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Abstract 

Although widely criticized, R2 and RMSE are still the most 
popular measures to report the quality of fit between model 
and data. Here we present a different way to assess the quality 
of fit by comparing the fixed effect estimates of mixed-effects 
models of both the data and the model. We demonstrate the 
usefulness of this approach on the basis of a time estimation 
experiment for which two models were constructed. The 
model that at first seems to have a superior fit turns out to be 
based on an invalid characterization of the data when 
scrutinized more carefully, whereas the alternative model 
provides an accurate characterization. 

Keywords: model fitting; time perception; declarative 
memory; mixed-effect models 

Introduction 
One of the unsolved problems in cognitive modeling is how 
to judge whether a model produces a good fit of the 
experimental data. Most published papers in which a model 
is presented try to convince the reader that a fit is good by 
showing graphs that represent the empirical data along with 
the model fit. The fit is assumed to be convincing if both 
graphs are similar. In addition to eyeballing the graphs, 
statistical measures are often provided to quantify the fit. 
The most popular measure is R2, which expresses the 
correlation between model and data, and some sort of 
distance measure, like RMSE.  

Figure 1 shows an example of two fits between model and 
data (ignore the "Criterion" curve for now, we will discuss 
that later). Which of these two models offers a better fit? 
Neither fit seems to be perfect, but both appear to be 
reasonable. The following table shows the measures of fit: 

 
Table 1: Measures of fit for the two models in Figure 1 
 

 model A model B 
R2 upper graph 0.97 0.91 
R2 lower graph 0.81 0.82 
RMSE upper graph 178 229 
RMSE lower graph 35 46 

 
  

 

 
(a) model A 

 
(b) model B 

Figure 1: Two fits between model and data 
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However, as Schunn and Wallach (2005) pointed out, there 
is no hard criterion for how high R2 should be to consider a 
fit as “good”. For RMSE the situation is even less clear, 
because the measure depends on the measure of the 
dependent variable. It should just be as low as possible, but 
there is no standard for what is low enough because the 
values are dependent on the experiment. Lacking any formal 
criteria, it is often assumed that the model with higher 
values for R2 and lower values for RMSD should be 
preferred. On the basis of these criteria, Model A should be 
preferred over Model B, as it outscores it on three of the 
four measures, and tying it at the fourth. What we will 
show, though, is that model A is wrong, and model B is 
reasonably accurate. 

Several researchers have criticized the enterprise of fitting 
models to data. Roberts and Pashler (2000), for example, 
have pointed out that an ill-constrained model can fit almost 
any data set. Pitt, Kim, Navarro and Myung (2006) have 
provided a method to assess the data-fitting capacity of 
models by examining the partitioning of the space produced 
by varying all model parameters. If this procedure yields a 
space with relatively few partitions it means the model 
makes strong predictions, but if there is a partition for 
almost any possible outcome, the model is worthless. 

Exploration of the parameter space is not always a 
feasible option, because complex models can take 
substantial time to run for a single set of parameters, let 
alone for many combinations. A possible solution to this is 
to have no free parameters at all, or leave all free parameters 
at an architectural default, producing so-called "zero-
parameter" fits. This is again not always possible, because 
sometimes parameters have no default value (like some of 
the parameters in ACT-R's declarative memory), in which 
case "zero-parameter fits" devolve into "fits with reasonable 
parameter values". Another issue hidden by the discussion 
about numerical parameters is the fact that there is 
considerable freedom in the structural parts of the model 
(either network topology in neural network models, of 
symbolic components in a symbolic model). Need another 
50 ms to improve the fit? Add a production rule. Need 
another 200 ms? Add an extra perceptual action. The only 
way to prevent modelers from wiggling unreported free 
parameters into their models is to require them to make 
predictions first and collect data later. The model-data 
comparison may not always be pretty, but is at least honest 
(see Taatgen, van Rijn & Anderson, 2007, and Taatgen, 
Huss, Dickison & Anderson, 2008, for examples).  

Apart from the discussion about how a model fit is 
achieved and how potential alternative fits can be explored, 
there is the question what kind of measure is a good 
assessment of a fit. To show that R2 and RMSD 
comparisons can deceive, we will first explain our 
experiment and the goals of the experiment. We will then 
analyze the data using linear mixed-effect models, and use 
the same method on the two models. This analysis will 
provide a better way of comparing models to data, and, 

although it does not provide absolute criteria, shows 
convincingly that Model B should be preferred. 

