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Abstract 

It is generally believed that transfer decreases with expertise. 
Several existing models explain this by different forms of 
chunking, but each is specific to a particular task. The new 
PRIM theory of cognitive skill transfer allows a more 
generalized approach to study this phenomenon. To 
demonstrate this, I present a model of the Frensch (1991) 
experiment of transfer that explains why a short training 
period does not differentiate between three types of training in 
terms of the amount of transfer, but a longer training period 
does.  

Keywords: Learning, Skill acquisition, Transfer, Production 
compilation. 

Introduction 
There is a general, but tentative, consensus that certain skills 
like language, mathematics and algebra have cognitive 
benefits beyond their own domain. For example, 
bilingualism has benefits far beyond direct language skills, 
and is associated with improvements in cognitive control 
and working memory. There is also evidence that as 
knowledge becomes more specialized it becomes less useful 
for transfer. There are several models of these phenomena, 
but they do not yet paint a consistent image. 

To account for transfer among cognitive skills, Thorndike 
(Thorndike & Woodworth, 1901) introduced the theory of 
identical elements: skills only benefit from each other 
insofar the elements that represent the knowledge for the 
skills are the same. Thorndike used this theory to argue that 
transfer is fairly limited, and that only when knowledge 
elements are truly identical, transfer is possible. A modern 
version of identical elements is the identical productions 
theory by Singley and Anderson (1985). In their model, 
transfer between two tasks is defined as proportion of 
production rules that are identical among models of those 
tasks.  

Both in Thorndike's and Singley and Anderson's account 
the identical elements are fairly task-specific. As a 
consequence, both predict no transfer between tasks that 
share no surface characteristics. More recent studies, for 
example Jaeggi et al. (2008), show evidence for such 
transfer (far transfer). To account for far transfer, and also to 
give more detailed accounts of earlier transfer studies, 
Taatgen (in press) introduced the PRIM theory of skill 
acquisition and transfer. The PRIM theory is also an 
identical elements theory, but the elements of knowledge are 
smaller than the typical task-specific rules, and are not 
specific to a task. Instead, they specify how information 
between different cognitive modules is matched and 

transported. Any specifics of the task are part of the 
information that is transported, and are therefore not part of 
the representation itself. I will explain de PRIM theory in 
some more detail later on, but one of its advantages over 
earlier theories is that it models the learning process in 
detail. This means that transfer aspects of the learning 
process can also be explained. More in particular, we will 
examine whether we can explain the diminishing return of 
increased expertise. 

Diminishing return in transfer 
There are a few modeling studies that have produced 
evidence for the diminishing return of expertise. Transfer in 
most of these studies is relatively limited in the sense the 
main task does not change. 

Newell and Rosenbloom (1981) describe a model of the 
1023-choice reaction task. In this task, subjects are 
presented with ten lights corresponding to their ten fingers. 
When a particular combination of lights comes on, they 
have to press the corresponding fingers. Training on this 
task produces the classical power law of practice. Newell 
and Rosenbloom explain this phenomenon through 
chunking. They assume that initially each light has an 
individual rule, so that the number of rules necessary for a 
response is equal to the number of lights. Learning produces 
combinations of these rules. The initial combinations are 
very useful (e.g., a combination of two rules is useful once 
every four trials), but as the new rules themselves are 
combined, the utility of the more specialized rules 
decreases, until specialization produces rules that are only 
useful 1 out of 1023 trials. 

In series of analogical reasoning experiments by 
Anderson and Fincham (1994) subjects were first able to 
use examples in the analogy in two directions even if they 
were only trained in one direction. Later in training, though, 
the trained direction became more efficient than the 
untrained one. Taatgen and Wallach (2002) explain this with 
a model of proceduralization: initially examples are 
retrieved from declarative memory in which there is no 
directional preference, but later production rules are learned 
that only operate in the direction that they are trained in. 

In a study by Frensch (1991), subjects had to solve a 
series of six equations (see Figure 1 for an example display). 
Training consisted of three possible regiments: fixed order, 
in which subject solved the equations from top to bottom, 
random order, in which the arrow indicated the next 
equation to solve, and blocked, in which subjects had to 
solve the same equation multiple times with different 



numbers before moving on to the next. After training, all 
conditions were tested on series of fixed order trials in 
which one of the equations was changed. The main result 
was that if training was short (25 blocks), performance in 
the test phase was identical. However, after long training 
(75 blocks), there was a clear differentiation: fixed order 
training produced superior performance over random order 
training, which was better than blocked training. 

