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The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking—that
is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be
represented as threads of processing coordinated by a serial procedural resource and executed across
other available resources (e.g., perceptual and motor resources). The theory specifies a parsimonious
mechanism that allows for concurrent execution, resource acquisition, and resolution of resource
conflicts, without the need for specialized executive processes. By instantiating this mechanism as a
computational model, threaded cognition provides explicit predictions of how multitasking behavior can
result in interference, or lack thereof, for a given set of tasks. The authors illustrate the theory in model
simulations of several representative domains ranging from simple laboratory tasks such as dual-choice
tasks to complex real-world domains such as driving and driver distraction.
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One of the most impressive aspects of the human cognitive
system is the ability to manage and execute multiple concurrent
tasks. Concurrent multitasking (which we often refer to as simply
multitasking) is a ubiquitous phenomenon in our daily lives, from
work to leisure to everyday routine. In some situations, multitask-
ing can seem nearly effortless (e.g., walking and talking); for other
situations, it can seem extremely difficult if not impossible (e.g.,
reading and listening to two distinct sentences); for still others,
multitasking performance may depend heavily on the individual
and/or the environment (e.g., singing while playing an instrument
or dialing a phone while driving). This space of possibilities raises
an enormous challenge in understanding, on the one hand, the
human system’s astonishing capacity for multitasking and, on the
other hand, the sometimes severe limitations on multitasking per-
formance. In this article, we propose a new theory called threaded
cognition that provides a theoretical and computational framework
for understanding, modeling, and predicting performance during
the concurrent execution of arbitrary tasks.

Meyer and Kieras (1997a) provided an in-depth historical back-
ground of the study of multitasking performance, dating back
several decades (e.g., Craik, 1948; Telford, 1931; Welford, 1952)
and covering the vast literature concerning the potential for pro-

cessing bottlenecks in various stages of perceptual, cognition, and
motor processing (e.g., Broadbent, 1958; Keele, 1973; Pashler,
1994). Such studies and theories emphasized the role of various
processes as representative of distinct resources in which bottle-
necks may or may not appear (depending on particulars of the task
domain). Further work codified these efforts into related but dis-
tinct theories of processing on multiple resources. Navon and
Gopher’s (1979) multiple-resource theory specified how tasks
using separate resources may proceed simultaneously without in-
terference, but in the presence of resource conflicts, the required
resource can allocate part of its processing time to each task.
Wickens (2002; see also Wickens, 1984) posited an alternate
theory of multiple resources that accounts for performance using
the four resource dimensions of processing stages, perceptual
modalities, visual channels, and processing codes. Both efforts
attempted to unify the many empirical findings related to perfor-
mance bottlenecks into more comprehensive frameworks with
which to reason about and quantify resource needs and potential
task interference.

In relating resources and bottlenecks to the larger issue of
cognitive control, several theorists have posited the need for ex-
ecutive processes that manage and schedule individual tasks. Nor-
man and Shallice (1986) described a two-component system that
performs contention scheduling for basic routine action but re-
quires a supervisory attentional system for higher level control.
Baddeley (1986) defined a central executive responsible for man-
agement and selection of processing routines in the context of
working memory. Such theories have been influential in broaden-
ing our understanding of multitasking by considering the processes
underlying multitasking behavior and how these processes contend
for and utilize available resources. At the same time, there has long
been a recognized desire for further specification of the mecha-
nisms that embody these executive processes, in order to, as has
been said, banish the “homunculus” of cognitive control (see, e.g.,
Altmann, 2003; Logan, 2003; Monsell & Driver, 2000).
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With this desire in mind, many theorists have recently turned to
computational modeling as a methodology for providing rigorous
specifications of both executive and task processes. One body of
work has examined multitasking performance in smaller scale
laboratory tasks, modeling and accounting for various effects of,
for example, stimulus or response modality and task difficulty in
dual-choice tasks (e.g., Byrne & Anderson, 2001; Meyer & Kieras,
1997b; Taatgen, 2005). Another body of work has modeled mul-
titasking behavior as it occurs in particular complex task do-
mains—for example, models of fighter piloting (Jones et al.,
1999), driving (Salvucci, 2005, 2006), air-traffic control (Taatgen
& Lee, 2003), and similar domains (see Gluck & Pew, 2005, and
Gray, 2007, for further examples). Still other work has focused on
computational models of executive control in routine activities
(Cooper & Shallice, 2000), which could in principle serve as a
general multitasking mechanism; however, these models currently
provide no theory to guide the specification or learning of higher
level schemas required to resolve resource conflicts and thus have
not been applied to modeling concurrent multitasking. Overall, this
range of work has demonstrated the many benefits of a computa-
tional modeling approach, including a finer grained analysis of
behavior over time and the mapping of behavior to quantitative
measures that can be compared directly with human performance
data. However, these efforts have almost exclusively used domain-
specific mechanisms of multitasking fine-tuned for a single task
domain, making it difficult to generalize the models and mecha-
nisms to other (even closely related) task domains.

In summary, more general theoretical treatments such as those
of Norman and Shallice (1986) and Baddeley (1986) do not
provide sufficient detail for instantiation as computational mech-
anisms, whereas current computational models do not provide
sufficient breadth to generalize across task domains. We wish to
achieve the best of both approaches—that is, to develop a general,
domain-independent model of multitasking as a fully specified
computational mechanism. In one such effort, Kieras, Meyer,
Ballas, and Lauber (2000) (see also Kieras, 2007) developed
models in their EPIC (Executive-Process Interactive Control) cog-
nitive architecture (Meyer & Kieras, 1997a) to explore the chal-
lenges of unifying domain-specific customized executives into a
single domain-independent general executive. They developed
customized executives for several tasks and, for one task in par-
ticular (tracking and choice, detailed later), also developed two
versions of a general executive and compared their predictions
with those of the customized executive. However, they found that
neither version of their general executive could adequately account
for human behavior in this task and resorted to a customized
executive to achieve their best account of the human data.

In our view, approaches that require supervisory or executive
processes to manage multitasking behavior have a significant
limitation in that they do not adequately account for multitasking
between two arbitrary tasks. For example, a person may be well
practiced in skills such as washing dishes or performing mental
arithmetic but may never have performed both tasks together.
Nevertheless, even in the first attempt, a person can perform such
tasks concurrently when asked. Any approach that requires exec-
utive processes must account for this ability either by defining a
general executive or by defining how specialized executives for
the two tasks can be learned. We believe that humans have a basic
ability to perform multiple concurrent tasks and that this ability

does not require supervisory or executive processes. Instead, this
ability is best represented by a general, domain-independent, par-
simonious mechanism that allows for concurrent processing and
provides basic resource conflict resolution (see Liu, Feyen, &
Tsimhoni, 2005). Although higher order planning may still arise in
deliberate reasoning about one’s own multitasking behavior, it is
this basic ability that allows us to perform multiple concurrent
tasks as often arises in everyday behavior.

In this article, we propose a theory of threaded cognition that
provides both a conceptual theory and an associated computational
framework for general domain-independent multitasking.
Threaded cognition posits that cognition maintains an active set of
task goals that result in threads of processing across a set of
available resources. Specifically, it posits that threads are coordi-
nated by a serial procedural resource that combines inputs from
other resources (e.g., perceptual and motor resources) and initiates
new processing on these resources. The theory specifies how
threads acquire and release resources and how conflicts with
respect to acquisition of the central procedural resource are re-
solved. As such, the theory claims that concurrent multitasking
does not require supervisory executive processes; instead, concur-
rent multitasking emerges from the interaction of autonomous
process threads in conjunction with a straightforward mechanism
for resource acquisition and conflict resolution. The computational
instantiation of this mechanism, based in the ACT-R (Adaptive
Control of Thought-Rational) cognitive architecture (Anderson et
al., 2004), allows multiple models of arbitrary tasks to be executed
together, generating immediate predictions of the resulting multi-
tasking behavior. As such, threaded cognition provides a domain-
independent theory and framework for understanding, represent-
ing, and predicting multitasking performance.

Threaded Cognition

The core idea of threaded cognition is that multitasking behavior
can be represented as the execution of multiple task threads,
coordinated by a serial cognitive processor and distributed across
multiple processing resources. In this section, we formalize our
notion of threaded cognition and threads in two sets of core
assumptions. The first set of assumptions lays the theoretical
groundwork by presenting an underlying framework for single-
task performance. The second set of assumptions extends the
single-task assumptions into our broader theory of threaded cog-
nition and multitask performance. In all, threaded cognition rep-
resents a consolidated effort to combine our two recent individual
approaches to multitasking (Salvucci, 2005; Taatgen, 2005) into a
single more cohesive account.

Before delving into the details of threaded cognition, we first
wish to develop an intuitive feel for the theory by drawing an
analogy—namely, that human cognition, particularly aspects re-
lated to multitasking and executive control, behaves much like a
cook preparing food in a kitchen. A cook (in any variety, from a
restaurant chef to a short-order cook to a parent cooking for a
family) manages a number of resources in order to complete a
stream of orders. Let us imagine a cook at a cooking station,
illustrated in Figure 1a, with several available resources: an oven
for baking, a stove and pot for boiling, and a mixer for mixing. Let
us also imagine that orders are received on individual slips of
paper that indicate the desired dish. For a given dish, the cook must
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execute a well-practiced sequence of steps to achieve the desired
results. For instance, to prepare fish, pasta, or a cake, a cook might
execute the (grossly simplified) steps shown in Figure 1b. Note
that each step generally involves the cook initiating some process
(e.g., boiling or baking), waiting for the process to complete, and
then moving on to the next step. Each step is thus associated with
both the desired food order and the current state of the various
resources.

Now, imagine that the cook must work to fill multiple orders
simultaneously—for example, to prepare all three dishes in the
figure at the same time. On the one hand, some processes can
clearly execute in parallel—for instance, the fish can bake in the
oven while the pasta boils on the stove. On the other hand, several
constraints limit the amount of parallelism in filling orders. First,
the cook may experience a resource conflict when two or more
orders require the same resource, such as the fish and cake orders
that require the oven at the same time (let us assume with different
temperatures). Second, the cook himself or herself is sometimes
the bottleneck, specifically when processes for two or more orders
require attention from the cook at the same time—for instance,
when the oven-preheating and the water-boiling processes end
simultaneously. In this case, one order must be delayed while the

cook handles the next step for the other order. Thus, the cook can
often allow multiple orders to proceed in parallel, but conflicts for
either the cook or another resource sometimes reduce parallelism
and lead to delays in order processing, shown in gray in the figure.
In the example, the fish order experiences no delays, the pasta
order experiences slight delays because of contention over the
cook, and the cake order experiences large delays because of
contention for the oven. We might even imagine that the cook
requires a cookbook for an unfamiliar order, in which case fre-
quent accesses to the cookbook would result in further delays.

In threaded cognition, the central procedural resource can be
analogized to the cook, and other resources (e.g., perceptual and
motor) can be analogized to the various cooking resources avail-
able to the cook. The procedural resource, like the cook, collects
processing results from resources and redirects this information to
make new processing requests to other resources; goals, rather than
orders, guide the processing to directed action in service of a
desired task. Conflicts can arise either when multiple tasks require
the same peripheral resource (e.g., when two tasks both require
vision) or when multiple tasks require attention from the central
procedural resource (e.g., when auditory and visual tasks finish
encoding simultaneously and require the procedural resource to

(a)

Orders

Mixer

Oven

Cook:
Start boil

Fish

Stove

Baking

BoilMixing
PastaBatter

Make Cake

Make Pasta
Make Fish

(b)

Mixer: Mix cake batter

Cook: Put ingredients in mixer

Cook: Start mixer to make batter

Cook: Stop mixer

(waiting until cook is free)
(waiting until cook is free)

(waiting until oven is free)

(waiting until cook is free)

Cook: Put batter in oven

Cook: Start water to boil

Cook: Place pasta in boiling water

Stove: Heat water to boiling

Oven: Heat up to temperature

Stove: Boil pasta

Cook: Strain pasta in colander

Oven: Bake cake

Pasta

Cook: Preheat oven

Cook: Place fish in oven

Cook: Remove fish from oven

Oven: Bake fish

ekaChsiF

Figure 1. Cooking example. a: Storyboard view with cooking resources. b: Timelines for making fish, pasta,
and cake.

103THREADED COGNITION



proceed). And just as a cook may require a cookbook in the initial
stages of learning, threaded cognition initially relies on memorized
instructions but transforms a skill to a more highly proceduralized
process through learning. In essence, the interplay of resource
parallelism with potential for resource conflicts gives rise to a rich
array of possible multitasking scenarios that demonstrate both the
power and limitations of human multitasking. We now define the
theory of threaded cognition more formally in the two sets of core
assumptions.

Core Assumptions for Single-Task Performance

In developing our theory of multitask performance, we wish to
start with a firm theoretical grounding for single-task performance
that we can then extend to multitask performance. The theoretical
arguments in the following assumptions draw heavily from theo-
ries of resource allocation and utilization (e.g., Navon & Gopher,
1979), attention and control (e.g., Norman & Shallice, 1986),
production systems (e.g., Newell & Simon, 1972), and computa-
tional cognitive architectures (e.g., Meyer & Kieras, 1997a). In
addition, to make the theory concrete as a computational formal-
ism, we adopt the representations and mechanisms of the ACT-R
cognitive architecture (Anderson et al., 2004) along with various
computational treatments that have extended the architecture in
ways relevant to multitasking (e.g., Byrne & Anderson, 2001;
Salvucci, 2001a; Taatgen & Lee, 2003; Taatgen, van Rijn, &
Anderson, 2007).

Processing Resources Assumption: Human processing re-
sources include cognitive, perceptual, and motor resources.

