
Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 1

ENCYCLOPEDIA OF COGNITIVE SCIENCE

2000

©Macmillan Reference Ltd

Learning Rules and Productions

Machine Learning # Cognitive Modelling # Production Rules # Generalization #
Concept learning

Taatgen, Niels

Niels A. Taatgen

University of Groningen Netherlands

[Definition Describes the
algorithms and
mechanisms involved in
learning new rules (or
productions) from
examples and existing
rules in both Machine
Learning and Cognitive
Modelling. Machine
Learning is focussed on
finding a rule set that
efficiently characterizes a
concept, while cognitive
modelling tries to
understand human
learning.

Introduction
Rules are popular means of knowledge representation used in several different
domains of cognitive science. Not only are they a powerful form of representation,
they differ from many other types of representation in the sense that they incorporate
both the knowledge itself, and the way to use this knowledge.

Different types of rules
Rules are small units of knowledge that, although they work in concert with other
rules, are relatively independent, as opposed to a line of code in an arbitrary
programming language. The attractive property of this independence is that
knowledge can be build up incrementally. The focus of this article will be on two
types of rules, logical rules and production rules.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 2

Logical rules are a subclass of first-order logic expressions, often Horn clauses. A
Horn clause is an expression of the form:

(L1 and L2 and ... and Ln) → H

In this expression, L1 to Ln and H are all literals. Horn clauses closely resemble
production rules, which have the following form:

IF condition1 and condition2 and ... and conditionn THEN action1, action2 ... actionm

For the present discussion, we will largely ignore the difference between the two, but
the reader must be aware that they have different properties. As an example,
production rules are generally used left-to-right: once the conditions of the rule are
satisfied, the action can be carried out. Horn clauses on the other hand, when used in a
Prolog context, are used the other way around: in order to satisfy some predicate, a
rule is selected that has the predicate as a conclusion.

Goals of learning rules
Before examining mechanisms for rule learning, it is useful to characterize the context
in which rules are learned, and the goals of rule learning. Two broad fields can be
distinguished: Machine Learning and Cognitive Modelling.

Machine Learning

The main focus of rule learning in machine learning is to learn rules that characterize
concepts. The goal of learning is to find a set of rules that can decide whether or not a
particular example is an instance of a certain concept. A concept can correspond to a
natural category like a bird, a dog or a chair, or concepts like “paper accepted at the
cognitive science conference”. Suppose we want to characterize this latter category,
papers accepted at a certain conference. The final part of the decision process is
whether or not to accept a paper given the judgments of the reviewers. Table 1 gives
an example of judgments.

Relevance
A

Technical
A

Overall A Relevance
B

Technical
B

Overall B Accept?

1 Good Fair Good Fair Fair Good Yes
2 Good Good Good Fair Poor Poor No
3 Good Good Good Fair Poor Fair Yes
4 Fair Poor Fair Good Good Good Yes
5 Good Fair Poor Good Good Fair No

Table 1. Five judgments in the conference example

The goal of rule learning is to find a rule or set of rules that characterizes the concept
of “accepted paper”. Given the five examples we may come up with the following
rules:

(Overall A = Good) ∧ (Overall B ≠ Poor) → Accept = yes

(Overall B = Good) ∧ (Overall A ≠ Poor) → Accept = yes

The assumption in this and later examples will be that if Accept is not set to “yes” by
some rule, Accept will be “no”. Although this may look like a very plausible

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 3

characterization of the five examples, it is by no means the only one. It may be too
general, as it does not take into account other attributes than Overall A and Overall B.

The following three rules also characterize the five examples:

(Relevance A = Good) ∧ (Technical A = Fair) ∧ (Overall A = Good) ∧
(Relevance B = Fair) ∧ (Technical B =Fair) ∧ (Overall B = Good) → Accept = yes

(Relevance A = Good) ∧ (Technical A = Good) ∧ (Overall A = Good) ∧
(Relevance B = Fair) ∧ (Technical B =Poor) ∧ (Overall B = Fair) → Accept = yes

(Relevance A = Fair) ∧ (Technical A = Poor) ∧ (Overall A = Fair) ∧
(Relevance B = Good) ∧ (Technical B = Good) ∧ (Overall B = Good) → Accept =
yes

This set of rules, though technically correct, is much less satisfactory, because it just
lists examples 1, 3 and 4, and is therefore too specific. The goal of a good rule
learning algorithm is to find the right set of rules for a certain set of positive and
negative examples.

