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Abstract 
 

When performing concurrent tasks of non-trivial durations, 
people balance task processing by interleaving segments of 
one task with another.  In this paper we describe a cognitive 
model of multitasking and interleaving for such extended 
concurrent tasks, specifically focusing on learning when to 
switch from one task to another.  To explore this issue, we 
performed an empirical study of “discrete driving” in which 
participants used a keyboard to steer a vehicle while entering 
navigation information as a secondary task.  We then 
compare and contrast two models of this task that learn task-
switching behavior based on the (changing) characteristics of 
the discrete driving task. 

Introduction 
Human multitasking arises in many flavors and contexts.  
Much of the experimentation and modeling for multiple task 
performance has focused on short-duration tasks in 
paradigms such as psychological refractory period (PRP) 
tasks and alternating choice tasks.  Scaling such tasks up to 
common scenarios in the real world, many real domains 
involve complex multitasking where multiple tasks are 
executed for extended periods of time.  This type of 
multitasking is ubiquitous in our everyday lives, from a 
receptionist managing walk-in clients while answering 
phones, to a cashier totaling up purchases while bagging 
goods, to an air-traffic controller monitoring air traffic while 
communicating with multiple aircraft. 
 Cognitive models, especially those developed using 
today’s larger-scale cognitive architectures, have accounted 
for this type of extended multitasking in at least two ways.  
Most commonly, models of complex tasks such as game 
playing (e.g., Laird & Duchi, 2000) and air-traffic control 
(e.g., Taatgen & Lee, 2003) have incorporated task-
interleaving and scheduling mechanisms to manage 
component subtasks in their respective domains; as such, 
these models have specialized mechanisms, also called 
“customized executives” (Kieras et al., 2000), fine-tuned for 
the particular task.  Other modeling efforts have focused on 
characteristics of domain-independent multitasking, such as 
a computational “general executive,” for integration of 
component task models into larger multitasking models. 
Kieras et al. (2000) discuss issues of customized versus 
general executives at length in their treatment of many types 

of multitasking.  Also, Salvucci (2005) has posited a queue-
based general executive for the ACT-R architecture 
(Anderson et al., 2004), and Taatgen (2005) has described a 
general way in which this architecture can account for 
optimized performance of multiple concurrent tasks. 
 This paper explores a specific issue that arises in 
extended multitasking: how people determine when to 
switch tasks and how task interleaving may evolve in 
changing task conditions.  To observe people’s task 
interleaving behavior, we use a novel “discrete driving” task 
in which people steer a simulated vehicle with simple 
keystrokes while, at the same time, entering navigation 
information with the mouse as a secondary task.  The 
motivation for this task arose from earlier studies of real 
driving and driver distraction: while realistic driving (in a 
driving simulator or instrumented vehicle) provides data 
clearly relevant to real-world scenarios, the points at which 
drivers switch between driving and the secondary task are 
obscured by the continuous steering input signal.  The 
discrete driving task, by requiring separate discrete inputs 
for steering (i.e., the individual keystrokes), more clearly 
elucidates interleaving exhibited in the task.  In addition, the 
task allows us to manipulate the difficulty of the steering 
task (by perturbing the vehicle more or less often, as 
described shortly), thus providing data for whether and how 
drivers adapt to changing conditions in the primary task. 
 Our modeling approach for this task is guided by the 
idea that time — or more accurately, a person’s perception 
of time — has a significant influence on task interleaving.  
To this end, we demonstrate how the ACT-R cognitive 
architecture along with a new temporal module for time 
estimation (Taatgen et al., 2005) and general executive for 
goal interleaving (Salvucci, 2005) account well for certain 
aspects of human performance in the discrete driving task.  
In particular, we compare and contrast two models based on 
the same component task models but utilizing different 
methods for interleaving tasks, one that emphasizes bottom-
up control and another that emphasizes top-down control.  
These models aim to demonstrate how, for an interesting set 
of complex task domains, cognitive models with a perceived 
sense of time can sense and adapt to the temporal 
characteristics of the component tasks. 



