten university students (2 women, 8 men) participated in
the experiment. Each participant was first instructed on the
basic structure of the task; participants were asked to treat
the discrete driving task with high priority, the way they
treat normal driving, and to keep the vehicle as centered as
possible on the roadway. Then, participants were allowed to
practice each task separately: first navigation and then
driving. The two practice blocks were followed by three
experimental segments: navigation alone, then driving +
navigation, then again navigation alone. In the remainder of
this paper we discuss only on the central segment of trials
with both tasks. This segment began with 20 seconds of
driving, followed by onset of the first navigation-entry
stimulus. The completion of the entry task was followed by
10 seconds of driving alone and then the next entry
stimulus. In all, participants completed 18 trials of the entry
task — three blocks of the six different stimuli in
randomized, counterbalanced order.
 One critical aspect of the experiment is the changing
nature of the driving task. For the first two blocks of 6 trials
(12 trials), the driving task remained in the initial fast
condition. For the final block of 6 trials, the driving task
changed to the slow condition. Participants were not told of
this change, and thus we can examine their implicit
adaptation to task demands, initially in learning the demands
of the fast condition and later in learning the demands of the
slow condition. The results of the empirical study are
reported later in the next section along with the results of the
cognitive model simulations.

Models of the Discrete Driving Task
We are interested in modeling several aspects of behavior in
the discrete driving task; most importantly, we wish to
explore the adaptation to the changing timing characteristics
of the driving task with respect to interleaving the two tasks.
As the core framework for this modeling effort, we use the
ACT-R cognitive architecture (Anderson et al., 2004) with
two previously validated modules: the temporal module for
time perception (Taatgen et al. 2005), and the general
executive for task interleaving (Salvucci, 2005). We
describe two possible models for the task: one assumes an
integrated goal representation with “bottom-up” shifts of
control initiated by the individual tasks; the other assumes
separate goal representations for each task with “top-down”
shifts of control initiated by a general executive mechanism.

Modeling Architecture
The ACT-R cognitive architecture represents cognition as a
system of production rules; the system receives input from a
group of special modules, each corresponding to a semi-
independent processor of a specific modality of information,
as shown in Figure 3. The core architecture does not
include a module that allows for temporal perception, and
contains a simple goal module that includes just a buffer
with the current goal. These two current limitations led us
to use two recently validated architectural extensions: the
temporal module and the general executive.

Figure 3: Outline of the ACT-R architecture.

Temporal Module. The temporal module (Taatgen et al.,
2005) allows ACT-R to estimate and reproduce time
intervals up to approximately 30 seconds. It acts like a
metronome, but one that starts ticking slower and slower as
time progresses. The interval estimate is based on the
number of ticks the metronome has produced. More
precisely, the duration of the first tick t0 is set to some start
value start-tick. Then, each subsequent tick is separated
from the previous tick by an interval that is a times the
interval between the previous two ticks. Each interval also
has noise drawn from a logistic distribution added to it. The
distribution of this noise is determined by the current tick-
length. More concisely, the tick duration tn is computed as:

!

t
n+1 = at

n
+ noise(mean = 0,sd = b "at

n
)

In ACT-R, as suggested by Figure 3, production rules must
start and read the temporal module timer. This means that
errors in time estimates are due not only to noise in the
temporal module itself, but also to the production system
not initiating or reading the timer at the right moment.

Figure 4: Illustration of the temporal module.

For example, suppose we want to reproduce a time interval
before a light turns on, as represented in the first horizontal
bar in Figure 4. The timer is initiated at the start of the trial.
When the light comes on, the value of the timer (5 ticks in
the example) is read and stored. When the interval has to be
reproduced, the value of the timer perceived earlier is used.
As the figure illustrates, the reproduced interval is not
entirely accurate due to the noise in the calculations.
Taatgen et al. (2005) have estimated values for the
parameters in these equations to obtain an optimal fit to the
Rakitin et al. (1998) experiment of interval estimation: 11
ms for start-tick, 1.1 for a, and 0.015 for b. These values

also provided excellent fits to the other experiments
discussed in that paper, and are also the values we have used
in the models described in this paper.