Frensch (1991) modeled the experimental results with a 
production system model that used production composition. 
Equations were first solved in small, individual steps that 
were later combined into larger production that could carry 
out multiple steps in one cycle.  

The three models discussed above are similar in the sense 
that they all use some form of composition or compilation. 
They are nevertheless all different in the details, and all start 
with an initial production system model of the task that just 
becomes more efficient through training. It is therefore not 
easy to generalize from these three models, and they are also 
not capable of explaining transfer beyond the task that they 
model. I will therefore present a new model of the Frensch 
(1991) experiment using the PRIM model. I will first 
explain the Frensch experiment in more detail, and then 
explain the PRIM approach to modeling the data.  

Experiment 
In the experiment, which I already informally described in 
the introduction, Frensch used a task developed by Elio 
(1986). Figure 1 shows an example of the screen that 
subjects worked on. 

 

 
Figure 1. Example screen in the Frensch (1991) task. 

Copyright 1991 the American Psychological Association. 
Reprinted with permission. 

 
The task was to solve the six equations (Index 1 through 5 

and Overall quality) by substituting the variables with the 
numbers on the top part of the screen, calculate the 

outcome, and enter it using the keyboard. The arrows 
indicated which step had to be executed next. 

The study had a 3x2 design with three training conditions 
and two training durations. In the fixed-order training 
condition, the arrow always moved from step 1 to 6 in 
order. In the random-order training condition, the arrow 
would go through the six steps in random order. In the 
blocked training condition, subjects would do each step 
multiple times before moving to the next step. In the short-
duration condition, subjects received 25 trials of training in 
one of the three training conditions, followed by 50 trials of 
trials in the fixed-order condition in which one of the six 
equations was changed. The long-training condition was the 
same, except that subject received 75 trials of training. 

 

 
Figure 2. Results of the Frensch (1991) experiment. The top 

graph shows the short training condition and the bottom 
graph the long training condition. The left part of each 
figure is the training phase, with three different training 
types, and the right side is the transfer phase, where all 
subjects performed the fixed-order version of the task. 

 
The results (Figure 2) clearly show that in the short 

training condition performance on the transfer task is the 
same, with a possible slight advantage for fixed-condition 
training. However, after long-training condition there is a 
clear difference: the fixed order has the best performance, 
followed by random order and the blocked condition. This 
difference persists until the end of the experiment. 
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Figure 3. Global workspace/ACT-R buffer model of 

information processing. From Taatgen (in press). Copyright 
the American Psychological Association. Reprinted with 

permission 

The PRIM theory 
The PRIM (primitive information processing elements) 
theory (Taatgen, in press) is an extension of the ACT-R 

architecture (Anderson, 2007). The key characteristic of the 
theory is that production rules are broken down in 
elementary processing elements. There are three types of 
elements (PRIMs), and they all operate on slots in ACT-R's 
buffers. The first type of PRIM is a condition consisting of a 
comparison between two slots (either equality or 
inequality). Given the number of slots in all the buffers this 
produces quite a few combinations, which means there are 
1188 condition PRIMs. The second type of PRIM copies the 
contents of one slot to another slot. There are 504 PRIMs of 
this type. Finally, there is one PRIM that sets specific values 
(by retrieving them from declarative memory).  

Figure 3 gives an impression of the role of PRIMs in an 
ACT-R framework. All the ACT-R buffers together produce 
a large vector of slots, and all production rules do is 
compare values in these slots, and move or copy 
information from one slot to another. The particular 
modules that are connected to the slots then carry out 
specific operations on the contents of particular subsets of 
slots, for example declarative memory and perception and 
motor slots. PRIMs are like the machine language of 
cognitive processing: they move around information in a 
certain way without incorporating any particular aspects of 
the task involved. 

For example, take the following standard production rule: 
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Figure 4. Impression of learning in the PRIMs theory. Circles represent PRIMs, and arrows show combinations of PRIMs. 
White circles are condition PRIMs, grey circles action PRIMs, and colored circles PRIMs that set specific values. The top 
figure illustrates how the initial rules with just one PRIM are combined into increasingly larger combinations, eventually 

leading to task-specific rules (i.e., the rules with a colored circle in them). The bottom figure illustrates transfer: if a number 
of PRIMs have already been combined in one particular task (the "green" task), it becomes easier to learn a rules for a new 

task that uses the same PRIMs (the "red" task), because only one compilation step is necessary instead of several. 