 

Discrete Driving: Task and Empirical Study 
The discrete driving task was inspired by earlier studies of 
driver behavior, especially those involving driver distraction 
with a secondary task such as cell-phone dialing or radio 
tuning (e.g., Salvucci, 2001, 2005; Salvucci & Macuga, 
2002).  While these studies were reasonably faithful to the 
real-world task with data collected in a driving simulator, 
the analysis of task switching was somewhat difficult 
because of the continuous nature of the steering input: the 
steering wheel is generally moving in a steady continuous 
fashion (although the movement may be updated by discrete 
signals that change its characteristics), and thus determining 
when people were cognitively processing the driving task 
versus the secondary task was a difficult inference.  To 
address this issue, the discrete driving task allows for 
discrete driver “steering” by means of keystrokes on a 
desktop keyboard.  The secondary task, a navigation entry 
task, requires mouse movements and clicks that mimic 
pointing on an in-vehicle touch-screen.  Because both tasks 
provide discrete inputs (keystrokes and mouse clicks), the 
data can be readily analyzed to determine when people are 
performing actions in one task versus the other. 

Task Overview 
A sample screen of the driving task is shown in Figure 1.  
As the vehicle moves down the road, it is perturbed by 
discrete movements of 10 pixels to the left or right at semi-
random intervals.  In the fast condition, the vehicle moves 
after 0.5, 0.75, or 1.0 seconds with equal probability; in the 
slow condition, the vehicle moves after 2.0, 2.5, or 3.0 
seconds.  To “steer” the vehicle back to center, the driver 
uses two keys (‘a’ and ‘d’) to move left or right by 10 pixels 
per keystroke, and any keystroke resets the perturbation 
timer.  When the vehicle sits in the road center, it moves left 
or right randomly with equal probability.  When the vehicle 
sits to the right of center, it moves farther right with a 
probability of 2/3, and to the left of center, farther left with 
the same probability; this heuristic makes it more likely that 
the vehicle will drift away from center as opposed to toward 
the center, as is the typical case for real driving.  
 The secondary task performed while driving, the 
navigation entry task, asks drivers to enter street, city, and 
state information into a mock-up navigation device.  Figure 
2 shows one screen of the navigation interface used in our 
study (top), as well as the real navigation device (bottom) on 
which our interface is based (Garmin StreetPilot 2620). 

 Navigation entry begins with a screen in which the user 
selects one of four information items to enter: street number, 
street name, city, and state.  When one of these is clicked, 
the interface screen changes to a keyboard layout — the 
alphabetic keyboard shown in Figure 2 for name/city/state, 
or a numeric/alphabetic keyboard (not shown but similar to 
Figure 2) for street number.  The user clicks the individual 
letters and clicks “OK” when done.  This process continues 
until all four items are entered, followed by a final “Done” 
button click.  The information to be entered is displayed as 
simple text fields below the navigation interface. 
 Six stimuli for the navigation-entry task were created 
and standardized as follows.  All street numbers contained 
three digits (all digits randomized over the stimuli).  All 
street names contained six letters (e.g., “Sunset”, “Walnut”), 
and all city names contained either nine or twelve letters 
(e.g., “Baltimore”, “Philadelphia”).  The state names 
contained two letters and correctly corresponded to the 
associated city name with no repeated states. 
 The discrete driving task including navigation entry 
task requires extended interleaving of two tasks, given that 
the entry task requires approximately 30-90 seconds for 
completion.  While the task mimics real-world tasks, a much 
more realistic version would put drivers in a real vehicle or 
driving simulator while entering information on a real 
touch-screen GPS device.  (Although navigation entry 
should never be performed during real driving, it has been 
estimated that over 2100 crashes per year may result from 
entry into these types of systems: Green, 1998.)  However, 
the simplicity and discrete inputs of this task represents a 
balance of realism and simplicity as required to examine the 
detailed nature of multitasking in such a complex task. 

 
Figure 1: Sample screen of the discrete driving task. 

 

 
Figure 2: Sample screen of the navigation entry task, 
and the real navigation device on which it is based. 