Experiment: Memory in Time Perception 
To goal of the experiment was to study the role of memory 
in time perception. In many specialized theories of time 
perception it is assumed that people are able to represent 
and store intervals of time in the order of 1 to 60 seconds in 
memory, without offering any clear theory on the nature of 
this process. In ACT-R, time perception is modeled using a 
time estimation module that interacts with the rest of 
cognition in the same way as other ACT-R modules 
(Taatgen et al., 2007). The advantage is that ACT-R already 
has a module for memory, more specifically declarative 
memory, which can be used to explain memory effects in 
time perception. We encountered such memory effects in an 
experiment in which we explored how people estimate 
partially overlapping time intervals (van Rijn & Taatgen, 
2008). In this experiment, subjects had to learn intervals of 
2 and 3 seconds, but we noted that the representations of 
these intervals started to contaminate each other to the 
extent that some subjects merged both intervals together 
into a single representation of 2.5 seconds. To study this 
effect more carefully, we designed a new experiment, of 
which we will describe one of the conditions here. 

Method 
In the experiment, subjects learned two intervals, a short one 
of 2 seconds, and a long one of 3.1 seconds, which they had 
to reproduce repeatedly, always alternating between the 
short and the long. Subjects were presented with two circles 
of the screen, which were gray when they were not active. 
The circle on the right of the screen was associated with the 
2 second interval, while the circle on the left was associated 
with the 3.1 second interval. During training, one of the 
circles would change color for a specific duration, and 
would then turn back to gray. Training consisted of 10 trials, 
5 of each duration. 
After training, grey circles would again change color to 
indicate the start of an interval, but now subjects had to 
press a key to indicate the end of the interval. Subjects 
received feedback on the accuracy of their produced 
intervals (we will refer to them as estimates from here on): 
"too short" if they responded earlier than 87.5% of the 
interval, "too long" if they responded later than 112.5% of 
the interval, or "correct" otherwise. After training, subjects 
received 15 warm-up trials of each duration, followed by the 
experiment proper. 

The main manipulation in the experiment is that the 
criterion for the long interval shifts. For the first 25 
estimates of the long interval, the criterion is 3.1 seconds. 
However, the criterion is then linearly increased to 3.6 
seconds over 15 estimates. This means that at some point 
subjects are told they were too short where they were 
previously correct. After the shift to 3.6 seconds, the 
criterion stays at 3.6 seconds, then is decreased back to 3.1 
seconds of 15 estimates, stays there for another 25 



estimates, then decreases further to 2.6 seconds over 15 
trials, stays at 2.6 seconds for 25 trials, increases back to 3.1 
seconds over 15 trials and stays there for the remaining 25 
estimates. Meanwhile, the criterion for the short interval 
(remember that short intervals and long intervals are alter-
nated) remains constant at 2 seconds. The "criterion" line in 
Figure 1 indicates all these shifts. 16 subjects, all students of 
the University of Groningen, participated in the experiment.  

Results 
The solid line in Figure 1 shows the mean estimates subjects 
made for the two intervals. The lines have been smoothed 
by a Lowess filter (Cleveland, 1981). The results suggest 
that the two intervals indeed influence each other, given that 
the changes in criterion for the long interval also impact the 
estimate of the short interval.  

There are (at least) four possible factors that can explain 
changes in the short interval. One is that the representations 
of the intervals affect each other directly, i.e., an increase in 
the internal representation of the longer interval carries over 
in the internal representation of the short interval. A second 
explanation is that feedback on the long interval also affects 
subsequent estimations of the short interval. For example, if 
we have just produced a long interval, and received the 
feedback that it was too short, we might unintentionally 
increase the duration of the short interval that has to be 
produced next. In addition to the impact of the other 
interval, previous estimations of the short interval and 
feedback on those might also impact the next estimate. In 
order to assess the impact of all these factors, we used 
mixed-effect models to analyze the data (Baayen, Davidson, 
& Bates, 2006).  