The general procedure in machine learning is that the learning algorithm is trained on
a set of examples of which the answer is provided. After learning, the rule set that has
been developed is tested on new set of examples, the test set. The quality of the
algorithm is judged by the efficiency of the algorithm, and the score on the test set.

Cognitive Modelling

If rules are considered as not merely convenient representations, but as atomic
components of human knowledge (e.g., Anderson & Lebiere, 1998) then such a
theory of human knowledge has to include mechanisms to learn these rules. Whereas
the goal of Machine Learning is to find a rule set that characterizes some concept, the
focus in cognitive modelling is more on the learning process than the learning
outcome. A cognitive modeller tries to produce a computer simulation that mimics
human learning as closely as possible. Cognitive modelling approaches that use rules
have to answer the question how these rules are learned, and what the effects of rule
learning are on performance.

An issue in cognitive modelling is how task-specific rules can be learned on the basis
of general rule knowledge on the one hand and instruction and experience on the other
hand. Anderson (1987) uses the example of learning to program in Lisp. When
novices have to learn a new skill like programming, they rely not only on general
instruction but also on examples that can be used as templates.

In an experiment, participants were given a template on how to define Lisp functions,
and an example:

(DEFUN <function name>
(<parameter 1><parameter 2> ... <parameter n>)
<process description>)

(DEFUN F-TO-C (TEMP)
(QUOTIENT (DIFFERENCE TEMP 32) 1.8))

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 4

They were then given the assignment to write a Lisp definition of a new function
FIRST that returns the first element of a list. Many participants came up with the
following definition:

(DEFUN FIRST (LIST1)
(CAR (LIST1)))

They had produced this definition by using both the general template and the
example, but had wrongly generalized the (DIFFERENCE TEMP 32) part to produce
(LIST1) in the answer. The parentheses are present because DIFFERENCE is itself a
function call. No parentheses are needed in the case of LIST1 as this is one of the
parameters. The correct solution is:

(DEFUN FIRST (LIST1)
(CAR LIST1)

Anderson’s rule learning system, which we will examine in detail later on, produced
the following two rules in a simulation of the acquisition knowledge in this task:

IF the goal is to write a function of one variable
THEN write (DEFUN function (variable)

and set as a subgoal to code the relations calculated by this function
and then write)

IF the goal is to code an argument
and that argument corresponds to a variable of the function

THEN write the variable name

Note that these functions are generalizations of both examples, but that the first rule is
a specialization of the general template, as it only applies to functions of one variable.

In the Lisp example, general knowledge and a single example are used to find the
solution to a new example. Except for the template and the example, general
strategies like analogy are assumed in the model. Almost as a by-product rules are
learned. Although this setting is different from the Machine Learning perspective,
there is a strong resemblance: rules are learned on the basis of examples, in this case
with some domain knowledge. In cognitive modelling the focus is also on errors and
speed, so the cognitive model also has to make the same errors people do, and show
the same increase in performance due to practice.

Algorithms for concept learning

Single hypothesis learning
An early rule learning algorithm was developed by Winston (1970). Many variants
have been produced, but the basic idea is very simple. A single rule or rule set is
maintained, and this rule is adjusted as new examples arrive.

When a new example is presented, it is first checked whether the rule is already
consistent with the example. When the example is inconsistent, we have to update the
rule. If the example is a positive example, we have to generalize the rule, so that it

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 5

will include the new example. In the case of a negative example, the rule has to be
specialized to exclude the new example.

Consider a simplification of the conference acceptance problem in Table 2.

reviewer A reviewer B Accept?

1 Good Good Yes

2 Good Poor No

3 Good Fair Yes

4 Fair Good Yes

5 Poor Fair No

Table 2. Simplification of the conference example

A possible rule based on the first example is:

A = Good → Accept = yes (1)

The second, negative example is inconsistent with this rule, so specialization is
needed, for example by adding a condition:

A = Good ∧ B ≠ Poor → Accept = yes (2)

The third example is consistent with this rule, so no further modification is necessary.
The fourth example, however, again requires a generalization of the rule. This may be
achieved by dropping a condition, resulting in:

B ≠ Poor → Accept = yes (3)

Example five is again inconsistent with the rule, requiring a final specialization:

B ≠ Poor ∧ A ≠ Poor → Accept = yes (4)

A problem with this approach is that with each generalization or specialization we
have to make sure all the previous examples are still consistent with the current rule.
Also, finding a new hypothesis can become very hard, as there are many possible
generalizations and specializations, and they are not all as easy to derive from the
current rule.

