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ABSTRACT 
A useful way to explain the notions of implicit and 
explicit learning in ACT-R is to define implicit learning 
as learning by ACT-R's learning mechanisms, and 
explicit learning as the results of learning goals. This idea 
complies with the usual notion of implicit learning as 
unconscious and always active and explicit learning as 
intentional and conscious. Two models will be discussed 
to illustrate this point. First a model of a classical implicit 
memory task, the Sugar Factory scenario by Berry & 
Broadbent  will be discussed, to show how ACT-R can 
model implicit learning. The second model is of the so-
called Fincham task, and exhibits both implicit and 
explicit learning. 
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INTRODUCTION TO ACT-R 
Knowledge Representation 
ACT-R (Anderson, 1993; Anderson & Lebiere, in press) 
is a hybrid production system architecture for cognitive 
modeling.  It is a hybrid architecture because it works at 
two interdependent levels: a symbolic level and a 
subsymbolic level.  Each level is divided into a 
procedural and declarative component. 

Symbolic Level 
Declarative knowledge consists of chunks.  Chunk 
structures are composed of a number of labeled slots, 
each of which can hold a value which can also be another 
chunk.  Each chunk is an instance of a particular chunk 
type, which defines the name and number of slots.  
Procedural knowledge consists of productions.  A 
production is a condition-action pair, which specifies the 
action to be taken if a particular condition is satisfied. 
ACT-R is a goal-directed architecture.  At any time, a 
goal is selected as the current focus of attention.  Goals 
are organized on the goal stack, on which a goal can be 
stored (pushed) and later restored (popped).  ACT-R 
operates in discrete cycles.  At the start of each cycle, 
each production is matched against the state of the current 
goal.  The productions that match enter the conflict set.  
A production is selected from the conflict set.  The rest of 
the production condition can specify a number of chunk 
retrievals from declarative memory.  If the retrievals are 
not successful, then the next production in the conflict set 
is selected.  If the retrievals are successful, then the 
production action is executed.  The action can modify the 

current goal, push it on the stack or pop it and restore a 
previous goal. 

Subsymbolic Level 
At the symbolic level, ACT-R operates in discrete, 
deterministic steps, but the subsymbolic level provides a 
measure of continuity and randomness.  The previous 
section left two points unspecified: how are productions 
ordered in the conflict set, and if several chunks match a 
particular declarative retrieval, which is selected? 
The productions are selected in order of decreasing 
expected utility.  The current goal is assigned a value, or 
gain, equal to the worth of successfully achieving it.  To 
each production is associated the probability and cost of 
achieving the goal to which it applies.  The expected 
utility of a production applied to a goal is equal to the 
gain of the goal times the probability of success of the 
production, minus its cost.  Noise is also added to the 
expected utility of a production, making production 
selection stochastic. 
If several chunks satisfy a declarative retrieval, then the 
most active one is retrieved.  The activation of a chunk is 
the sum of a base-level activation and an associative 
activation.  The associative activation is spread from the 
sources of activation, which are the components of the 
current goal, to all related chunks in memory.  Noise is 
added to each activation, making the retrieval of chunks 
stochastic.  If no chunk activation reaches a retrieval 
threshold, then the retrieval fails.  Furthermore, chunks 
which only partially match the retrieval pattern can also 
be retrieved, but their activation level will be penalized 
by an amount proportional to the degree of mismatch 
between the retrieval pattern and the actual chunk values. 
Finally, the time to retrieve a chunk from memory is an 
exponentially decreasing function of its activation level.  
Therefore, although ACT-R operates in discrete cycles, 
the latency of each cycle, which is equal to the sum of the 
time to perform all the chunk retrievals plus the action 
time of the successful production, is a continuous 
quantity.  Whereas the specification of an ACT-R model 
at the symbolic level has a precise, algorithmic quality, its 
operation at the subsymbolic level matches the 
stochasticity and continuity of human performance. 