Our first core assumption sets the groundwork for the various
processing facilities, or resources (see, e.g., Navon & Gopher,
1979; Norman & Bobrow, 1975), available to the human sys-
tem. These resources can be broadly characterized as related to
the cognitive, perceptual, and motor systems. The perceptual
resources acquire information from the external world and
include a variety of systems that facilitate visual, auditory,
tactile, olfactory, and other types of perception. The motor
resources enable the body to perform actions in the external
world, as a response to stimuli or sometimes to facilitate per-
ception (e.g., eye movements for visual perception or hand
movements for tactile perception). The cognitive resources
process the information entering the perceptual resources and
guide further perception and motor action based on both exter-
nal situations and internal state. This broad assumption is, in
essence, nothing new but follows a long line of research on
processing bottlenecks (e.g., Broadbent, 1958; Pashler, 1994),
theories of resource integration and interference (e.g., Wickens,
1984, 2002), and cognitive architectures (Anderson et al., 2004;
Meyer & Kieras, 1997a).

In our computational modeling of these resources, we make the
assumption that a resource has two components: a module that
performs the processing related to that resource and one or more
buffers that serve as a communication channel between the module
and (as we describe below) the procedural resource. For example,
a request to the visual resource to encode a visual stimulus would
evoke processing in the visual module, and when completed, the
result—that is, a representation of the encoded stimulus—would

be placed in the visual buffer and thus be available for subsequent
processing. We further define the individual resources in the
assumptions that follow.

Cognitive Resources Assumption: Cognitive resources in-
clude separate procedural and declarative resources, each of
which can independently become a source of processing
interference.

The majority of theories of dual-task performance treat cen-
tral cognition as a single resource, focusing on the ability to
translate a perceptual stimulus into a motor response (e.g.,
Pashler, 1994). In contrast, we adopt the view that cognition can
better be characterized as two distinct resources (e.g., Anderson
et al., 2004; Meyer & Kieras, 1997a; cf. Laird, Newell, &
Rosenbloom, 1987): a declarative resource that serves as a
storage memory for factual knowledge and a procedural re-
source that integrates information and effects new behavior.
This distinction facilitates generalization beyond simple
stimulus–response selection to a wide range of complex tasks.
In addition, the distinction helps to account for a separation
between memory-related and procedural interference that some-
times occurs in multitasking, including how practice and learn-
ing can lead to proceduralization and changing usage of cog-
nitive resources as described shortly.

Declarative Resource Assumption: Cognition’s declarative
resource represents static knowledge as information chunks
that can be recalled (or forgotten).

Declarative memory can be characterized as long-term storage
of information, and the declarative resource allows for access to
this information while accounting for the effects of learning,
decay, and retrieval failures. For our computational framework, we
adopt the ACT-R (Anderson et al., 2004) representation of this
information in terms of chunks of knowledge, each of which
includes a set of attribute-value pairs such that the chunk’s type
defines its attributes. For example, the chunk

Three-Plus-Four
isa addition-fact
addend1 Three
addend2 Four
sum Seven

represents the knowledge of the addition fact 3 � 4 � 7. The type
addition-fact defines the three attributes corresponding to the
addends and sum, and the attribute values Three, Four, and Seven
are themselves chunks; thus, a set of chunks essentially forms a
network of declarative knowledge. The declarative module can
receive requests to retrieve particular chunks of knowledge on the
basis of a partial pattern (e.g., 3 � 4 � ?). If it succeeds in
retrieving a chunk, it will place it in the retrieval buffer, the buffer
associated with the declarative resource. The declarative module
can handle only one retrieval request at a time. The chunk repre-
sentation serves as the base representation for all information
passed between production rules and the various resource modules
through the buffers—that is, resource processing requests as well
as processing results are both represented by chunks in the asso-
ciated module’s buffers.
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In addition to the representation of chunks, ACT-R defines
several equations that govern the probability of chunk retrieval (vs.
forgetting) and the latency of retrieval, both of which are depen-
dent on chunk activation that decreases over time but increases
with practice and use. The specifics of the memory theory are
relevant to threaded cognition insofar as they predict the latency of
retrievals of a given memory chunk; we provide details as neces-
sary in the context of the model simulations described below. For
now, it suffices to state that the declarative resource can be
considered a source of cognitive interference independent of the
procedural resource, particularly in situations in which processes
require frequent and potentially competing retrievals from declar-
ative memory.

Perceptual and Motor Resources Assumption: The perceptual
and motor resources allow for information acquisition from
the environment and action in the environment.

As mentioned earlier, the human system incorporates a variety
of perceptual and motor resources to acquire information and act in
the external world (respectively). Of the many possible resources,
our treatment focuses on the perceptual and motor resources most
central to the types of tasks we wish to model: the visual and
auditory perceptual resources and the manual motor resource.
Threaded cognition relies on the computational formulation of
perceptual and motor resources in ACT-R, parts of which (partic-
ularly the motor) are derived from the EPIC cognitive architecture
(Meyer & Kieras, 1997a). The visual resource has both a where
system and a what system: The where system produces preattentive
visual processing that finds objects in the environment on the basis
of spatial location and visual properties, and the what system
identifies the object and places a declarative representation of the
object in the visual buffer. An extension of this visual resource
(Salvucci, 2001a), derived from a computational model of eye
movements in reading (Reichle, Pollatsek, Fisher, & Rayner,
1998), predicts the observable movements of the eye that corre-
spond to the unobservable shifts of visual attention. The auditory
resource has analogous where and what systems for audible stimuli
and places its results in the aural buffer. The motor resource
assumes a two-hand manual module centered on standard interac-
tion movements on a desktop computer (e.g., typing and mouse
movement). The timing and other parameters of vision, audition,
and motor movement are detailed in Anderson et al. (2004), along
with their original treatment in Meyer and Kieras (1997a).

Procedural Resource Assumption: Cognition’s procedural re-
source represents procedural skill as goal-directed production
rules.

The procedural resource, the central resource in our view of
threaded cognition, integrates and maps currently available
results of resource processing into new requests for further
resource processing—just as the cook in our earlier analogy
transfers the end results of cooking processes (e.g., mixed
batter) to initiate new processes (e.g., baking the batter into a
cake). For example, in the context of a simple choice task, the
procedural resource may map an encoded visual stimulus and a
recalled associated response into the request to perform a motor
command. Mappings may be characterized as and implemented

by a wide variety of theoretical and computational constructs.
For instance, one could conceptualize the mapping in terms of
schemata (Norman & Shallice, 1986; Rumelhart, 1980; Rumel-
hart, Smolensky, McClelland, & Hinton, 1986) or dynamic
gating mechanisms (O’Reilly & Frank, 2006).

We adopt the representation of such mappings as condition–
action production rules, currently in use as the core component of
several cognitive architectures (e.g., EPIC: Meyer & Kieras,
1997a; Soar: Laird, Newell, & Rosenbloom, 1987; 4CAPS: Just,
Carpenter, & Varma, 1999). A production rule (which we often
refer to as simply a rule) defines a set of conditions and actions,
such that the conditions must be met for the rule to execute (or fire)
the given actions. In the ACT-R formulation of a production rule,
both the conditions and actions utilize buffers for information
transfer: The conditions collate and test information placed in the
buffers by their respective modules, and if the rule fires, the
actions place new requests for resource processing in the buffers.
In addition to the buffers provided by the various other resources,
the system has a goal buffer. It can be considered as the procedural
resource’s own buffer, which stores information about the current
goal of the system. Typically, production rules include a condition
for the goal buffer that matches only for goals of a particular
type—for instance, a rule that concerns a choice task matches and
fires only when the current goal indicates that the system is
attempting to perform a choice task. The goal buffer thus directs
the production system only to rules currently relevant to the task at
hand. (This goal-directed aspect of a production system relates to
similar paradigms in alternative frameworks, such as the activation
of relevant action schemas and inhibition of irrelevant ones in
contention scheduling: Norman & Shallice, 1986; Cooper & Shal-
lice, 2000.)

In addition to matching and adding contents to the buffers, we
assume that a production rule can test the status of the modules and
buffers in two ways. First, a rule can test whether a module is busy
or free—that is, whether the module is currently performing a
resource-processing task, such as visually encoding a stimulus or
executing a motor movement. Second, a rule can test whether a
module’s buffer is currently empty or filled: A module fills a
buffer with the results of information processing when completed,
and the buffer empties when a rule matches and uses this infor-
mation—for example, when visual encoding completes, the visual
module places the encoded information in the visual buffer, and
then the buffer empties when a subsequent rule uses this informa-
tion. These two aspects of the modules and buffers are critical to
our treatment of threaded cognition in that production rules can
discriminate when a particular resource is in use: If the module is
busy (processing) or the buffer is full (storing results of process-
ing), the resource can be considered in use; otherwise, it can be
considered free, and thus a rule can initiate processing on the
resource if desired.

As an example, consider a scenario in which a person performs
a simple visual–manual choice task that involves visually encoding
a stimulus and pressing an associated response key. Let us also
assume that when the visual stimulus is presented on the left—for
instance, an O on the left side to produce the stimulus “O – –”
(Schumacher et al., 2001)—the person should respond by pressing
the right index finger. Such a task could be implemented with two
production rules:
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Attend-stimulus
IF the goal buffer contains a choice task
and the visual resource is free and the visual buffer is empty
THEN issue a request to the visual resource to encode the stimulus

Respond-to-left-stimulus
IF the goal buffer contains a choice task
and the visual buffer contains the stimulus “O – –”
and the manual resource is free
THEN issue a request to the manual resource to press the index finger.

Both rules are directed by the same goal, namely the goal to
perform the choice task, and this goal is matched against the
current goal in the goal buffer. The first rule tests the status of the
visual resource and issues a request to encode the stimulus (as-
suming for simplicity that the location of the visual stimulus is
known). When the visual resource processing finishes, the second
rule uses the information in the visual buffer (which also clears the
buffer) and generates a motor request.

We can visualize the execution of this model in two ways.
Figure 2a shows a process timeline illustrating the steps of the
choice task and the resources involved in each step, where time
flows from top to bottom and the height of the box represents the
time needed to execute that activity. As is apparent in this view,
the process alternates between rule firings in the procedural re-
source and processing in the peripheral (visual and manual) re-
sources. Each rule firing requires 50 ms on the procedural re-
source, an estimate that has been derived over several decades of
experimentation and is shared by the major architectures (includ-
ing EPIC and Soar). It is important to note that although this

central procedural resource is needed at each step to initiate new
resource processing, the procedural resource is not continually
busy but rather has periods of waiting for resource processes to
complete (just as the cook waits for food to finish baking, frying,
etc., before proceeding); this aspect of the system is critical in our
upcoming specification of how threaded cognition interleaves the
procedural processing for multiple tasks.

Figure 2b shows a storyboard view illustrating how information
passes between resources. The figure shows an overview of the
resources, including processing modules (rounded rectangles) and
buffers (squared rectangles), with the procedural resource at the
center. (Buffers for the manual and vocal resources are not shown
for simplicity, given that these resources do not produce results to
be used by the procedural resource.) Each individual storyboard
diagram tracks the firing of a production rule, where arrows from
the buffers to the procedural module indicate rule conditions and
arrows pointing back to the modules indicate rule actions. The
detection of the stimulus by the visual resource, combined with the
goal in the goal buffer, trigger the first rule that initiates the
encoding process in the visual module. When encoding is com-
pleted, the resulting representation (i.e., the encoded stimulus) is
placed in the visual buffer. The representation in the visual buffer,
again combined with the current goal, triggers the second rule that
initiates the appropriate motor response. In both cases, the goal
buffer guides the model by matching along with the other condi-
tions, providing top-down control of model processing along with
the more bottom-up triggering that arises from stimulus detection
and encoding.

(a)

Procedural: Attend stimulus

Procedural: Respond to left stimulus

Visual: Encode stimulus

Manual: Press index finger

Visual-Manual Choice Task

 (b) 

Goal

Aural

Declarative

t = 0-50 ms
The presence of a stimulus detected by the visual resource
combined with the current goal activate the first rule, which
issues a request to the visual resource to encode the
full visual stimulus.

t = 135-185 ms
When visual encoding is complete, the encoded stimulus
and the goal activate the second rule, which responds to
the leftward position of the stimulus by pressing the
index finger.

Attend-
stimulus
Attend

stimulus

VisualEncode
stimulus

Vis-Man Goal

Aural

Declarative

Attend-
stimulus

Respond to
left stimulus

Visual
"O--"

Vis-Man

ManualVocal Manual
Press

index finger

Vocal

(detected)

Figure 2. Single-choice task. a: Model timeline. b: Storyboard view.
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Procedural Learning Assumption: When learning new tasks,
declarative task instructions are gradually transformed into
procedural rules that perform the task.

A critical aspect of the dual cognitive resources lies in the
gradual transformation of declarative task representations into
procedural representations. In particular, we adopt the theory of
production compilation (Taatgen & Lee, 2003) that provides a
computational mechanism by which task instructions encoded as
chunks change into ACT-R production rules with practice over
time. First, task instructions are encoded into declarative memory,
typically by reading (visual encoding) of phrases and/or sentences
that specify these instructions. (In the absence of a full-fledged
syntactic parser, the instructions are often presented in simple
albeit still realistic language.)

Once instructions are stored as declarative knowledge, a general
set of interpreter production rules retrieves each instruction and
executes its desired actions. As these interpreter rules execute the
declarative instructions, the production compilation mechanism
begins to combine the general interpreter rules and the instructions
into task-specific production rules. Production compilation is a
slow process in the sense that a new rule must typically be
relearned multiple times before it is able to compete successfully
with existing rules.

Clearly this learning process has significant implications for
resource usage and thus for multitasking in general. Initially, while
task knowledge primarily lies in declarative memory, both the
declarative and procedural resources experience heavy use—the
declarative for repeated retrieval of instruction chunks and the
procedural for repeated interpretation of these chunks. Later, after
compilation of task knowledge into production rules, declarative
resource use drops significantly or entirely, leaving only the pro-
cedural resource to perform the task. This process explains why
multiple new tasks are hard to combine: not because an executive
process can attend to only one new task at a time, but because two
new tasks both heavily depend on declarative memory as a re-
source that they almost continuously need.

