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Abstract 

Complex problem solving is often an integration of perceptual processing and deliberate 

planning. But what balances these two processes, and how do novices differ from experts? We 

investigate the interplay between these two in the game of SET. The paper investigates how 

people combine bottom-up visual processes and top-down planning to succeed in this game. 

Using combinatorial and mixed-effect regression analysis of eye-movement protocols and a 

cognitive model of a human player, we show that SET players deploy both bottom-up and top-

down processes in parallel to accomplish the same task. The combination of competition and 

cooperation of both types of processes is a major factor of success in the game. Finally, we 

explore strategies players use during the game. Our findings suggest that within-trial strategy 

shifts can occur without the need of explicit meta-cognitive control, but rather implicitly as a 

result of evolving memory activations. 

Keywords: visual perception, competitive parallelism, SET, ACT-R, cognitive architecture, 

problem solving
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Human performance in complex tasks is often a combination of internal planning and 

responding appropriately to the environment. Nevertheless, cognitive models of complex tasks 

typically focus on the mental planning aspects, and fail to take into account that the external 

world can heavily influence the control of behavior. 

The role of the environment was first recognized in robotics (Brooks, 1991) but was later 

extended to human cognition to form embodied cognition (e.g., Clark, 1997). However, in more 

complex tasks it is clear that the control of behavior is not entirely in the environment. The 

challenge is therefore to understand how control is shared between goal-driven planning and 

processes that are driven by perceptual input. Moreover, the balance between goal and 

perceptually driven control is likely to change with expertise (Kirsh & Maglio, 1994). The 

approach we take in this paper follows the threaded cognition theory of multitasking (Salvucci & 

Taatgen, 2008). We will assume two parallel processes: a bottom-up visual process that scans the 

visual field on the basis of saliency and similarity, and a top-down planning process that tries to 

achieve the goal, but also biases the bottom-up process. The interaction between the two 

processes follows the central idea in threaded cognition that there is no overall executive process 

that balances parallel goals. Instead, the two processes alternate in using the cognitive resources 

(e.g., vision, declarative memory, procedural memory, etc.). Changes in the balance between the 

two occur if one process benefits more from learning than the other and therefore makes more 

efficient use of the resources available to it. 

Finding an appropriate task to study the cognitive aspects of human behavior in real-life 

situations is not easy. However, games provide environments that often require the same type of 

complex processes that are usually involved in real-world situations (Green & Bavelier, 2004). 

This has the advantage that the behavior of a player can be studied in a controlled environment. 
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These qualities make games on a computer an ideal tool for studying complex cognitive 

processes. One such game is the card game SET
1
. 

The SET card deck consists of 81 cards. Each card differs from other cards by a unique 

combination of four attributes: color, number, shape and shading. Each attribute can have one of 

three distinct values: red, green and blue for the color; open, solid and textured for the shading; 

one, two and three for the number; oval, rectangle and wiggle for the shape. The gameplay for 

SET is relatively simple. At any moment in the game, 12 cards are dealt face up, as is shown in 

Figure 1. From those 12 cards, players should find any combination of three cards, further 

referred to as a set, satisfying a rule stating that in the three cards the values for each particular 

attribute should be all the same or all different. We will further refer to the number of attributes 

for which the three cards in the set have different values as the set level. A level 1 set has only 

one attribute with three different values, but three attributes with identical values. 

Correspondingly, there can be sets of level 2, 3 or 4. Figure 1 shows an example of a level 1 

(different shape) and a level 4 set (all attributes are different). In a similar manner, we can 

quantify perceptual similarity of two cards as number of attributes that are shared between two. 

For example, the cards in a level 1 set have a perceptual similarity of 3 among each other since 

they have three attributes with identical values. Cards in a level 4 set have perceptual similarity 

of 0 because all attribute values are different. 

In the regular game, when a set is found, the corresponding set cards are picked up and 

replaced with new cards from a deck. After the deck runs out, the player with the most cards 

wins. Even though a regular game of set consists of multiple rounds, we will refer to a “game of 

set” in what is normally a single round: finding a set in 12 displayed cards. 
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Figure 1. An example array of 12 cards. The cards with the solid highlight form a level 4 set (all 

attributes are different), and cards with dashed highlight form a level 1 set (Shape is different, 

and all other attributes are the same). 