Version Space
In the example two methods were used to update the rule: generalization and
specialization. Rules can be ordered with respect generality: rule p is said to be more
general than rule q when all instances that are included in the concept by rule q are
also included by rule p. This ordering is a partial order. The most general rule is the
rule that includes all instances of the concept, and the most specific rule is the rule
that includes no instances at all. All other rules are in between these extremes. This
view on hypotheses offers a handle for a more systematic approach than the one
offered by single hypothesis learning. Figure 1 shows part of the hypothesis space for
the conference problem.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 6

True

A ≠ Fair A ≠ Poor B ≠ Poor(3) B ≠ Good

A = Good(1) A ≠ Poor ∧ B ≠ Poor(4)

A = Good ∧ B ≠ Poor(2)

A = Good ∧ B = Good

False

Is more
general than

A ≠ Poor ∧ B = Good

A = Fair ∧ B = Good

Figure 1. Part of the hypothesis space of the conference problem

The most general hypothesis is that all papers are accepted (True), and the most
specialized hypothesis is that none are accepted (False). All other hypotheses are
ordered in between. The numbers in the picture refer to the four hypotheses we had in
the previous example: each time a positive example is not included in the current
hypothesis, we have to generalize and move up in hypothesis space, and each time a
negative example is not excluded we have to move down. The version space, the
space of all plausible versions of the concept, is the subset of all possible hypotheses
that are still consistent with the examples we have seen up to now.

Version Space Learning
Instead of maintaining a single hypothesis about the target concept, an alternative is to
represent all hypotheses that are still consistent with the present set of examples. The
naive version would be to list all the hypotheses, but fortunately this is not necessary.
Due to the fact that hypotheses are partially ordered by the more-general-than
relation, it is only necessary to represent the set of the most general hypotheses that
are still consistent with all examples, and the set of the most specific hypotheses that
are still consistent with all examples. These two sets, usually designated G and S,
respectively, are often called boundary sets, as everything more general than G or
more special than S is not consistent with the examples, but everything in between is.
The algorithm that maintains these boundary sets is known as version space learning
(Mitchell, 1977). G is initialized to {True}, and S to {False}. For each example, G
and S are updated along the following lines:

- For positive examples:

o Remove all members of G that do not include the example.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 7

o For each member of S that does not include the example, replace it by
all immediate generalizations of that member that do include the
example, and are specializations of some member of G.

- For negative examples:

o Remove all members of S that do not exclude the example.

o For each member of G that does include the example, replace it by all
immediate specializations of that member that do not include the
example, and are generalizations of some member of S.

True

B ≠ Poor

#2: A=Good ∧ B=Poor → Accept=No

A ≠ Poor ∧ B ≠ Poor

#5: A=Poor ∧ B=Fair → Accept=No

A ≠ Poor ∧ B ≠ Poor

A = Good ∧ B ≠ Poor

#4: A=Fair ∧ B=Good → Accept=Yes

A = Good ∧ B = Good

#3: A=Good ∧ B=Fair → Accept=Yes

False

#1: A=Good ∧ B=Good → Accept=Yes

G is
gradually

specialized

S is
gradually

generalized

Figure 2. Version space learning operating on the conference example.

Figure 2 shows how version space learning would handle the conference acceptance
example. The algorithm starts out with G set to {True} and S set to {False}. The first
example is a positive example: A=Good ∧ B=Good. This means that False is no
longer the most specific hypothesis, so it is generalized to A=Good ∧ B=Good. The
second example is a negative example, which means that the True hypothesis needs
specialization. Although there are two specializations of True consistent with the
second example (A ≠ Good, B ≠ Poor), only B ≠ Poor is also a generalization of a
member of S. The process continues until, after example 5, both G and S have
converged to the hypothesis A ≠ Poor ∧ B ≠ Poor. Note that in this example both G
and S only contain one hypothesis at a time, this is not true in general.