Learning 
The previous section describes the performance of ACT-
R assuming a certain state of knowledge.  However, to 
provide an adequate model of human cognition, it is also 
necessary to specify how that knowledge was acquired.  



In ACT-R, knowledge is learned to adapt the system to 
the structure of the environment (Anderson, 1990; 
Anderson & Schooler, 1991). 
Symbolic Learning 
When a goal is popped, it becomes a chunk in declarative 
memory.  That (and the encoding of environmental 
stimuli) is the only source of declarative knowledge in 
ACT-R.  The chunk resulting from a goal represents the 
statement of the task addressed by the goal and usually its 
solution.  Therefore, the next time that task arises, its 
solution, depending upon the activation of the chunk, 
might be directly retrieved from declarative memory 
instead of being recomputed anew. 
Productions are created from a special type of chunk 
called dependency.  When a goal is solved through a 
complex process, a dependency goal can be created to 
understand how it was solved (e.g. which fact was 
retrieved or which subgoal was set).  When that 
dependency goal is itself popped, a production is 
automatically compiled to embody the solution process.  
Thus the next time a similar goal arises, the production 
might be available to solve it in a single step instead of a 
complex process. 
Symbolic knowledge is learned to represent in a single, 
discrete structure (chunk or production) the results of a 
complex process.  Subsymbolic knowledge is adjusted 
according to Bayesian formulas to make more available 
those structures which prove most useful. 

Subsymbolic Learning 
When a production is used to solve a goal, its probability 
and cost parameters are updated to reflect that experience.  
If the goal was successfully solved, then the production 
probability is increased.  Otherwise, it is decreased.  
Similarly, the production cost is updated to reflect the 
actual cost of solving that goal.  Declarative parameters 
are adjusted in the same way.  When a chunk is retrieved, 
its base-level activation is increased.  The strength of 
association between the current sources and the chunk is 
also increased. 
Subsymbolic knowledge does not result in new conscious 
knowledge, but instead makes the existing symbolic 
knowledge more available.  Chunks which are often used 
become more active, and thus can be retrieved faster and 
more reliably.  Productions which are more likely to lead 
to a solution and/or at a lower cost will have a higher 
expected utility, and thus are more likely to be selected 
during conflict resolution. 

IMPLICIT LEARNING IN THE SUGAR FACTORY TASK 
Introduction 
In contrast to rule-based approaches that conceptualize 
skill acquisition as learning of abstract rules, theories of 
instance-based learning argue that the formation of skills 
can be understood in terms of the storage and deployment 
of specific episodes or instances (Logan, 1988; 1990). 
According to this view, abstraction is not an active 
process that results in the acquisition of generalized rules, 
but that rule-like behaviour emerges from the way 
specific instances are encoded, retrieved and deployed in 
problem solving. While ACT-R has traditionally been 

associated with a view of learning as the acquisition of 
abstract production rules (Anderson, 1983; 1993), we 
present a simple ACT-R model that learns to operate a 
dynamic system based on the retrieval and deployment of 
specific instances which encode episodes experienced 
during system control. It is demonstrated that the ACT-R 
approach can explain available data as well as an 
alternative model that is shown to be based on critical 
assumptions.  

The Task 
Berry & Broadbent, (1984) used the computer-simulated 
scenario SUGARFACTORY to investigate how subjects 
learn to operate complex systems. SUGARFACTORY is a 
dynamic system in which participants are supposed to 
control the sugar production sp by determining the 
number of workers w employed in a ficticious factory. 
Unbeknown to the participants, the behavior of 
SUGARFACTORY is governed by the following equation: 

spt = 2 * wt - spt-1 

The number entered for the workers w can be varied in 12 
discrete steps 1≤w≤12, while the sugar production 
changes discretely between 1≤sp≤12. To allow for a more 
realistic interpretation of w as the number of workers and 
sp as tons of sugar, these values are multiplied in the 
actual computer simulation by 100 and 1000, 
respectively. If the result according to the equation is less 
than 1000, sp is simply set to 1000. Similarly, a result 
greater than 12000 leads to an output of 12000. Finally, a 
random component of ± 1000 is added in 2/3 of all trials 
to the result that follows from the equation stated above. 
Participants are given the goal to produce a target value 
of 9000 tons of sugar on each of a number of trials. 

