
© 2001 HERMES SCIENCE PUBLICATIONS Cognitive Science Quarterly (2002) 2, 1-42 

Whether Skill Acquisition is Rule or  
Instance Based is determined by the  

Structure of the Task
 

 

Niels A. Taatgen1 
University of Groningen, Netherlands 

Dieter Wallach 
University of Basel, Switzerland 

 

The traditional view of skill acquisition is that it can be explained by a 
gradual transition from behavior based on declarative rules in the form 
of examples or instructions towards general knowledge represented by 
procedural rules. This view is challenged by Logan’s instance theory, 
which specifies that skill acquisition can be explained by the accumula-
tion of examples or instances of the skill. The position defended in this 
paper is that both types of learning can occur — but their success will 
depend on the respective task. In the Sugar Factory task, it is very hard 
to determine the rule guiding the system, rule learning will thus fail 
while instance learning dominates. In the Anderson-Fincham task, 
mainly rule learning occurs, but variations in the task show evidence 
for some instance learning as well. Experiments involving both tasks 
are modeled using ACT-R, a hybrid cognitive architecture whose 
adaptive learning mechanisms seem to be well suited for modeling 
two very different tasks using the same methods. 
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Introduction 

The question whether skills are represented as abstract rule-like entities or as 
sets of concrete instances taps one of the central distinctions in cognitive 
science, spreading across fields as diverse as research on memory, problem 
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solving, categorization or language learning (Logan, 1988; Hahn & Chater, 
1998; Redington & Chater, 1996; Plunkett & Marchman, 1991; Lebiere, Wal-
lach & Taatgen, 1998; Taatgen & Anderson, submitted). Recently, Hahn and 
Chater (1998) proposed that the distinction between instance- and rule-based 
learning mechanisms cannot be based on different types of representations, 
but must involve a framework of their use in problem solving. In this paper 
we extend their argument and emphasize the necessity of an integrative 
investigation of human skill acquisition using a comprehensive theory of 
cognition. 

The view of skill acquisition as learning and following abstract rules has 
dominated theories of skill acquisition over the last decades, whether instan-
tiated as production systems (Newell & Simon, 1972; Anderson, 1993), 
stored as logical implications (Rips, 1994) or represented in classifier systems 
(Holland, Holyoak, Nisbett & Thagard, 1986). While these approaches differ 
on various dimensions, they share the common assumption that cognitive 
skills are realized as abstract rules that are applied to specific facts when 
solving problems. In ACT-R, a comprehensive architecture of human cogni-
tion (Anderson & Lebiere, 1998), it is assumed that people start out with 
specific examples or instances of previous problem solving episodes that can 
potentially be generalized to abstract rules. These rules can be applied in 
subsequent problem solving and can thus account for increased perform-
ance. Discontinuous improvements in cognitive performance as reported by 
Blessing and Anderson (1996) or Haider (1997) can be taken as evidence for 
the acquisition of new rules that allow for an increase in observed perform-
ance. While Anderson (1993) describes the view that cognitive skills are real-
ized as (production) rules as “one of the most important discoveries” in cog-
nitive psychology, Logan (1988) argues for domain-specific instances as the 
representational basis for cognitive skills. According to Logan’s instance 
theory, general-purpose procedures or methods are applied to solve novel 
problems. Each time such a procedure is used in problem solving, its result 
is encoded as a separate instance. For new problems, the solution can be 
calculated using general procedures, or the solution to a previous problem 
can be retrieved and applied to the current task. Retrieved episodes can be 
used as a whole, in part, or in adapted versions to obtain solutions of new 
problems.  

One source of empirical support for the instance-based approach is the 
fact that repeating a certain specific example of a problem increases per-
formance on this example, but not on others (Wallach, submitted). The fact 
that participants frequently cannot verbalize abstract knowledge about 
problems solved also seems to provide evidence against some form of gen-
eralization as implied by rule-based skill theories. The ACT-R theory that 
forms the basis of this article, however, assumes that rules themselves can-
not consciously be inspected, so this phenomenon is at least not without an 
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alternative explanation. Further evidence for the fact that knowledge is rep-
resented as rules, more specifically production rules, comes from research 
on the directional asymmetry  of rules. A production rule consists of two parts, 
a condition part and an action part, which we informally denote as ‘IF condi-
tion THEN action’. In a production system, control always flows from the 
condition to the action, i.e. if the specified condition is met, then the action 
can potentially be executed. In many practical cases, the condition and the 
action are both part of a pattern. If we assume, for example, the pattern AB, 
a rule like ‘IF A THEN B’ can be used to complete the pattern given A. In an 
instance approach, the pattern AB can be stored as an instance, and retrieved 
given either A or B. If participants are trained to complete some pattern AB 
on the basis of A, a rule approach predicts that they learn the rule ‘IF A 
THEN B’, and the instance approach predicts that they learn the instance 
AB. If participants are consequently asked to complete AB on the basis of B, 
the instance approach would not predict a significant decrease in perform-
ance. In the rule-based approach, with its assumption that control always 
flows from condition to action, however, the rule ‘IF A THEN B’ would be 
useless to complete AB on the basis of B. In that case a new rule ‘IF B THEN 
A’ would have to be learned, resulting in severe performance degradations 
(Kessler, 1988; Rabinowitz & Goldberg, 1995). 

Another apparent source of evidence stems from the fact that rules are 
more general than instances, which are assumed to be represented in a rela-
tively unprocessed form (Redington & Chater, 1996). If participants show 
increased performance on problems they have not encountered before, some 
generalized knowledge can be postulated as the basis of the observed per-
formance. If we assume that stored instances can only be applied when the 
new problem at hand is literally identical to encoded examples, no perform-
ance increase on new problems is to be expected. However, if one or more 
old examples (or fragments of them) can be used to improve performance on 
a new example in a less direct fashion (Lebiere, Wallach & Taatgen, 1998; 
Lebiere, 1999), generalization is also possible in an instance-based setting. 
Consequently, if generalization in transfer experiments is used as evidence 
against instance theory, it must be ruled out that the answer to a certain 
problem can easily be derived from stored answers to previous problems. As 
Redington and Chater (1996) have pointed out, surprisingly simple models, 
relying on represented fragments of observed stimuli, can perform exceed-
ingly well in transfer tasks without acquiring any abstract knowledge. An 
example of such a model will be discussed in a later section, when we dem-
onstrate the scope of a purely instance-based approach in accounting for 
data that Broadbent (1989) has interpreted as evidence against the claim that 
general rules are learned on the basis of previously stored examples. The 
results of Broadbent and colleagues on dissociations between knowledge 
and performance seem to imply that participants can acquire knowledge to 
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successfully operate complex systems without showing increased scores 
when answering questions about the system’s behavior. The instance-based 
ACT-R model proposed in this paper will provide a very simple alternative 
explanation for this dissociation result. 

Before presenting models of rule- and instance based skill acquisition in a 
unified theory of cognition, the next section provides the theoretical frame-
work underlying our approach. 

Unified theories of Cognition 

Figure 1. Prototypical research design used in cognitive modeling  

In 1990 Newell published the book “Unified Theories of Cognition”, in 
which he elaborated the ambitious vision of a comprehensive theory of cog-
nition, an approach he first outlined in 1973 (Newell, 1973). According to 
Newell, instead of developing micro-theories for every separate phenome-
non, psychology should aim at unification. The ultimate goal, following 
Newell, is an integrative theory that encompasses a broad set of theoretical 
approaches: a truly Unified Theory of Cognition. Emphasizing the capability 
to make detailed predictions, Newell imagined a computational theory that 
is based on a cognitive architecture. A cognitive architecture, in analogy to the 
architecture of a computer, conceptualizes and implements the structures 
and mechanisms that are postulated to form the basis of human cognition. 
To be able to explain cognitive phenomena and to make predictions, such an 
architecture has to be supplied with a model of a specific task. A task model 
takes the form of a set of initial knowledge that is encoded in the representa-
tional structures provided by the architecture. In the case of a model of ex-
pert behavior this may be an extensive body of task-specific knowledge. The 
task model of novice behavior, on the other hand, might only contain very 
general knowledge and some specific knowledge that is supposed to be ac-
quired from instructions. Figure 1 illustrates the described research para-
digm for cognitive modeling based on cognitive architectures. 

In his 1990 book Newell acknowledged the fact that psychology is not 
ready yet for a single integrated theory. He presented Soar, a candidate ar-
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chitecture of his own, but also called upon his fellow researchers to design 
alternative architectures. Since the development of Soar and Newell’s chal-
lenge, three other well-known architectures have been implemented on the 
basis of production systems: EPIC (Meyer & Kieras, 1997), CAPS (Just & 
Carpenter, 1992) and ACT-R (Anderson, 1993; Anderson & Lebiere, 1998). 
The models that we discuss in this article rely on the ACT-R architecture. 
The other two architectures, EPIC and CAPS, do not incorporate learning 
(yet), and are therefore not suitable for modeling knowledge acquisition 
processes. Although the Soar architecture does incorporate learning, its pure 
symbolic nature makes it hard to model the subtle effects of gradual learning 
and forgetting that characterize the experiments modeled in this paper (see 
also Taatgen, 1999).  

 Figure 2. A schematic diagram of ACT-R. Adapted from Anderson & 
Lebiere (1998). 