Core Assumptions for Threaded Cognition and
Multitasking Performance

Building on the single-task assumptions above, threaded cogni-
tion adds several critical assumptions that describe the nature of
multitasking performance. Although some of the theoretical as-
pects of these assumptions have been explored in other contexts
(e.g., Kieras et al., 2000), threaded cognition provides a novel
integration of these ideas in order to formulate a domain-
independent, general multitasking model. Threaded cognition also
extends the existing computational framework of ACT-R, resulting
in a new threaded version1 of the architecture that greatly facili-
tates the representation and modeling of multitasking behavior. In
fact, the threaded architecture allows for immediate integration of
two or more single-task models into a multitasking model and
immediate prediction of the resulting multitasking behavior.

Threaded Processing Assumption: Cognition maintains a set
of active goals that produce threads of goal-related processing
across available resources.

When doing a single task, system resources—and the procedural
resource in particular—execute in the service of a single goal. The
goal, as mentioned, directs procedural processing by focusing
attention on task-relevant rules and away from task-irrelevant
rules. To generalize this view, this first assumption of threaded
cognition simply posits that cognition maintains a set of active
goals—that is, a set of goals that the system is currently trying to
satisfy at the same time through concurrent multitasking. Of
course, the primary challenge that arises is how the system then
allocates processing and balances execution among resources in
order to run all goals to completion, and we address this challenge
in subsequent assumptions.

In terms of our computational formulation, the current ACT-R
architecture (Anderson et al., 2004) allows for a single goal,
represented as an ACT-R declarative chunk, to reside in the goal
buffer and direct rule firings. We extend this formulation to allow
multiple goal chunks to coexist in the goal buffer, and in addition,
we generalize the rule specification mechanism to allow for the
creation of multiple goals. In the current ACT-R theory, when a
rule specifies a new goal, this new goal replaces the current goal
in the goal buffer. For example, the rule

IF the goal buffer contains a choice task
and the motor response has been issued
THEN set a new goal to wait for a new stimulus

represents the termination of the current choice-task goal and,
simultaneously, the initiation of a new waiting goal, as this latter
goal replaces the former in the goal buffer. Our new framework
allows for multiple goals to be created in the action side of a rule.
For instance, to direct the model to perform both the choice task
and a secondary task, a rule could be specified as follows:

IF the goal buffer contains a dual task
THEN add a goal to perform the choice task
and add a goal to perform the secondary task.

Both goals are thus created and added to the set of active goals
maintained by threaded cognition; in other words, the goals are
both added to and maintained in the new multichunk goal buffer.
In addition, a rule can indicate completion of the current goal by
simply removing the current goal from the set:

IF the goal buffer contains a choice task
and the motor response has been issued
THEN remove (terminate) the current goal (i.e., the choice-task goal).

Each goal in the active goal set activates relevant rules and, in
executing these rules, produces a stream of processing across the
system resources. We define a thread as all processing in service
of a particular goal, including procedural processing through the
firing of rules and other resource processing initiated by these rule
firings. For example, Figure 3a illustrates two threads for distinct,
concurrent choice tasks: the visual–manual choice task seen earlier
and an aural–manual choice task in which the stimulus is aural
rather than visual. After a 50-ms delay in detecting a tone (details

1 The code that implements threaded cognition and all models described
in this article are publicly available at http://www.cs.drexel.edu/�salvucci/
threads.
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forthcoming in our later description of the dual-choice domain),
this thread fires a rule to encode the tone (i.e., determine whether
the tone is high or low) and a second rule to generate the proper
response. In this case, the aural–manual thread must wait for the
manual resource to become free, thus causing a delay in overall
reaction time for this task. Figure 3b illustrates a visual–manual

combined with an aural–vocal thread, thus eliminating conflicts for
perceptual and motor resources. However, the second thread still
experiences a delay resulting from a conflict for the procedural
resource, because the visual and aural encoding for the respective
threads complete at roughly the same time. Figure 3c illustrates the
same two tasks with less time needed for visual encoding; we see
here that no conflicts arise whatsoever, and thus perfect time
sharing is achieved. As another view of resource processing,
Figure 4 provides the storyboard view of this final example. At this
point in our exposition, we have not refined our assumptions
enough to clearly define how the two threads would be executed
on the resources. The subsequent assumptions further refine this
specification to define exactly how multiple threads execute on the
processing resources.

Conceptually, a thread represents a particular stream of thought
that is associated with some currently active task. A simple task,
such as one of the choice tasks illustrated above, likely has only
one associated thread. However, many complex tasks could be
represented as a set of threads that collectively work toward a
higher level goal, but each individually focuses on a particular
aspect of that goal. Very complex dynamic tasks, such as driving
or air-traffic control, are easily thought of as incorporating multi-
ple task threads. For instance, driving and air-traffic control in-
volve both monitoring of the environment for situation awareness
and action in the environment to alter its state; although these
threads are clearly related in serving the high-level goal of safe
control (e.g., performed actions are often related to a monitored
event), they can also act independently and communicate infor-
mation when needed. However, tasks need not be this complex to
be amenable to a threaded approach. For example, models of list
memory typically incorporate task processes of both stimulus
encoding and list rehearsal (e.g., Anderson, Bothell, Lebiere, &
Matessa, 1998) that could be viewed as distinct threads in service
of the larger task goal. As another example, models of transcrip-
tion typing (e.g., John, 1996) include, in essence, separate threads
to read text and simultaneously type this text.

A threaded perspective on such tasks allows for a straightfor-
ward account of the kinds of flexibility exhibited in human mul-
titasking. In particular, independent threads are not inextricably
tied to one another in a processing sense but rather are combined
or separated however needed for maximum flexibility. For in-
stance, in the transcription-typing example above, both the reading
and typing threads represent well-practiced skills that can easily
operate independently of the other. In the driving or air-traffic
control example, it is sometimes the case that another person can
assist with the monitoring task (e.g., a team of air-traffic control-
lers with assigned tasks, together managing a particularly busy
airspace, or a vehicle passenger who checks for oncoming traffic);
in this case, the original person can eliminate their own monitoring
thread and concentrate their efforts on performing necessary ac-
tions. A threaded perspective of such tasks provides an account for
how people integrate their skills as necessary to adapt to the
demands of the current task environment.

Resource Seriality Assumption: All resources—cognitive,
perceptual, and motor—execute processing requests serially,
one request at a time.

(a)

Aural: Encode tone

Procedural: Attend tone

Aural: Detect tone

(waiting until manual module is free)

Procedural: Respond to low stimulus

Procedural: Attend stimulus

Procedural: Respond to left stimulus

Visual: Encode stimulus

Manual: Press index finger

Manual: Press index finger

Visual-Manual Choice Task Aural-Manual Choice Task

(b)

Procedural: Attend stimulus

Procedural: Respond to left stimulus

Visual: Encode stimulus

Manual: Press index finger

Aural: Encode tone

Procedural: Respond to low stimulus

Vocal: Say "one"

Visual-Manual Choice Task

Procedural: Attend tone

Aural: Detect tone

Aural-Vocal Choice Task

(waiting until procedural is free)

(c)

Procedural: Attend stimulus

Procedural: Respond to left stimulus

Visual: Encode stimulus

Manual: Press index finger

Aural: Encode tone

Procedural: Respond to low stimulus

Vocal: Say "one"

Visual-Manual Choice Task

Procedural: Attend tone

Aural: Detect tone

Aural-Vocal Choice Task

Figure 3. Dual-choice task, expert behavior. a: Model timeline for
visual–manual and aural–manual choice tasks. b: Timeline with aural–
vocal second task. c: Timeline with aural–vocal second task and faster
visual encoding.
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One of the most important core assumptions of threaded cogni-
tion is that all resources operate sequentially, processing only one
request (and thus serving only one thread) at a time. At first glance,
this assumption may seem quite surprising, running counter to the
well-known degrees of parallelism in the brain’s neural circuitry.
We should make clear that although our characterization of human
resources and their associated processes certainly represents an
approximation of the true system, we would argue that it provides
a useful approximation in providing those distinctions most critical
to understanding multitasking at the level of abstraction addressed
in this article. In particular, our theory allows for the inclusion of
parallelism at the level of multiple resources (e.g., parallel visual
and aural processing) and parallelism within each resource (e.g.,
visual processing of scenes or parallel activation competition for
declarative retrieval) but requires sequential processing at the level
of an individual resource—a separation which, for the types of
tasks addressed in this article, nicely captures both the power and
limitations of multitasking behavior.

To account for limitations on multitasking performance, theories
have typically constrained resources in one of two approaches.
One approach (e.g., Just et al., 1999; Wickens, 2002) places
capacity limits on resources such that each process occupies some
percentage of the total capacity and that multiple processes can
execute on the resource as long as the total usage across processes
does not exceed the total capacity. A stricter approach (e.g.,
Anderson et al., 2004) posits that resources can execute only one

requested process at a time, forcing subsequent requests to wait
until completion of the current process. We prefer the latter
exclusive-use approach for two reasons. First, the exclusive-use
approach represents a stronger, more limiting theory in that the
capacity approach can mimic the exclusive-use approach but not
vice-versa; the capacity approach also requires additional param-
eters that define both the total capacity for a resource and the
capacity usage for any given process, a large space of new param-
eters. We start with the stronger theory in order to evaluate its
potential for accounting for behavior in common task domains.
Second, the exclusive-use approach generalizes in a straightfor-
ward way across all cognitive, perceptual, and motor resources. In
contrast, in a parallel capacity-limited approach, the manner in
which different resources utilize parallelism would depend on the
particulars of that resource, notably in terms of whether the re-
source contains a serial bottleneck—for instance, any parallelism
in the motor system must eventually be resolved to direct a single
physical resource (e.g., moving the finger to a location), and thus
such resources must resolve conflicts and serialize processes
somehow within the system. We thus prefer the unified exclusive-
use approach and, for the sake of parsimony, require that all
resources abide by this approach (in contrast to, e.g., EPIC’s
parallel cognitive processor but sequential motor system: Meyer &
Kieras, 1997a).

The most important implication of the resource seriality as-
sumption arises in the procedural resource, where the assumption

Goal

Aural

Declarative

t = 0-50 ms
The presence of a stimulus detected by the visual resource
combined with the Visual-Manual goal trigger the rule that
initiates visual encoding.  Meanwhile, the aural module is
detecting the aural tone.

t = 135-185 ms
When visual encoding is complete, the pattern placed in the
visual buffer and the Visual-Manual goal activate the rule
that initiates the finger press.  The Visual-Manual goal has
completed and terminates.

Attend-
stimulus
Attend

stimulus

VisualEncode
stimulus

Detecting
tone

(detected)

Aur-Voc

Vis-Man

Aur-Voc

Vis-Man

Goal

Aural

Declarative

Attend-
stimulus

Respond to
left stimulus

VisualEncoding
tone

"O--"

ManualVocal

Goal

Aural

Declarative

t = 50-100 ms
The detected tone and the Aural-Vocal goal activate the
rule that initiates encoding of the tone (i.e., determines
the tone's pitch as needed for the choice response).

Attend
tone

VisualEncoding
stimulus

Encode
tone

(detected)

Aur-Voc

Vis-Man

ManualVocal

Goal

Aural

Declarative

t = 220-270 ms
When aural encoding is complete, the low tone and
the Aural-Vocal goal activate the rule that initiates
the vocal response "one" associated with the tone.
The Aural-Vocal goal then terminates.

Respond to
low stimulus

Visual
Low tone

Aur-Voc

Manual
Pressing

index finger

Vocal
Say

"one"

Manual
Press

index finger

Vocal

Figure 4. Storyboard view of the timeline with aural–vocal second task and faster visual encoding.
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forces the requirement that only one rule proceed at a given time.
In general, as a production system matches and fires rules, situa-
tions may arise in which multiple rules could potentially fire at the
same time (i.e., the conditions for multiple rules match the current
state of the buffers). Some cognitive architectures such as EPIC
(Meyer & Kieras, 1997a) allow for multiple rules to fire simulta-
neously in these situations. In contrast, threaded cognition follows
the spirit of the ACT-R cognitive architecture and requires that
rules fire sequentially. Anderson et al. (2004) provided a neural
argument for the single-rule requirement, namely that in cases in
which the current goal activates (i.e., matches) more than one rule,
inhibitory projections from the striatum to the pallidum allow a
single rule to dominate over the others and produce its selected
action (see Graybiel & Kimura, 1995). In a sense, threaded cog-
nition generalizes ACT-R’s mechanisms to apply across a set of
active rules—that is, when multiple rules are activated by currently
active goals, this same mechanism produces only a single domi-
nant rule and only this dominant rule is allowed to proceed.

Procedural seriality is critical to the workings of threaded cog-
nition because it posits the existence of a procedural bottleneck
separate from potential bottlenecks in other resources. For exam-
ple, returning to the dual-choice example illustrated in Figure 3b,
the visual–manual and aural–vocal choice tasks utilize different
perceptual and motor resources, and thus there is presumably no
potential for perceptual or motor bottlenecks in the dual-task case.
However, as the figure illustrates, there may still be a bottleneck or
conflict for the procedural resource. The procedural bottleneck is
essentially the central bottleneck that some empirical studies have
noted in dual-task performance (see, e.g., Pashler, 1994). Put in
other terms, one could view procedural seriality as stating that
cognition can process resource results and issue resource requests
for only one thread at a time; nevertheless, one thread’s resource
processing can proceed in parallel with another as long as they do
not both require procedural processing at the same time.

Although a serial procedural resource runs counter to some
notable cognitive architectures, there is general agreement that
other system resources—perceptual, motor, and declarative re-
sources—can be well characterized as operating in a sequential
manner (though process execution may contain parallelism, such
as visual processing of an external scene). Our incorporation of
ACT-R’s perceptual and motor resources (Anderson et al., 2004;
see also Byrne & Anderson, 2001), which as mentioned largely
derive from those of EPIC (Meyer & Kieras, 1997a), follow the
assumptions of these architectures that these resources require
serial processing. ACT-R’s declarative resource, which handles
retrievals from declarative memory, is similarly assumed to require
serial processing.