 

Experiment Overview 
Ten university students (2 women, 8 men) participated in 
the experiment.  Each participant was first instructed on the 
basic structure of the task; participants were asked to treat 
the discrete driving task with high priority, the way they 
treat normal driving, and to keep the vehicle as centered as 
possible on the roadway. Then, participants were allowed to 
practice each task separately: first navigation and then 
driving. The two practice blocks were followed by three 
experimental segments: navigation alone, then driving + 
navigation, then again navigation alone.  In the remainder of 
this paper we discuss only on the central segment of trials 
with both tasks.  This segment began with 20 seconds of 
driving, followed by onset of the first navigation-entry 
stimulus.  The completion of the entry task was followed by 
10 seconds of driving alone and then the next entry 
stimulus.  In all, participants completed 18 trials of the entry 
task — three blocks of the six different stimuli in 
randomized, counterbalanced order. 
 One critical aspect of the experiment is the changing 
nature of the driving task.  For the first two blocks of 6 trials 
(12 trials), the driving task remained in the initial fast 
condition. For the final block of 6 trials, the driving task 
changed to the slow condition. Participants were not told of 
this change, and thus we can examine their implicit 
adaptation to task demands, initially in learning the demands 
of the fast condition and later in learning the demands of the 
slow condition.  The results of the empirical study are 
reported later in the next section along with the results of the 
cognitive model simulations. 

Models of the Discrete Driving Task 
We are interested in modeling several aspects of behavior in 
the discrete driving task; most importantly, we wish to 
explore the adaptation to the changing timing characteristics 
of the driving task with respect to interleaving the two tasks.  
As the core framework for this modeling effort, we use the 
ACT-R cognitive architecture (Anderson et al., 2004) with 
two previously validated modules: the temporal module for 
time perception (Taatgen et al. 2005), and the general 
executive for task interleaving (Salvucci, 2005).  We 
describe two possible models for the task: one assumes an 
integrated goal representation with “bottom-up” shifts of 
control initiated by the individual tasks; the other assumes 
separate goal representations for each task with “top-down” 
shifts of control initiated by a general executive mechanism. 

Modeling Architecture 
The ACT-R cognitive architecture represents cognition as a 
system of production rules; the system receives input from a 
group of special modules, each corresponding to a semi-
independent processor of a specific modality of information, 
as shown in Figure 3.  The core architecture does not 
include a module that allows for temporal perception, and 
contains a simple goal module that includes just a buffer 
with the current goal.  These two current limitations led us 
to use two recently validated architectural extensions: the 
temporal module and the general executive.   

 
Figure 3: Outline of the ACT-R architecture. 

Temporal Module.  The temporal module (Taatgen et al., 
2005) allows ACT-R to estimate and reproduce time 
intervals up to approximately 30 seconds. It acts like a 
metronome, but one that starts ticking slower and slower as 
time progresses. The interval estimate is based on the 
number of ticks the metronome has produced. More 
precisely, the duration of the first tick t0 is set to some start 
value start-tick.  Then, each subsequent tick is separated 
from the previous tick by an interval that is a times the 
interval between the previous two ticks.  Each interval also 
has noise drawn from a logistic distribution added to it. The 
distribution of this noise is determined by the current tick-
length.  More concisely, the tick duration tn is computed as: 
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In ACT-R, as suggested by Figure 3, production rules must 
start and read the temporal module timer.  This means that 
errors in time estimates are due not only to noise in the 
temporal module itself, but also to the production system 
not initiating or reading the timer at the right moment. 

  
Figure 4: Illustration of the temporal module. 

For example, suppose we want to reproduce a time interval 
before a light turns on, as represented in the first horizontal 
bar in Figure 4. The timer is initiated at the start of the trial. 
When the light comes on, the value of the timer (5 ticks in 
the example) is read and stored. When the interval has to be 
reproduced, the value of the timer perceived earlier is used. 
As the figure illustrates, the reproduced interval is not 
entirely accurate due to the noise in the calculations. 
Taatgen et al. (2005) have estimated values for the 
parameters in these equations to obtain an optimal fit to the 
Rakitin et al. (1998) experiment of interval estimation: 11 
ms for start-tick, 1.1 for a, and 0.015 for b. These values 



 

also provided excellent fits to the other experiments 
discussed in that paper, and are also the values we have used 
in the models described in this paper. 