The ACT-R theory rests upon two important components: rational analysis 
(Anderson, 1990) and the distinction between procedural and declarative 
memory (Anderson, 1976). According to rational analysis, each component 
of the human cognitive architecture is optimized with respect to demands 
from the environment, given its computational limitations. Rational analysis 
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assumes that the functioning of an architectural component can be derived 
by considering how the component in question can work as optimally as 
possible in a given environment. Anderson (1990) relates this optimality 
claim to evolution that shapes the architecture. An example of this principle 
is the way choice is implemented in ACT-R. Whenever there is a choice be-
tween strategies to use or memory elements to retrieve, the architecture will 
take the one that has the highest expected gain, i.e. the choice that has the 
lowest expected cost while having the highest expected outcome. 

The principle of rational analysis can also be applied to task knowledge. 
While evolution is shaping the architecture, learning shapes the knowledge 
and parts of the knowledge acquisition processes. Instead of only being fo-
cused on acquiring knowledge per se, learning should also aim at finding its 
right representation. This may imply that learning has to attempt several 
different ways to represent knowledge, so that the optimal one can be sorted 
out. This principle will underlie the models we will present later on. Figure 2 
gives an overview of the theory, while further details on ACT-R can be 
found in the appendix to this paper. 

Learning strategies 

The goal of this paper is to explore instance-based and rule-based learning in 
an integrative theory of cognition. We assume that a participant in an ex-
periment has some initial method or algorithm to solve a new problem. In 
most cases this method will initially be time-consuming or inaccurate. Each 
time an attempt at solving an example of the problem is made, an instance is 
learned that encodes the respective result. In ACT-R terms an instance is just 
a goal chunk that is popped from the goal stack and stored in declarative 
memory. This means that instance-based learning is an automatic process: 
no conscious effort is needed. Successful use of this knowledge depends on 
the activation of this knowledge, so it may be necessary to learn the same 
instance a number of times before it can reliably be retrieved. 

Other types of learning require a more active attitude from the partici-
pant. If the initial method to solve a problem is too time consuming or pro-
duces many errors, the participant may try to derive some sort of rule to 
increase efficiency. This rule is not a compiled production rule, but is a form 
of representation that is open to conscious inspection and reasoning. It is 
rather a declarative structure, which generalizes experience and may state 
some sort of explicit hypothesis of how things work.  

In order to propose and evaluate declarative rules, procedural knowl-
edge is needed. This procedural knowledge has to be general enough to be 
used in multiple contexts. Once a declarative rule is well established it can 
be compiled into a production rule.  
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Production rules that propose new declarative rules to solve a certain 
type of problem actually put a new layer on architectural learning. The 
learning that is part of the architecture, ACT-R’s built-in mechanisms, is 
fixed and not open to change. Learning strategies that pose new hypotheses 
and attempts of generalization are not part of the architecture, but result 
from acquired knowledge. As a consequence, one can expect large individ-
ual differences in learning strategies (Taatgen, 1997).  

Our discussion of mechanisms for instance- and rule-based learning 
raises the following question: if there are different ways of learning, what 
type of learning will be witnessed in a particular experiment? To answer this 
question we revisit the principle of rational analysis. According to this prin-
ciple, we will observe the type of learning that will lead to the largest in-
crease in performance. In a task in which it is very hard to discover valid 
generalizations and where the set of possible instances is not too large, learn-
ing can be characterized primarily by instance learning because this form of 
learning produces efficient improvements. The next section will discuss an 
example of a model for a task in which the discovery of such relationships 
between variables is very difficult and which should — according to the 
arguments above — be accomplished by instance-based learning. Tasks in 
which there are too many instances to learn, but in which relationships are 
more obvious or salient, will probably be better explainable by postulating a 
form of rule learning (Broadbent & Hayes, 1988). In many tasks, however, 
both instance and rule learning will be successful to some degree. The model 
of the Anderson-Fincham task will be an example of this case. 

Sugar Factory 

In contrast to rule-based approaches that conceptualize skill acquisition as 
learning of abstract rules, theories of instance-based learning argue that the 
formation of skills can be understood in terms of the storage and deploy-
ment of specific episodes or instances (Logan, 1988; 1990). According to this 
view, abstraction is not an active process that results in the acquisition of 
generalized rules, but that rule-like behavior emerges from the way specific 
instances are encoded, retrieved and deployed in problem solving. While 
ACT-R has traditionally been associated with a view of learning as the ac-
quisition of abstract production rules (Anderson, 1983; 1987; 1993), we pre-
sent a simple ACT-R model that learns to operate a dynamic system by re-
trieving and deploying specific instances (i.e. chunks) that encode episodes 
experienced during system control. Our ACT-R model will first be com-
pared to a model proposed by Dienes and Fahey (1995) before we apply it to 
data from a new experiment. Our comparison with the Dienes and Fahey 
model encompasses both the accuracy of the predictions and the assump-
tions made by each of the models. 
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The task 

Berry and Broadbent (1984) used the computer-simulated scenario Sugar 
Factory to investigate how participants learn to operate complex systems. 
Sugar Factory is a dynamic system in which participants are supposed to 
control the sugar production sp by determining the number of workers w 
employed in a fictional factory. The behavior of Sugar Factory is governed 
by the following equation: 

     sp t = 2wt − sp t− 1 + random component (−1,  0,  or 1) [1] 

The number entered for the workers w can be varied in 12 discrete steps 1 = 
w = 12, while the sugar production changes discretely between 1 = sp = 12. If 
the result according to the equation is less than 1, sp is set to 1. Similarly, a 
result greater than 12 is set to an output of 12. Finally, a random component 
of ± 1 is added in 2/3 of all trials to the result that follows from the equation 
stated above. To allow for a more realistic interpretation of w as the number 
of workers and sp as tons of sugar, these values are multiplied in the actual 
computer simulation by 100 and 1000, respectively. Participants are given 
the goal to produce a target value of 9000 tons of sugar (i.e. sp=9) on each of 
a number of trials. Participants are not informed about the relationship be-
tween the number of workers and the sugar production.  

The models 

Based on Logan’s instance theory (1988; 1990), Dienes and Fahey (1995) de-
veloped a computational model (coined D&F model in the remainder of this 
section) to account for the data they gathered in an experiment using the 
Sugar Factory scenario. According to the instance theory, encoding and re-
trieval are intimately linked through attention: encoding a stimulus is an 
unavoidable consequence of attention, and retrieving what is known about a 
stimulus is also an obligatory consequence of attention. Logan’s theory pos-
tulates that each encounter of a stimulus is encoded, stored and retrieved 
using a separate memory trace. These separate memory traces accumulate 
with experience and lead to a “gradual transition from algorithmic process-
ing to memory-based processing” (Logan, 1988, p. 493). 

Both models, the D&F model and our ACT-R model, assume some algo-
rithmic knowledge prior to the availability of instances that could be re-
trieved to solve a problem. Dienes and Fahey (1995, p. 862) observed that 
86% of the first ten input values that participants enter into Sugar Factory 
can be explained by the following rules: 

 
1. If the sugar production is below (above) target, then increase (de-

crease) the amount of workers with 0, 100, or 200. 
2. For the very first trial, enter a work force of 700, 800 or 900. 
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3. If the sugar production is on target, then respond with a workforce 
that is different from the previous one by an amount of -100, 0, or 
+100 with equal probability. 

 

While this algorithmic knowledge is encoded in the D&F model by a con-
stant number of prior instances that can be retrieved in any situation, ACT-R 
uses simple production rules to represent this rule-like knowledge. The 
number of prior instances encoded is a free parameter in the D&F model 
that was fixed to give a good fit to the data reported below.  

Logan’s instance theory predicts that every encounter of a stimulus is 
stored. The D&F model, however, deviates from this assumption in that it 
only stores instances for those situations in which an action successfully 
leads to the target. All other situations are postulated as being ignored by 
the model — an assumption which not only lacks plausibility, but also vio-
lates Logan’s instance theory that supposedly forms the theoretical founda-
tion of the D&F model. Complicating the modeling basis further, the D&F 
model uses a “loose” definition of what a successful action is. Due to the 
random component in the Sugar Factory equation, the outcome calculated 
by the Sugar Factory formula may vary by ± 1000. Unbeknownst to the par-
ticipants, a sugar production of 8000 or 10000 is therefore considered to be 
still on target. Although the information about the loose criterion was not 
available to participants, the D&F model stored only instances about actions 
that were successful according to this loose scheme. The ACT-R model, in 
contrast, encodes every situation that the model encounters, irrespective of 
its result. The following chunk is an example of an instance stored by the 
ACT-R model: 

 
Transition1239 
 ISA transition 
 STATE 3000 
 WORKER 800 
 PRODUCTION 12000 
 

The above chunk TRANSITION123 encodes a situation in which an input of 
800 workers, given a current production of 3000 tons, led to subsequent 
sugar production of 12000 tons.  