The models 
Based on Logan’s instance theory (1988; 1990) Dienes & 
Fahey (1995) developed a computational model to 
account for the data they gathered in an experiment using 
the SUGARFACTORY scenario. According to instance 
theory, encoding and retrieval are intimately linked 
through attention: encoding a stimulus is an unavoidable 
consequence of attention, and retrieving what is known 
about a stimulus is also an obligatory consequence of 
attention. Logan’s theory postulates that each encounter 
of a stimulus is encoded, stored and retrieved using a 
separate memory trace. These separate memory traces 
accumulate with experience and lead to a „gradual 
transition from algorithmic processing to memory-based 
processing“ (Logan, 1988, p. 493). In the following, we 
contrast the Dienes & Fahey (1995) model (D&S model) 
with an alternative instance-based ACT-R model and 
discuss their theoretical and empirical adequacy. 

Algorithmic Processing 
Both models assume some algorithmic knowledge prior 
to the availability of instances that could be retrieved to 
solve a problem. Dienes & Fahey (1995, p. 862) observed 
that 86% of the first ten input values that subjects enter 
into SUGARFACTORY can be explained by the following 
rules: 



(1) If the sugar production is below (above) target, then 
enter a workforce that is different from the previous 
input by an amount of 0, +100, +200 (0, -100, -200). 

(2) For the very first trial, enter a work force of 700, 800 
or 900. 

(3) If the sugar production is on target, then respond with 
a workforce that is different from the previous one by 
an amount of -100, 0, or +100 with equal probability. 

While this algorithmic knowledge is encoded in the D&F 
model by a constant number of prior instances that could 
be retrieved in any situation, ACT-R uses simple 
production rules to represent this rule-like knowledge. 
The number of prior instances encoded is a free 
parameter in the D&S model that was fixed to give a 
good fit to the data reported below. There is no equivalent 
parameter in the ACT-R model. 

Storing Instances 
Logan’s instance theory predicts that every encounter of a 
stimulus is stored. The D&F model, however, does only 
store instances for those situations, in which an action 
successfully leads to the target, all other situations are 
postulated to be forgotten immediately. Moreover, the 
D&S model uses a „loose“ definition of the target that 
was unavailable to subjects: While subjects were 
supposed to produce 9000 tons of sugar as the target state 
in the experiment, a loose scoring scheme was used to 
determine the performance of the subjects. Because of the 
random component involved in the SUGARFACTORY, a 
trial was counted as being on target if it resulted in a 
sugar production of 9000 tons with a tolerance of ±1000. 
The D&M model stores only instances that are successful 
in this loose sense and thus uses information about a 
range of target states that subjects were not aware of. 
ACT-R, on the other hand, encodes every situation, 
irrespective of its result The following chunk is an 
example for an instance acquired by the ACT-R model as 
a restored goal. 
(transition1239 
    ISA transition 
    STATE 3000 
    WORKER 8 
    PRODUCTION 12000) 

The chunk encodes a situation in which an input of 8 
workers, given a current production of 3000 tons, led to 
subsequent sugar production of 12000 tons. While the 
model developed by Dienes & Fahey (1995) stores 
multiple copies of instances, ACT-R does not dublicate 
identical chunks. 

