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Abstract

Individual differences in skill acquisition are influenced by several architectural factors. According to Ackerman’s theory,
general intelligence, speed of proceduralization and psychomotor speed influence different stages of skill acquisition. The
ACT-R cognitive architecture allows for direct testing of this theory by manipulating parameters that correspond to these
factors. The present study discusses an ACT-R model of the Kanfer–Ackerman Air Traffic Control task in which the
relevant abilities can be manipulated directly. The model predictions show the same patterns of correlations as the patterns
found by Ackerman in the experimental data.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction of errors, and can be associated with the autonomous
stage. The associate stage is an in-between stage,

Skill acquisition is usually characterized as going during which part of the knowledge is declarative
through three stages: a cognitive stage, an associative and another part compiled.
stage and an autonomous stage (Fitts, 1964). The A problem in the study of complex problem
three stages can be characterized by moving from solving, especially in a learning context, is the
conscious, slow and error-prone to unconscious, fast vastness of individual differences. In order to study
and error-free. Anderson (1982) explains these three the acquisition of complex skills, it is a good
stages in terms of a transition from declarative research strategy to have a theory of individual
knowledge to procedural knowledge. In the cognitive differences. From the perspective of the cognitive
stage knowledge is declarative and needs to be architecture, there are two sources of individual
interpreted. Interpreting knowledge is slow, and may differences: architectural differences and knowledge
lead to errors if the relevant knowledge cannot be differences (Taatgen, 1999a). Architectural differ-
retrieved at the right time. Procedural knowledge on ences are differences in the cognitive architecture
the other hand is compiled and therefore fast and free itself. In terms of an architecture like ACT-R,

architectural differences can be tied to global param-
E-mail address: niels@ai.rug.nl (N.A. Taatgen). eters. For example, working-memory capacity is tied
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to the W-parameter in ACT-R, the parameter that tor abilities will be the most important factor. Fig. 1
controls the amount of spreading activation. Indi- illustrates the general predictions of the theory.
vidual differences in working-memory capacity can Ackerman (1988, 1990) gathered evidence for this
be explained by estimating a different value of W for theory by correlating learning behavior on a complex
each individual (Lovett, Reder & Lebiere, 1997). task (the Kanfer–Ackerman Air Traffic Controller

1Differences in knowledge are based on the idea that task , KA-ATC) with performance on simpler tasks
people have different problem solving strategies. In that explicitly test the three abilities Ackerman
terms of a cognitive model, this means individ- thought to be relevant in the three stages of skill
ualized models have different initial contents of acquisition. It turned out that measures of general
declarative and procedural memory. intelligence correlate well with the first blocks of

In this paper I will focus on architectural differ- ATC performance, measures of perceptual speed
ences. Ackerman (1988, 1990) identified three with the middle blocks, and measures of psychomo-
sources: general intelligence, perceptual speed, and tor abilities with the later blocks.
psychomotor abilities. According to Ackerman, each Cognitive modeling offers a different approach to
of these three abilities correlates with a different finding support for Ackerman’s theory. Instead of
stage of skill acquisition. In the cognitive stage, correlating performances on different tasks, a model
general intelligence is the most important aspect, as can be made of the complex task, and architectural
an adequate representation of the task needs to be parameters can be varied that correspond to the
formed. In the associative stage, the knowledge relevant dimensions of individual differences. This is
compilation process (which Ackerman associates the approach we will examine in this paper.
with perceptual speed) will dominate performance,
so individual differences in that aspect will become
important. In the final autonomous stage, all knowl- 2. A model of the ATC task
edge is proceduralized, and differences in psychomo-

2.1. The ATC task

Although the ATC task is a simplified version of
real Air Traffic Control, it is still a complicated task.
Fig. 2 shows the interface of the task. The goal is to
score as many points as possible by landing planes
and making no errors. The planes that have to be
landed are represented at the top-left part of the
screen, and are organized in three hold levels (indi-
cated in the POS. column). Planes can be moved
between hold levels, and can be landed from hold
level 1 (the bottom four slots). There are four
runways in the bottom-left of the screen on which
planes can be landed. The choice of runway is
constrained by a number of rules concerning runway
length (long or short), plane type (prop, 727, dc10 or
747), runway direction (north–south or east–west),
runway condition (dry, wet or icy), wind direction
(north, south, east or west) and wind speed (0–20,
25–35 or 40–50 knots). The main rules of interest in

1 Kanfer–Ackerman Air Traffic Controller Task program is
Fig. 1. Predicted ability–performance correlations according to copyrighted software by Ruth Kanfer, Philip L. Ackerman and
Ackerman (adapted from Ackerman, 1988). Kim A. Pearson, University of Minnesota.
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Fig. 2. The KA-Air Traffic Controller task.