General Executive. The general executive (Salvucci, 2005)
allows ACT-R to manage a set of current goals and execute
them on a first-in, first-out (FIFO) basis. In the Figure 3
diagram, the general executive resides in the goal module,
taking requests for new goals and placing them onto the
queue. When any changes are made to the goal set — that
is, when a new goal is requested or the active goal is
terminated — the general executive sets the foremost goal
on the queue as the current goal. It is important to note that
“goals” in this case are typically small subgoals of a
continuous or extended task; for example, a driving goal
might be to look at the road and center the road, or a
navigation goal might be to type one character. Thus, the
general executive relies on the goal representation and
production rules to define where interleaving may take
place: essentially, interleaving can happen between
(sub)goals but not during a particular (sub)goal.
 The most recent formulation of the general executive
(Salvucci, 2005) incorporated its own timing mechanism
that could alter the order of goals in the queue based on
requested start times. In the present work, we do not use
this timing mechanism, and instead rely on the temporal
module to perform the timing within the production rules.
This decision was motivated by the desire to use a single
timing mechanism for both models below, and to show how
the more rigorously validated temporal module described
above meshes well with the mechanisms of the general
executive, providing more validation for both mechanisms.

Component Models and Integration
We developed two models of the full task, both based on the
same models of the two component tasks, driving and
navigation entry. The driving model followed the basic
structure of a fully developed model of real driving (see
Salvucci, 2005) but with modifications to perform discrete
driving. Specifically, the model centers the vehicle by
attending to the center point of the road, determining
whether it is left or right of center, pressing the appropriate
key for moving the vehicle one step, and repeating this cycle
until the vehicle is centered on the roadway.
 The model of navigation entry performs the basic steps
of the task in the expected order. On the first category
screen, the model selects the first unspecified category (i.e.,
street number, street name, city, or state) and clicks this
button to begin entry. After encoding the respective
information provided below the navigation interface, it
types the individual letters/digits by clicking on their
respective buttons. The model is provided with locations of
the buttons and thus not required to search for the correct
button, thus assuming that initial visual-location learning
has already occurred in the practice trials. When each item
is completely typed, the model clicks “OK” and moves to
the next unspecified item until all information has been
entered, ending with a final click on the “Done” button.
 These component models were integrated in two ways
to create distinct models which we characterize as “bottom-

up” and “top-down” control models. In truth, neither model
is purely one or the other: the bottom-up model includes
top-down characteristics and vice-versa. However, we thus
term the models for the sake of simplicity and to recognize
that one model is more bottom-up and the other more top-
down, as opposed to completely one or the other.

Bottom-Up Control Model. The first of our two models
uses “bottom-up control” in that events determine what it
will do, including switching between the two tasks. Events
in this context are defined in terms of changes in ACT-R’s
perceptual buffers (which for this purpose includes the
temporal buffer). The model uses three control states to
keep track of what it is doing: driving, determining which
address item (number, street, city, or state) has to be
entered, and typing.
 The main control aspect of the model is the switching
between the two tasks. The model switches from driving to
typing whenever the car is in the center of the road. At that
moment it also gives the start signal to the temporal module,
which will start keeping track of time. Initially the model
does not know how much time can be spent on typing
without endangering the driving, but it tries to determine
this on the basis of experience. For this we use an
experience-based method that Taatgen et al. (2005)
designed for another time perception task in which a time
interval had to be determined. While the model is typing, it
also tries to retrieve from memory a previous experience of
looking away from the road. Specifically, it tries to find an
experience that matches the current time (as represented in
the temporal buffer) or the near future (within 10 “ticks”).
Retrieving experiences and typing can be interleaved
reasonably well because typing mainly involves perceptual
and motor actions. If the model fails to retrieve a past
experience (which is guaranteed to happen the first time), it
immediately switches back to driving. If the model looks
back at the road and the car is still in the middle of the road,
it evaluates the experience as early; if car is slightly off the
middle of the road, it will evaluate it as a success; and if the
car is far from the center (we define “far” in an upcoming
section), it will evaluate it as late.
 If the model does retrieve a prior experience, it will act
on how that experience was evaluated. When the model
later retrieves an early experience, it will continue typing
and retrieve a new experience; if the model retrieves a
success experience, it will continue typing but will switch
back to driving as soon as the temporal buffer reaches the
time in the retrieved experience; if the model retrieves a late
experience, it will switch back to driving right away. The
bottom-up model can switch back to driving at any moment
during the typing, and will primarily do so during mouse
movements, since these movements take up the majority of
the entry time.