Retrieving instances 
In the D&F model each stored instance „relevant“ to a 
current situation races against others and against prior 
instances representing algorithmic knowledge; the first 
instance after a finishing post determines the action of the 
model. An instance encoding a situation is regarded to be 
„relevant“, if it either matches the current situation 
exactly, or if it is within the loose range discussed above. 
As with the storage of instances, memory retrieval in the 
D&F model is based on specific information not available 
to subjects. Retrieval in the ACT-R model, on the other 
hand, is governed by similarity matches between a 
situation currently present and encodings of others 
experienced in the past (see Buchner, Funke & Berry, 
1995 for a similar position in explaining the performance 
of subjects operating SUGARFACTORY). On each trial, a 
memory search is initiated based on the current situation 
and the target state ‘9000 tons’ as cues in order to retrieve 
an appropriate intervention or an intervention that 
belongs to a similar situation. The production rule 
retrieve-episode (figure 1) is used to model the 
memory retrieval of instances based on their activation 

level. Instances which only partially match the retrieval 
pattern, i.e. which do not correspond exactly to the 
present situation, will be penalized by lowering their 
activation proportional to the degree of mismatch. As a 
parameter of the ACT-R model, normally distributed 
activation noise is introduced to allow for some 
stochasticity in memory retrieval. 
As figure 2 shows, the use of instances over the initial 
algorithmic knowledge increases over time, resulting in 
the gradual transition from algorithmic to memory-based 
processing as postulated by Logan (1988, p. 493). 

Theoretical Evaluation 
While both models of instance-based learning share some 
striking similarities, the theoretical comparison has 
shown that the D&F-model makes stronger assumptions 
with respect to the storage and the retrieval of instances 
that seem to be hard to justify. Dienes & Fahey (1995) 
found out that these critical assumptions are essential to 
the performance of the D&F model: 
 „The importance to the modeling of assuming that only 
correct situations were stored was tested by determining 

 
Figure 1. Matching process  in the Sugar Factory model 

 
Figure 2. Relative use of instance retrieval per trial 



the performance of the model when it stored all instances. 
… This model could not perform the task as well as parti-
cipants: The irrelevant workforce situations provided too 
much noise by proscribing responses that were in fact 
appropriate … If instances entered the race only if they 
exactly matched the current  situation, then for the same 
level of learning as participants, concordances were 
significantly greater than those of participants“ (p. 856f). 

Empirical Evaluation 
While the theoretical analysis of the assumptions 
underlying the two models has favoured the ACT-R 
approach, we will briefly discuss the empirical success of 
the models with respect to empirical data as reported by 
Dienes & Fahey (1995). Figure 3 shows the trials on 
target when controlling SUGARFACTORY over two 
phases, consisting of 40 trials each. ACT-R slightly 
overpredicts the performance found in the first phase, 
while the D&F model slightly underpredicts the 
performance of the subjects in the second phase. Since 
both models seem to explain the data equally well, we 
cannot favour one over the other. 
Figure 4 shows the performance of the models in 
predicting the percentage of times („Concordance“) that 
the subjects gave the same (correct or wrong) response in 
a questionaire as they did when controlling the 
SUGARFACTORY. Again, both models seem to do a 
similar good job in explaining the data, with no model 
being clearly superior. Although space limitations do not 
allow for a detailed discussion, the picture illustrated by 
these two empirical comparisons remains the same after 
several additional model comparision tests. 

Conclusion 
We discussed and compared a simple ACT-R model to an 
approach based on Logan’s instance theory with respect 
to their ability to modeling the control of a dynamic 
system. While both models were similar in their empirical 
predictions, the ACT-R model was found to require fewer 
assumptions and is thus preferred over the model 
proposed by Dienes & Fahey (1995). Generally, ACT-R’s 
integration of an activation-based retrieval process with a 
partial matcher seems to be a very promissing starting 

point for the development of an ACT-R theory of 
instance-based learning and problem solving. 
 