A disadvantage of version space learning is that it cannot handle noise: it relies on the
fact that all examples are correct. Another problem is that it cannot handle disjunction
very well. In our example we have only used a limited form of disjunction (in the
sense that B ≠ Poor means B = Good ∨ B = Fair). The case A = Fair ∧ B = Fair is
classified as a positive example, although it has never been presented as an example,

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 8

and it would be perfectly plausible if it would have been a negative example (in the
case the criterion is “At least one Good and no Poors”).

Other concept learning algorithms
Except for single hypothesis learning and version space learning many other
algorithms have been developed for concept learning. Decision tree learning, for
example, learns a decision tree for a concept. Learning is however not incremental,
because the algorithm learns the whole tree on the basis of a set of examples. As a
decision tree is not really a rule-based representation, it is beyond the scope of this
article. Another family of algorithms, often shared under the heading of inductive
logic programming, infers sets of rules to characterize concepts instead of single rules.
The advantage of using a set of rules is that single rules only cover part of the
concept, so there is no problem of overly specific rules. Inductive logic programming
algorithms also operate on the set of examples as a whole.

Learning with Domain Knowledge
A property of the algorithms discussed in the previous paragraph is that they operate
on the basis of examples only. In addition to examples there may be other knowledge
that may guide the learning process, for example common sense knowledge, or a
complete set of domain knowledge. An algorithm that does include the use of domain
knowledge is Explanation Based Learning (e.g., DeJong, 1981).

Explanation Based learning
The assumption of Explanation Based Learning (EBL) is that we have a complete set
of knowledge, the domain knowledge, that is in principle enough to make decisions,
but may be computationally intractable. The goal of EBL is, given a proof for a single
example, to derive new rules of intermediate computational complexity that are
generalizations of the example, but specializations of the domain theory. Suppose we
have the following rule set to make conference decisions:

reviewer(X) ∧ review(X, poor) → negative
reviewer(Y) ∧ review(Y, good) → positive
negative → decide(no)
positive ∧ ¬negative → decide(yes)

Given a specific example, for instance reviewer(a) ∧ reviewer(b) ∧ review(a, good) ∧
review(b, good) a general problem solver like Prolog can derive decide(yes). EBL
now uses the proof (or explanation, hence the name) of decide(yes) to generate a new
rule that is a generalization of the example but a specialization of the domain theory:

¬review(a,poor) ∧ review(b,good) → decide(yes)

This newly learned rule does not contribute anything new, as all the knowledge is
already contained in the domain knowledge. However, if the domain knowledge itself
is very inefficient to use, new efficient rules may effectively extend the capabilities of
the system by allowing new proofs that were previously computationally
unachievable. Take the example of mathematics: the natural numbers can be defined

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 9

by a small set of axioms, but mathematicians use many derived rules to solve actual
problems.

In EBL new rules are added to the rule set, so in that sense it differs from algorithms
discussed earlier where learned rules replaced old rules. This introduces a new
problem: adding rules to the system may improve its performance because rules are
tailored to certain often-occurring situations, but may also decrease performance if
they are never used. This utility problem is an issue different from correctness:
knowledge that is true may still be undesirable because it is useless. Possible solutions
to the utility problem are to develop procedures that estimate the cost/benefit
properties of a rule in advance, or to just introduce them into the system and keep
track of how they fare (e.g., Minton, 1988).

Learning rules in cognitive models
Rule learning in cognitive modelling has aspects in common with both the purely
inductive algorithms like version space learning and deductive algorithms like
explanation based learning. Human learners have a large store of background
knowledge, strategic knowledge and domain knowledge, but still have to make
generalizations from examples that are not fully deducible from the domain
knowledge. A general view in cognitive modelling is that humans have a set of weak
methods that, when supplied with some background knowledge and a particular case
to work on, will produce the desired performance, and are also the basis for learning.
Weak methods are problem solving strategies that are independent of the particular
problem, and are generally applicable. Examples of these strategies are: means-ends
analysis, forward-checking search, analogy, etc.