Retrieving instances 

In the D&F model each stored instance “relevant” to a current situation races 
against others and against prior instances representing algorithmic knowl-
edge. The fastest instance determines the action of the model. An instance 
encoding a situation is regarded as “relevant” by the D&F model, if it either 



10  Taatgen & Wallach: Skill Acquisition - Rule or Instance Based? 

matches the current situation exactly, or if it does not differ from it by more 
than 1000 tons of sugar in either the current output or the desired output, 
analogous to the “loose” range discussed above. Again, the D&F model 
makes use of information unavailable to participants. Retrieval in the ACT-R 
model, on the other hand, is governed by similarity matches between a 
situation currently present and encodings of others experienced in the past. 
On each trial, a memory search is initiated based on the current situation 
and the target state ‘9000 tons’ as cues to retrieve an appropriate interven-
tion or an intervention that is associated with a similar situation. The follow-
ing production rule is used to model the memory retrieval of chunks: 

 
IF  the goal is to find a transition from the current state with 
 output current to a state with new output desired  
 AND there is a transition chunk in declarative memory, with 
 output current and new output desired  and a number 
 of workers equal to number 
THEN set the number of workers in the goal to number 
 

As outlined in the previous section, chunk retrieval in ACT-R is governed by 
the activation level of memory elements. Generally, productions try to re-
trieve an instance that matches the current situation exactly. However, if 
such a chunk does not exist in memory, or if the activation level of an exact 
matching chunk is too low, ACT-R can retrieve a memory element that only 
partially matches the condition pattern of the retrieving production. Chunks 
that do not exactly match the current situation will be penalized by lowering 
their activation for each mismatching slot proportional to the degree of 
mismatch using the following equation: 

 
    
Activation  Penalty = MP (1− sim(required s,  actual s))

s=slots  in  matched chunk
∑  [2] 

For each slot in the goal that is matched to a slot in the chunk that is a candi-
date for retrieval, the similarity between their respective contents is calcu-
lated. If this similarity is perfect (i.e. sim=1), no penalty is subtracted. When 
the similarity is lower than 1, a corresponding proportion of the fixed pa-
rameter MP is subtracted from the activation2. 

Figure 3 shows an example for this process of partial matching. In Figure 
3 the chunk GOALCHUNK represents a situation in which the current sugar 
output (“2000”) is encoded in the slot STATE, while the target state (“9000”) 

                                                                 
2 Following Lebiere (1999), the following function is used to calculate the similarity of two 

numbers a and b, representing the sugar production in respective instance chunks: 

    
sim (a, b) =

min( a, b)
max( a,b, 1)

. Note that the similarity ranges from 0 (no similarity) to 1 (equality). 
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is encoded in slot PRODUCTION. Chunk EPISODE007 is retrieved by pro-
duction RETRIEVE-EPISODE using partial matching of the fillers “1000” vs. 
“2000” in the state slot and the values “8000” vs. “9000” in the 
PRODUCTION slot. In the action part of production RETRIEVE-EPISODE 
the number of the WORKER slot of EPISODE007 (“5”) is then used to enrich 
the current GOALCHUNK by the retrieved value for its WORKER slot. 
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Figure 3. Partial matching in the Sugar Factory model 

 

 

Figure 4. Relative use of instance retrieval per trial by the ACT-R model 

As Figure 4 shows, ACT-R’s use of instances instead of the initial algo-
rithmic knowledge increases over time, resulting in the gradual transition 
from algorithmic to memory-based processing as postulated by Logan (1988, 
p. 493). 

While both models of instance-based learning obviously share some 
striking similarities, the D&F-model makes assumptions regarding the stor-
age and the retrieval of instances that can hardly be justified on either a 
theoretical or an empirical basis. Dienes and Fahey (1995) point out that 
these critical assumptions are essential to the performance of the D&F 
model: 
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“The importance to the modeling of assuming that only correct situa-
tions were stored was tested by determining the performance of the 
model when it stored all instances. (…) This model could not perform 
the task as well as participants: the irrelevant workforce situations 
provided too much noise by proscribing responses that were in fact 
inappropriate (…) If instances entered the race only if they exactly 
matched the current situation, then for the same level of learning as 
participants, concordances were significantly greater than those of 
participants.”(p. 865). 

Since the ACT-R model does not postulate these assumptions, it can be re-
garded as more parsimonious than the D&F model, demonstrating how 
instance-based learning can be captured by the elementary mechanisms 
provided by a unified theory of cognition. 

While our theoretical argumentation of the assumptions underlying the 
two models has favored the ACT-R approach, we will briefly discuss the 
empirical success of the models with respect to empirical data reported by 
Dienes and Fahey (1995) before we compare the predictions of the ACT-R 
model to our own data. Figure 5 shows the trials on target as reported by 
Dienes and Fahey (1995) when participants controlled Sugar Factory over 
two phases, consisting of 40 trials each. ACT-R slightly overpredicts the 
performance found in the first phase, while the D&F model slightly under-
predicts the performance of the participants in the second phase. Since both 
models seem to explain the data equally well, we cannot favor one over the 
other on empirical grounds. 
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Figure 5. Number of trials on target in the experiment, the ACT-R model and 
the D&F model for the first and second half of the experiment conducted by 
Dienes & Fahey (1995) 

 

Figure 6. Concordances for the experiment and both models 

After the participants had controlled the Sugar Factory in the experiment of 
Dienes and Fahey (1995), they were required to do a variant of a question-
naire. Again they had to determine the work force in a total of 80 situations, 
but this time they did not receive feedback, but just moved on to a new, un-
related situation. The situations presented were the last 40 situations from 
the first part of the experiment mixed with 40 new situations, i.e. situations 
which participant did not encounter in controlling the system. 

Figure 6 shows how the percentage of times (concordance) participants 
chose the same work force in this second task as they did in the first. The 
baseline level represents the chance that both choices are equal due to ran-
dom choice. This chance is higher than 1/12, because some choices are made 
more often during the experiment than others. The column labeled “correct” 
shows how often the same work force was chosen if this lead to a correct 
output, the “wrong” column shows the same for the incorrect outputs. 
Choices are close to base level for “wrong” answers, while they are signifi-
cantly higher for “correct” answers, indicating a better memorization of 
“correct” answers. While this is a trivial consequence from not storing 
“wrong” instances in the D&F model, no special mechanisms to arrive at this 



  Taatgen & Wallach: Skill Acquisition - Rule or Instance Based? 15 

result are required in the ACT-R model. Generally, both models seem to do 
similarly well in modeling the concordance data, with no model being 
clearly superior.  

Conclusion 

We discussed a simple ACT-R model of instance-based learning and com-
pared it to the Sugar Factory model of Dienes and Fahey (1995) with respect 
to their respective ability to model the control of a dynamic system. While 
both models were similarly successful in their empirical predictions, the 
ACT-R model was found to require fewer assumptions and was thus pre-
ferred over the model proposed by Dienes and Fahey (1995). Generally, 
ACT-R’s integration of an activation-based retrieval process with the con-
cept of partial matching seems to be a very promising starting point for the 
development of an ACT-R theory of instance-based learning and problem 
solving. The use of partially matching instances allows the architecture to 
implicitly generalize available examples for application to similar problems. 
In this view, the reported dissociations between knowledge and perform-
ance (Berry & Broadbent, 1984) do not seem surprising at all but are implied 
by instance-based learning: Participants who are good in controlling Sugar 
Factory should experience fewer different system transitions (since they are 
by definition often in the target state) and should thus have encoded fewer 
instances that would allow them to answer successfully the probes in the 
questionnaire. Participants who are bad in controlling Sugar Factory, on the 
other hand, experience a broader set of different system transitions and thus 
have a better basis of instances for answering questions that probe for sys-
tem transitions (Funke, Buchner & Berry, 1997). 

In the next section we explore the ACT-R model in its ability to account 
for the data of a new experiment. 

Experiment 

The goal of the experiment is to explore whether different learning condi-
tions result in different learning strategies and thus in the acquisition of 
different types of knowledge (i.e. instance vs. rule knowledge). The success 
of the instance-based ACT-R model on the Sugar Factory task as described 
in the previous section supports our conjecture stated at the beginning of the 
paper: instance-based learning seems to be evoked by situations where the 
problem to be solved involves non-salient relationships between system 
variables that are very hard to discover: “looking for rules will not work 
when you cannot find them” (Reber, 1989, p. 232; Broadbent, 1989). The 
equation underlying the Sugar Factory can be characterized as non-salient 
(Berry, 1991) since it involves a negative feedback component and a random 
factor in determining the output. 
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In the experiment reported in this section we manipulate the activity de-
mands when learning to control Sugar Factory with the intention to induce 
different knowledge acquisition strategies: Learning by observation results in 
the acquisition (and possible elaboration) of examples for demonstrated 
control behavior while learning by doing  allows participants to generate, 
evaluate and test hypotheses about underlying structural relationships by 
choosing appropriate system interventions. Berry (1991) found that observ-
ing a person who interacts with the Sugar Factory in an initial learning 
phase had no effect on subsequent control performance. In Berry’s study, 
participants watched the experimenter interacting with the task in a learning 
phase while they had to cope with the scenario themselves in a subsequent 
knowledge application phase. To make the observed control performance of 
the experimenter directly comparable with earlier studies conducted by 
Berry, the experimenter simply typed in responses taken from these studies. 
Participants in Berry’s study were exposed to the very same sequence of 
input-output-pairs as were the participants in her previous studies (who 
generated these), but did not have the opportunity to actively provide input 
values and thus to explore their own hypotheses about underlying system 
relations in the learning phase. Interestingly, Berry found that participants 
were only able to learn successfully by observation when there was a salient 
relationship between input and output variables of the system to be con-
trolled. 

Further studies that investigated the effect of system observation on con-
trol performance and system knowledge report results that are partially 
inconsistent with the findings of Berry (1991). Funke and Müller (1988) 
found that observers were significantly worse in subsequent system control 
than participants who learned to control the system by doing. However, 
observers were better in constructing a causal model that expresses the un-
derlying relationships of the system variables and which can be used as an 
indicator of rule-knowledge acquired. Wallach (1998) also found observers 
to be significantly better with respect to verbalizable knowledge about the 
rules that underlie a system’s behavior. Control performance showed no 
differences between the two groups, indicating that exploratory learning 
and learning by observation led to comparable system control. It should be 
noted, however, that the systems used in the studies by Funke and Müller 
(1988) and Wallach (1998) can both be classified as scenarios which are gov-
erned by salient relationships between system variables. 