Top-Down Control Model. The second model uses “top-
down control” in that it allows the general executive to
perform the interleaving of the two tasks. The rules for the
component models were first modified such that any rule
that modified the existing goal chunk instead created a new
goal chunk, except for rules that made requests to the visual
module (to avoid interrupting visual processing). For the

driving model, this meant that the top-down model allows
task interruption after each centering movement; for the
navigation-entry task, the model allows interruption
between each mouse click. The rules for each task make no
mention of the other task, as if they had been learned
independently; this facilitates running each task by itself or,
if desired, running it with other additional tasks.
 The timing in the top-down model is contained in the
rules for the driving task. The model maintains a desired
time delay to wait before each new centering movement,
quantified in terms of number of ticks, as provided by the
temporal module. With an initial delay of 0, the model can
either effectively increment or decrement the delay based on
the safety margins of the driving task. Specifically, when
the model returns to the task after the desired delay, it
classifies the delay as early, late, or success (analogous to
the bottom-up model) and adjusts the delay. When the
vehicle is still centered, the delay is early and is reset to the
elapsed time since the last task (which is at least 50 ms
greater than the current delay). When the vehicle is farther
from center than the desired safety margin, the delay is late
and is reset to 0. When the vehicle is an acceptable distance
away from center, the delay is success and remains the
same. The model also allows for some probability (preset to
0.5) of checking the roadway before the desired time delay;
if the vehicle is outside of the safety margins, the delay
resets to 0, otherwise it remains the same.

Model Summary. While the models differ in their specifics
of how timing can occur in “bottom-up” and “top-down”
models, both models essentially take a satisficing approach
to learning appropriate time intervals for switching: they
determine whether recent switches were early, late, or
successful as defined by the task, and adapt the time interval
accordingly. ‘Early’ can easily be defined in this context,
namely when the vehicle is still in the lane center. ‘Late’ is
somewhat more difficult, in that it represents a person’s
tolerance for how far the vehicle can stray from the lane
center. (It turned out that this parameter had little impact on
the model results for the bottom-up model, though slightly
more impact on the top-down model.)

Results
We ran simulations for each model and analyzed the results
in conjunction with those of the human participants in the
experiment. The bottom-up model was constructed by the
second author without him having access to the data, so it
can be considered as a true prediction of the outcome. The
top-down model is a modification of the bottom-up model
to include the use of the central executive.
 We begin with the results of primary interest in this
paper, namely how the changing characteristics of the
driving task affected task interleaving of the two tasks.
Figure 5 shows the average time spent on the secondary task
(navigation entry) before switching back to driving — that
is, the time between driving keystrokes when interrupted by
button clicks for the navigation task. The human and model
data are split into three stages, namely the first, second, and
third set of 6 trials in the experiment, where the first and
second represent the fast driving condition and the third

represents the slow condition. The human participants show
an average time of approximately 1.8 s, and the times for
Stages 1 and 2 are not significantly different, t(9)=.73,
p>.48. However, there is a clearly significant jump from
Stage 2 to 3 when the driving condition changes from fast to
slow, t(9)=16.6, p<.01, to a value of approximately 3.5 s.
Both models reproduce these values very closely, R2>.99.
Clearly the models are correctly learning appropriate switch
times based on the characteristics of the driving task, both
initially at the onset of the experiment for the fast condition,
and later for Stage 3 after the change to the slow condition.
 Another way to analyze the amount of processing on
the secondary task is to examine the number of mouse clicks
instead of total time. Figure 6 shows the average number of
clicks between interrupted driving keystrokes. Again the
human participants show a large effect from Stage 2 to 3,
t(9)=14.1, p<.01. For this measure, however, they also
exhibit a significant albeit very small effect between Stages
1 and 2, t(9)=2.7, p<.05. The model results closely
correspond with the human results, R2>.99, and in particular
predict the large effect for Stage 3. The models do not
predict any effect between the first two stages; we believe
the human data exhibit the small effect due to final visual
learning of the button locations on the interface, and not
surprisingly the models do not predict this effect due to their
preset visual locations. Interestingly, this does not lead to a
significant difference in time for the human data in Stages 1

Figure 5: Average time between driving actions.