the context of the model are the rules about whether the display up and down, and the return key to select
a plane may land on the short runway (planes may planes and runways. Subjects receive 50 points for
always land on the long runway): successfully landing a plane, 10 penalty points for

violating a rule (the interface gives feedback on
747s may never land on the short runway these violations), and 100 penalty points for each
727s may land on the short runway when the plane that crashes. Trials take 10 minutes each, after
runway is dry or the wind speed is 0–20 knots which the total amount of points is calculated.
DC10s may land on the short runway when the
runway is not icy and the wind is not 40–50
knots. 2.2. An overview of the ACT-R architecture
Props may always land on the short runway

The model presented here is based on the ACT-R
Once a plane has successfully been assigned to a 4.0 cognitive architecture. The theoretical foundation

runway, it occupies the runway for some time. The of the ACT-R architecture is rational analysis of
runway has to be clear again before other planes may human cognition (Anderson, 1990). According to
be assigned to it. Planes have a limited amount of rational analysis, each component of the cognitive
fuel: the fuel column indicates the number of min- system is optimized with respect to the demands
utes the plane has left. When a plane runs out of fuel, from the environment given its computational limita-
it crashes. Except for the planes in the three hold tions. The main components in ACT-R are a declara-
levels, there is a queue of waiting planes. A waiting tive (fact) memory and a production (rule) memory.
plane can be entered into an empty slot. ACT-R is a hybrid architecture in that it has both

The interface is operated by the keyboard, mainly symbolic and sub-symbolic aspects. I describe these
by using the up and down keys to move the arrow in components informally. Further details about the
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ACT-R architecture can be found in Anderson and existing production rules. Since this process is quite
Lebiere (1998). crucial in our model we will examine it in more

Items in declarative memory, called chunks, have detail later on.
different levels of activation to reflect their use:
chunks that have been used recently or chunks that
are used very often receive a high activation. This 2.3. The model
activation decays over time if the chunk is not used.
In addition, chunks cannot act by themselves; they The ATC task is a complicated task, modeling all
need production rules for their application. In order aspects is a major effort. As the model focuses on
to use a chunk, a production rule has to be invoked the learning aspects of the task, other aspects will be
to retrieve it from declarative memory and another ignored or simplified. The model does not model the
rule to do something with it. Since ACT-R is a perceptual-motor parts of the task in detail, but rather
goal-driven theory, chunks are always retrieved to uses an ad-hoc lisp-interface to do this. For example,
achieve some goal. In the context of the KA-ATC a lisp function perceives all planes in hold level 1
task there are several goals. One of the goals may be and adds descriptions of them to declarative mem-
to land a plane for which it may be necessary to hand ory.
over the control to a lower-level goal, e.g., a goal to Another aspect the model simplifies are the more
move the arrow on the screen to the desired plane. strategic aspects of the task. The main exploratory

The behavior of production rules is also governed learning aspect is learning what planes under what
by the principle of rational analysis. Each production conditions may land on the short runway. Other
rule has a real-valued quantity associated with its strategic aspects are not modeled. As a consequence,
expected outcome. Expected outcome is calculated the model’s peak performance (around 2000 points)
from estimates of the cost and probability of reach- is not as good as human peak performance (around
ing the goal if that production rule is chosen. The 3500 points).
unit of cost in ACT-R is time. ACT-R’s learning The basis for the model is the idea that the
mechanisms constantly update these estimates based instructions are represented in declarative memory,
on experience. If multiple production rules are and need to be retrieved and interpreted (Taatgen,
applicable for a certain goal, the production rule is 1999b; Anderson, 2000). The production rules that
selected with the highest expected outcome. interpret the declarative instructions are not task-

In both declarative and procedural memory, selec- specific, and can be used for other tasks as well. The
tions are made on the basis of some evaluation, declarative representation that is used is a mixture of
either activation or expected outcome. This selection ideas expressed by Taatgen (1999b) and by Ander-
process is noisy, so the item with the highest value son (2000).
has the greatest probability of being selected but Declarative rules are organized in lists of instruc-
other items get opportunities as well. This may tions that are usually executed in order. Each rule
produce errors or suboptimal behavior but also has an action that can be supplied with at most two
allows the system to explore knowledge and strate- arguments. An argument can be a constant, a vari-
gies that are still evolving. In addition to the learning able or a reference. A constant is used as it is. A
mechanisms that update activation and expected variable is something that needs a value, for example
outcome, ACT-R can also learn new chunks and by retrieving something from declarative memory or
production rules. New chunks are learned automat- by perceiving something in the outside world. In-
ically: each time a goal is completed it is added to stantiating a variable creates a chunk of type binding,
declarative memory. If an identical chunk is already that holds the relation between the variable, its value
present in memory, both chunks are merged and their and the current context. An argument of type refer-
activation values are combined. Chunks acquired ence later retrieves a binding. The creation of these
through perception, information on the screen for bindings is a way for the model to keep track of
example, are also stored. New production rules are aspects of the current task, however, these bindings
learned on the basis of specializing and merging may be lost due to decay in memory. The following
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example of a declarative instruction used in the 2. Else, move an arbitrary plane from hold level 2 or
model is part of the instruction to land a plane: 3 to hold level 2 or 1