One further difference between the studies cited above and the study 
conducted by Berry (1991) is that in her study the experimenter typed in the 
input value while the participants watched her interacting with the task. In 
the experiments conducted by Funke and Müller (1988) and Wallach (1998) 
observers were directly interacting with the task interface to view input val-
ues and the resulting system states. Instead of providing input values on 
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their own, observers watched the respective values of a “matched” explora-
tory learning participant whose interaction trace was read from a file and 
displayed on the interface. In contrast to the setting of Berry (1991), observ-
ers were thus in control of the interface — albeit without the opportunity to 
actively provide input values themselves. This procedure at least partially 
solves one problem with the setting of Berry: “One problem with studying 
learning while observing is that it is difficult to have control over what peo-
ple actually do while observing. Although participants are instructed to 
watch closely when the experimenter is interacting with the task and do in 
fact appear to be doing so, there is no real control” (Berry, 1991, p. 905). 

In our experiment we applied the exploration/observation procedure 
used by Funke and Müller (1988) and Wallach (1998) to investigate knowl-
edge acquisition in the non-salient control scenario Sugar Factory for which 
Berry (1991) found no evidence of learning by observation. If learning by 
observation is indeed not successful in the case of controlling the non-salient 
dynamic system Sugar Factory (as argued by Berry, 1991), this can be taken 
as evidence for important boundary preconditions of successful instance-
based learning.  

Method 

Participants: Participants were 40 (17 female, 23 male) students from the 
University of the Saarland aged 19 to 31 years (mean = 23.4) who were paid 
for participating in the experiment. 

Materials 

Control task:  Participants were given the task to control the Sugar Factory. 
They used the numerical keypad of a computer to provide input values for 
the number of workers. After pressing a RUN-button on the interface, the 
result of the respective intervention was displayed. Participants were not 
given an opportunity to view past system transitions and — in contrast to 
the setting used by Berry (1991) or Dienes and Fahey (1995) — no graph was 
displayed that showed the sugar output over past trials.  

Post-task questionnaire: In order to access the knowledge that participants 
acquired while controlling the scenario, 40 questions were provided that 
probed for state transitions. Questions involved state transition situations 
that participants experienced when controlling the system (old questions) 
and questions that comprised state transitions that participants have not 
experienced before (new questions). In the questionnaire, participants were 
given the value for the sugar production spt-1 in the preceding trial as well as 
the current sugar production spt and they were asked to determine the inter-
vention wt that led to the production spt. No feedback was given about the 
correctness of the answer in this phase and participants were informed that 
each situation described in a question was unrelated to the previous ques-



18  Taatgen & Wallach: Skill Acquisition - Rule or Instance Based? 

tion. Because of the random component involved in computing the output 
signal of the Sugar Factory, the loose scoring scheme of counting a state one 
off the target was used to judge the correctness of the participants ’  re-
sponses. To ensure a maximal overlap of problem solving context and test 
context, questions were presented on the computer screen using the same 
interface for both tasks. 

Procedure 

Participants were tested individually in single sessions. Their task was to 
reach the target state, a sugar production of 9000 tons, as often as possible. 
Participants were not informed about the loose scoring scheme. The scenario 
was presented to the participants with an initial sugar production of 6000 
tons. Participants interacted with the Sugar Factory in two blocks consisting 
of 40 trials each. They were introduced to block 1 as a knowledge acquisition 
phase while the experimenter referred to block 2 as a knowledge application 
phase. Participants were not informed about the application of a post-task 
questionnaire in advance. No time restrictions for the fixation of control 
interventions were imposed. To separate effects of active system control 
from those of system observation, the following yoked control design was 
used: 

§ A system exploration group (SE) was given the opportunity to actively 
explore the Sugar Factory in block 1, e.g. SE participants could freely se-
lect interventions, gather data, test hypotheses about the internal work-
ing of the Sugar Factory by changing the values for the workers hired 
and analyzing the resulting effects on the sugar production. 

§ In contrast, participants in a system observation group (SO) were re-
stricted to the observation of the control behavior of yoked participants 
from the SE group that controlled Sugar Factory in block 1. In this block, 
each SO participant was assigned to a yoked participant and observed 
exactly the system transitions that the yoked “twin” from the SE group 
generated. This method of experimental twins (Funke & Müller, 1988) en-
sures that the respective twins are provided with identical data about the 
behavior of Sugar Factory. 

The Sugar Factory interface for the SO condition was exactly the same as for 
the SE participants, albeit it was not possible to enter values for the work 
force. Instead, the intervention of a yoked SE participant and the resulting 
sugar production was displayed when SO participants pressed the RUN-
button. The SO participants were informed that what they observed was not 
necessarily an optimal way to control the Sugar Factory but that they would 
watch a protocol of what a previous participant had done in an earlier ex-
periment. During the knowledge application phase (block 2), all participants 
(SE and SO participants) controlled the Sugar Factory scenario. 
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Results 

Control Performance 

In contrast to results reported by Berry (1991), both experimental groups, SE 
and SO participants, were successfully able to learn to control Sugar Factory. 
No statistically significant difference was found in the control performance 
of both groups in the knowledge application phase (t(38)=.563, p>.5; see 
Figure 7): SE participants achieved a mean performance of 10.2 trials on 
target in block 2 (SD: 4.17), SO participants scored 9.5 trials on target (SD= 
3.66) in this phase. In block 1, SE participants showed a mean performance 
of 9.55 trials on target (SD= 3.82), SO participants did not control Sugar Fac-
tory in this phase. To aid interpretation we ran a simulation study with 
100.000 simulated participants to determine chance performance (i.e. each of 
the 12 possible responses is chosen with equal probability) on the 40 trials 
with the Sugar Factory task, resulting in an average performance of 4.99 
trials on target (SD=2.08). 

There was no significant improvement in performance from block 1 to 
block 2 for the SE participants (t(19)=.48). However, a split-half analysis of 
block 1 indicated that they improved significantly from the first half of block 
1 to the second half (t(19)=2.19, p<.05). Clear evidence for successful obser-
vational learning was found by comparing the performance of SE partici-
pants in the first half of block 1 with the performance of SO in the first half 
of block 2. The average number of trials for the SE group was 3.65 (SD=1.93) 
in the first 20 trials of block 1, SO participant scored an average of 5.0 (SD= 
1.55) trials on target in the first half of block 2. The difference is statistically 
significant (t=2.25, p<.05). This result is in sharp contrast to the findings of 
Berry (1991), who reports no evidence for learning by observation when 
comparing the performance of controlling vs. observing participants in block 
1 and block 2, respectively. 

To model the empirical data observed in block 2, we ran the instance-
based ACT-R model that was introduced in the previous section after indi-
vidually initializing it for each participant by providing the model with the 
control episodes that the respective participant generated (or observed in the 
case of SO participants) in block 1. We thus generated a set of ACT-R models 
in which each model started with the very same sample of system transi-
tions that the respective SE participant generated in block 1 (and which was 
observed by the yoked SO participant). This procedure was chosen to insure 
that the model starts to control Sugar Factory in block 2 with the same in-
formation that the respective participants had about the system behavior. 
The model’s single parameter, activation noise, was set to .5 for all runs of 
the model. As Figure 7 shows, the performance of the resulting sample of 
model runs is well within the range of performance of the SE and SO group 
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in block 2 and thus provides evidence in favor of the instance-based learning 
mechanism of the model. 
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Figure 7. Performance of SE and SO participants and the model in the knowl-
edge application phase 

The mean time per intervention in block 1 was 8.06 seconds (SD=4.07) for SE 
participants, SO participants spend an average of 5.94 seconds (SD=2.02) for 
the observation of each trial in this phase. The difference between the two 
experimental groups is statistically significant, (t(38)=2.08, p<.05). An obvi-
ous explanation for this finding is that SE participants had not only to decide 
for the number of workers to hire but also to enter the respective input val-
ues using the keyboard. No significant difference in time per trial was found 
in block 2: SE participants spend an average of 7.12 seconds per intervention 
(SD=4.95); the respective mean time for SO participants was 8.07 (SD= 3.56). 

Questionnaire data 

Participants were generally significantly better in answering questions 
involving old system transitions in contrast to new transitions (t(38)=2.48, 
p<.02). The mean score for old items that were answered correct was 31.75% 
(SD=18.87) for the SE group and 31.25 (SD=17.0) for the SO group (see Fig-
ure 8). 22.20% of new questions were answered correctly by the SE group 
(SD= 13.53), the respective percentage correct in the SO group was 20.19 
(SD=21.81). The different activity demands (system control vs. system ob-
servation) in the two experimental conditions thus did not seem to have 
evoked different knowledge acquisition strategies, i.e. rule vs. instance 
knowledge) since both groups are equally good in answering new and old 
questions about system transitions. 

To model the questionnaire data, the same individual initialization pro-
cedure was used as when modeling the performance of participants in block 
2. As Figure 8 illustrates, our simple instance-based ACT-R model repro-
duces the difference in incorrectness for new vs. old questions quite well, 
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although it is generally slightly better in answering the questions than par-
ticipants. 
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Figure 8. Questionnaire results for new and old questions, for the SE and SO 
group, and the model 

In contrast to results reported in the implicit learning literature (Berry & 
Broadbent, 1984), we did not find a dissociation between knowledge (as 
accessed by the questionnaire) and performance (in terms of trials on target 
in the knowledge application phase): The overall correlation between 
knowledge of old items and performance was .42 (p<.01). There was no sig-
nificant correlation between control performance and the ability to answer 
new items correctly. 