General Executive.  The general executive (Salvucci, 2005) 
allows ACT-R to manage a set of current goals and execute 
them on a first-in, first-out (FIFO) basis.  In the Figure 3 
diagram, the general executive resides in the goal module, 
taking requests for new goals and placing them onto the 
queue.  When any changes are made to the goal set — that 
is, when a new goal is requested or the active goal is 
terminated — the general executive sets the foremost goal 
on the queue as the current goal.  It is important to note that 
“goals” in this case are typically small subgoals of a 
continuous or extended task; for example, a driving goal 
might be to look at the road and center the road, or a 
navigation goal might be to type one character.  Thus, the 
general executive relies on the goal representation and 
production rules to define where interleaving may take 
place: essentially, interleaving can happen between 
(sub)goals but not during a particular (sub)goal. 
 The most recent formulation of the general executive 
(Salvucci, 2005) incorporated its own timing mechanism 
that could alter the order of goals in the queue based on 
requested start times.  In the present work, we do not use 
this timing mechanism, and instead rely on the temporal 
module to perform the timing within the production rules.  
This decision was motivated by the desire to use a single 
timing mechanism for both models below, and to show how 
the more rigorously validated temporal module described 
above meshes well with the mechanisms of the general 
executive, providing more validation for both mechanisms. 

Component Models and Integration 
We developed two models of the full task, both based on the 
same models of the two component tasks, driving and 
navigation entry.  The driving model followed the basic 
structure of a fully developed model of real driving (see 
Salvucci, 2005) but with modifications to perform discrete 
driving.  Specifically, the model centers the vehicle by 
attending to the center point of the road, determining 
whether it is left or right of center, pressing the appropriate 
key for moving the vehicle one step, and repeating this cycle 
until the vehicle is centered on the roadway. 
 The model of navigation entry performs the basic steps 
of the task in the expected order.  On the first category 
screen, the model selects the first unspecified category (i.e., 
street number, street name, city, or state) and clicks this 
button to begin entry.  After encoding the respective 
information provided below the navigation interface, it 
types the individual letters/digits by clicking on their 
respective buttons.  The model is provided with locations of 
the buttons and thus not required to search for the correct 
button, thus assuming that initial visual-location learning 
has already occurred in the practice trials.  When each item 
is completely typed, the model clicks “OK” and moves to 
the next unspecified item until all information has been 
entered, ending with a final click on the “Done” button. 
 These component models were integrated in two ways 
to create distinct models which we characterize as “bottom-

up” and “top-down” control models.  In truth, neither model 
is purely one or the other: the bottom-up model includes 
top-down characteristics and vice-versa.  However, we thus 
term the models for the sake of simplicity and to recognize 
that one model is more bottom-up and the other more top-
down, as opposed to completely one or the other. 