The resource seriality assumption generates immediate predic-
tions about resource conflicts in the case of multiple threads.
Returning to the example in Figure 3a, the two illustrated tasks
share the manual resource as the necessary response modality. In
contrast to the short delay caused by the procedural conflict in
Figure 3b, the manual resource conflict forces the aural–manual
thread to wait until completion of the visual–manual thread’s
motor response, creating a long delay in processing. This type of
resource contention can, and typically does, produce more signif-
icant delays in the component tasks than contention for the pro-
cedural resource, given that perceptual and motor processes can

take significantly longer than the 50-ms rule-firing time for the
procedural resource.

The bottlenecks that arise from resource conflicts are often
associated with perceptual and motor resources, but they need not
be; in fact, one of the most interesting examples of resource
contention arises in the declarative resource, particularly in cases
that involve practice and learning. Earlier we discussed the mech-
anism of production compilation, which transforms declarative
instructions into procedural rules that perform a task. This mech-
anism predicts that declarative memory retrievals are frequent in
the early stages of learning but gradually drop out as the instruc-
tions evolve into procedural rules. Generalizing this to the case of
multiple threads, threaded cognition may result in diminishing
interference over time for two reasons: The learning thread grad-
ually uses the declarative resource less frequently and avoids
conflict with other threads that require this resource, and the
learning thread fires fewer production rules overall and thus re-
quires less processing on the procedural resource.

Resource Usage Assumption: Threads acquire and release
resources in a greedy, polite manner.

Further specification of how threaded cognition manages re-
source processing requires some description of how the threads
themselves acquire and release resources. Using Kieras et al.’s
(2000) terminology, threaded cognition can be characterized as
providing a “liberal” managerial style that allocates resources in a
“tolerant, laissez-faire” manner, in which threads largely manage
their own usage in requesting and freeing resources—as opposed
to a “conservative” executive that allocates in a “strict regimented
style.” Such a managerial style, however, could be abused by
processes that unfairly monopolize resources and thus creates a
need for a “process etiquette” within the threads.

Our formulation of threaded cognition defines such an etiquette
by requiring that thread usage of available resources be “greedy”
and “polite.” Threads acquire resources in a greedy manner by
requesting resources as soon as possible when needed. (Note that
all resource requests occur in the actions of the rule currently
firing, and the firing of this action coincides with the acquisition of
the resource.) In contrast, a few related efforts have explored how
to model multitasking that involves more complex, nongreedy
solutions to resource contention. For example, Freed (1998) has
described a “sketchy planner” called APEX that has the ability to
explicitly delay, interrupt, and prioritize multiple task threads.
Norman and Shallice’s (1986) supervisory attentional system al-
lows, in principle, for schemas that direct the same kinds of
nongreedy planning and prioritization. Howes et al. (Howes, Vera,
& Lewis, 2007; Howes, Vera, Lewis, & McCurdy, 2004) have
described a “cognitive constraint modeling” methodology that
enables exploration of strategic differences in multitasking behav-
ior through specification of behavioral constraints. We believe that
these more complex multitasking behaviors may indeed be exhib-
ited in some circumstances, and threaded cognition in principle
does allow for complex multitasking through the presence of
additional supervisory threads. However, we also believe that the
greedy approach to resource contention is the more common one,
especially at the temporal grain size focused on here, as we
demonstrate in the later model simulations of a variety of tasks.
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After acquiring a resource, a thread releases resources in a polite
manner by releasing, or freeing, a resource for other threads as
soon as its processing is no longer required. As mentioned, for
threaded cognition and its computational instantiation in ACT-R,
resources are in use when (a) they are currently performing a
processing request in service of some thread or (b) the results of a
processing request (if any) remain in the resource’s buffer still
unused by the requesting thread. Rules that request a particular
resource thus must check that the resource is not busy and that its
associated buffer is empty. After the thread has acquired the
resource, the requested process either terminates with no results
(for a motor request) or places a result in the buffer (for a
perceptual or declarative request); in the latter case, a subsequent
rule collects the result and thus clears the buffer. The resource, no
longer busy and with an empty buffer, can immediately accept new
requests from other threads. Thus, politeness is built into the
system in that typical threads cannot monopolize resources be-
cause they require the results of the requested processes. (None-
theless, a purposefully impolite thread could, in theory, request a
result and never use the result, leaving it in the buffer and main-
taining control of the resource; in practice, however, such behavior
would not evolve naturally through the production compilation
process and could also be avoided through the use of an appropri-
ate decay mechanism.)

Figure 3 illustrates the greedy, polite threads that make up the
dual-choice task. In each of these figure panels, both threads
greedily acquire resources when ready. For instance, in Figure 3b,
the visual–manual thread immediately encodes the stimulus and,
upon completion, immediately issues the response; the aural–vocal
thread does not attempt to (nor can it) schedule or plan around the
other threads’ resource acquisitions but rather simply acquires
resources when available and waits when they are not. In Fig-
ure 3a, where the visual–manual and aural–manual threads contend
for the manual resource, the completion of manual resource pro-
cessing immediately frees the resource, allowing the aural–manual
rule that issues the motor response to proceed on the procedural
resource.

Conflict Resolution Assumption: When multiple threads con-
tend for the procedural resource, the least recently processed
thread is allowed to proceed.

Typically, when a thread desires a particular resource and that
resource is currently busy, that thread simply waits until comple-
tion of the current process and then acquires that resource, as
illustrated in our earlier examples. In certain cases, however, when
that resource becomes free, there may be two or more threads
waiting to acquire the resource (possibly including the thread that
just used and released the resource). We thus require some way to
specify, in these cases, which thread may proceed and acquire the
resource.

Deciding which thread may acquire a resource reduces to the
problem of deciding which thread may fire a rule on the procedural
resource, because resource acquisition can occur only through a
rule firing. To make this decision, threaded cognition adopts a
policy that the least recently processed thread—that is, the thread
that has least recently fired a rule on the procedural resource—is
allowed to proceed. The primary motivation for the least recently
processed policy is that it provides a parsimonious way to balance

processing among threads: By ensuring that threads have a regular
opportunity to progress through the firing of procedural rules, the
system allows all threads a chance to acquire resources and avoids
starving any thread of processing time. When two threads exhibit
similar resource usage, the least recently processed policy results
in an alternation of rule firings—the procedural resource can fire a
rule for one thread while another thread’s peripheral processes
(vision, motor, etc.) are running, then vice-versa, and so on,
achieving highly efficient parallelism between the two threads.
Our upcoming model simulations of dual-task behavior, including
those in which people exhibit perfect time sharing, demonstrate
how such processing arises from threaded cognition. When two
threads exhibit very different resource usage, such as when one
task includes lengthy peripheral processes (e.g., motor move-
ments) whereas the other requires frequent procedural steps, the
least recently processed policy allows for the high-frequency task
to execute at high efficiency but still allows the low-frequency task
to acquire the procedural resource when attention is needed.

Relation to Other Theories of Multitasking

Threaded cognition builds on a number of existing ideas and
theories and attempts to unify them under the auspices of a single
computational theory. The earliest descriptions of single-channel
bottlenecks (e.g., Craik, 1948; Telford, 1931; Welford, 1952)
could be characterized within our theory if one considers the entire
(short discrete) task, and all the resources involved (i.e., cognition
plus perceptual and motor resources), as a single processing chan-
nel. Later theories that emphasize particular resources, such as
bottlenecks that arise as a result of stimulus perception (e.g.,
Broadbent, 1958) or response selection (e.g., Pashler, 1994), also
correspond nicely with aspects of the theory and its integration in
the cognitive architecture; for example, the visual perception and
eye-movement aspects of the theory govern visual stimulus per-
ception, whereas the declarative-memory aspects of the theory,
including recall and forgetting of memory chunks, govern at least
some components of response selection.

The most closely related theories to our own are those that
attempt to integrate a number of modalities and resource con-
straints into a unified framework. One well-known theory is the
multiple resource theory of Wickens (2002; see also Wickens,
1984), which characterizes dual-task interference in terms of four
dimensions: stages (perceptual–cognitive vs. response), sensory
modalities (auditory vs. visual), codes (visual vs. spatial), and
visual channels (focal vs. ambient). The theory incorporates a
methodology by which one can create a numerical conflict matrix
that quantifies the resource conflicts between tasks across dimen-
sions and allows for subsequent computation of the amount of total
interference (as a single numeric value). Although multiple re-
source theory and its associated modeling methodology has the
potential to capture multitasking behavior and interference at a
high level, it does not provide some of the many advantages of the
more detailed modeling possible in a cognitive architecture—for
example, prediction of the fine-grained temporal sequence of be-
havioral events and prediction of actual quantitative measures to
be compared with human behavior (e.g., measures ranging from
reaction time to keystroke sequences to driver performance char-
acteristics, as seen in the upcoming model simulations).
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A related effort arises in Cooper and Shallice’s (2000) compu-
tational implementation of contention scheduling (Norman &
Shallice, 1986). Contention scheduling allows for triggering of
appropriate actions through both top-down control and environ-
mental stimuli—an approach very similar to our own—and this
action-selection mechanism can be the primary bottleneck in dual-
task performance. The computational model of contention sched-
uling further fleshes out the original theory, with a demonstrated
application in the real-world domain of coffee preparation. At the
same time, the model and its application focus on sequential action
selection in this domain rather than multiple concurrent activities.
In principle, this approach allows for multitasking if there are no
resource conflicts between tasks, including both cognitive and
effector (perceptual and motor) resources. However, in the pres-
ence of resource conflicts, the theory relies on higher level sche-
mas in the supervisory attentional system to resolve the conflicts,
and at this time there is no theory of the learning and behavior of
such schemas. Thus, the contention scheduling model at present
does not fulfill our desire of a general model of multitasking
performance for arbitrary tasks.

A separate effort by Liu et al. (2005) explores the representation
of cognitive models as queuing networks within their QN-MHP
(Queueing Network-Model Human Processor) architecture (see
also Liu, 1996). The queuing networks provide a mathematical
framework with which to express a parallel network of servers,
each of which may process information serially or in parallel. As
such, the architecture provides a computational mechanism for
concurrent task execution without the need for task-specific exec-
utive processes. At the same time, the architecture employs “sep-
arate servers to handle distinct goal execution functions such as
goal prioritization, complex cognitive processing . . ., performance
monitoring, and procedure selection” (Liu et al., 2005, p. 49). In
contrast, threaded cognition does not require specialized modules
for task priorities or procedure selection, relying solely on its
threading mechanism to execute concurrent tasks. Also, the queu-
ing networks leave open the question of serial versus parallel
processing at the server level; threaded cognition is the narrower
and stronger theory in its commitment to resource seriality in
which resources process a single request at a time.

The treatment of multitasking most closely related to our own is
that of Kieras et al. (2000), who studied production-system models
of multitasking in the context of the EPIC cognitive architecture
(Meyer & Kieras, 1997a). In particular, they explored potential
characteristics of general executive processes that govern across
task domains, in contrast with customized executive processes that
define domain-specific aspects of multitasking performance. In
some ways, one could characterize threaded cognition as, in their
terminology, a “liberal general executive with polite task pro-
cesses”: Task models are polite in the sense that they request
resources only when needed and release resources when done,
allowing threaded cognition to be liberal in allowing task pro-
cesses to proceed whenever they can. However, threaded cognition
differs from the Kieras et al. conceptualization in that it does not
utilize rule-based executive processes to manage resources and
resolve resource conflicts but rather posits a parsimonious archi-
tectural mechanism that performs this work for all tasks. In a
sense, threaded cognition introduces the function of a general
executive without the need for an explicit executive system or
process. Another important difference is that the EPIC architecture

allows multiple rule firings in parallel in contrast to our inclusion
of a serial procedural resource. Nevertheless, our work follows
very much in the spirit of Kieras et al.’s (2000) effort, and we have
examined and modeled some of the same tasks (described in the
section on model simulations) to further compare and contrast our
approaches.

Threaded cognition arose from a unification of two recent
modeling approaches by the individual authors. Salvucci (2005)
explored an ACT-R general executive that incorporated queuing
and timing mechanisms to achieve multitasking behavior. This
approach led to more conservative multitasking because, unlike
threaded cognition, only one goal was active at a time, which led
to cases in which other goals could not proceed even though the
currently active goal was waiting for a peripheral resource. This
work also required a new architectural extension for timing goals
on a queue, whereas threaded cognition requires no such exten-
sion. Taatgen (2005) modeled dual-task performance such that, in
essence, both task goals were embedded into a single representa-
tion. Although this approach achieved more efficient multitasking
than that of Salvucci (2005), it relied on more tightly coupled task
representations that made it more difficult both to learn tasks
individually and to perform tasks independently when desired. In
addition, there were no constraints on when each task could
proceed (in contrast with threaded cognition’s preference for the
least recently processed thread), and thus nothing prevented un-
balanced processing or starvation of one task over another. We
view threaded cognition as incorporating the best of each ap-
proach—a straightforward, parsimonious theory that accounts for
the highly efficient yet highly flexible nature of multitasking
observed in human behavior.

Key Claims and Predictions of Threaded Cognition

We can summarize the key claims of threaded cognition theory
as follows:

1. Cognition can maintain and execute multiple active goals,
resulting in concurrent threads of resource processing.

2. Threads can be characterized as alternating blocks of
procedural processing (i.e., rule firings that collect infor-
mation and initiate new resource requests) and processing
on peripheral resources (including perceptual, motor, and
declarative memory resources).

3. Processing interference can arise on the central proce-
dural resource as well as on the declarative, perceptual,
and motor resources.

4. Threads acquire resources greedily and release resources
politely, which arises naturally from the characterization
of resources as modules and buffers.

5. Cognition balances thread execution by favoring least
recently processed threads on the procedural resource.

6. With practice, threads become less dependent on retrieval
of declarative instructions, reducing conflicts for both the
declarative and procedural resources.