 

There are several advantages of choosing SET as a target game of study. Firstly, SET has 

an appealing simplicity of the game dynamics. The game has very simple rules to follow and a 

relatively static game environment. Despite the simplicity, SET requires complex cognitive 

processes including pattern recognition, visual processing and decision making. Previous studies 

on SET have established that both cognitive and perceptual processes are important (Jacob & 

Hochstein, 2008; Taatgen, Oploo, Braaksma and Niemantsverdriet, 2003). Without consideration 

of both of them in combination, important information in understanding of how players play the 

game will be inevitably lost. As such, the game of SET provides an excellent opportunity to 

study the dynamics of such processes in a relatively simple environment. 
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Next, the game is quite unpredictable in its structure, and players are not likely to replay 

the exact same sequence again. There are 7*10
13

 possible combinations of 12 cards which makes 

it highly unlikely that player will play through the same 12 cards again. There are also 1080 

different sets. This means that even experienced players will periodically have to find a set they 

have never encountered before. 

Finally, game difficulty can differ significantly based on a player’s strategy. Given an 

array of 12 cards with a single set in it, a player may choose to compare every possible 

combination of three cards. There are 220 possible combinations, and a probability of finding a 

set with random choice is 1/220. However, player may also consider combinations of two cards 

since a pair uniquely defines a third card. In that strategy, a player would pick two cards, would 

then determine what the third card should be to complete a set, and would then see whether the 

predicted third card is actually among the remaining 10 cards. There are 66 possible pairs, and 

the same set is defined by three different pairs. Therefore, a probability of finding a set with a 

random choice of a pair is 1/22. However, with an optimal search strategy player still has to 

consider a maximum of 54 pairs before finding a set. This is a significant decrease in complexity 

compared to a strategy where player has to compare every combination of three cards. 

The above two strategies are both top-down in the sense that they do not take into 

account what the properties of the particular array of 12 cards are. However, players are likely to 

be using perceptual processes and clues, such as visual grouping and visual similarity, to 

decrease complexity or speed up the search. As an example, suppose that there are eight red 

cards and two cards each for blue and green. Furthermore, let’s assume that player is using 

similarity in color to find a set. Blue and green cards can’t have a set since there are only two 

cards in each group. There are 56 combinations of three cards among red cards and 32 
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combinations of three cards with different colors. It is already significant decrease in complexity 

from 220 to 88 possible combinations and 2.5 time increase in a chance probability of finding a 

set. Chance probability of finding a set among red cards is even higher 56/88 or about 2/3. This 

leverage in a chance probability only comes from a larger group size for red cards. For example, 

if there is an even split of four cards for each color then the chance probability of a set being 

among cards of the same color is only 4/76. As will be discussed next, players actually exploit 

the advantage of a larger group size. 

There are two studies directly relevant to the work in this paper. Jacob and Hochstein 

(2008) did several experiments with human subjects playing SET on a computer without any 

opponent. Each experiment was designed to test a particular aspect of the game including a 

strategy of playing the game, dependency of the performance on the set level, attribute 

preference and the learning. Taatgen et al. (2003) also did similar experiment aimed for studying 

the strategy of playing the game and developed a computer model of a human player. 

Jacob and Hochstein (2008) demonstrated that SET players prefer to look at perceptually 

similar cards, and, for the comparison of the cards, mainly rely on the perceptual processes such 

as similarity-detecting process. According to the authors, bias to the perceptual similarity and 

corresponding bottom-up processes can explain why players need less time to find lower-level 

sets than higher-level sets. Taatgen et al. (2003) also reached the conclusion that the perceptual 

elements play a greater role in finding lower-level sets. They suggested a strategy where a player 

looks at an arbitrary first card then at a second card that shares an attribute value.  Next, the 

player predicts the third card and determines whether that card is one of the remaining ten cards. 

Taatgen et al. (2003) also hypothesized that the choice of the first card might not be arbitrary in 

some cases. They proposed that players try to find the set among the cards that have an attribute 
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value occurring in more than half of 12 cards. For example, if there are many red cards, it is 

attractive to search for a set among those cards. Taatgen et al. (2003) implemented this strategy 

in an ACT-R model. However, the data they collected did not have enough detail to determine 

whether subjects used such strategy. 

Jacob and Hochstein (2008) proposed a generalization of the above strategy based on the 

notions of the most abundant value and the most abundant value group. The former refers to an 

attribute value that occurs most, and the latter refers to the group of cards that have the most 

abundant value.  They found that the sets belonging to the most abundant value group are 

preferred to the sets outside of that group. In addition, the time required to find the set in the 

most abundant value group decreased as the size of the group increased. Most abundant value 

group was preferred to any other value group independently of the attribute type. Jacob and 

Hochstein (2008) suggested a dimension reduction strategy where players try to reduce the four-

dimensional search space into three by choosing to look at cards that have one or more attribute 

values in common. It was assumed that dimension reduction strategy is primarily used with the 

most abundant value. 