Conclusion 

Overall, the results from the experiment can be taken as evidence that (1) 
learning by observation does not seem to be limited in scope to systems for 
which the underlying relationship between variables is salient; (2) partici-
pants seem to be able to answer questions about old system transitions sig-
nificantly better than questions about new ones — a result that is clearly 
compatible with an instance-based learning approach, but which provides a 
challenge for a rule-based view of skill acquisition in this task; (3) It is there-
fore not surprising that the performance of the simple instance-based ACT-R 
model is in good correspondence with the empirical data reported. 

While instance-based learning as a strategy of knowledge acquisition 
turned out to be sufficient in the case of Sugar Factory, the next section 
demonstrates a task for which we claim that it requires a model which inte-
grates instance-based learning with other learning strategies. 
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The Anderson-Fincham task 

An example of a task in which both rule learning and instance learning are 
viable strategies is described by Anderson & Fincham (1994). In this task, 
participants first have to memorize a number of facts. These facts are like 

“Hockey was played on Saturday at 3 and then on Monday at 1.”  

We will refer to these facts as sport-facts to prevent confusion with facts and 
rules in the model. A sport-fact contains a unique sport and two events, each 
of which consists of a day of the week and a time. After having memorized 
these sport-facts, participants were told that these actually represent rules 
about the time relationships between the two events. In this case “Hockey” 
means you have to add two to the day, and subtract two from the time. In 
the subsequent experiment, participants were asked to predict the second 
event, given a sport and a first event, or predict the first event, given the 
sport and the second event. So participants had to answer questions like: “If 
the first game of hockey was Wednesday at 8, when was the second game?” 
but also “If the second game of hockey was Thursday at 4, when was the 
first game?”  

Using this paradigm, it is possible to investigate evidence for both rule-
based learning and instance-based learning. Directional asymmetry, evi-
dence for rule-based learning, can be tested for by first training participants 
to predict events in one direction for a certain sport-fact and by then revers-
ing the direction to look how performance in the reverse direction relates to 
performance on the trained direction. Instance theory would predict no ef-
fect between both directions: an instance “Hockey-Saturday-Monday” can 
be used to both infer Saturday from Hockey and Monday and Monday from 
Hockey and Saturday. A rule on the other hand has to be reversed first be-
fore it can be used in the opposite direction than the direction on which it 
was trained. 

Evidence for instance learning can be gained by presenting specific ex-
amples more often than other examples. Better performance on these specific 
examples would indicate instance learning. Anderson & Fincham (1994), and 
later Anderson, Fincham & Douglass (1997) performed five variations on 
this basic experiment, three of which we will discuss here. Before discussing 
the specific experiments, we will first outline the ACT-R model we have 
developed. 

The ACT-R model 

The central assumption of our model of the Anderson-Fincham task is, that 
the experimental data can only be explained by multiple strategies. In the 
model we will use the four strategies discussed by Anderson, Fincham & 
Douglass (1997): analogy, abstraction, rule and instance. Analogy is the strat-
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egy that participants all have to use at the start of the experiment: they have 
to recall the original sport-fact, determine the relations between the two days 
and the two times, and apply these relations to the new case. The abstraction 
strategy is to memorize the relationships in the examples, for example 
“hockey day plus two”. This saves some time, as it is no longer necessary to 
determine the relationship in the sport-fact. The rule strategy is similar to 
the abstraction strategy, except that the knowledge is now part of a produc-
tion rule instead of a chunk in declarative memory. Finally, the instance 
strategy tries to recall past instances from memory to solve the problem, for 
example, if a participant has solved “Hockey Tuesday Thursday” in an ear-
lier trial, they might be able to recall this fact and use it for another trial 
where Hockey and Tuesday occur (or Hockey and Thursday, if the first 
event is required). Abstraction corresponds to what we referred to as de-
clarative rules; rule strategy corresponds to production rules. We will there-
fore refer to the abstraction strategy as the declarative-rule strategy and the 
rule strategy as the production-rule strategy. The strategies have different 
cost-success profiles (summarized in Table 1), which will determine at what 
stage of the learning process they will be most prominent.  

To illustrate the respective strategies, Figure 9 shows schematic represen-
tations of each of them. Arrows in the figure denote rule firings in the 
model. In the case of an arrow pointing down, a sub-goal is pushed on the 
goal-stack, while an arrow pointing up stands for popping a goal. A hori-
zontal arrow symbolizes a modification of the current goal. Since each prob-
lem involves calculating a day and a time, two separate sub-problems have 
to be solved. Each of these sub-problems has to be solved using one of the 
schemas in Figure 9. 

Table 1 .Cost-success profiles of strategies 

 

 

Cost (in terms 
of time) 

Additional knowl-
edge needed for 
each rule 

Uses knowledge 
gained from 

Analogy High None - 

Declarative rule Medium 1 declarative rule Analogy 

Production rule Low 2 rules for each 
direction 

Declarative rule 

Instance Very low 7-9 instances Any other 

strategy 
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Figure 9. Schematic representation of the four possible strategies used in the 
model. Note that two strategies (possibly the same) are needed to solve the 
whole problem: one for the day of the week and one for the time. 

The analogy strategy (Figure 9a) has the highest cost, but only needs the 
sport-facts learned initially. Starting at the top goal, a sub-goal is pushed on 
the goal stack to either find the day or the time. To be able to do this, the 
original example must first be retrieved, and the appropriate elements (days 
or times) must be extracted. Another sub-goal takes care of this stage. After 
retrieving the example, this second sub-goal is popped, and a new sub-goal 
is pushed to make an analogy between the example and the current prob-
lem. First the relation in the example is determined, for example the fact that 
two has to be subtracted from the day. This relationship can usually be de-
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termined by direct retrieval, for example the relationship between four and 
six. But sometimes, in the case of days of the week, this has to be done by 
counting. To determine the relationship between Sunday and Friday, a par-
ticipant has to count two steps back from Sunday. Counting is taken care of 
by an additional sub-goal, with the advantage that this sub-goal is added to 
declarative memory and can be retrieved on later trials to determine the 
relation directly. After determining the relationship in the example, this 
relation is applied to the current problem. This can again be achieved di-
rectly, or through a counting sub-goal. 

The analogy strategy requires prior knowledge. The model assumes that 
people already know how to make simple analogies, how to memorize and 
recall strings of words, do know relationships between numbers and days of 
the week, and are able to calculate these relations if they cannot be retrieved 
from memory. The rest of the necessary knowledge, mainly involving per-
ceptual-motor operations like reading the information on the screen and 
entering the answers, has to be learned by the participants through the in-
structions. This aspect of the task is not modeled. 

The declarative-rule strategy (Figure 9b) assumes knowledge about the re-
lation between the two days or two times for a certain sport. For example, 
“Hockey” means “add two to the days”. A declarative rule in the model is a 
chunk that stores this information, for example: 

 
RULE34 
 ISA DEC-RULE 
 SPORT HOCKEY 
 TYPE DAY 
 RELATION PLUS2 
 

Using a declarative rule to find the answer only requires two steps: retrieve 
the rule and apply it to the current problem. The second step, application, 
may involve another counting sub-goal, similar to the analogy strategy. Al-
though the declarative-rule strategy is more efficient than the analogy strat-
egy, it requires knowledge participants initially do not have. Declarative 
rules can be used in both directions: the fact that there is a plus2 relation 
between the two events can be used to calculate the second event from the 
first event and vice versa (assuming appropriate plus2 facts are available). 

The production-rule strategy (Figure 9c) uses production rules to find the 
answer. Each of the rules has two versions, one that retrieves the answer, 
and one that calculates the answer. An example of a retrieval rule is: 

 
IF  the goal is to find the day of the second event, the sport  
 is hockey and the day of the first event is day1 
 AND day1 plus two days equals day2 
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THEN  put day2 in the second event slot of the goal 

The calculate production pushes this calculation as a sub-goal, which is han-
dled by the same production rules that determine and apply the relations in 
the analogy strategy: 

 
IF  the goal is to find the day of the second event, the sport  
 is hockey and the day of the first event is day1 
THEN  push as a sub-goal to find the answer to day1 plus two days 
 AND put the answer in the second event slot of the goal 
 

The advantage of the production-rule strategy is that its costs are much 
lower than those of the analogy strategy, and also slightly lower than the 
costs of the declarative-rule strategy, since the answer can be found in a 
single step. However, in order to use it, the necessary production rules must 
be learned. Furthermore, the two example rules given only calculate the 
second event given the first. To calculate the first event given the second, 
two additional rules are needed. If we train the rules in only one direction, 
we can expect that only the rules for that direction will be learned. If the 
direction is subsequently reversed, productions for the opposite direction 
are not present yet, so the learner has revert to less effective strategies, pro-
ducing directional asymmetry. 

The strategy with the lowest costs is the instance strategy (Figure 9d). It 
can be applied to the top-goal, since it retrieves the answer from past sub-
goals directly. This strategy will only work if the appropriate instance is 
available. An example of an instance is: 

 
ITEM434 
 ISA ITEM 
 SPORT HOCKEY 
 TYPE DAY 
 LEFT SUNDAY 
 RIGHT TUESDAY 
 

To be able to fully depend on this strategy, all possible examples have to be 
learned. For each sport-fact, seven to nine examples are needed. A partial 
match strategy, which was very successful in the case of the Sugar Factory, is 
not very helpful here, as the exact answer is needed. 