7. Cognition requires no central or supervisory executive
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processes; instead, multitasking emerges from the inter-
action of autonomous process threads in conjunction with
the key claims above.

These claims give rise to several general, qualitative predictions
about the nature of dual-task performance. When two tasks require
common perceptual or motor resources, dual-task performance for
one or both tasks will typically be impaired. Even when the tasks
utilize distinct perceptual or motor resources, dual-task perfor-
mance may be impaired as a result of potential procedural bottle-
necks. However, in the absence of procedural interference, dual-
task performance can be equivalent to single-task performance. In
addition, with practice of either or both tasks, dual-task interfer-
ence will typically lessen as a result of the gradual compilation of
declarative instructions into procedural form. These predictions
have all been supported by empirical work examining the central
bottleneck in dual choice tasks with distinct modalities (see
Pashler, 1994), perfect time sharing in dual-task performance (e.g.,
Hazeltine, Teague, & Ivry, 2002; Schumacher et al., 1999), and
practice and learning effects in dual-task behavior (Schumacher et
al., 2001).

At the same time, the computational realization of threaded
cognition provides much more than general qualitative predictions:
It immediately predicts the behavioral process that results from
performing two or more tasks concurrently. One could begin with
two or more models of individual tasks, each independently de-
veloped as a sound model of behavior for the respective domain.
Given such models, threaded cognition allows for simulations in
which the model executes concurrently, generating predictions
about multitasking performance. In addition, such models typically
interact with a simulated environment that collects data and ana-
lyzes behavior for many relevant observable measures, moving
beyond simple reaction time measures. Thus, the space of testable
predictions for threaded cognition is enormous: It claims that for
any two or more independently validated task models, the com-
bined multitasking model as produced by threaded cognition will
match the behavior of people performing these same tasks con-
currently. In the next section, we sample from this space of testable
predictions and compare the theory’s predictions to empirical data
for a representative set of task domains.

Model Simulations of Representative Tasks

With the goal of testing our theory of threaded cognition, we
chose four representative task domains in which to examine and
compare the theory’s predictions to human performance: dual
choice, tracking and choice, reading and dictation, and driving.

These four domains were chosen specifically to illustrate the
generality of the theory with respect to four conceptual axes, as
outlined in Table 1. First, the domains illustrate how concurrent
multitasking sometimes produces interference effects (i.e., de-
graded performance) in one or both tasks, but sometimes it pro-
duces no such interference. In fact, two of the domains (dual
choice and driving) demonstrate how interference can either occur
or not occur depending on specific task conditions. Second, the
domains illustrate how practice can change the resulting effects of
multitasking behavior over time. Third, the domains span both
classic, well-studied laboratory tasks as well as realistic complex
tasks, ensuring that the theory generalizes to real-world task do-
mains. Fourth, the domains illustrate how models can be reused for
predictive purposes such that a model of a particular task can be
integrated with new tasks to produce new predictions, an important
aspect of our integrated theory. We now describe each of the
modeling efforts in detail, which all together demonstrate how
threaded cognition can account for a broad range of multitasking
behavior.

Dual Choice: The Perceptual Refractory Period (PRP)
and Perfect Time Sharing

Dual-choice tasks represent the most widely studied task do-
main in the concurrent multitasking literature. Most dual-choice
studies use the PRP paradigm, in which one task is given priority
over the other. Schumacher et al. (2001) have argued that people
cannot fully exhibit their dual-tasking abilities in that paradigm
because of the priority between tasks. As a consequence, they
argued, people may postpone the secondary task until the primary
task is well underway, producing interference effects that can be
attributed to the peculiarity of the instructions, instead of being due
to cognitive limitations. In order to test this idea, they conducted
dual-task experiments in which both tasks had equal priority. In
their Experiment 1, participants were given instructions for two
choice-reaction tasks. The first task was a visual–manual task, in
which a circle would appear on the screen in one of three positions,
and a finger corresponding to the position had to be pressed (left
position mapped to the index finger, middle position to middle
finger, right position to ring finger). The second task was an
aural–vocal task, in which a tone of low, intermediate, or high
pitch was presented, to which participants had to respond “one,”
“two,” or “three,” respectively. The tasks were first trained in a
single-task condition on Day 1 and were then tested in both
single-task and dual-task conditions on Days 2–5. The results show
that participants suffered from dual-task interference on the first

Table 1
Overview of Theoretical Coverage Provided by the Chosen Modeling Domains

Conceptual aspects of domain Dual choice
Tracking and

choice
Reading and

dictation
Driving and

secondary tasks

Dual-task interference X X X
Lack of dual-task interference X X X
Practice effects X X
Laboratory tasks X X X
Real-world tasks X
Model transfer X X
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days of the experiment but that this interference disappeared
completely by Day 5.

The model of this task is based on an earlier version reported by
Taatgen (2005), although that model used a specialized goal rep-
resentation instead of the more general threading approach. At the
start of the task the model initiates two threads, one for the
visual–manual task and one for the aural–vocal task. We start
examining the model behavior when it is done learning, corre-
sponding to performance on Day 5, when people exhibited perfect
time sharing—when task performance is equally fast in single-task
and dual-task conditions. In fact, we have already used this model
in our earlier examples—namely, the model depicted in the pro-
cess timeline in Figure 3c and the storyboard view in Figure 4. The
only shared resource in this model is the procedural resource, but
this does not result in conflicts, because the two task threads need
the procedural resource only at times when the other thread is
executing other (nonprocedural) processes. Therefore, after many
trials of practice, there is no interference between the two tasks.

There is interference, however, in the novice stage, as depicted
in Figure 5. This figure shows the process timeline in the very
initial stages of task performance, when each procedural step
requires time for one rule firing to retrieve the next task instruc-
tion, time for the memory retrieval itself, and time for a second
rule firing that interprets and performs the task instruction. (We
omit the storyboard view of this model because of space con-
straints; however, one can imagine extrapolating the storyboard in
Figure 4 into extra rule firings and declarative retrievals as illus-
trated in Figure 5.) The assumption is that people do not have
task-specific rules when they enter the experiment but rather
memorize instructions (as done in the experiment) in declarative
form, then interpret these instructions as needed during task exe-
cution. Another assumption is that people can immediately map
screen positions onto fingers but that mapping tones onto numbers

requires a second memory retrieval. The process timeline illus-
trates how the declarative representation of the task initially cre-
ates dual-task interference, primarily because declarative memory
becomes a heavily contended resource; the gray areas in Figure 5
indicate periods of time in which one thread must wait until the
other thread releases a resource, causing delays in task perfor-
mance. With practice, the production compilation mechanism de-
scribed earlier gradually compiles the retrieval of declarative rep-
resentations into task-specific production rules. This frees up
declarative memory as a resource, removes the bottleneck from the
model, and eventually produces the interference-free multitasking
shown in Figure 3c. Figure 6 shows the match between model and
data (R2 � .96, root-mean-square error [RMSE] � .026).

To support their claim that the PRP effect arises as a result of
instructions, Schumacher et al. (2001) took the participants from
Experiment 1 and put them in a PRP paradigm with the same tasks.
The main difference was that they were instructed to give priority
to the aural–vocal task, instead of the equal priority of the original
task. In addition, the visual stimulus was presented 50, 150, 250,
or 500 ms after the aural stimulus (a delay period called the
stimulus onset asynchrony or [SOA]). As expected, they indeed
found the PRP effect—shown in Figure 7—even though the same
participants were perfectly capable of doing both tasks in parallel
in Experiment 1. To model this variation of the task, we assumed
that instead of initiating the two threads at the beginning of each
trial, only the thread of the primary task (aural–vocal) is initiated
and that the thread of the secondary task is initiated only when the
procedural portion of the primary task has completed—that is, at
the onset of a vocal response. We otherwise assume a model that
has been trained on the task in Experiment 1, to mimic the same
situation as that experienced by the experiment participants. Fig-
ure 7 shows that this slight modification of the model indeed fits
the data from Schumacher et al. (R2 � .95, RMSE � .016).

In Experiment 1, visual processing was much faster than
auditory processing, ensuring that the moments of response
selection never coincided. In contrast, Schumacher et al.’s
(2001) Experiment 3 increased the difficulty of the visual–
manual task to see whether simultaneous response selection for
both tasks would lead to interference. Instead of having a
congruent mapping from visual positions to finger locations,
participants had to reverse the order: Now, the leftmost visual
stimulus mapped onto the rightmost finger, and so on for all
fingers. The results, shown in Figure 8, show that this manip-
ulation indeed makes the task more difficult. Moreover, even at
Day 6, people do not completely succeed in perfect time shar-
ing. A more detailed analysis by Schumacher et al. showed that
some individuals achieve perfect time sharing by Day 6, but
others do not. To model these data, we took the model of
Experiment 1 and changed the instructions for the visual–
manual task: Because the stimulus–response mapping is now
incongruent, we required the model to retrieve stimulus–
response mappings from declarative memory, reflecting the
assumption that an incongruent mapping requires conscious
effort to resolve. The model fits are included in Figure 8 (R2 �
.98, RMSE � .020).

Overall, the Schumacher et al. (2001) dual-task paradigm pro-
vides an example in which the contended resources include de-
clarative memory and, in Experiment 3, cognitive processing in
terms of rule firings. In this case, the effect of declarative memory
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Declarative: Retrieve instruction

Procedural: Retrieve instruction
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Figure 5. Dual-choice task, novice behavior: Model timeline.
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retrievals can be initially quite substantial, but it also gradually
drops out with practice. The effect of cognitive processing is
relatively small in comparison, because the opportunity for a
resource overlap is very small if the response selection step takes
only 50 ms. Hazeltine et al. (2002) have conducted a further series
of experiments that have explored this central response selection

bottleneck. Their conclusion was that given enough training, par-
ticipants can achieve almost perfect time sharing but that there still
remains a small residual interference in the order of 10 ms. These
effects have subsequently been modeled by Anderson, Taatgen,
and Byrne (2005) using models very similar to the ones discussed
here, again with the exception that they used a control structure
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that was specifically designed to accommodate the two tasks.
These models are also quite amenable to being cast in terms of our
proposed threaded approach.

The dual-task models show that although the procedural
resource is the central resource in our theory, declarative mem-
ory can also serve as an important source of interference.
Several related studies have explored the role of declarative
memory in multitasking behavior. Johnston, McCann, and Rem-
ington (1995) have demonstrated that there can be two bottle-
necks in a choice-reaction task, which they call input attention,
associated with initiating visual perception, and central atten-
tion, associated with response selection. In our view, however,
these are both associated with the procedural resource, because
a choice-reaction task requires two production rules to make a
response. Pashler and Johnston (1998) did not rule out that there
is more than one bottleneck but maintained that a single bot-
tleneck is the most parsimonious account to fit the data. How-
ever, they did not consider the role of declarative knowledge as
a source of task knowledge to explain novice behavior but
instead considered retrieval from long-term memory to be part
of one bottleneck. The basis for this is a study by Carrier and
Pashler (1995) that investigated whether memory retrieval is an
independent bottleneck. In a dual-task choice paradigm, they
found that memory retrieval in one task is postponed by re-
sponse selection in another task and concluded that memory
retrieval is part of a unitary bottleneck. However, in their
conceptualization of the task, perception itself initiates the
memory retrieval, whereas in our framework memory retrieval
is always initiated by a production rule. The production rule that
initiates memory retrieval can fire only after the response-
selection production rules have finished, explaining the inter-
ference results of Carrier and Pashler (1995).

In another study, Rohrer and Pashler (2003) let participants
do a free-recall task and a choice-reaction task in parallel.
Contrary to earlier studies (e.g., Baddeley, Lewis, Eldridge, &
Thomson, 1984), they found a substantial degradation in free

recall resulting from the concurrent task and concluded that
episodic recall is part of the central bottleneck. However, an
account with dual bottlenecks of procedural and declarative can
give a better explanation. The difference between the Rohrer
and Pashler experiment and earlier studies was that their
choice-reaction task had arbitrary mappings, making it neces-
sary to retrieve these mappings from memory—therefore both
tasks required declarative memory access, producing interfer-
ence. If the choice-reaction task does not involve memory
retrieval, as in the earlier studies, threaded cognition predicts no
interference on free recall.

Tracking and Choice: Dual-Task Interference in a
Continuous Task

The dual-choice task domain involves two discrete, one-shot
tasks that last less than a second and thus provide an interesting
but limited window into multitasking behavior. By replacing
one of the tasks with a continuous task that requires constant
monitoring and response, we can explore the effects of multi-
tasking in the context of an interaction between a discrete and
continuous task. One domain that has received some attention in
recent literature (e.g., Chong, 1998; Kieras et al., 2000; Lalle-
ment & John, 1998) is that of the tracking and choice task: A
person tracks a moving cursor and attempts to keep it centered
on a target, and occasionally a choice stimulus appears that
requires a choice response. Like past efforts, we base our
simulations on the empirical results of Martin-Emerson and
Wickens (1992), who ran a version of this tracking and choice
task. In their experiment, participants tracked the moving target
in either an easy or a hard condition; the difficulty of tracking
related to the pseudo-random function that perturbed the tar-
get’s position. In addition, occasionally an arrow would appear
on the screen and the participant would respond with a keypress
as to whether the arrow pointed left or right. The position of the
arrow was manipulated in the experiment such that it appeared
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at differing degrees of visual angle down from the tracking
target—stimulus offset—in order to test the difficulty of the
choice task as dependent on its distance from the continuous
tracking task.