What we did was start out with the most simple regression 
model to fit the data, and then started adding factors. Each 
factor adds degrees of freedom to the model, so with each 
added factor we checked whether improvement in the model 
was significant with respect to the added degrees of 
freedom.We started out with the following model, in which 
the produced short interval is just a constant plus an 
intercept for each subject: 

 
shortn,s = β0 + rs + εn,s 

 
So the estimate of short interval n for subject s is equal to 
constant β0 plus a random effect for each subject s plus 
noise. We first start adding the estimates of the previous 
short intervals. It turns out that including both the previous 
short interval, and the one before that produce a significant 
improvement of the model: 

 
shortn,s = β0 + β1shortn-1,s + β2shortn-2,s +  rs + εn,s 

 
Feedback on the previous short estimate also has a 
significant impact, but not feedback on earlier short 
estimates: 

 

shortn,s = β0 + β1shortn-1,s + β2shortn-2,s + β3short-fb-Sn-1,s rs 
+ β3short-fb-Ln-1,s + rs + εn,s 

 
The feedback has two components, because it can be "too 
short" (short-fb-S) or "too long" (long-fb-L). short-fb-S is 
equal to 1 if the feedback on the previous trial was "too 
short", and 0 otherwise. The same is true for long-fb-L and 
the "too long" feedback. We then added factors associated 
with the long interval. The estimate of the previous long 
interval did indeed have a significant impact, but earlier 
long intervals did not. Finally, we added in the feedback on 
the earlier long intervals. Here the feedback on the last long 
interval also led to a significant contribution. Table 2 lists 
the components and regression values of the final model. 

 
Table 2. Fixed effects in the regression model for the 

short interval 
 

Fixed Effect Value of β t value 
Intercept 657 ms 4.6 
shortn-1 0.385 8.3 
shortn-2 0.085 3.3 
short-fb-Sn-1  110 ms 3.1 
short-fb-Ln-1 -208 ms -6.5 
longn-1 0.16 5.1 
long-fb-Sn-1  92.6 ms 3.2 
long-fb-Ln-1  -163 ms -4.2 

 
From this analysis we can conclude that all potential 

factors contribute to the estimate of the short interval. We 
can now do the same analysis on the long interval, and 
determine what its duration depends on. Table 3 shows the 
final model that came out of that analysis. The general 
pattern is the same as for the short interval: previous 
estimates of the long interval and previous feedback on that 
interval affect the current estimate, even longer back than 
for the short interval. This is probably due to the fact that 
the long interval changes. But also the estimate of the 
previous short interval and the feedback on that interval 
impact the next long estimate. 

Model 
The two models of which the results are shown in Figure 1 
are in fact instantiations of the same model with different 
parameter settings. The basis for the model is two modules 
from the ACT-R theory (Anderson, 2007), but implemented 
in statistical package R (http://www.r-project.org/). More 
specifically, we used the time estimation modules (Taatgen, 
et al., 2007), and the declarative memory module augmented 
with the blending mechanism (Lebiere, Gonzalez, & Martin, 
2007).  

Time Estimation 
The temporal module of ACT-R measures time in units that 
start at 100ms, but become gradually longer, creating a 
nonlinear representation of time. For the purposes of the  



Table 3. Fixed effects in the regression model for the long 
interval 

 
Fixed Effect Value of β t value 
Intercept 695 ms 3.8 
longn-1 0.34 8.5 
longn-2 0.16 4.0 
longn-3 0.12 4.6 
longn-4 0.05 1.9 
long-fb-Sn-1  159 ms 4.8 
long-fb-Ln-1  -118 ms -2.5 
long-fb-Sn-2  82.9 ms 2.5 
long-fb-Ln-2  3.8 ms 0.1 
shortn-1 0.15 2.9 
short-fb-Sn-1  85 ms 2.1 
short-fb-Ln-1 -107 ms -6.5 
 
present model, the nonlinearity is not very important. The 
temporal module can be given a start signal, which resets 
the clock, after which an accumulator starts collecting 
pulses. The short interval of 2 seconds corresponds to 
approximately 17 pulses, and the long interval of 3.1 
seconds to approximately 26 pulses. Noise is added to each 
pulse, which means that estimates are always approximate. 
For the purposes of the model, the important aspect of the 
time estimation module is that it can estimate a particular 
time interval by translating it into number of pulses, and that 
it can reproduce a time interval by waiting until a particular 
number of pulses has been accumulated. The noise produces 
variability in the estimates that correspond to variability in 
human time estimation. 