The declarative-rule, production-rule and instance strategies are actually 
short cuts for the original analogy strategy. Both rule strategies make short 
cuts at the sub-goal level of the analogy strategy, and the instance strategy 
directly at the top level. The knowledge needed for the instance short cut is 
gained automatically, since the popped sub-goals serve as examples. To be 
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able to use an example, its activation must be high enough, so it has to be 
repeated a number of times before it can reliably be retrieved. Declarative 
rules, on the other hand, have to be learned more explicitly. Once learned, 
the process of compiling declarative rules into production rules is again 
automatic. 

To create a declarative rule for use in later problems, information from 
different levels of the goal stack needs to be used. The relation is determined 
in the analogy sub-goal, while the name of the sport is stored higher in the 
goal stack. As a consequence, old goals created by the analogy strategy can-
not be used as declarative rules. An explicit goal is necessary to assemble it. 
An appropriate moment to do this is at the end of the analogy strategy. The 
goal is not popped, but is replaced by a goal to build a declarative rule. Al-
ternatively, the declarative rule could be derived first and be consequently 
applied. Since this alternative will result in the same empirical predictions, it 
is not further investigated. 

For declarative rule learning additional steps in the reasoning process are 
necessary that are irrelevant for the immediate solution. The production rule 
that proposes to create an additional declarative-rule goal has to compete 
with the rule that proposes to just pop the goal and be done. Since rules that 
propose additional processing imply additional costs, they will only occa-
sionally win the competition. Building up declarative rules may therefore be 
a slow process, and may well be a source of individual differences. 

Learning a new production rule presupposes a declarative example. The 
analogy strategy does not provide appropriate examples, because the proc-
ess of retrieval and consequent analogy is too elaborate. The declarative rule, 
on the other hand, is a very good basis for proceduralization. Once a de-
clarative rule is formed and applied on a regular basis, it will eventually be 
compiled into a production rule.  

In the Anderson-Fincham task, learning of declarative rules, instance 
learning and production-rule learning are all viable strategies from the 
viewpoint of rational analysis. Declarative rule learning will lead to faster 
results but needs more initial effort, since rules are not learned automati-
cally. Production rule learning will occur automatically, but presupposes 
declarative rules. Instance learning is eventually the fastest strategy, but 
requires extensive training to be fully effective. 

Empirical evaluation of the model 

In order to test the predictive power of the model, three experiments con-
ducted by Anderson, Fincham and Douglass have been modeled. The first 
experiment was used to determine all the parameters, so the second and the 
third experiment can be considered as predictions based on the first. Each of 
the experiments tries to gain insights in the learning process by seeking evi-
dence for the use of rules and the use of instances. The data discussed in the 
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experiments all come from Anderson, Fincham and Douglass (Anderson & 
Fincham, 1994; Anderson, Fincham & Douglass, 1997), the model outputs 
are produced by averaging 100 runs of the model.3  

Experiment 1 

In the first experiment (experiment 2 in Anderson & Fincham, 1994), partici-
pants had to learn eight sport-facts. In the first three days of the experiment, 
four of these sport-facts were tested in a single direction: two from left to 
right and two from right to left. On each day, 40 blocks of trials were pre-
sented. In each block, each of the four sport-facts was tested once. On the 
fourth day all eight sport-facts were tested in both directions. On this day 10 
blocks of trials were presented, in which each of the eight sport-facts was 
tested twice, once for each direction. This means that on the fourth day there 
were three types of trials: practiced items tested in the practiced direction, 
practiced items tested in the reverse direction, and completely new items. 

Table 2. ???????? 

 Data Model 

Same direction, practiced 8.9 8.4 

Reverse direction, practiced 10.9 9.3 

Not practiced 13 16 

 

 

 

Figure 10. Latencies for days 1 to 3 in experiment 1, data and model. 
                                                                 

3 The model uses the following parameters: base-level decay (d) is set to 0.3, activation noise 
is set to 0.1, expected gain noise is set to 0.2, the retrieval threshold is set to 0.3 and the latency 
factor (F) is set to 1.0. Except for base-level decay, all these values are close to their recom-
mended defaults. 
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Figure 11. Proportion of the trials a certain strategy is used in experiment 1. 

Figure 10 shows the latencies in the first three days of the experiment, both 
the data from the experiment and from the model. Although the results of 
the model are the product of four interacting strategies, this produces no 
discontinuities: the learning curve of the model resembles a power-function, 
except for a slight decrease in performance at the beginning of each new 
day. The fit between the model and data is quite good: R2=0.94. Table 2 
shows the results for day 4.  

Both the empirically observed data and the model data show a clear di-
rectional asymmetry, since items in the practiced direction are solved faster 
than reversed items. As all the examples are trained in a single direction on 
days 1-3, one would expect that the rules are only learned in one direction. 
This becomes apparent on day 4, when rules are presented in both direc-
tions.  

Figure 11 shows how the model uses the four strategies in the course of 
the experiment. At the start of the experiment, analogy is used most of the 
time, but both the declarative-rule and the instance strategies gain in impor-
tance after a few blocks of trials. The production-rule strategy appears later, 
and only plays a minor role during the first day. At the start of the second 
day, there is a large shift toward using rules at the expense of instances. This 
can be explained by the fact that the activation of a large portion of the in-
stances has decayed between the two days, so that they cannot be retrieved 
anymore. Since only a few rules are needed for successful performance, they 
receive more training on average and are less susceptible to decay. This pat-
tern is repeated at the start of the third day, although the instance strategy 
looses less ground due to more extended training of the examples. At the 
start of the fourth day, the frequency of use of the analogy strategy goes up 
again, since there are no production rules for the new four sport-facts. The 
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declarative-rule strategy can take care of the reversed items though, so in 
that case the expensive analogy strategy is not needed. This explains the fact 
that reversed items are still faster than completely new items. 

Experiment 2 

In experiment 2 (experiment 1 in Anderson, Fincham & Douglass, 1997) the 
directional asymmetry was further explored. Instead of having only a single 
transfer day, two rules were reversed on each day of the experiment. This 
requires quite a complicated experiment, since on each day a rule has to be 
presented in two directions which was already presented in one direction 
previously. So, on day 1 of the experiment, two out of eight rules were pre-
sented in two directions, while the remainder was only tested in one direc-
tion, on day 2 four out of eight rules, up to day 4 where all rules were pre-
sented in both directions. In all cases the rules that were trained in one direc-
tion were balanced with respect to direction: in half of the cases the second 
event had to be predicted from the first event, and in the other half of the 
cases the first event had to be predicted from the second event. On each day 
participants had to do sixteen blocks of ten to sixteen trials, ten trials on day 
1, twelve trials on day 2, fourteen trials on day 3, and sixteen trials on day 4. 
To further investigate the difference between rule- and instance-based per-
formance, participants were asked after each trial whether they solved it by 
using a rule or an example. Finally, on each day one of the sport-facts stud-
ied originally was offered as a trial somewhere between block 7 and 10. If 
performance on this original sport-fact is better than on other trials, this 
indicates the participant retrieves the answer instead of calculating it. 

The model used for experiment 2 is identical to the model used for ex-
periment 1, including all the parameter settings. 

The latencies for day 1 to 4 are shown in Figure 12 for both the data and 
the model. Although the model is slightly slower than the participants, the 
learning curves are parallel. Directional asymmetries are calculated using 
the two rules that are presented in two directions for the first time that day. 
The solution time for the practiced direction is subtracted from the solution 
time for the reversed direction. The result is the extra time needed for the 
reversal and is shown in Figure 13. Both the data and the model show a 
gradual increase in asymmetry over the days, although asymmetry for the 
model is slightly larger than for the data. To be able to map the participants’ 
reports of using either a rule or an example onto the model, we first have to 
decide when the model uses a rule or an example. The most logical choice is 
to assume that both the analogy and the instance strategy are strategies that 
use examples, and that the declarative and production-rule strategy are 
strategies that use rules. Figure 14 shows the results of both the model and 
the data on this aspect of the task. Since the “solve by example”-category 
includes both the slowest (analogy) and the fastest (instance) strategy, it 
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eventually becomes faster than the rule strategy, as analogy is not used any-
more. Both the data and the model show this phenomenon. 

 
Figure 12. Latencies for experiment 2. 

 

(a)  (b)  

Figure 13. Directional asymmetry in experiment 2, (a) data (b) model. 

 

(a)  (b)  

Figure 14. Time to respond as a function of whether a rule or example is re-
ported, (a) data (b) model. 

 

(a)  (b)  
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Figure 15. Time to respond for the studied example and other example, (a) 
data (b) model. 

 
Figure 16. Proportion of the trials a certain strategy is used in experiment 2 

The latencies for the original sport-fact that was presented between block 7 
and 10 are shown in Figure 15, and are compared with the average latencies 
between blocks 7 to 10. Performance on original examples is clearly superior 
to other examples, indicating instance learning. Figure 16, finally, shows the 
strategies that were used by the model in the course of the experiment. It 
shows a pattern that is similar to the pattern in experiment 1. 