We modeled the tracking task with three simple rules that
find the moving cursor, move the cursor to the target, and
reiterate this process. We modeled the choice task with a
similarly simple model: one rule that attempts to find the arrow,
another rule that recognizes when it was not found and iterates,
one rule that attends the arrow when found, and another two
rules that generate the response for a left or right arrow. The
model runs both component task models as individual threads,
and because they vie for visual attention, this resource is being
shared between the threads. The model also shares the manual
resource in that it uses its right hand for movement and its left
hand for choice response (note that the cognitive architecture
currently specifies a single manual module, with both hands as
a single shared resource). The task environment used by the
model was based on that implemented by Chong (1998) as a
duplicate of the original experiment; most important, the per-
turbation functions for the easy and hard conditions were copied
exactly to ensure that quantitative comparison of the resulting
measures was made on the same scale. Results were compiled
from simulation runs with 16 trials for each stimulus offset and
for each tracking difficulty condition, with no architectural
parameters estimated to produce model fits.

To illustrate the workings of the model, Figure 9 shows a
process timeline representing resource processing immediately
before and after the presentation of the arrow stimulus. The first
block of the tracking thread shows how tracking comprises an
iteration of three rules that find the cursor, move it back to the

target, and complete the update. When the choice thread sees the
arrow stimulus (the third rule firing), it visually encodes the arrow
and generates the appropriate key response. During this time, the
choice thread occupies the visual and then the manual resources,
delaying the tracking movement (which requires the manual re-
source for movement and the visual resource to guide the move-
ment). This delay creates interference in the tracking thread, im-
pairing tracking performance for a short time and causing a larger
deviation of the cursor from the target.

Figure 10 shows two measures of performance: (a) tracking
error as a function of stimulus offset and (b) choice response
time as a function of stimulus offset. In Figure 10a, we see a
large effect of tracking difficulty in the empirical data (solid
lines), as well as a slight but steady increase in error as the
offset between tracking target and choice stimulus increases.
The model results (dashed lines) show the same effects and
quantitatively match the data well (R2 � .97, RMSE � .68): It
exhibits the difficulty effect because at a constant rate of
updating the tracking task, the cursor in the hard condition is
perturbed by a greater distance, and it exhibits the stimulus
offset effect because of the increased time needed to encode a
visual object (the choice stimulus) at a farther distance (a
prediction of ACT-R’s eye-movement model: Salvucci, 2001a).
In Figure 10b, the empirical data show an effect of stimulus
offset on choice reaction time but no effect of tracking diffi-
culty. The model results (R2 � .74, RMSE � .06) duplicate this
effect of stimulus offset for the same reasons as for tracking
error but also do not exhibit difficulty effects because difficulty
does not affect encoding of the choice stimulus.

These results compare well with results obtained by other
researchers working with different modeling frameworks, such
as Kieras et al. (2000) with the EPIC cognitive architecture and
Chong (1998) with a hybrid EPIC–Soar architecture. Lallement
and John (1998) performed an interesting comparison of these
models and one of their own, showing that all the models, and
the “modeling idioms” on which they are based, produce be-
havior that corresponds quite well to the empirical data. Our
results are comparable to the results of these other models, but
our approach has one major advantage over previous models:
Whereas the others required explicit specification of when to
switch between tasks, resulting in fairly complex behavioral
flow diagrams (see, e.g., Kieras et al., 2000), our model is a
straightforward integration of two simple component models
with no explicit specification of task switching, instead allow-
ing threaded cognition to manage and execute the two tasks.

Reading and Dictation: Perfect Time Sharing in
Continuous Tasks

The tracking and choice task above addresses a case in which a
continuous task (tracking) exhibits interference when performed
concurrently with another task (choice). For some domains, how-
ever, studies have shown that people can achieve perfect time
sharing for continuous tasks just as they sometimes achieve it for
simpler tasks, as in the dual-choice task domain seen earlier. The
classical case is a study of reading and dictation run by Spelke,
Hirst, and Neisser (1976). In this experiment, 2 participants went
through an 85-day experiment in which they simultaneously had to
read stories for comprehension and write down dictated words.
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Initially, reading speed was affected by the dictation task, but with
practice, reading speed approached normal levels, as measured by
average reading speed without dictation. The dictation speed was
not affected by practice.

The Spelke et al. (1976) study is interesting because it takes
two tasks in which participants are already skilled and combines
them. The disadvantage of the study is that the data are noisy
(the participants differed considerably in reading speed) and the
reporting does not describe detailed behavior on a trial-by-trial
basis. More modern studies, such as those by Schumacher et al.
(2001) and Hazeltine et al. (2002) addressed earlier, provide
better insight into the exact timing of dual-task perfect time
sharing through the use of simpler choice tasks. At the same
time, such experiments are less representative for real-life mul-
titasking, because the choice tasks are artificial and trained in
the context of the experiment. Thus, the Spelke et al. study
provides a complementary view of more realistic multitasking,
albeit with less detailed timing data.

In the Spelke et al. (1976) experiment, participants had to
read stories while taking dictation. Stories varied in length

between 700 and 5,000 words and were selected from Ameri-
can, English, and translated European writers. On each daily
session, participants had to read three stories. While partici-
pants read the stories, the experimenter read words drawn from
Kucera and Francis (1967), which participants had to write
down without looking at their handwriting. After a participant
completed writing a word, the experimenter read the next word.
Once a participant finished reading a story, they were tested for
either comprehension of the story (10 times/week) or recogni-
tion of the dictated words (4 times/week). In addition, once per
week participants received a control trial in which they did only
the reading task. Accuracy on both story comprehension and
recognition did not change much with practice, nor did the
writing speed, which was constant at about 10 words/minute.
The main change in performance was reading speed, as ana-
lyzed for the study’s 2 participants, John and Diane. John,
whose normal reading speed was 480 words/minute, slowed
down to 314 words/minute in the 1st week but improved to 451
words/minute in the 6th week. Diane’s normal reading speed
was 358 words/minute. Her speed in Week 1 was 254 words/
minute, but this improved to 333 words/minute in Week 6.

To model the reading aspect of the task, we used an existing
ACT-R model of reading developed by Lewis and Vasishth
(2005). Lewis and Vasishth’s model builds up a syntactic parse
tree of a sentence by attaching new words into this tree as they
are read. It has a fairly straightforward pattern of behavior: For
each word to be read, the model visually encodes the word,
retrieves its lexical item from declarative memory, retrieves a
syntactical node in the parse tree from declarative memory to
which the word has to be attached, creates a new syntactical
node with the word just read, and attaches it to the retrieved
syntactical node. Because the visual module can read the next
word while the current word is processed, reading and parsing
a word takes slightly over 200 ms using Lewis and Vasishth’s
parameter settings. The model we constructed for taking dicta-
tion is similarly straightforward: it aurally encodes the spoken
word, retrieves the spelling of the word from declarative mem-
ory, and then writes the word one letter at a time. Although
writing is a highly trained skill, writing without visual guidance
is not; the model therefore requires a declarative retrieval for
each letter, where the retrieval is assumed to contain the move-
ment pattern needed to write down the letter. With practice,
production compilation produces rules for each letter that pro-
duce the movement pattern right away. The only estimated
parameter in the dictation model was the manual time to write
a letter, which was set such that writing speed averaged 10
words/minute.

Figure 11 shows the operation of the model once it has reached
the expert stage. The reading model goes through the cycle of steps
indicated above, and the dictation model listens to words and
writes out the letters one at a time. The gray areas indicate that
there is some interference each time a new word is dictated, but
once the word is written out (which takes, on average, 6 s), there
is little interference. The novice model, however, needs two pro-
duction rules and a declarative retrieval in the dictation task for
every written letter (instead of the “initiate-movement” produc-
tion), creating substantially more interference. The result is that the
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model’s single-task reading performance is 298 words/minute. In
the dual-task situation this performance slows down to 229 words/
minute in Week 1 but then speeds up to 270 words/minute by
Week 6. Figure 12 shows a comparison between the model and the
2 participants for each of the first 6 weeks of the experiment, with
performance scaled to maximum reading speed. Threaded cogni-
tion nicely captures the adaptation over time in the course of the
reading and dictation study.

Driving: Transfer and Integration in a Real-World
Domain

The three domains modeled to this point all address behavior in
the laboratory with the goal of elucidating the finer timing aspects
of multitasking behavior; even the reading and dictation task,
which incorporates two common real-world skills, combines these
skills into a somewhat unnatural, certainly uncommon task do-
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main. To extend our representative set of tasks to include a more
complex real-world task, we now examine driving in combination
with several possible secondary tasks. One major benefit of the
driving domain is that it allows us to apply the theory to a truly
real-world task that many people experience on a daily basis.
Another benefit is that it allows us to demonstrate the potential for
transferring a single model of behavior across multitasking do-
mains, integrating this model with models of other tasks to predict
the behavior that results in a dual-task condition.

Driving alone. The starting point for our treatment of driving
is a computational model of driver behavior that has been tested in
a separate context. The ACT-R integrated driver model (Salvucci,
2005, 2006) can navigate a typical multilane highway environment
and has been compared against human driver behavior with respect
to performance measures for subtasks such as situation monitoring,
curve negotiation, and lane changing. In this article, all tasks
involve only the control (steering and acceleration–braking) as-
pects of the driver model, not the lane changing aspects, and thus
we import the core elements of the driver model that implement
control. The driver model in essence boils down to four rules that
iterate in sequence, each iteration producing one “update” in which
steering angle and acceleration–deceleration pedals are potentially
adjusted. The first two rules find the “near point” and the “far
point” of the current lane (see Salvucci & Gray, 2004); these two
points provide information about the nearby and upcoming lane
configurations (respectively), subsequently used by the model in
its calculations of steering angles. The third rule sends the motor
commands to specialized motor modules for steering and pedal
movement and also directs visual attention to encode the object at
the far point (i.e., a lead vehicle or a road point). The fourth rule
checks for the stability of the vehicle: If the vehicle is not suffi-
ciently stable as defined by its current lateral position and velocity,
the process iterates immediately; if the vehicle is sufficiently
stable, the process iterates after some delay (defined shortly).
These four rules are illustrated in the process timeline in Figure 13.

In addition, the past versions of the driver model were devel-
oped in earlier versions of the ACT-R architecture, and thus we
imported the ACT-R 5.0 model from Salvucci (2005) and made
some implementation-related, nontheoretical changes to the model
to work with the newest architecture, ACT-R 6.0. We also reesti-

mated three parameter values for the current simulation (see Sal-
vucci, 2005, for parameter descriptions): minor adjustments to the
steering scaling factor (0.85) and the stability scaling factor (3.0)
to account for slight differences in simulation environments and a
change to the accelerator-to-brake movement delay (600 ms) to
represent the minimum movement time (Lee, McGehee, Brown, &
Reyes, 2002) plus 200-ms motor preparation. The final modifica-
tion to the model relates to its timing aspects during stable control.
The original model incorporated a delay such that in stable situa-
tions—that is, when the car is near the lane center with low lateral
velocity—the model delayed the next control update for 500 ms;
this delay represents a satisficing assumption in the original model
that in stable situations, continual control is not required, and this
assumption was found to nicely capture behavior. The driver
model used here incorporates the same assumption. However, two
of the task domains below (driving and choice and driving and the
sentence-span task) used an additional task that required the driver
to brake upon onset of a visual stimulus on a lead vehicle; because
of this additional task, we assumed a 50% probability of breaking
out of the delay period at each potential rule firing, thus represent-
ing the fact that the human drivers had reason to pay further
attention to the driving task beyond those needed for basic control.
In other work, we have explored how appropriate delay times can
be learned and can adapt over time (Salvucci, Taatgen, & Kush-
leyeva, 2006), but for simplicity we do not include these mecha-
nisms in the current modeling effort.

Driving and choice. Recently Levy, Pashler, and Boer (2006)
ran a study that combines a basic choice task with the very
common real-world task of driving—in essence, a PRP task in the
context of a real-world driving task. Specifically, their task in-
volved following a lead vehicle while occasionally responding to
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Figure 12. Reading-dictation study: Data and model results.
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a choice task; the choice task had four conditions, with either a
visual or auditory choice stimulus and either a manual or vocal
response. In addition, a specified time after the stimulus onset—
namely the SOA time described in the dual-choice section—the
lead vehicle’s brake lights would occasionally light up and require
that the driver press the brake pedal. Thus, the task in essence
involved three tasks, namely the discrete choice task, the discrete
braking task, and the continuous driving (steering) task, lending
the task more external validity as a realistic task and providing an
excellent transition to our subsequent simulations involving the
driving domain.

Given the driver model, we adapted it to the Levy et al. (2006)
task as follows. First, we extended the model such that if brake
lights appear on the vehicle, it bypasses its default control of the
accelerator and taps on the brake pedal instead. Second, we de-
veloped a simple model for the choice task, following the same
rule pattern as in the previous choice domains: When the stimulus
is detected, the model encodes the stimulus (either visual or
auditory) and presses a button that corresponds to the stimulus.
However, Levy et al. used a slight variant to typical PRP studies in
that the stimulus was actually a single or rapidly repeated double
instance of a visual or auditory stimulus: One choice was presented
as a single visual flash on the lead vehicle’s rear-view window or
a single auditory tone, whereas the second choice was presented as
two rapidly repeated flashes or tones. In addition, for the manual
response, the driver was required to press the input button once for
a single instance of the stimulus and twice for a double instance of
the stimulus. The model for this task follows this procedure: After
noting the stimulus, it waits 100 ms (the interstimulus interval used
in the original experiment) and then notes whether there is a
repetition; for the manual response to two instances of the stimu-
lus, the model simply presses the button twice. For the vocal
response to either stimulus, the model simply assumes a spoken
one-syllable utterance to represent the responses “one” and “two.”
Finally, because the original experiment used a voice recognition
system to collect vocal responses, we estimated a parameter to
represent the delay in the recognition system, estimated at 300 ms.
The final model used the driver model as one thread and the choice
model as a second thread. Results were collected from simulations
with eight trials for each condition (auditory–manual, auditory–
vocal, visual–manual, visual–vocal) and for each SOA (0, 0.15,
0.35, and 1.20 s).