 
(p simple-count-rule 
   =goal> 
      isa count-goal 
      state retrieve 
   =imaginal> 
      isa counter 
      count =count 
==> 
   +retrieval> 
      isa count-fact 
      num1 =count 
   =goal> 
      state waiting) 
 
This rule would be broken down into the following 

PRIMs: 

Specific Value PRIM 
• Set item1 to retrieve, item2 to count-fact, and 

item3 to waiting by retrieving these values from 
declarative memory 

Condition PRIM 
• The first slot in the goal should be equal to item1 

Action PRIMs 
• Copy item2 to the first retrieval slot  
• Copy the first slot in the imaginal to the second 

retrieval slot 
• Copy item3 to the first slot in the goal 

In other words, even a simple count rule can already be 
broken down into five primitive elements. Note that the 
PRIMs do no refer to slot names, but to the position of a slot 
in the buffer. This is important for the ability to model 

 
Figure 5. Representation in terms of PRIMs of the Frensch experiment. The same convention is used as in Figure 3: the 

small colored nodes represent the PRIM that sets tasks-specific items, white nodes are conditions and grey nodes are 
actions. The large colored and labeled nodes are used to group the PRIMs for specific tasks together, and have no 

meaning in themselves. Whenever there is a possibility for overlap, tasks share the same (white and grey) nodes. All the 
task representations that calculate the equations, Step 1-6 and Step 3 alt have many overlapping PRIMs. The Fixed Order 

and Fixed Order Transfer have identical PRIMs, while the Random Order PRIMs have only small amounts of overlap 
with other tasks. As an example, a single task-specific PRIM (for the step 2 task) with its condition and action lists is 

highlighted, comprising what traditionally would be a production rule. The condition and action lists of the example is 
shared by many other task-specific PRIMs. 

 
 



transfer. It also means that, contrary to ACT-R, the number 
of slots in a buffer is fixed. 

Before learning, PRIMs are carried out one at a time. 
However, production compilation (Taatgen & Anderson, 
2002) combines PRIMs into larger units (production rules). 
As long as these units do not incorporate any specifics (and 
the implementation tries to postpone this for as long as 
possible), the combined PRIMs are task-general, and can 
therefore be reused by any other task that uses the same 
patterns of information processing. Figure 4 illustrates both 
the process of compilation and the process of transfer. In 
order to carry out all the PRIMs in the right order, task 
knowledge is initially stored in declarative memory. Initial 
novice behavior is characterized by retrieving references to 
PRIMs from declarative memory, and carrying them out one 
at a time. The production compilation process gradually 
combines the PRIMs, and eliminates the need to retrieve 
PRIMs from declarative memory. 

Details about the PRIM theory can be found in Taatgen 
(in press).  

Model of the Frensch Experiment 
The model is an adaptation of the model of the Elio (1986) 
task reported in Taatgen (in press). Each of the seven 
equations on the display (six during training plus one extra 
in the transfer phase) is modeled as a separate task. In the 
blocked condition they are treated as separate independent 
tasks, but in the fixed-order and random-order conditions 
they are subtasks of either a fixed-order or a random-order 
goal. 

Each of the equation tasks is relatively straightforward: 
the appropriate numbers are looked up on the screen, and 
arithmetic facts are retrieved from memory to calculate the 
answer, which is then typed in. The overlap between these 
seven tasks is fairly large, because the pattern of alternating 
looking up information and arithmetic facts is slightly 
different for each equation, but similar enough for positive 
transfer among them.  

The mappings between the step number and the goal to 
calculate its equation are stored in declarative memory. Both 
the fixed-order and the random-order task use these 
mappings. The fixed-order task starts with retrieving step 1, 
and setting this as a subtask. Once the task is completed the 
next step is retrieved, until all steps are done. The random-
order task first looks at the screen to see what step needs to 
be done next, then retrieves the appropriate step, sets this as 
a subtask, and reiterates this until all steps are done. In the 
blocked condition, no main task is set but the equation 
subtasks themselves are used as main task. 