Declarative Memory 
The assumption of the model is that when a particular time 
interval has to be produced, the number of pulses 
representing that interval is retrieved from memory. There is 
no single representation of a particular interval in memory, 
but rather a collection of past experiences. Each past 
experience is represented by a memory chunk, which 
contains the type of interval (long or short), and a number of 
pulses. When an interval is retrieved from memory, each 
chunk receives an activation value on the basis of its age 
(how old is the experience), and whether it matches the 
current request: 

 

€ 

A(t) = log(t − tcreation )
−d +mismatchpenalty  

 
In this equation, tcreation is the time the chunk is created, so 
the activation of a chunk decreases with time. The 
mismatchpenalty of a chunk is 0 if the request matches the 
chunk (e.g., we are retrieving a short interval and the chunk 
represents the short interval), but a negative value in the 
case of a mismatch (e.g., we try to retrieve a short interval 
but the chunk represents a long interval).  

In standard ACT-R, activation determines the probability 
of retrieval of a chunk. This means that more recent 

experiences that match the request have the highest 
probability to be retrieved. The following equation estimates 
these probabilities (where t is a noise parameter, and the 
summation is over all candidate chunks): 

 

€ 

Pi =
e
Ai

t

e
A j

t

j
∑

 

With the blending mechanism (Lebiere et al., 2007), 
however, a weighed average of all candidate chunks is 
retrieved. If we try to retrieve the duration of the short 
interval, the results will be a blend of all intervals in 
memory, with the more recent intervals having a higher 
impact, and the intervals that match the request (short) 
having a higher impact than the mismatching long intervals. 
The resulting value can simply be calculated by multiplying 
the number of pulses in a chunk (Vi) by the probability of 
retrieval: 

 

€ 

Result value = Pj
j
∑ V j  

In order to determine how many pulses to wait for an 
interval, the model not only retrieves the representation of 
the interval, but also feedback received for that interval. For 
this we use exactly the same mechanism as for the retrieval 
of the interval. Whenever feedback is received, the model 
stores this in memory. If the feedback was "correct" it stores 
the value of 0, if it was "too long" it stores a negative value, 
and when it is "too short" it stores a positive value (this 
value is referred to as the feedbackshift, which is a free 
parameter in the model). Retrieval is done in the same way 
as the retrieval of the interval itself. This means that the 
feedback of previous trial for the same duration has the 
highest impact, but that earlier feedback and feedback for 
the other duration can also weigh in. 

To summarize: if the model has to produce a certain 
interval, it determines the number of pulses by retrieving a 
blend of memory representations for that interval. It then 
retrieves previous feedback for that interval, which is also a 
blend of earlier feedback. It adds the two together, and waits 
for that many pulses to produce the interval. 

 
Table 4. Free parameters in model A and B 

 
Parameter Model 

A 
Model 

B 
Noise parameter t 0.25 0.2 
Mismatch penalty between short and 
long for interval retrieval 

-1.3 

Mismatch penalty between short and 
long for feedback retrieval 

-0.8 

 
both 
-0.92 

Feedbackshift: how many pulses to add 
or subtract on the basis of feedback 

8 1.8 

 



The free parameters for model A and B were set to the 
values in Table 4. All other parameters were set to their 
ACT-R or time estimation module defaults (d=0.5, t0=100 
ms, a=1.02, b = 0.015). The parameters in model A were 
determined using the procedure that many modelers follow: 
starting with some initial set of parameters try varying them 
in order to optimize the fit in terms of R2 and RMSE. This is 
typically a satisficing procedure (unless the whole parameter 
space is explored): model fitting ends as soon as variation of 
parameters leads to little improvement, and the current fit is 
decent enough. For model B we used a different method that 
we will outline later. 

So Which is the Better Model? 
When we create a cognitive model, it is not our goal to fit a 
particular data graph, although this may be part of the 
process, but to explain the phenomena that we are interested 
in. The statistical analysis has revealed that both the 
representations of the two intervals and the feedback for the 
intervals play a role in producing the next interval. It does 
not tell us what cognitive mechanisms can produce this. The 
cognitive model does supply a possible answer: a single 
memory mechanism that has been validated in many other 
studies can incorporate all factors that play a role in 
producing the estimate. But is this really true? The graphs in 
Figure 1 show a good fit, and the R2's and RMSE also look 
decent, so what else is there to say? 

We can test the impact of the factors that turned up 
significantly in the data more directly by performing the 
same analysis on the model outcomes. Statistical 
significance is not very relevant here, because we can run 
the model as often as we like. But the model should produce 
β values that are comparable to the β's found in the data 
analysis. We therefore ran each model 100 times, and 
collected the model data in the same format as the human 
data. This allowed us to fit the same linear regression 
models. Table 5 shows the results for two models next to the 
data.  