As before, we can examine a detailed process timeline to illus-
trate how the two tasks are executed together, shown in Figure 13.
As mentioned, the driving process involves a repeated firing of
four rules that find the near and far points, perform the steering and
acceleration (or deceleration) actions, and check for stability on the
road. The figure illustrates driving and the choice task performed
concurrently, with an assumed SOA of 150 ms. First, for the
choice thread, the audition module detects a tone and waits for the
stimulus interval to hear the next tone. Once the presence or
absence of a second tone is noted, the choice response is made.
Meanwhile, the visual stimulus of the lead vehicle’s brake light
appears after the SOA interval (indicated by the star in Figure 13);
the subsequent visual encoding that occurs as part of the driving
thread encodes the presence of this brake light. The driving thread
then continues as usual during the choice response motor execu-
tion, but when the acceleration adjustments are made for this
second driving update (indicated by the arrow labeled 2 in Figure

13), the normal acceleration process is overridden (as per task
instructions) and the braking process begins instead. The braking
motor movement completes after a delay of 600 ms following
motor initiation; meanwhile the choice thread has terminated, and
normal driving resumes. Note that after the onset of the visual
braking stimulus (indicated by the star in Figure 13), the driving
thread waits twice for the procedural resource, causing a 100-ms
delay in this thread, and this delay is the source of the PRP effect
noted by Levy et al. (2006) in their study.

Figure 14a shows the human and model reaction times (R2 �
.97, RMSE � .04) for the choice task and the braking task as a
function of SOA, analogous to our earlier analysis of the PRP
effect in the dual-choice task. As in the earlier analysis, reaction
times for the first task, the choice task, are unaffected by SOA.
However, reaction times for the second task, the braking task, are
larger for short SOAs: For both human and model data, we see the
largest increase for an SOA of 0 ms (simultaneous onset), a smaller
increase for an SOA of 150 ms, but no increase at SOAs of 350 and
1,200 ms. Clearly the cognitive processing required early in the
braking task conflicts with that of the choice task for short SOAs
and thus must be delayed for a short time, whereas this conflict
does not occur for larger SOAs.

As another view of these data, Figure 14b shows the reaction
times for the four combinations of input modalities (auditory and
visual) and output modalities (manual and vocal), for both the
human drivers in the experiment and the model (R2 � .95,
RMSE � .04). The visual conditions require more time than the
auditory conditions because of contention for the visual modality
with the driving task, and the vocal conditions require more time
because of the delays of speaking the responses and the subsequent
recognition. However, the most interesting aspect of these results
is the effect of multitasking. The first two blocks of results show
the choice reaction time in the single-task (no braking) and dual-
task (while braking) conditions; for both humans and the model,
the additional braking task incurs no additional reaction time,
essentially mirroring the results for Task 1 in the dual-choice
domain. In the third block of results, we also see that input and
output modality had no effect on the braking time in the multi-
tasking conditions—in other words, braking performance while
multitasking, as indicated in the PRP curves in Figure 14a, was not
affected by input and output modalities.

Driving and phone dialing. By combining driving and choice
in the previous model, we took one step toward examining a
realistic, nonlaboratory task domain. In this model, we make both
tasks as realistic as possible to address a common, and unfortu-
nately dangerous, real-world scenario: dialing a phone while driv-
ing. Numerous studies have examined the effects of phone dialing
while driving (e.g., Alm & Nilsson, 1994; Brookhuis, De Vries, &
De Waard, 1991; McKnight & McKnight, 1993; Salvucci &
Macuga, 2002), and there is general agreement that dialing as a
secondary task has significant potential to result in driver distrac-
tion with respect to the primary task—that is, decreased perfor-
mance in the driving task. This domain also benefits our theory in
that it provides a first test of threaded cognition for two nondis-
crete tasks: the continuous driving task and a dialing task that
requires several seconds to complete and thus cannot be completed
as a one-shot task, as could the choice tasks.

We focus our modeling efforts on a recent study of driver
distraction (Salvucci, 2001b) performed in a realistic driving sim-
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ulator with a front half of a Nissan 240sx interfaced with a
simulated highway environment. In the study, drivers had to steer
down an open road while their velocity was held constant, and they
occasionally dialed a seven-digit phone number in four conditions:
full–manual, in which they pressed each digit; speed–manual, in
which they pressed a single “speed number” associated with the
phone number; full–voice, in which they spoke all seven digits and
heard them repeated for confirmation; and speed–voice, in which
they spoke a single phrase (e.g., “office”) associated with the
number and heard it repeated for confirmation. Before dialing in
all conditions, drivers were required to press a special power
button to activate the phone, and after the manual conditions,
drivers were required to press the send key to complete dialing.
The detailed results appear below, but in short, the full–manual
condition produced the most distraction, the speed–manual condi-
tion produced less but significant distraction, and both voice con-
ditions produced no significant distraction.

The previous model of behavior for this task (Salvucci, 2001b)
required explicit specification of when to switch between the
driving and dialing tasks. For present purposes, we began with the
driver model used in the previous simulations (driving and
choice)—that is, the driver model served as one thread of the full
model, just as in the previous simulations. All parameters were
kept constant for the current simulations, except that we reesti-
mated the stability scaling factor (2.5) again to adjust for different
simulation conditions. Next, we took the original dialing models

for each condition and updated them to the newest version of
ACT-R and at the same time removed any code that specified the
explicit switching, allowing threading to handle all switching
between tasks. The only parameter assumptions made for the
dialing models were that all spoken digits were one syllable and all
spoken phrases for the speed–voice condition were three syllables.
To begin dialing while driving, the full model simply created the
particular dialing control state that corresponded to the desired
dialing method, thus creating a new dialing thread that executed
along with the driving thread. Results were compiled from three
simulation runs, each with 16 dialing trials performed without
driving and 16 trials performed while driving.

Figure 15 shows a process timeline for dialing a seven-digit
number as two blocks of three and four digits (following the North
American convention of a three to four chunking of the phone
number). For a new block of numbers, the dialing thread first
retrieves a declarative chunk that represents the block, then re-
trieves the first digit of that block. (This type of declarative
representation has been used and independently validated in pre-
vious models of list memory, Anderson et al., 1998, and analogy,
Salvucci & Anderson, 2001.) Meanwhile, the driving thread per-
forms its processing, ending with a check of vehicle stability. If the
vehicle is not sufficiently stable, the driving thread maintains
control and iterates until stable; if the vehicle is stable, the dialing
thread intercedes. The dialing thread then locates the desired digit
to enter and moves the hand to this location while visually encod-
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ing the object. In parallel with the button press, the thread retrieves
the next digit to enter. When there are no more digits in the block,
the dialing thread reiterates block retrieval, at which point the
driving thread can reacquire the visual resource and control the
vehicle until stable. Thus, the driving thread controls the vehicle
between blocks but not within blocks; a detailed study of the
response times for individual digits within the phone number
(Salvucci, 2005) suggests that people indeed exhibit this same
pattern of behavior.

Figure 16 shows two results from the model simulations and
human data: (a) the total time needed to complete the dialing task,
both alone and while driving (R2 � .99, RMSE � .49), and (b) the
vehicle’s lateral (side-to-side) velocity, an indicator of vehicle
stability and a common measure of driver performance (R2 � .96,
RMSE � .02). The dialing times in Figure 16a show that the
speed–manual condition is the fastest and full–voice the slowest,
both for dialing only and while driving. Perhaps surprisingly, the
human drivers required very little extra time to dial with the added

task of driving. The model captures this effect in that although
dialing time slows down slightly because of the driving task, the
threaded model is able to interweave the two tasks well enough
that the difference is not large. The lateral velocity results in
Figure 16b indicate that, as mentioned, the humans showed sig-
nificant distraction effects for the manual conditions (comparing
results for driving only to these conditions) and no significant
effect for the voice conditions. The model also captures this effect,
primarily because the manual dialing tasks require visual attention
and thus must share this resource with the driving task, creating
interference and reduced performance.

Driving and the sentence-span task. Although most studies of
driving and phone dialing focus on the contention of resources
(primarily visual) between the tasks, it has also been shown that
even primarily cognitive tasks—for example, conversing with
another person over the phone—can have detrimental effects on
driving performance (see, e.g., Strayer & Johnston, 2001). We now
examine this issue of cognitive distraction by modeling data re-
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ported by Alm and Nilsson (1995) on drivers performing an
intensive cognitive sentence-span task; this model represents a
generalization and threaded version of an earlier model for these
data (Salvucci, 2002). By modeling this task, we aim to demon-
strate that threaded cognition accounts not only for effects of
resource contention for perceptual and motor resources (as in the
previous model) but also for effects of contention for cognitive
processing—that is, the contention that arises when executing
multiple threads.

The driving task in the Alm and Nilsson (1995) study was a
car-following task in which the lead vehicle would sometimes
brake suddenly, thus requiring the driver to react and brake in
response. The secondary cognitive task, the sentence-span task,
was intended as a surrogate for the cognitive load of an intense
conversation (given that real-life conversations would be difficult
to control for cognitive load across individuals). The sentence-span
task (see also Daneman & Carpenter, 1980) involved two stages
that included the processing of sentences and the recall of words in
these sentences. In the first stage, drivers listened to five sentences
of the form X does Y—for instance, The boy brushed his teeth or
The train bought a newspaper. After each of these sentences,
drivers reported whether the statement was generally sensible. In
the second stage, drivers were asked to state the last word of each
sentence in the order in which they were presented. For instance,
for the sentences The boy brushed his teeth and The train bought
a newspaper, the driver would report “yes” and “no” after each
sentence (respectively) and would then report the memorized list
“teeth,” “newspaper,” and so on. The sentence-span task itself

involves two difficult activities, namely judging of sentence sen-
sibility and memorization (and rehearsal) of final words. When
combined with driving, the task puts a substantial cognitive load
on drivers as they attempt to integrate the tasks.

Our model for this task reused components from two existing
models. First, because the driving task is in essence the same as
that in the driving and choice domain (i.e., car following and
braking for a lead vehicle), we imported that model directly for use
in the current model, with no changes to rules or parameters. To
model the sentence-span task, we based our work on that of Lovett,
Daily, and Reder (2000), who modeled a closely related task called
the MODS (modified digit span) task in which people read strings
of letters and digits while memorizing final digits for later recall.
Because the task and architectural version differed from this ex-
isting model, we could not import the model directly; however, the
original model provided three critical components that were reused
here: (a) the positional representation used to encode memorized
items, (b) production rules that perform rehearsal of memorized
items, and (c) the basic structure of the production rules that
retrieve and report the items in sequence. These rules were then
extended to press a button to start the task, to encode a sentence
and decide whether it was sensible, and to hear and speak words
rather than read and type characters (as in the original MODS
model). The process of confirming whether the sentence is sensible
was not modeled in any detail, but rather the model simply
assumes that this process happens during the listening productions
and signals a confirmation by firing a confirmation rule. In addi-
tion, the model assumes that each sentence component (subject,
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verb, object) requires 1 s of speech time with a one-syllable pause
(150 ms) in between components. Results were compiled from
three simulation runs with four trials each while driving for ap-
proximately 5 min. Overall, the sentence-span model creates a
heavy cognitive load: During much of the slack time in between
encoding auditory stimuli or speaking responses, it rehearses the
item list through repeated retrievals of the list, going one by one
through all elements of the list and then iterating.

Figure 17 illustrates a segment of a sample process timeline
taken while the model executes both the driving and cognitive
tasks together. Throughout the timeline, the model interleaves the
driving thread with the sentence-span thread. In particular, at the
start of the timeline, the sentence-span thread performs a rehearsal
retrieval of a list item and then proceeds to check for the presence
of a new audio stimulus (i.e., the spoken sentences streaming in).
When a new stimulus is heard (indicated by the star in Figure 17),
the sentence-span thread encodes the stimulus and notes it in its
declarative structure of the current sentence. In this case, the
stimulus represented the end of the sentence, and thus the thread
initiates the required spoken response to the sentence (i.e., the
sense judgment). As the vocal resource produces this response, the
retrieval finally completes—the long delay indicating a new de-
clarative chunk with relatively few rehearsals—and the thread
notes the completion in preparation for the next rehearsal retrieval.
All the while, the driving thread continues its processing, but the
many rule firings required by the sentence-span thread result in
longer intervals between driving updates (roughly twice as long as
the normal interval). As is evident in Figure 17, the primary
bottleneck in this processing is the procedural resource, because
each thread requires frequent procedural rule firings and thus
contention for this resource remains high throughout the process.

The Alm and Nilsson (1995) study reported two significant
findings from their analysis of cognitive distraction from the

sentence-span task. First, they found a significant effect of the
cognitive task on braking performance as measured by the reaction
time to the lead-vehicle braking event; specifically, they found that
in the presence of the cognitive task, brake reaction time increased
by 0.56 s. The threaded cognition model of this combined task
produced a very similar increase of 0.54 s. The model did not
capture the exact quantitative numbers in the experiment, however:
Alm and Nilsson reported brake reaction times of approximately
1.6 s and 2.2 s for the driving-only and with-secondary-task
conditions (respectively), whereas the model produced times of
1.00 s and 1.54 s (respectively). Note that our model’s prediction
of 1.00 s in the driving-only condition comes directly from the
driving and choice model, which fit the Levy et al. (2006) data
very well; however, Alm and Nilsson’s time of 1.6 s is quite a bit
higher for essentially the same task, and we have no explanation
for this variance. Nevertheless, the model captures the most im-
portant aspect of their data, namely the magnitude of the perfor-
mance decrement when driving while performing the cognitive
task.