IMPLICIT AND EXPLICIT LEARNING IN THE FINCHAM 
TASK 
The learning mechanisms in ACT-R are all quite basic, 
and can be used in several different ways to achieve 
different results. The idea of a learning mechanism as an 
integral part of an architecture has properties in common 
with the psychological notion of implicit learning. Both 
types of learning are considered to be always at work and 
not susceptible to change due to development or great 
variation  due to individual differences. One of the 
defining properties of implicit learning, the fact that it is 
not a conscious process, is harder to operationalize within 
the context of an architecture for cognition. The closest 
you can get in an architecture is the notion that implicit 
learning is not guided by learning intentions, but is rather  
a by-product of normal processing. The Sugar Factory 
model discussed in the previous section is an example of 
implicit learning, since ACT-R uses old goals that are 
stored unintentionally to improve its behavior. 
Explicit learning, on the other hand, is tied to intentions, 
or goals in ACT-R terms. Since there are no learning 
mechanisms that operate on goals, explicit learning can 
best be explained by a set of learned learning strategies. 
An example of a learning strategy to improve 
memorization of facts is using rehearsal to improve base-
level learning. Base-level learning increases the 
activation of a chunk each time it is retrieved. If this 
increase of activation through natural use is not enough 
for the current goals, rehearsal can be used to speed up 
the process. By repeating a fact a number of times, its 
base-level activation can be boosted intentionally.  
In this section we will discuss a paradigm for skill 
learning that involves both an implicit and an explicit 
strategy. The implicit strategy corresponds to instance-
based learning, and the explicit strategy to rule-learning. 

 
Figure 3. Results of the experiment, ACT-R model and 
D&F model 

 
Figure 4. Concordances  for the experiment en both 
models 



Figure 5 shows an overview of this paradigm. First we 
assume that a participant has some initial method or 
algorithm to solve the problem. Generally this method 
will be time-consuming  or inaccurate. Each time an 
example of the problem is solved by this method, an 
instance is learned. In ACT-R terms an instance is just a 
goal that is popped from the goal stack and is stored in 
declarative memory. Since this by-product of 
performance is unintentional, it can be considered as 
implicit learning. 

Other types of learning require a more active attitude 
from the participant. If the initial method  is too time 
consuming, the participant may try to derive an re-
representation of the information needed for the task to 
increase efficiency, which we will call, using Johnson-
Laird’s (1983) terminology, a mental model. If the initial 
method leads to a large number of errors, the participant 
may try to deduce or guess new relationships in the task 
in  order to increase performance. The next step, from 
mental model to production rule, can only be made if the 
mental model is simple enough to convert to a production 
rule. Both the application of mental models and firing 
new production rules will create new instances. So 
regardless of what is going on due to explicit learning, 
implicit learning keeps accumulating knowledge.  
So, if we have that many ways of learning, what type of 
learning will we witness in a particular experiment? To 
be able to answer this question we go back to the 
principle of rational analysis. According to this principle, 
we will principally witness that type of learning that will 
lead to the largest increase in performance. If we have 
task in which it is very hard to discover relationships or 
mental models, learning can probably be characterized 
primarily by implicit instance learning. Tasks in which 
there are too many instances too learn, but in which 
relationships are more obvious, will probably be better 
explainable by rule and abstraction learning. The Sugar 
Factory task is an example in which it is very hard to 
discover the rules the govern the system due to the 
random factor in the output and the fact that only one of 
the inputs that determine the output can be manipulated. 

The Fincham Task 
An example of a task in which both rule learning and 
instance learning are viable strategies is described by 
Anderson & Fincham (1994). In this task, participants 
first have to memorize a number of facts. These facts are 
in the form of  
“Hockey was played on Saturday at 3 and then on 
Monday at 1.” 