Bottom-Up Control Model.  The first of our two models 
uses “bottom-up control” in that events determine what it 
will do, including switching between the two tasks. Events 
in this context are defined in terms of changes in ACT-R’s 
perceptual buffers (which for this purpose includes the 
temporal buffer). The model uses three control states to 
keep track of what it is doing: driving, determining which 
address item (number, street, city, or state) has to be 
entered, and typing.  
 The main control aspect of the model is the switching 
between the two tasks. The model switches from driving to 
typing whenever the car is in the center of the road. At that 
moment it also gives the start signal to the temporal module, 
which will start keeping track of time. Initially the model 
does not know how much time can be spent on typing 
without endangering the driving, but it tries to determine 
this on the basis of experience. For this we use an 
experience-based method that Taatgen et al. (2005) 
designed for another time perception task in which a time 
interval had to be determined. While the model is typing, it 
also tries to retrieve from memory a previous experience of 
looking away from the road.  Specifically, it tries to find an 
experience that matches the current time (as represented in 
the temporal buffer) or the near future (within 10 “ticks”). 
Retrieving experiences and typing can be interleaved 
reasonably well because typing mainly involves perceptual 
and motor actions. If the model fails to retrieve a past 
experience (which is guaranteed to happen the first time), it 
immediately switches back to driving. If the model looks 
back at the road and the car is still in the middle of the road, 
it evaluates the experience as early; if car is slightly off the 
middle of the road, it will evaluate it as a success; and if the 
car is far from the center (we define “far” in an upcoming 
section), it will evaluate it as late. 
 If the model does retrieve a prior experience, it will act 
on how that experience was evaluated. When the model 
later retrieves an early experience, it will continue typing 
and retrieve a new experience; if the model retrieves a 
success experience, it will continue typing but will switch 
back to driving as soon as the temporal buffer reaches the 
time in the retrieved experience; if the model retrieves a late 
experience, it will switch back to driving right away. The 
bottom-up model can switch back to driving at any moment 
during the typing, and will primarily do so during mouse 
movements, since these movements take up the majority of 
the entry time. 

Top-Down Control Model.  The second model uses “top-
down control” in that it allows the general executive to 
perform the interleaving of the two tasks.  The rules for the 
component models were first modified such that any rule 
that modified the existing goal chunk instead created a new 
goal chunk, except for rules that made requests to the visual 
module (to avoid interrupting visual processing).  For the 



 

driving model, this meant that the top-down model allows 
task interruption after each centering movement; for the 
navigation-entry task, the model allows interruption 
between each mouse click.  The rules for each task make no 
mention of the other task, as if they had been learned 
independently; this facilitates running each task by itself or, 
if desired, running it with other additional tasks. 
 The timing in the top-down model is contained in the 
rules for the driving task.  The model maintains a desired 
time delay to wait before each new centering movement, 
quantified in terms of number of ticks, as provided by the 
temporal module.  With an initial delay of 0, the model can 
either effectively increment or decrement the delay based on 
the safety margins of the driving task.  Specifically, when 
the model returns to the task after the desired delay, it 
classifies the delay as early, late, or success (analogous to 
the bottom-up model) and adjusts the delay.  When the 
vehicle is still centered, the delay is early and is reset to the 
elapsed time since the last task (which is at least 50 ms 
greater than the current delay).  When the vehicle is farther 
from center than the desired safety margin, the delay is late 
and is reset to 0.  When the vehicle is an acceptable distance 
away from center, the delay is success and remains the 
same.  The model also allows for some probability (preset to 
0.5) of checking the roadway before the desired time delay; 
if the vehicle is outside of the safety margins, the delay 
resets to 0, otherwise it remains the same. 

Model Summary.  While the models differ in their specifics 
of how timing can occur in “bottom-up” and “top-down” 
models, both models essentially take a satisficing approach 
to learning appropriate time intervals for switching: they 
determine whether recent switches were early, late, or 
successful as defined by the task, and adapt the time interval 
accordingly.  ‘Early’ can easily be defined in this context, 
namely when the vehicle is still in the lane center.  ‘Late’ is 
somewhat more difficult, in that it represents a person’s 
tolerance for how far the vehicle can stray from the lane 
center.  (It turned out that this parameter had little impact on 
the model results for the bottom-up model, though slightly 
more impact on the top-down model.) 

Results 
We ran simulations for each model and analyzed the results 
in conjunction with those of the human participants in the 
experiment. The bottom-up model was constructed by the 
second author without him having access to the data, so it 
can be considered as a true prediction of the outcome. The 
top-down model is a modification of the bottom-up model 
to include the use of the central executive.  
 We begin with the results of primary interest in this 
paper, namely how the changing characteristics of the 
driving task affected task interleaving of the two tasks.  
Figure 5 shows the average time spent on the secondary task 
(navigation entry) before switching back to driving — that 
is, the time between driving keystrokes when interrupted by 
button clicks for the navigation task.  The human and model 
data are split into three stages, namely the first, second, and 
third set of 6 trials in the experiment, where the first and 
second represent the fast driving condition and the third 