Along with this result, Alm and Nilsson (1995) predicted that
the cognitive task would also significantly affect drivers’ ability to
maintain a central position on the roadway—that is, they predicted
an effect on vehicle position similar to that observed in many
studies of driving and phone dialing. However, the empirical data
did not show such an effect; Alm and Nilsson did not report
specific numbers, only that their statistical analysis yielded no
significant effect of the presence of the cognitive task on lateral
position. We analyzed the model behavior for effects of lateral
position by computing the lateral deviation for both conditions as
the RMSE between the vehicle’s position and the lane center (a
common measure of driver performance). For this measure, the
model produced a lateral deviation of 0.19 m for the driving-only
condition and 0.18 m for the with-secondary-task condition, thus
finding essentially no effect of secondary task and replicating the
findings of Alm and Nilsson’s study. The lack of effect on lateral
deviation is especially interesting given the presence of the effect
for brake reaction time. We attribute this result to the fact that
steering updates become, in essence, elongated and slightly less
frequent during cognitive distraction but still occur at regular
intervals; thus, the reduced frequency and longer updates translate
to additional time for reacting to a braking event, but the regularity
of the steering updates (as filtered through vehicle dynamics) does
not significantly affect the ability to maintain a central lane posi-
tion. (This regularity in the cognitive distraction task is much like
that in the voice dialing tasks in the driving and dialing domain,
both producing no significant lateral effects, in contrast to the long
interruptions in the manual dialing tasks that do indeed result in
significant lateral effects.)

We should reemphasize the importance of these simulations
with respect to the prediction of contention for cognitive process-
ing resources. Unlike all the modeled tasks we have seen thus far,
the combined driving and sentence-span task includes essentially
no contention for perceptual and motor resources but includes a
secondary task with a high cognitive load. Thus, the cognitive
distraction that occurs as a result of the secondary task primarily
arises because of contention for cognitive processing. Some cog-
nitive architectures, most saliently EPIC (Meyer & Kieras, 1997a),
posit a fully parallel cognitive processor with no constraints on
processing resources. Such an architecture would thus predict no
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effects of multitasking performance in this task, because both tasks
could execute comfortably in parallel with no perceptual or motor
contention to constrain them. In contrast, threaded cognition and
the ACT-R cognitive architecture posit a resource-bounded cog-
nitive processor that nicely captures the observed performance
decrements that arise in cognitive distraction tasks.

Summary of Model Simulations

The model simulations illustrate the many types of interference
that can arise in multitasking behavior and demonstrate that
threaded cognition captures numerous aspects of this behavior.
The various domains each emphasize different sources of process-
ing interference. Although all the task domains include some
degree of cognitive interference resulting from the reliance on
cognition for procedural rule firings, the procedural resource
serves only as a primary source of interference in the driving/
sentence-span domain, whereas it serves as a secondary source of
interference in the dual-choice and driving-choice domains. The
dual-choice domain emphasizes interference in declarative mem-
ory retrieval, primarily in the early stages of learning before such
retrievals drop out. The tracking-choice and driving-dialing do-
mains emphasize interference effects in perceptual processing, and
the tracking-choice domain also demonstrates interference effects
in motor processing. In addition, all the domain models demon-
strate varying amounts of model reuse and transfer both from
earlier work and within the current work; Table 2 summarizes the

origins of the models and the changes incorporated for our
simulations.

General Discussion

Threaded cognition provides a theoretical and computational
framework for reasoning about and predicting multitasking behav-
ior. The model simulations emphasize the theory’s computational
aspects, namely its ability to generate detailed predictions of
behavior across a variety of tasks. In this discussion, we expound
on the broader theoretical implications of threaded cognition for
concurrent multitasking and related types of multitasking behavior.

Theoretical Implications for Concurrent Multitasking

The first implication of our theory of threaded cognition is that
concurrent multitasking does not require supervisory or executive
processes to manage and schedule multiple task processes. Any
approach that requires such processes must specify either how
executive processes could be acquired for particular sets of tasks or
how a general executive or supervisory mechanism would operate
over all sets of tasks; no previous theory has successfully provided
such an explanation. In contrast, threaded cognition allows multi-
tasking to emerge from the interaction of autonomous threads and
a threading mechanism for basic resource acquisition and conflict
resolution. Our modeling results demonstrate that this straightfor-
ward mechanism suffices to account for behavior across a range of

Table 2
Summary of Model Origins and Parameter Settings

Domain Origins and parameter settings

Dual choice Choice model based on Taatgen (2005)
No parameters estimated; all values taken from Taatgen (2005) and Byrne & Anderson (2001)

Tracking and choice Tracking model newly developed
No parameters estimated; all parameters left at default values

Choice model adapted from dual-choice study
Model changed to identify arrow stimuli instead of previous stimuli
No parameters estimated

Reading and dictation Reading model based on Lewis & Vasishth (2005)
Model implementation a simplified version of original (which would require too much time to run for

simulated days)
Set 1 parameter, latency factor, so that the timing of all model actions is the same as in the original model

Dictation model newly developed
Estimated 2 parameters—motor action and procedural learning speed

Driving and choice Driving model based on Salvucci (2005)
Model implementation changed to new version of ACT-R
Model changed to break out of normal delay due to braking task
Estimated 3 parameters—steering scaling factor, stability scaling factor, and accelerator-to-brake time

Choice model adapted from dual choice study
Model changed to accept dual-instance stimulus
Estimated 1 parameter—voice recognition delay

Driving and dialing Driving model taken from driving and choice study
Model changed to remove braking task (not applicable here)
Estimated 1 parameter—stability scaling factor

Dialing model taken from Salvucci (2001b)
Assumed that digit is 1 syllable and phrases are 3 syllables
No new parameters estimated

Driving and sentence-span task Driving model taken from driving and choice study:
No new parameters estimated

Sentence-span model derived from Lovett et al. (2000)
Model uses representation and some rules from earlier model
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multitasking domains, including accounts of when behavior does
and does not exhibit multitasking interference.

The second implication of the theory is that both procedural and
declarative processes can be sources of dual-task interference and
that declarative processes are an especially prevalent source of
interference in the early stages of learning. The procedural re-
source, as the nexus of processing in our theory, is always present
as a potential source of interference because its processing is
required to collect results from and initiate processes in other
resources. The declarative resource, on the other hand, is most
active in early stages of learning because of dependence on mem-
orized task instructions. Over time, however, this dependence
reduces and drops out because of the gradual translation of declar-
ative to procedural skill. Although the presence of declarative
interference has been previously explored (e.g., Carrier & Pashler,
1995), threaded cognition makes explicit the roles of the two
resources and how these roles change over time with practice.

The third implication is that the representation of component
task skills is simple and parsimonious, free from task-specific
knowledge that dictates when and how task switching should
occur. With such representations, task skills can be easily inte-
grated or separated, allowing for flexible combinations of single-
and dual-task behavior. This aspect of the theory meshes well with
the typical methodology for multitasking studies in which compo-
nent task skills are learned independently: Most empirical studies
ranging from simple dual-task experiments (e.g., Byrne & Ander-
son, 2001; Schumacher et al., 1999) to complex studies of sec-
ondary tasks while driving (e.g., Alm & Nilsson, 1995; Salvucci,
2001b) provide participants with a warm-up period in which one or
both tasks can be practiced independently of other tasks. Thus, we
expect that skill knowledge acquired during this practice time
remains uncluttered, without the additional baggage of task-
switching knowledge. This being the case, threaded cognition
provides the mechanism with which to execute such skills together
in a multitasking context.

In fact, a fourth implication of our theory is that, because of the
absence of task-specific executive knowledge, practicing two tasks
concurrently results in the same performance as practicing the two
tasks independently. This implication may seem surprising but has
recently been supported by Ruthruff, Van Selst, Johnston, and
Remington (2006) in a study of practice effects in the dual-choice
task domain. Thus, threaded cognition accounts for the entire span
of learning, from the initial stages of instruction learning to the
latest asymptotic stages of highly optimized behavior—an impor-
tant step toward replacing the oft-derided homunculus of control
(Altmann, 2003; Logan, 2003; Monsell & Driver, 2000) with a
fully specified computational framework.

Implications for Other Aspects of Multitasking

Although our theory applies across a range of interesting exper-
imental and real-world domains, threaded cognition focuses on
nondeliberative multitasking in which concurrent tasks are per-
formed at the subsecond to second time scale. In contrast, the
theory is not meant to capture explicit deliberative multitasking as
might arise in some contexts. For example, as discussed earlier, we
do not aim to capture the planning-centered, nongreedy types of
multitasking that other efforts have addressed (e.g., Freed, 1998;
Howes et al., 2004). Nevertheless, the theory does not preclude

planning or strategizing about multitasking performance; it simply
states that any such higher level processing must be done by a
cognitive thread rather than a specialized parallel executive pro-
cess and thus must share resources and perhaps experience inter-
ference from other concurrent threads. For example, De Jong
(1995) found that in a PRP-like dual-choice task, people respond
faster when they can predict which choice task will come first, and
they respond slower when their expectation is incorrect. Although
threaded cognition itself would not account for this result, such
behavior can arise from additional rules that plan for one task over
the other (similar to EPIC executive processes forced to run on a
serial procedural processor). In essence, the task would be learned
as a single thread that performs both tasks in a desired order. In
fact, the participants in De Jong’s study experienced the dual-task
condition immediately with no single-task practice and were ex-
plicitly instructed to pay attention to task ordering. As another
example, Logan and Burkell (1986) introduced stop and change
variants of the dual-task paradigm in which a stimulus in one task
affects the response to the other task; again, these variants pre-
sented two closely tied tasks and thus also biased participants to
more of a single-thread representation. In both examples, the
resulting representations include rules for higher level planning
and reasoning, but no truly concurrent processing akin to what
threaded cognition is intended to address.

Another aspect of such behavior relates to a person’s ability to
modulate their performance on one task with respect to another in
a multitasking context. We often conceptualize multiple tasks as
having priorities in which one task should receive a larger propor-
tion of processing time than another. However, defining such
priorities explicitly can be a difficult endeavor; for instance, in our
driving and phone dialing example, driving should clearly have the
much higher priority and yet people still dial phones while driv-
ing—how can we specify and account for such behavior in our
models? Rather than defining priorities per se, our approach allows
task representations to incorporate, to some extent, their own
requirements for processing time. For example, when our driver
model notes that the vehicle is stable, it allows for a short delay
before more vehicle control must be performed; by adjusting this
delay as external demands change, the driver model can essentially
adapt its processing demands over time (see Salvucci et al., 2006).
Such adaptations allow threaded cognition to account for differing
processing trade-offs between two concurrent tasks, such as trade-
offs characterized as points along a performance operating char-
acteristic curve (see, e.g., Navon & Gopher, 1979; Norman &
Bobrow, 1975).

Threaded cognition is also not meant to account for multitasking
at the minute-to-hour-long time scale, such as multitasking be-
tween two long-term work projects but focusing on one for an
extended period before switching to the other. For our purposes,
this type of multitasking is better characterized as performing
sequential tasks with occasional interruptions. These areas of study
do not go against the threaded approach presented here; indeed, we
believe that these theories and models nicely complement the types
of multitasking addressed by threaded cognition and that they can
very likely fit well in the context of a threaded approach.

To illustrate our point, we can consider two bodies of literature
in particular through the lens of a threaded approach. First, the
sizable literature on task switching (see, e.g., Altmann & Gray,
2002; Rogers & Monsell, 1995; Sohn & Anderson, 2001) has
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explored various aspects of switch costs when performing succes-
sive choice tasks—for example, alternating between two distinct
choice tasks. For such a domain, the two alternating tasks do not
fall under the context of a threaded approach, because threading is
intended to capture simultaneous execution of tasks rather than
separate, sequential execution. In this case, a model would be
required to explicitly change the control state from the current task
to the other task, likely requiring a memory retrieval or other costly
cognitive function. There have been computational accounts for
these switch costs based on theories of memory and recall (e.g.,
Altmann, 2002; Sohn & Anderson, 2001). Such an account, ex-
pressed in the ACT-R framework, can also be expressed in a
threaded framework by simply assuming that the model acts as a
single thread, explicitly redirecting itself to accomplish alternating
tasks represented by different control states.

A second interesting body of literature addresses the issue of
interruption. For instance, Trafton, Altmann, Brock, and Mintz
(2003) explored people’s behavior during the interruption lag, or
the time interval between an alert of an interruption (e.g., a phone
ringing) and the actual interrupting task (e.g., the phone conver-
sation). They found that, when interrupted, people used the inter-
ruption lag to prepare for later resumption of the interrupted task
(see also Altmann & Trafton, 2002). In particular, they posit that
people use prospective goal encoding as well as retrospective goal
rehearsal to maintain a high activation on the interrupted goal,
facilitating later retrieval. Such a model could be neatly expressed
in a threaded approach: When the alert occurs, a thread is created
that maintains high memory activation by repeated retrievals of the
control state (much like our model of the sentence-span task in its
rehearsal of the word list). During the interruption lag and even
during the interrupting task, such a thread can occasionally per-
form retrieval and ensure that, upon completion of the interrupting
task, the original task can be restarted by retrieval of its control
state. Another interpretation might be that the thread of the original
task remains during the interrupting task, but the context of the
original goal is forgotten, requiring retrieval of this context before
resumption. Whatever the approach, the theoretical constructs of
Trafton et al.’s theory on interruption and resumption remain
wholly intact, but threaded cognition provides a straightforward
method to accomplish their posited goal rehearsal—in essence, as
a second thread along with the interrupting task thread.

Looking ahead, the ultimate test of threaded cognition arises in
the application of the theory across a wide range of task domains.
The model simulations presented here represent a first step at
demonstrating the theory’s breadth and generality using an illus-
trative representative sampling of domains. As a next step, one
might consider the vast space of domains for which cognitive
architectural models have been developed and explore the theory’s
predictions for when two or more task domains are combined into
a single concurrent task. For example, the ACT-R Web site2

contains over 600 publications describing computational models
covering over 50 task domains; one might imagine combining any
two tasks into a single concurrent task (e.g., lexical processing and
spatial navigation, cognitive arithmetic and game playing, etc.),
generating predictions of the concurrent task by simply integrating
the task models as threads and then comparing these predictions to
(perhaps newly collected) empirical data on the concurrent task.
Thus, threaded cognition is an eminently testable theory of mul-
titasking behavior, and we look forward to exploring how well it

will generalize to an increasingly diverse array of multitasking
domains.

2 See http://act-r.psy.cmu.edu/
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