We will refer to these facts as “sport-facts” to prevent 
confusion with facts and rules in the model. A sport-fact 
contains a unique sport and two events, each of which 
consists of a day of the week and a time. After having 
memorized these facts, participants were told the facts are 
really rules about the time relationships between the two 
events. So in this case “Hockey” means you have to add 
two to the day, and subtract two from the time. In the 
subsequent experiment, participants were asked to predict 
the second event, given a sport and a first event, or 
predict the first event, given the sport and the second 
event. So participants had to answer questions like: “If 
the first game of hockey was Wednesday at 8, when was 
the second game?” In this paradigm, it is possible to 
investigate evidence for both rule-based learning and 
instance-based learning. Directional asymmetry, evidence 
for rule-based learning, can be tested for by first training 
a sport-fact in one direction (by predicting the second 
event using the sport and the first event), and then reverse 
the direction (by predicting the first event using the sport 
and the second event) and look how performance in the 
reverse direction relates to performance on the trained 
direction. If the performance is worse in the reverse 
direction, this is evidence for the use of rules. Evidence 
for instance learning can be gained by presenting specific 
examples more often than other examples. Better 
performance on these specific examples would indicate 
instance learning. Anderson & Fincham (1994), and later 
Anderson, Fincham & Douglass (1997) performed five 
variations on this basic experiment. The basic findings we 
will focus on are as follows: 
• In general, reactions times improve according to the 

power law of practice, starting at around 35 seconds 
for the first few trials and improving to around 7 
seconds at the third session.  

• There is evidence for rule learning as witnessed by 
directional asymmetry. However, the effect only starts 
at the third or fourth session, and is relatively small. 

• There is evidence for instance learning, since 
problems that are repeated more often than others are 
solved faster. 

• Although it can not be inferred directly from the data, 
participants report they use abstract versions of the 
rules, for example by memorizing “Hockey day +2” 
and “Hockey time -2”. 

On basis of this evidence, Anderson et al. conclude that 
participants use four strategies: analogy, abstraction, rule 
and instance. The interesting question is what learning 
processes play a role in changing strategies. Each of the 
four strategies can be related to one of the learning stages 
from figure 5.  
The analogy strategy is the initial strategy: first the 
memorized example that has the same sport as the new 
trial is recalled, the relationship in this example is 
determined, and this relationship is mapped on the current 
trial. Analogy is not very efficient, since it consists of 
many steps. 
The abstraction strategy assumes the participant has 
created and memorized a mental model of the sport that 

Algorithm,
initial method

Mental
model

Production
rule

Instance
Implicit learning

Explicit Learning

Figure 5. Diagram that illustrates the learning scheme 
used  in the Fincham-task model 



corresponds to the current trial, like “Hockey day +2”. 
The strategy involves retrieving and applying the 
abstraction, which is easier and faster than the analogy 
strategy. 
The rule strategy assumes a production rule has been 
learned that can fill in the answer directly. An example of 
this rule is (variables are indicated by italics): 
IF  the goal is to find the day of the second event 
 the sport is hockey  
 and the day of the first event is day1 
 AND day1 plus two days equals day2 
THEN put day2 in the second event slot of the goal 
The rule strategy is more efficient than the abstraction 
strategy, since it requires only a single step in stead of 
two. 
The instance strategy assumes the answer can be given 
using a previous example. This previous example must be 
the same as the current trial. So an instance may contain 
the following information: 
item1434 
 isa instance 
 sport hockey 
 type day 
 left sunday 
 right tuesday 
To use the instance strategy, it is sufficient to retrieve the 
right instance. This will of course only succeed if this 
instance is present in memory and is retrievable. 