Figure 6: Average number of navigation-task

mouse clicks between driving actions.

and 2 (as shown in Figure 5); apparently the participants are
keeping time constant while squeezing slightly more clicks
into this time in the second stage.
 While the behavior of both models corresponds well to
human behavior for these measures, it is interesting to
investigate where they differ. One key difference between
the models is that the top-down model only allows
switching back to driving at natural subtask boundaries,
while the bottom-up model allows switching back any time.
The bottom-up model therefore allows switching back to
driving between the mouse-movement towards a key and
the mouse-click on the key, contrary to the top-down model.
If the bottom-up model is right there should be fast mouse-
clicks directly after switching back from driving. Figure 7
shows histograms for the time delay between a driving
keystroke and the subsequent navigation mouse click
(including Stage 2 only). The human data show a wide
spread of times between 0.25 and 2.0 s. In contrast, both
models exhibit a tighter distribution: the bottom-up model
tends to click sooner than the top-down model because it
sometimes processes the driving task during a mouse
movement, and thus has less work to complete upon
returning to the entry task; the top-down model always
moves and clicks in sequence with no interruption, with the
navigation model using vision and thus not allowing the
general executive to switch tasks during the movement. The
longest human times could be due to visual searching early
in the experiment, whereas the shortest times could be
attributed to driving during mouse movement, consistent
with the behavior of the bottom-up model.

General Discussion
The key result presented here is that models developed in a
cognitive architecture such as ACT-R can learn appropriate
task-switching intervals based on the changing demands of
the component tasks. Some previous work (e.g., Salvucci,
2005) utilized models with task-switching time intervals,
but the actual values of the time intervals were estimated as

a free model parameter and fixed as a constant throughout a
model run. Here, we have demonstrated that not only can
the model learn appropriate intervals, but can also adapt
them by taking a satisficing view of task demands that
evaluate task scenarios as early, late, or successful.
 There are many aspects of the discrete driving data,
both human and model, which cannot be included here due
to space limitations. We are now performing a fuller
analysis of these results to understand the larger scope of the
models’ behavior and how well they account for other task
measures, such as effects of distraction on the primary
driving task and effects of representation (e.g., time
intervals for each letter in the six-letter street name) on both
the driving and navigation entry tasks.

Acknowledgments
This work was supported by ONR grant #N00014-03-1-
0036 to the first author, ONR grant #N00014-06-1-0055 to
the second author, and an NSF Graduate Fellowship to the
third author.

References
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere,

C., & Qin, Y. (2004). An integrated theory of the mind.
Psychological Review, 111, 1036-1060

Green, P. (1999). Visual and task demands of driver information
systems. Tech. Rep. #UMTRI-98-16, University of Michigan,
Transportation Research Institute, Human Factors Group / US
Society of Automotive Engineers.

Kieras, D.E., Meyer, D.E., Ballas, J.A., & Lauber, E.J. (2000).
Modern computational perspectives on executive mental
processes and cognitive control: Where to from here?. In S.
Monsell & J. Driver (Eds.), Control of Cognitive Processes (pp.
681-712). Cambridge, MA: MIT Press.

Rakitin, B.C., Gibbon, J., Penney, T.B., Malapani, C., Hinton, S.C.
and Meck, W.H. (1998). Scalar Expectancy Theory and Peak-
Interval Timing in Humans. Journal of Experimental
Psychology: Animal Behavior Processes, 24, 15-33.

Salvucci, D.D. (2001). Predicting the effects of in-car interface use
on driver performance: An integrated model approach.
International Journal of Human-Computer Studies, 55, 85-107.

Salvucci, D.D. (2005). A multitasking general executive for
compound continuous tasks. Cognitive Science, 29, 457-492.

Salvucci, D.D., & Macuga, K.L. (2002). Predicting the effects of
cellular-phone dialing on driver performance. Cognitive
Systems Research, 3, 95-102.

Taatgen, N.A. (2005). Modeling parallelization and flexibility
improvements in skill acquisition: From dual tasks to complex
dynamic skills. Cognitive Science, 29, 421-455.

Taatgen, N.A., Anderson, J.R., Dickison, D. & van Rijn, H.
(2005). Time interval estimation: Internal clock or attentional
mechanism? In Proceedings of the Twenty-Seventh Annual
Meeting of the Cognitive Science Society (pp. 2122-2127).
Mahwah, NJ: Erlbaum.

Taatgen, N.A., & Lee, F.J. (2003). Production compilation: A
simple mechanism to model complex skill acquisition. Human
Factors, 45, 61-76.

Figure 7: Histogram of times between a driving action

and the subsequent navigation-task mouse click.