On the basis of this analysis a whole new picture emerges: 
Model A does not fit the data at all, while Model B provides 
a very decent fit. The table also reveals the problem of 
Model A: its representation of the interval is much too 
stable, as is shown by the estimates for the intercept. In 
Model A, the intercepts are approximately equal to the 
actual duration of the interval, and there is hardly any 
impact of previously produced intervals, either long or short 
(as evidenced by the low longn-x and shortn-x effects). 
Moreover, Model A's responses to feedback are much 
stronger than in the data. For example, if Model A receives 
the "too short" feedback on the short interval, it will respond 
to this by increasing its next production of that interval by 
487 ms, while subjects only increase it by 110 ms. It 
probably needs such strong values to produce the shifts in 
estimates of the long interval. 

 
 
 

Table 5. Comparison between model and data for the two 
models 

 
Short interval    
Fixed Effect β  data β  Model A β  Model B 
Intercept 657 ms 2157 ms 789 ms 
shortn-1 0.385 0.08 0.356 
shortn-2 0.085 -0.03 0.048 
short-fb-Sn-1  110 ms 487 ms 170 ms 
short-fb-Ln-1 -208 ms -521 ms -153 ms 
longn-1 0.16 -0.06 0.15 
long-fb-Sn-1  92.6 ms 432 ms 125 ms 
long-fb-Ln-1  -163 ms -534 ms -211 ms 
Long interval    
Fixed Effect β  data β  model A β  model B 
Intercept 695 ms 3162 ms 493 ms 
longn-1 0.34 0.011 0.22 
longn-2 0.16 0.012 0.25 
longn-3 0.12 0.003 0.12 
longn-4 0.05 0.001 0.09 
long-fb-Sn-1  159 ms 626 ms 198 ms 
long-fb-Ln-1  -118 ms -744 ms -251 ms 
long-fb-Sn-2  82.9 ms 60 ms 90 ms 
long-fb-Ln-2  3.8 ms -142 ms -57 ms 
shortn-1 0.15 -0.07 0.18 
short-fb-Sn-1  85 ms 326 ms 20 ms 
short-fb-Ln-1 -107 ms -492 ms -35 ms 

 
To summarize, Model A might produce a good global 

model fit, but for the wrong reasons. Model B on the other 
hand has factor values that are quite similar to those in the 
data. This means that the same factors that play a significant 
role in subjects' performance also play approximately the 
same role in the model's performance. This also means that 
it is reasonably likely that the model will generalize to other 
situations in which time intervals have to be stored in 
memory (see Note at the end). 

In fact, the parameter settings for model B were derived 
by using the factors in the statistical model as an 
optimization criterion instead of the R2 and RMSE values. 
Starting with model A, it was clear the feedbackshift had to 
be adjusted to reduce the factors associated with feedback. 
After that, some smaller adjustments led to model B.  

 

Conclusions 
Although there are several proposals to improve the 
assessment of model fit (e.g., Pitt et al., 2006; Weaver, 
2008), not all of them are applicable to all types of models, 
and some of them require intensive additional calculations. 
The method we showed here is relatively straightforward in 
comparison, because the same method that is used to 
analyze the data (which has to be done anyway) can also be 
used to analyze the model's fit. Although this comparison 
does not produce a nice and simple single value for the 
quality of the fit, such a value might be an illusionary 



concept anyway. It is never possible to prove that a model 
has "a 95% probability of being correct". For this it is 
necessary to know the complete space of possible 
models/theories, something that is decidedly undecidable.  

The nice thing about this analysis is that we can see 
whether the model produces the effects that we are 
interested in, and that it produces them in approximately the 
same order of magnitude. It was even helpful in data fitting 
itself, because it shows what particular factor is throwing 
the fit out of balance.  

In conclusion, analyzing model fits with mixed-effect 
models is a promising tool in the modeler's toolbox.  

Note 
The experiment that we have discussed here had two 
additional conditions, one in which both intervals remained 
constant for the duration of the experiment, and one in 
which they long interval became shorter first and longer 
later. The model we presented here has not run for those 
conditions yet. We will do so before the conference and 
present the results there, and we will keep our fingers 
crossed that the fit will be good. 
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