represents the slow condition.  The human participants show 
an average time of approximately 1.8 s, and the times for 
Stages 1 and 2 are not significantly different, t(9)=.73, 
p>.48.  However, there is a clearly significant jump from 
Stage 2 to 3 when the driving condition changes from fast to 
slow, t(9)=16.6, p<.01, to a value of approximately 3.5 s.  
Both models reproduce these values very closely, R2>.99.  
Clearly the models are correctly learning appropriate switch 
times based on the characteristics of the driving task, both 
initially at the onset of the experiment for the fast condition, 
and later for Stage 3 after the change to the slow condition. 
 Another way to analyze the amount of processing on 
the secondary task is to examine the number of mouse clicks 
instead of total time.  Figure 6 shows the average number of 
clicks between interrupted driving keystrokes.  Again the 
human participants show a large effect from Stage 2 to 3, 
t(9)=14.1, p<.01.  For this measure, however, they also 
exhibit a significant albeit very small effect between Stages 
1 and 2, t(9)=2.7, p<.05.  The model results closely 
correspond with the human results, R2>.99, and in particular 
predict the large effect for Stage 3.  The models do not 
predict any effect between the first two stages; we believe 
the human data exhibit the small effect due to final visual 
learning of the button locations on the interface, and not 
surprisingly the models do not predict this effect due to their 
preset visual locations.  Interestingly, this does not lead to a 
significant difference in time for the human data in Stages 1 

 
Figure 5: Average time between driving actions. 

 
Figure 6: Average number of navigation-task 

mouse clicks between driving actions. 



 

and 2 (as shown in Figure 5); apparently the participants are 
keeping time constant while squeezing slightly more clicks 
into this time in the second stage. 
 While the behavior of both models corresponds well to 
human behavior for these measures, it is interesting to 
investigate where they differ. One key difference between 
the models is that the top-down model only allows 
switching back to driving at natural subtask boundaries, 
while the bottom-up model allows switching back any time. 
The bottom-up model therefore allows switching back to 
driving between the mouse-movement towards a key and 
the mouse-click on the key, contrary to the top-down model. 
If the bottom-up model is right there should be fast mouse-
clicks directly after switching back from driving. Figure 7 
shows histograms for the time delay between a driving 
keystroke and the subsequent navigation mouse click 
(including Stage 2 only).  The human data show a wide 
spread of times between 0.25 and 2.0 s.  In contrast, both 
models exhibit a tighter distribution: the bottom-up model 
tends to click sooner than the top-down model because it 
sometimes processes the driving task during a mouse 
movement, and thus has less work to complete upon 
returning to the entry task; the top-down model always 
moves and clicks in sequence with no interruption, with the 
navigation model using vision and thus not allowing the 
general executive to switch tasks during the movement.  The 
longest human times could be due to visual searching early 
in the experiment, whereas the shortest times could be 
attributed to driving during mouse movement, consistent 
with the behavior of the bottom-up model. 

General Discussion 
The key result presented here is that models developed in a 
cognitive architecture such as ACT-R can learn appropriate 
task-switching intervals based on the changing demands of 
the component tasks.  Some previous work (e.g., Salvucci, 
2005) utilized models with task-switching time intervals, 
but the actual values of the time intervals were estimated as 

a free model parameter and fixed as a constant throughout a 
model run.  Here, we have demonstrated that not only can 
the model learn appropriate intervals, but can also adapt 
them by taking a satisficing view of task demands that 
evaluate task scenarios as early, late, or successful. 
 There are many aspects of the discrete driving data, 
both human and model, which cannot be included here due 
to space limitations.  We are now performing a fuller 
analysis of these results to understand the larger scope of the 
models’ behavior and how well they account for other task 
measures, such as effects of distraction on the primary 
driving task and effects of representation (e.g., time 
intervals for each letter in the six-letter street name) on both 
the driving and navigation entry tasks. 
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Figure 7: Histogram of times between a driving action 

and the subsequent navigation-task mouse click. 