Figure 5 shows the overall structure of the PRIMs 
necessary to do the experiment. The best way to think about 
it is to consider each of the small colored circles as a 
production rule. Each of the colored circles points to a 
linked list of white circles, the condition PRIMs, and a 
linked list of grey circles, the action PRIMs. Together they 
represent the knowledge for a single traditional production 
rule.  

When the model is run, the learning process gradually 
compiles larger and larger rules according to Figure 3, 
eventually learning rules specific to the particular tasks. The 
amount of overlap among the PRIM structures determines 
how much mutual benefit there is from learning. What we 
can already see in Figure 5 is that the tasks that solve the 
equations (step 1-6) have a large mutual benefit, but the 
random-order and the fixed-order tasks largely have their 
own knowledge structures (the two fixed-order tasks, before 
and after transfer, have of course a perfect overlap, because 
they are identical in structure).  

To test the model, it was run through the same procedure 
as the subjects in the experiment, leading to six different 
completion time predictions. 

Model results 

 

 
Figure 6. Model results: top figure is the short-training 

condition, and bottom figure the long-training condition 
 
Figure 6 shows the results of the model. It matches 

several patterns in the data. The most important is the effect 
of transfer: in the short-training condition, the only 
difference between the training conditions is a slight initial 
edge for fixed-order training, but this difference does not 
persist. In the long-training condition, there is a clear 
differentiation in the three training conditions, just as in the 
data. The explanation for this fit is the fact that initial 
learning mainly focuses on the six arithmetic procedures. 
These procedures have a very strong overlap in the PRIMs 
(as can be seen in Figure 4), so each of these receives ample 
initial training. The components of the random-order and 
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fixed-order tasks receive much less training because they 
have hardly any overlap with anything else. As a 
consequence, in the short-training condition the model has 
become faster at calculating the equations, but not so much 
at overall control, and this shows in the transfer phase. In 
the long-training condition, on the other hand, the control 
procedures have had enough training to produce transfer. 
Fixed-order training produces the best transfer, because the 
procedure remains the same. Random-order training still 
edges out the blocked training because of the small amount 
of overlap between fixed-order and random-order training. 
Like in the data, these differences persist until the end of the 
experiment. 

The model also fits some of the more mundane aspects of 
the data: in the training phase, blocked training is by far the 
fastest, and random-order training the slowest. Also, the 
speed-up due to training follows the power law of practice.  

Discussion 
What we have seen in the experiment and the model is that 
initially different types of training led to the same amount of 
transfer. But after more training transfer became more 
specific, and elements that were learned in the random-order 
and in the blocked training no longer fully transfer to the 
fixed-order condition. 

So, what are the advantages of the PRIM model over the 
earlier models? Like its three predecessor models (the 
Newell & Rosenbloom Soar chunking model, the Frensch 
production composition model and the Taatgen and Wallach 
production compilation model), it uses the principle of 
combining two existing knowledge components to build a 
larger, more specialized component. The main difference is 
that the three existing models all start with task-specific 
production rules that become more specialized and therefore 
more efficient. Although this is sufficient to model 
individual tasks, it also means that every particular task 
needs its own particular model. The PRIM model on the 
other hand starts with a fixed set of production rules, and a 
representation of how to do the task in declarative memory, 
so it starts at a much lower level. As a consequence, even 
the final task-specific rules are still relatively simple, while 
the older production models allowed the size of rules to get 
out of hand, potentially solving a whole problem in one 
huge production. 

The PRIM theory still has a number of open issues. The 
current model starts with a "blank slate", in the sense that it 
only has the PRIMs to start with and yet no rules that are 
combinations of PRIMs at all. This probably explains why 
the model is initially slower than the subjects. As already 
discussed in Taatgen (in press), it is probably worthwhile to 
explore what general patterns of reasoning are common in 
human reasoning, and prime the model with that. Note, 
however, that few current cognitive models take prior skills 
into account. 

Unlike its predecessors, the PRIM model also allows to 
study far transfer, and the limits of specialized training for 
far transfer. Is there an explanation for the effect of 
bilingualism on cognitive control in general, and what kind 
of alternative training could be effective? What aspects of 
learning mathematics transfer best to non-mathematical 
domains? Hopefully the new theory can provide some 
answers to these questions. 
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