Experiment 3 

In experiment 3 (experiment 3 in Anderson, Fincham & Douglass, 1997), the 
effect of repeated examples is further explored. The same experimental 
setup as in experiment 2 was used, except that the experiment now took five 
days and each day consisted of 32 blocks of trials. On the first day eight 
sport-facts were tested in only one direction. On each subsequent day, a new 
pair of sport-facts was also tested in the reversed direction. So, on day 2 
eight sport-facts were tested in the practiced direction, and two in the re-
verse direction. On day 3 eight sport-facts were tested in the practiced direc-
tion and four in the reverse direction, et cetera. To see if instances that are 
repeated more often than others are solved faster, half of the instances pre-
sented for a certain sport were identical, while the other half was generated 
in the usual way. Again, the model used for experiment 3 is identical to pre-
vious models, including settings for its parameters. 
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Figure 17. Latency (in seconds) in experiment 3 as function of condition. Only 
items that are reversed that day are used for these results. 

  

Figure 18. Directional asymmetry in experiment 3. 

Figure 17 shows the results for both the data and the model. Repeated in-
stances have a clear advantage over unique instances, which can be taken as 
further evidence for instance-based learning. Figure 18 shows the directional 
asymmetry results. After a steady increase between day 2 and 4, it decreases 
on day 5, both in the model and the data. On day 5, however, both the data 
and the model show a decline in asymmetry, indicating that instance-based 
reasoning, which has no asymmetry, takes over from rule-based reasoning.  

Discussion 

The power of instance learning 

Logan (1988) has already shown that instance learning is a powerful method 
of learning. This was exemplified by the model of the Sugar Factory, where a 
model that just stores examples can reach the same level of performance as 
human participants. A question one might ask is whether there is more to 
skill acquisition than storing and retrieving examples. One would expect 
that some form of generalization is needed somewhere in the skill acquisi-
tion process. Logan (1988) also acknowledged that other forms of learning 
are possible: 

“I do not intend to argue that instance theory is more correct or more 
accurate than the other theories. Instead, I view the theories as ad-
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dressing different situations ... humans can learn in more than one 
way.” (p. 148). 

Although the Sugar Factory model just stores and retrieves examples, it nev-
ertheless achieves some implicit generalization produced by the partial 
matching mechanism. By allowing retrieval of instances that are only similar 
to the current case instead of being equal, instances are generalized: it is no 
longer necessary to have an instance of every possible situation in order to 
be able to master the skill. 

Explicit generalization 

Is all generalization implicit? In the Sugar Factory experiment there is no 
evidence for explicit rule learning. This is, however, no surprise, as the ex-
periment is carefully constructed to thwart rule learning by limiting control 
over the input parameters and adding a random component. Another issue 
in instance theory is the role of the initial method. The theory assumes such 
a method is available, but it remains unclear how that method is learned. 
Although in both experiments discussed here the initial methods are either 
very simple or almost completely specified in the instructions, they are not 
trivial. Although participants do not know how the Sugar Factory works, 
they do guess (correctly) that hiring more workers usually implies a higher 
production.  

The Anderson-Fincham experiment explicitly invites participants to gen-
eralize, as the instructions spell out the fact that the learned sentences are 
rules. Also, implicit generalization is unproductive, as the elaborate analogy-
strategy is needed to apply one example to another example. Participants 
therefore generalize by constructing new instances, declarative rules like 
“Hockey-Day-plus-2”. Although a declarative rule is still an instance, it is a 
very suitable candidate for generalization. In order to move from a relatively 
unproductive instance-retrieval situation to a productive instance-retrieval 
situation, the original sentences have to be re-represented. In the present 
model, this is not an automatic learning process but rather a problem-
solving strategy.  

Despite the fact that the original examples learned in the Anderson-
Fincham task cannot be generalized, retrieving them is still a viable strategy, 
especially if one example turns up more often in the experiment (experiment 
3 is an example of this). A final strategy in the model is the use of actual 
production rules, compiled from the retrieval and application of declarative 
rules. In the model, this is the only way to produce directional asymmetry. 
One might ask in what sense this final step, from declarative to procedural 
rules, is what really happens in the cognitive system, or whether it is only a 
necessity in, or an artifact of, the ACT-R architecture. Is there no other model 
or slightly different architecture in which declarative rules do produce a 
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directional asymmetry? It is therefore useful to point out that in experiment 
2 and 3 it takes a few days before there is any evidence of directional asym-
metry. Also, the effect is very small. Participants are assumed to start using 
declarative rules right away in the experiment, so if these rules produced the 
effect, we would expect to see it on the first opportunity. Also, we would 
expect the effect to be larger, as the declarative rule strategy is so much more 
efficient than the analogy strategy. The difference in efficiency between the 
production rule and the declarative rule is only small, this is, however, con-
sistent with the observed small experimental directional asymmetries. 

The role of rules 

The two models presented here show that the role of rules is not as central 
for cognition as is sometimes thought. In the Sugar Factory experiment rules 
do not play a role at all. Even in the Anderson-Fincham study, where the use 
of rules is very explicit in the experiment, instances play an important role. 
The instance strategy eventually becomes the dominant strategy, and rule 
generalization itself is achieved by memorizing redescribed instances. 

If rules play such a minor role in skill acquisition, can’t we somehow 
eliminate them? In ACT-R, production rules are a necessity, as declarative 
knowledge itself does not do anything. Also, procedural knowledge plays a 
major role in the Anderson-Fincham models (and many other models): it 
implements some general problem solving methods like analogy, and in this 
case also encodes some task-specific knowledge that is derived from the 
instructions.  

An aspect of skills is that they depend on each other. Before we can learn 
algebra, we first have to master basic arithmetic. If skills were based on de-
clarative rules alone, the cognitive system would need to juggle facts on 
different levels of abstraction at the same time. This is quite impossible in 
ACT-R, so mastery of the lower level skills is a prerequisite for learning 
higher-level skills. In the current models, mastery of a skill means all the 
relevant knowledge is proceduralized or all relevant examples are memo-
rized (or a combination of the two). 

The structure of the task 

In the Sugar Factory experiment, it is very hard to find the rule that governs 
the behavior of the output. Examples about the behavior of Sugar Factory, 
on the other hand, prove to be very useful for controlling the system also in 
circumstances that differ from the exact context in which they were learned. 
We can see these aspects of the task are reflected in the behavior of the par-
ticipants, as a model based on exploiting just these aspects simulates human 
behavior very well. 

Although the instructions in the Anderson-Fincham model are very 
much aimed at rule learning, the structure of the task nevertheless also al-
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lows for memorizing instances. As a consequence, participants exhibit both 
types of learning. If the task allows favoring one strategy, for example in 
experiment 3 where particular instances are repeated more often, the cogni-
tive system exploits this fact and gears towards the most efficient strategy, in 
this case instance retrieval. 

The general picture that emerges is that several learning strategies are in 
constant competition. The strategy that performs best will eventually domi-
nate behavior, but this may take a while to settle as the performance profiles 
of the strategies change due to learning and the passage of time. A theory 
that only states that skill learning is a matter of both instance learning and 
rule learning is rather weak, and will certainly not end the debate. Our cog-
nitive modeling approach goes beyond such a simple statement: the theory 
proposed in this paper is not just the conjunction of two existing theories in 
an integrative framework, but also adds the constraint that the structure of 
the task is a main determinant of which types of learning will have an im-
pact on performance. The computational models presented in this paper 
demonstrate that the ACT-R architecture provides a powerful framework for 
the theoretical investigation of the interplay of different learning strategies. 

The role of parameters 

Cognitive models are often criticized by the fact that the outcome of the 
model is heavily influenced by adjustable parameters. The image that 
emerges is that of a modeler who can tweak the parameters of his model to 
produce any outcome he wishes. This is a serious objection to cognitive 
modeling, as the ACT-R architecture offers many degrees of freedom. In our 
models we have been very much aware of this problem, so we will discuss 
our considerations here. 

In the Sugar Factory model, the main goal of the model is to show that a 
very limited model that only stores instances can perform as well as human 
participants. Although different parameter setting might decrease perform-
ance, this is not the point the model tries to make. We applied the model 
developed for the original Dienes and Fahey data set to a new experiment, 
without tweaking its subsymbolic parameters. As discussed in the Sugar 
Factory section, the model was individualized for each single participant 
with the sample of control episodes that the respective participant generated 
(or observed in the case of SO participants) before predicting the perform-
ance in block 2. While we have only reported aggregate data, we expect in-
teresting results from applying this methodology to model individual learn-
ing trajectories. 

In the Anderson-Fincham task, there are many adjustable parameters. 
However, we estimated all these parameters to fit the data of the first ex-
periment, and used these parameters to fit the data in the second and third 
experiment. As a consequence, the predictions are sometimes slightly off: in 
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experiment 2 the latencies for the model are all too slow. This could easily 
have been mended by adjusting one of the parameters, but we elected to 
keep them fixed. Sometimes this leads to surprisingly good predictions, like 
the drop-off in directional asymmetry on day 5 in experiment 3. 

In this paper we have presented a view on cognitive skill acquisition that 
takes the structure of a given task into account when theorizing about hu-
man learning. While the empirical data has allowed us to arrive at theoreti-
cal conclusions about the nature of skill acquisition, cognitive modeling in 
an integrative theory of cognition gave us the powerful framework neces-
sary to analyze the complex interactions between the different processes and 
mechanisms involved in human learning. 

Appendix: The ACT-R theory 

The distinction between procedural and declarative memory is studied quite 
extensively from different perspectives in psychology and the neurosciences 
(Anderson, 1976; Squire, 1992). While ACT-R’s declarative memory is con-
ceptualized as a store for factual knowledge, elements of procedural mem-
ory encode production rules. The ACT-R architecture does not postulate a 
separate working memory but instead enhances declarative memory by an 
activation concept (see below) to control access to facts. Only declarative 
memory elements, so-called chunks, above a certain threshold can be re-
trieved and deployed in problem solving. To keep track of the current con-
text, ACT-R uses a goal stack which organizes the system’s intentions. The 
top element of the goal stack is called the focus of attention, a reference to an 
element in declarative memory that represents the current goal.  