3. If there are no planes anymore, get between 1 and
6 new planes from the queueLand2Land1

isa instructionisa instruction
action perceive-a-plane action perceive-weather

Landing a planearg1 agr1 wind-speed
type1 variable type1 variable 1. Select an arbitrary plane in hold level one
arg2 plane-type arg2 runway-condition 2. Look at the current weather conditions
type2 variable type2 variable 3. Try to retrieve a past experience with the current
prev land prev land1

plane type and the current wind-speed
4. If the past experience is unfavorable, select theLand3 Land4

isa instruction isa instruction long runway and move the plane there
action retrieve-experience action decide-no 5. Try to retrieve a past experience with the current
arg1 plane type arg1 take-long-runway plane and the current runway condition
type1 reference type1 constant

6. If the past experience is unfavorable, select thearg2 wind-speed prev land3
long runway and move the plane theretype2 reference

prev land2 7. If both experiences were favorable, or not present,
select the short runway and move the plane there

The first instruction is to perceive an arbitrary
plane in hold level 1, and to store it and its type in To move something from A to B
two variables (which are added to declarative mem- 1. Press up or down keys until the arrow is at A
ory as binding-chunks). The second step is to check 2. Press enter
the weather, and to store the wind-speed and run- 3. Press up or down keys until the arrow is at B
way-condition. The third step tries to retrieve a past 4. Press enter
experience concerning the plane-type and the wind-
speed. If this past experience is unfavorable, the
fourth step decides to take the long runway.

2.4. Learning in the modelThe interpretation process of an instruction in-
volves at least two steps ( 5 production rule firings):

Four learning mechanisms play a role in thethe instruction has to be retrieved from memory, and
behavior of the model: declarative symbolic, declara-the instruction has to be carried out. Additional steps
tive subsymbolic and procedural learning (symbolicare necessary if variables and references have to be
and subsymbolic).instantiated, or if the instruction is complicated.

The current model is provided with a declarative
instruction to do the ATC task. This instruction is
not a literal interpretation of the instructions given to 2.4.1. Declarative symbolic learning
the participants, but reasonable first approximation of ACT-R keeps past experiences in declarative
a strategy. Another assumption in this strategy is that memory. The current model uses these experiences
the model has not memorized all the rules about to decide on whether to land a plane on the short or
when a certain plane may land on the short runway, the long runway. The representation used for exam-
but instead relies on trial-and-error to rediscover ples is restricted to two arguments, the plane type
these rules. The instructions can be summarized as and either the runway condition or the wind speed.
follows: As a consequence, the model has no problems

learning that 747s can never be landed on the short
Main goal runway, and props always, but it has trouble with the
1. If there are any planes in hold level 1, land one of DC10s and 727s, as these planes have complicated

them rules.
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2.4.2. Declarative subsymbolic learning (p compiled-rule
Due to practice the activation of the instruction 5goal .

chunks and the past experiences chunks steadily isa gen-goal
increases. As a consequence, retrieval times of these current mvhold2
chunks decreases. action nil

⇒
5goal .2.4.3. Procedural learning

current mvhold3New productions are learned using a combination
action nilof specialization and compilation. Specialization

!eval! (press-enter))involves substituting variables by constants, more in
particular variables that occur in the retrieved chunk.

In order to promote a gradual introduction of newAs a consequence, retrieving the chunk is no longer
rules, their parameters are set to the parameter valuesnecessary. Compilation involves making one rule out
derived from the parent rules, plus a penalty on theof two rules. In order to make sure the new rule has
cost (b) parameter. So a new rule starts out at a slightat most one retrieval, the first rule is specialized first.
disadvantage, and is slowly integrated into theThis mechanism is an additional module for ACT-
system as parameter learning establishes the trueR 4.0 (Taatgen, 2000), but incorporated in the new
values of the production parameters.ACT-R 5.0. The main function in the model is that it

compiles declarative instructions into production
rules. Recall that interpreting instructions takes two 2.5. Modeling individual differences
steps: retrieving the instruction and carrying out the
instruction. Production compilation specializes the The three abilities identified by Ackerman are
retrieval of the instruction, and concatenates the modeled by varying three parameters. General ability
result with the rule that carries out the instruction. is modeled by varying the W-parameter. The W-
The following rules gives an example of pushing parameter controls the amount of spreading activa-
enter (rules have been abbreviated for clarity): tion, and is associated with working-memory capaci-

ty (Lovett et al., 1997). Working-memory capacity
(p retrieve-instruction (p press-enter itself is strongly correlated with general ability