An ACT-R Model 
We will now briefly discuss the ACT-R model of the task 
and its results. A more extensive discussion can be found 

in Taatgen & Wallach (in preparation). Figure 6 shows a 
schematic diagram of the implementation of the four 
strategies.  
The analogy, abstraction and rule strategies are performed 
in a subgoal, that focuses on calculating either the day  or 
the time. The instance strategy attempts to retrieve one of 
these subgoals, and fill in the answer directly in the 
topgoal. So learning instances is an implicit process in 
ACT-R, since past goals are always stored in declarative 
memory, an reoccurrence of the same goal just increases 
the activation of that goal. Knowledge for the other two 
strategies has to be acquired in an explicit fashion. An 
abstract mental model of a sport is no automatic by-
product of the analogy strategy, so an explicit decision 
must be made to memorize an abstraction. To learn a new 
production rule in ACT-R, a special dependency structure 
must be created in declarative memory, which is also an 
explicit decision. In the current model, learning a new 
production rule is only successful if there is already an 
abstraction present in declarative memory, else it is too 
difficult to collect the necessary information.  

Results of the Model 
In this paper we will only discuss results of the model on 
the second experiment of Anderson & Fincham (1994). In 
this experiment, participants had to learn eight sport-
facts. In the first three days of the experiment, four of 
these sport-facts were tested in a single direction: two 
from left to right and two from right to left. On each day 
40 blocks of trials were presented, in which each of the 
four sport-facts was tested once. On the fourth day all 
eight sport-facts were tested in both directions. On this 
day 10 blocks of trials were presented, in which each of 
the eight sport-facts was tested twice, once for each 
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Figure 6. Overview of the four strategies in the Fincham task as modeled in ACT-R 



direction. Figure 7 shows the latencies in the first three 
days of the experiment, both the data from the experiment 
and from the model. The fit between the model and the 
data is quite good (R2=0.94). 
 

The results on day 4 can be summarized in the following 
table: 

 Data Model 
Same direction, practiced 8.9 sec 8.4 sec 
Reverse direction, 
practiced 

10.9 sec 9.3 sec 

Not practiced 13 sec 16 sec 
 
Both in the data and in the model there is a clear 
directional asymmetry, since items in the practiced 
direction are solved faster than reversed items. The fact 
that unpracticed items are slower than the reversed items 
indicates that rule learning can not be a sufficient 
explanation for all of the learning in the first three days of 
the experiment.  

Figure 8 shows how the model uses the four strategies in 
the course of the experiment. At the start of the 
experiment, analogy is used most of the time, but both the 
abstraction and the instance strategy gain in importance 
after a few blocks of trials. The rule strategy only appears 
later, and only plays a minor role during the first day. At 
the start of the second day, there is a large shift toward 
using rules at the expense of instances. This can be 
explained by the fact that the activation of a large portion 
of the instances has decayed between the two days, so 
that they can not be retrieved anymore. Since only few 
rules are needed for successful performance, they receive 
more training on average and are less susceptible to 
decay. Note that the abstraction strategy remains 
relatively stable between the days since it also less 

susceptible to decay than the instance strategy. This 
pattern is repeated at the start of the third day, although 
the instance strategy looses less ground due to more 
extended training of the examples. At the start of the 
fourth day, the frequency of use of the analogy strategy 
goes up again, since there are no production rules for the 
new four sport-facts. The abstraction strategy can take 
care of the reversed items though, so in that case the 
expensive analogy strategy is not needed. This explains 
the fact that reversed items are still faster than completely 
new items. 
Except for a model of this experiment, the model has 
successfully modeled two other experiments as well, 
using the same parameters. The following additional 
phenomena could successfully be explained: 
• The reaction time for examples that are repeated more 

often is shorten, since instance learning is more 
successful and the facts it represents have a higher 
activation. 

• Directional asymmetry increases between day 2 to 4, 
but decreases again on day 5. The model can explain 
this by the fact that by day 5 the instance strategy 
starts dominating the rule strategy.  

• The results of the model concur with participant’s 
reports on whether they use a rule or an example to 
solve a particular trial. 

Conclusions 
The ACT-R architecture is an ideal platform to study 
implicit and explicit learning. It not only allows insights 
in both types of learning separately, but, more 
importantly, also in the interaction between them. 
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Figure 7. Latencies in experiment 1 for days 1-3 
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Figure 8. Strategy use in experiment 1 for days 1-4 
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