ACT-R’s symbolic level 

ACT-R comprises two levels of description: a symbolic and a subsymbolic 
level. On the symbolic level representations in memory are discrete items, 
and processing applies procedural items to declarative items in the recog-
nize-act-cycle typical for production systems (Waterman & Hayes-Roth, 
1976). Declarative memory uses chunks to represent knowledge. A chunk 
stores information in a propositional fashion and may contain a certain fact, 
the current or previous goals as well as perceptual information. An example 
of a goal chunk, in which two is added to six and the answer has not yet 
been found is: 

 
GOAL23 
 ISA ADDITION 
 ADDEND1 SIX 
 ADDEND2 TWO 
 ANSWER NIL 
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In this example, ADDEND1, ADDEND2 and ANSWER are slots in chunk 
GOAL23, and SIX and TWO are fillers for these slots. SIX and TWO are ref-
erences to other chunks in declarative memory, thus forming an interrelated 
structure of embedded chunks in declarative memory. The ANSWER slot 
has a value of NIL, meaning that the slot has no filler, i.e. the answer is not 
known yet. Let us assume that the chunk GOAL23 designates the current 
goal. If ACT-R manages to fill the ANSWER slot and focuses its attention on 
some other goal, GOAL23 will become part of declarative memory and takes 
the role of a fact representing that six plus two equals eight. GOAL23 can 
then be retrieved for later problem solving. 

Procedural information is represented in production memory by produc-
tion rules. A production rule has two main components: a condition-part 
and an action-part. The condition-part contains patterns that match the cur-
rent goal and possibly other elements in declarative memory. The action-
part can modify slot-values in the goal and may create sub-goals (or external 
actions, which will not be discussed here). In the recognize-act-cycle declara-
tive elements are “matched” to the patterns in the condition-part of a pro-
duction rule and applied in its action-part. 

An example for a rule that tries to solve a subtraction problem by retriev-
ing an addition chunk might look like: 

 
IF  the goal is to subtract num2 from num1 and there is no answer 
AND  there is an addition chunk that num2 plus num3 equals num1 
THEN  put num3 in the answer-slot of the goal 

 

This example shows an important aspect of production rules, namely vari-
ables. Variables allow for the applicability of a production in a class of situa-
tions and thus determine the abstract character of procedural knowledge. 
The symbols num1, num2 and num3 of the production shown above denote 
variables that can be instantiated by any value (with the restriction that same 
variables have to be bound to the same value). The above rule above can 
thus find the answer to any subtraction problem, given that the necessary 
addition chunk is available in declarative memory. 

ACT-R’s subsymbolic level 

The symbolic level provides for the basic building blocks of ACT-R. Using 
only this level already allows for several interesting models for tasks in 
which a clearly defined set of rules can be applied — the “Tower of Hanoi” 
(Anzai & Simon, 1978) being a famous example of such a task (Anderson, 
Kushmerick & Lebiere, 1993). The symbolic level, however, leaves a number 
of details unspecified. The main topic that it delegates to the subsymbolic 
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level is choice. Choices must be made when there is more than one produc-
tion rule that can match in a situation, or when there is more than one chunk 
that matches the condition pattern in a production rule. Other matters that 
are taken care of by the subsymbolic level are accounts for errors and forget-
ting, as well as the prediction of latencies. 

At the subsymbolic level each rule or chunk is annotated with a number 
of numerical quantities. In the case of chunks, these parameters are used to 
calculate an estimate of the likelihood that the chunk is needed given the 
current context. This estimate, called the activation of a chunk, has two 
components: a base-level activation, which represents the relevance of the 
chunk by itself, and a context activation through association strengths with 
fillers of the current goal chunk. 
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Figure 19. Example of subsymbolic activation in declarative memory. Each 
oval represents a chunk, arrows represent references between chunks, and the 
gray arrows represent spreading activation from the goal context. 

Figure 19 shows an example in the case of the subtraction problem 8-3=?. 
The fact that eight and three are part of the context increases the probability 
that chunks associated with eight and three are needed. In this case 3+5=8 
will get extra activation through both three and eight. The activation process 
is computed by the following equation: 

 
  
A i = Bi + W j Sji + noise

j
∑  [A1] 

In this equation, Ai is the total activation of chunk i. This total activation has 
three parts, base-level activation (Bi) and context activation (

  
W j S jij∑ ), and 

noise. As context activation does not play any important role in the models 
discussed here, we will leave out the details (see Anderson & Lebiere, 1998, 
p. 71).  

The activation level of a chunk has a number of consequences for it’s 
processing. If the activation is below a certain threshold, it cannot be re-
trieved by patterns in the condition part of a production. If there is more 
than one chunk that matches the pattern in a production rule, the chunk 
with the highest activation is chosen. As activation has a noise component, 
these processes are stochastic: there is no guarantee the chunk with the 
highest activation will be selected, but it has the highest probability of being 
retrieved. 

Differences in activation levels can lead to mismatches, in which a chunk 
with a high activation that does not completely match the production rule is 
selected, while the activation of a completely matching chunk is too low to 
be retrieved. This process is called partial matching and was discussed in 
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more detail in the section describing the Sugar Factory model. Finally activa-
tion plays a role in determining the latency: the lower the activation of a 
chunk is, the longer it takes to retrieve it. This retrieval time is calculated 
using the following equation4: 

   Timei = Fe−A i  [A2] 

Choices between production rules are determined by estimates of their ex-
pected gain. To calculate the expected gain of a certain rule, several parame-
ters are used to make an estimate. The main equation that governs this esti-
mate is: 

     Expected gain for production p = PpG − Cp + noise [A3] 

In this equation Pp stands for the estimated chance to reach the goal using 
production rule p, G is the value of the goal (i.e. the amount of time that the 
system is willing to spend for the achievement of the current goal), and Cp 
designates the estimated cost of reaching the goal using p. Again a noise 
parameter is introduced to allow for some stochasticity in the choice process. 
The unit of cost in ACT-R is time. Suppose for illustration that a participant 
is willing to spent 10 seconds on a certain goal (G=10), and let us assume 
there are two production rules p1 and p2 which both match the current goal 
chunk. Production p1 reaches the goal in 60% of the cases (Pp1=0.6) in 2 sec-
onds on average (Cp1=2). Similarly, we assume that Pp2=0.8 and Cp2=5. In that 
case the expected gain of p1 is 4 (0.6 ⋅10-2), and the expected gain of p2 is 3 
(0.8⋅10-5). Given these values, p1 is selected in favor of p2 since its expected 
gain is higher. 

In ACT-R representational objects (chunks, productions) are never re-
moved from memory, although they may become virtually irretrievable 
resp. inapplicable because their activation or expected gain value become 
too low. 

Learning in ACT-R 

While ACT-R has two distinct memory systems with two levels of descrip-
tion, distinct learning mechanisms are proposed to account for the symbolic 
knowledge that is represented as well as for its subsymbolic parameters. At 
the symbolic level, learning mechanisms specify how new chunks and rules 
are added to declarative and procedural memory. At the subsymbolic level, 
learning mechanisms change the values of their numerical parameters. 

A new chunk in declarative memory has two possible sources: it is either 
the encoding of a perceptual object, or a chunk created internally by the goal 
processing of ACT-R. ACT-R’s internally created chunks are always previ-

                                                                 
4 The symbol F is a scaling parameter that defaults to 1. 
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ously completed goals, as exemplified by the ADDITION-goal discussed in 
the earlier example. Consequently, any chunk in declarative memory that 
did not originate from perception has once been a current goal in ACT-R. 

New production rules in ACT-R are learned by a process called produc-
tion compilation. The basis for production compilation is an example chunk in 
declarative memory. This example chunk encodes how a certain goal is 
transformed into a new goal. Production compilation generalizes this exam-
ple and produces a new rule. We will leave out the details of the process 
here, since they are rather technical and still under theoretical debate 
(Anderson & Lebiere, 1998, p. 460). 

Parameters at the subsymbolic level estimate properties of certain knowl-
edge elements, therefore, learning at this level is aimed at adjusting the es-
timates in the light of new experience. The general principle guiding these 
estimates is the well-known Bayes’ Theorem (Berger, 1985). According to 
this principle, a new estimate for a parameter is based on its prior value and 
evidence from the current situation.  

The base-level activation of a chunk estimates the likelihood that it is 
needed, regardless of the current context. If a chunk was retrieved a number 
of times in the immediate past, the probability that it will be needed again is 
relatively high. If a chunk has not been retrieved for a long time, the prob-
ability that it will be needed now is only small. Consequently, each time a 
chunk is retrieved, its base-level activation should go up, and each time it is 
not used, it should go down. This is exactly what the base-level learning 
mechanism does: it increases the base-level activation of a chunk each time it 
is retrieved, and causes it to decay over time. The following equation calcu-
lates the base-level activation of a chunk: 

 
    
Bi (t )= log (t − t j )

−d

j=1

n

∑  [A4] 

In this formula, n is the number of times a chunk has been retrieved from 
memory in the past, and tj’s represent the times at which each of these re-
trievals took place5. The longer ago a retrieval has taken place, the less it 
contributes to the activation of a chunk. 

The other parameters are estimated in a similar fashion, i.e. the probabil-
ity of success of a production rules goes up each time a production rule 
leads successfully to a goal, and goes down each time the rule leads to fail-
ure. 
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