5goal . 5goal . (Kyllonen & Christal, 1990). The simulation uses
isa gen-goal isa gen-goal values 0.8, 1.0 and 1.4 as W-values. Speed of
current5prev action press-enter knowledge compilation, measured by Ackerman
action nil ⇒ through perceptual speed, is modeled by varying a

5instr . 5goal . parameter that controls proceduralization speed. The
isa instruction action nil parameter determines the probability that, given an
prev5prev !eval! (press-enter)) opportunity to learn a new rule, the rule is actually
action5action learned. Values used are: 0.1, 0.2, 0.5, 5%.

⇒ Psychomotor speed is modeled by varying the
5goal . time needed for a key-press. Values used for this
current5instr parameter are: 150, 200 and 250 ms.
action5action)

These rules can interpret instructions like: 3. Results of the model

mvhold3 isa instruction action press-enter prev In order to assess results of the model, I will
mvhold2 compare the model outcomes to the data from

Ackerman (1990). A single run of the model consists
Proceduralization produces the following rule of going through 24 trials of 10 minutes each. For

given these ingredients: each combination of individual difference parameters
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the model was run twice, producing 4 3 3 3 3 3 2 5 proceduralization. Ackerman assessed this ability
72 runs. and psychomotor speed by administering a set of

The model’s performance in terms of the number choice-reaction tests (9CRT, 4CRT, 2CRT and a
of points scored is shown in Fig. 3. As the model is simple reaction test) in 12 blocks. These tests span
only outfitted with a very basic strategy, and no the range of perceptual speed ability (more choices
means to improve it, it is no surprise the subjects and less practice) to psychomotor speed (less choices
outperform the model. The shapes of the curves are and more practice). Fig. 4(b) uses the results of the
however similar. first block of the 9CRT, the test at the perceptual-

Fig. 4 shows correlations between abilities and speed extreme of the range, while Fig. 4(c) uses
performance on the ATC-task found by Ackerman, simple-reaction time results in block 12 at the
and the correlations between parameter settings and psychomotor-speed extreme of the spectrum.
performance of the model. According to Ackerman’s In the model the speed of proceduralization has its
theory, these outcomes should resemble the graphs in main effect in the middle blocks of trials. As
Fig. 1. proceduralization prerequires some experience with

Fig. 4(a) and (d) shows the impact of general the knowledge it uses to construct new rules, it plays
intelligence. Ackerman measured intelligence by only a small role in the first few trials. Although
administering a battery of tests for general intelli- proceduralization remains an important factor until
gence (Letter sets, Raven progressive matrices, the end of the experience, its impact trails off
figure classification and analogies). The model simu- slightly, as productions that have the largest impact
lates this ability by varying W. A higher value of W on performance are learned relatively early.
facilitates the retrieval process by increasing spread- Fig. 4(c) and (f) depicts the impact of psychomo-
ing activation. Initially this factor is very important, tor speed. In the model this factor becomes more
as both instructions and task information are repre- important as experience grows. Although the in-
sented declaratively. As more and more instructions fluence of the effort parameter that models psycho-
are proceduralized, the stress on declarative memory motor speed remains the same, the variance due to
lessens, so the impact of W on performance de- other factors decreases, increasing the impact of this
creases. psychomotor speed.

Fig. 4(b) and (e) shows the impact of speed of Note that for all three abilities, the correlations for

Fig. 3. Points scored by the model and subjects in Ackerman (1990).
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Fig. 4. Correlations between ability scores and performance on the ATC task. (a)–(c) Data from Ackerman (1990); (d)–(f) Outcomes of the
model. Solid lines indicate the regression of the ability on practice (cubic polynomial). Each session in the data (a)–(c) consists of three
trials.
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the model are larger than the correlations for the Finally, the perceptual-motor aspects of the model
data. This should be no surprise, as the parameter can be extended to improve is credibility and scope
manipulations in the model have a direct impact on of modeling learning, possibly based on Lee and
performance, while assessing these abilities through Anderson (2001).
tests, as is done in the data, is only indirect. Another
reason why the correlations in the model are higher
is that the model ignores knowledge differences, Acknowledgements
thereby amplifying the architectural differences.
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