In the Lisp learning example in the introduction the weak method of analogy was used
to generate a new Lisp program on the basis of an example and some background
knowledge on Lisp. During this process some new rules were learned, and the
mechanisms cognitive modellers use to achieve this rule learning show a resemblance
to explanation based learning. The difference is that learning and problem solving
happen at the same time, and domain knowledge is often incomplete.

Chunking in Soar
Newell and Rosenbloom (1981) proposed a rule mechanism called chunking that
became an important component of the Soar cognitive architecture (Newell, 1990).
Within Soar, learning rules is tied to impasses and subgoaling. Whenever Soar
reaches a state in which it runs into some impasse (no applicable rules, an irresolvable
choice between operators, etc.), it automatically creates the subgoal to resolve this
impasse. When the subgoal is successfully completed and the impasse is resolved, a
specialized rule is learned that summarizes all the processing required to achieve that
subgoal. If Soar later encounters a similar impasse, it no longer needs a separate
subgoal to process it. Instead it can use the learned rule to solve it in a single step.

Although Soar’s basic set of methods encompasses several weak methods, the method
reported most often is forward checking. Suppose we have the blocks-world problem
in Figure 3.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 10

A

B C

A

B

CInitial State Goal State

Figure 3. Example blocks-world problem

If Soar were to solve this problem, it would discover that there are two possible
operators in the initial state: “Move block A to C” and “Move block C to A”. If Soar
would have no additional knowledge on how to choose between these operators
(called search-control knowledge), it would run into a so-called tie impasse. To
resolve this impasse, Soar would create a subgoal to resolve this impasse by
evaluating these two operators. Evaluation is can be done by “mental simulation”:
what would happen if each of the tied operators is applied? In this mental simulation
Soar would quickly discover that “Move C to A” is the best operator as it immediately
accomplishes the goal. So the subgoal created by the impasse comes back with the
resolution “Move C to A is best”, and in the main goal this operator is applied.

Learning occurs directly after the subgoal is resolved. The rule that is created has as a
condition the circumstances in which the impasse occurred, and as action the result of
the subgoal, in this case the “best-preference” for the operator that accomplishes the
goal:

IF the problem-space is a simple-blocks-world
and the state has block X and block Y clear,
and block X is on the table,
and the goal state has block X on block Y,

THEN make a best preference for the operator that move block X onto block Y

The consequence of this rule is that whenever Soar encounters the situation described
in the rule, an impasse no longer occurs and an operator is chosen immediately.

A problem with Soar’s rule learning mechanism is that there is no solution to the
utility problem: Soar can produce over-specific rules that are expensive to match and
has no way to get rid of them once learned.

Production learning in ACT
Anderson (1983) proposed a set of four rule-learning mechanisms that were specified
to work in the ACT* cognitive architecture. An aspect of ACT* is that it not only has
a memory for rules (procedural memory), but also a memory for facts (declarative
memory). The following four mechanisms were used to learn new rules:

1. Proceduralization. If a rule accesses declarative memory, and uses the
knowledge from declarative memory in its action, then learn a new rule that is
identical to the old rule but has the retrieved knowledge instantiated into the
rule, eliminating the declarative retrieval.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 11

2. Composition. Collapse a sequence of rules into a single rule that performs all
the actions of the individual rules of the sequence.

3. Generalization. If there are two rules that are similar, create a generalized
version of these rules. This can be done by removing conditions or by
substituting constants by variables.

4. Discrimination. If a rules is successful in one situation but not in another, add
conditions to the rule to make a more restrictive version that only applies in
successful situations.

In the Lisp-learning example proceduralization and composition are used to learn the
two rules to write lisp functions on the basis of the weak method of analogy.

Despite the relative success of the mechanisms in ACT*, they were too unconstrained,
and were able to produce too many invalid rules and too many rules with poor utility.
In the latest version of ACT (ACT-R 5.0), a constrained version of the four
mechanisms is introduced. This single mechanism combines the proceduralization and
composition mechanisms from ACT*. In ACT-R, the expressive power of production
rules is more constrained when compared to earlier versions of ACT and when
compared to Soar. Each production rule is only allowed a single access to declarative
memory. Also, this access is composed of two steps. First, a rule has to issue a request
to declarative memory for a certain fact as part of its action side, and a second rule
can match the retrieved fact on its condition side. Suppose we want to add three
numbers. In the older ACT and Soar systems, this would require only a single rule. In
ACT-R, we need three rules to accomplish this:

Rule 1:

IF the goal is to add three
numbers

THEN send a retrieval
request to declarative
memory for the sum of the
first two numbers

Rule 2:

IF the goal is to add three
numbers

AND the sum of the first
two numbers is retrieved

THEN send a retrieval
request to declarative
memory for the sum of the
currently retrieved sum
and the third number

Rule 3:

IF the goal is to add three
numbers

AND the sum of the first
two numbers and the third
number is retrieved

THEN the answer is the
retrieved sum

Using one of the older composition mechanisms, one general rule could be learned
out of these three rules to do three-number additions in one step. From a cognitive
perspective this is not desirable, as people generally cannot do these types of additions
in one step, although they have ample experience with them. Also, in ACT-R it
would be no longer possible, as only one retrieval from declarative memory is
allowed in each rule.

Rule learning in ACT-R is aimed at composing two rules that fire in sequence into
one new rule, while maintaining the constraint that only one retrieval from declarative
memory is allowed. This is done by eliminating a retrieval request in the first rule and
a retrieval condition in the second rule. The fact that has been retrieved is filled in in
the combined action of the new rule. Suppose that in the example above, the three

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 12

numbers that are added are 1, 2 and 3, then this would produce two new rules, a
combination of rule 1 and 2, and a combination of rule 2 and 3. Each of these two new
rules can be combined with one of the original rules to learn a rule that combines all
three rules:

Rule 1 & 2:

IF the goal is to add 1, 2
and a third number

THEN send a retrieval
request to declarative
memory for the sum of 3
and the third number

Rule 2 & 3:

IF the goal is to add three
numbers and the third
number is 3

AND the sum of the first
two numbers is retrieved
and is equal to 3

THEN the answer is 6

Rule 1 & 2 & 3:

IF the goal is to add 1, 2
and 3

THEN the answer is 6

Compared to the original rules these rules are very specialized: they work only for
certain numbers. The implication is that people will only learn specific rules for very
common additions: it is likely that one immediately knows the sum of 1, 2 and 3, but
not of 9, 3 and 4.

Although the example is about addition, production learning can also be used to
transform general production rules into task-specific rules, and to incorporate
previous experiences into rules. The utility problem is handled in two ways: by
constraining the size of the rules, rules with many conditions are impossible. Rules
that are learned are introduced only gradually in the system, ensuring a relatively slow
but safe proceduralization.

Summary
Rule learning is an fundamental issue in both machine learning and cognitive
modelling. This article has focussed on incremental learning mechanisms, in which a
current hypothesis is continuously updated on the basis of examples, involving both
processes of generalization and specialization. Learning can be with or without
domain or background knowledge. If no background knowledge is provided, in
algorithms like single-hypothesis learning and version-space learning, learning is
purely inductive. Explanation-based learning on the other hand deduces its knowledge
from the domain theory, guided by examples.

Learning in cognitive modelling often employs a mixture of inductive and deductive
methods, as background knowledge is often available but almost never complete. The
most common method employed is to instantiate general problem solving methods
with specific knowledge and examples, producing task-specific rules.

References

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J.R. (1987). Skill Acquisition: Compilation of Weak-Method Problem
Solutions. Psychological Review, 94, 192-210.

Encyclopedia of Cognitive Science—Author Stylesheet

©Copyright Macmillan Reference Ltd 25 April, 2002 Page 13

Anderson, J.R., & Lebiere, C. (1998). The atomic components of thought. Mahwah,
NJ: Erlbaum.

DeJong, G. (1981). Generalizations based on explanations. Proceedings of the
Seventh International Joint Conference on Artificial Intelligence (pp. 67-70).

Minton, S. (1988). Learning search control knowledge: An explanation-based
approach. Boston, MA: Kluwer.

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule
learning. Proceedings of the Fifth International Joint Conference on AI (pp. 305-310).
Cambridge, MA: MIT Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard
University Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law
of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-55).
Hillsdale, NJ: Erlbaum.

Winston, P.H. (1970). Learning structural descriptions from examples. Ph.D.
dissertation. MIT Technical Report AI-TR-231.

Bibliography
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-
406.

Mitchell, T.M. (1997). Machine Learning. New York: McGraw-Hill.