Research Objectives 

Cognitive and Perceptual Processes 

The dimension-reduction strategy is an example of a strategy that combines perceptual 

processing and goal-directed planning. Dimension reduction's gain in efficiency is due to the fact 

that the perceptual system is good at detecting similarity, but goal-directed planning is needed to 

decide what attribute value to focus on and for how long. Even though the earlier studies have 

established that dimension reduction is used, their methodology did not allow studying the 

dynamics within a trial. Moreover, not all sets can be found with that strategy. In particular, level 
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4 sets have no attributes in common, making them impossible to find with dimension reduction. 

To gather real-time behavioral data that can provide more insight into previously hidden aspects 

of user behavior, we decided to use eye tracking. Since many studies have shown that the eye-

movement protocols directly or, at least, indirectly reflect both the cognitive processes and the 

amount of cognitive load (Kong, Schunn, & Wallstrom, 2010; Rayner, 1995; Salvucci, 1999), we 

considered the eye tracking a viable choice for studying human behavior. 

Performance 

Performance in SET is defined by how fast a player can find a set. Hence, speed is a 

major factor in the game. There can be different factors defining a player’s speed. One of them is 

a strategy. This is the aspect of the game we are interested to explore. Taatgen et al. (2003) found 

that most players differ little in reaction times when it comes to finding lower-level sets. 

However, reaction times differ significantly in finding higher-level sets. One explanation for this 

effect might be that all players are likely to rely on general perceptual processes to find lower-

level sets (Jacob & Hochstein, 2008). On the other hand, finding the higher-level sets may 

require strategies. As a consequence, we expect that slow players’ eye-movements will be more 

guided by similarity between cards than faster players, because faster players' strategies will 

overrule the default similarity-based search. 

We will not address how previous experience can affect the performance, or how subjects 

derive the strategies. One can get better at the game through practice, by naturally having better 

strategic thinking skills, or by just simply being good at pattern recognition. Learning in SET is a 

complex process and requires separate study. 

Improved ACT-R Model 
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The ACT-R model created by Taatgen et al. (2003) was able to closely approximate the 

human player’s reaction times. Its main drawback is that it fully predicts the third card given the 

first two cards it has looked at, and then searches for that card among the remaining cards. It 

therefore does fully use a dimension reduction strategy, and also does not use perceptual 

similarity to find sets. In other words, it uses a pure top-down strategy. Our aim is to test whether 

a model with greater emphasis on perceptual elements of the game can explain the human data. 

Experiment 

Subjects 

In total, 14 subjects participated in the experiment. The age of the subjects ranged from 

20 to 30 years. All subjects were either students or staff members of University of Groningen. 

The subjects’ previous experience with SET varied greatly: from a few played games to several 

years of experience. 

Design and Procedure 

Every subject was asked to do 60 trials.  The group of 60 trials was the same for all 

subjects, but the order was determined randomly for each subject. Each trial consisted of 12 

cards shown on a computer screen and arranged in an array similar to one shown in Figure 1. 

Each trial had exactly one combination of three cards that formed a set. Subjects were aware of 

this, but were not told about the level of the set. Subjects were asked to find a set and select the 

relevant cards with a mouse. A time limit of 180 s was given for each trial after which next trial 

was shown. 

All 60 trials were randomly generated. In 30 trials one of the set cards was highlighted 

with a red border. These trials were distributed evenly over the four levels, with 7 or 8 trials of 

each level for each of the two highlighting conditions. The highlighted card belonged to the set 
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and served as a clue for the subject to find the other two cards. Subjects were aware about the 

meaning of a highlighted card. The presence of the highlighted card should make the task of 

finding a set much easier. In particular, it decreases the number of possible combinations form 

200 to 55, and the number of possible pairs from 66 to 11. Since there are two pairs that lead to a 

set, in the worst case player will have to consider only 10 pairs. This is a six times reduction in 

complexity of the problem in terms of the search space. The main purpose of highlighting a card 

is that it provides a reference point on which we can base our eye-movement analysis. 

Prior to an experiment, subjects were asked to do four warm-up trials to let them get 

familiar with experiment setup and with SET itself in the case that the subject had never played it 

before. Results from those trials were not included in the analysis. 

Eye Tracking 

An EyeLink 1000 eye tracker was used for recording the eye movements. It is a desktop-

mounted remote eye tracker with monocular sampling rate of 500Hz and spatial resolution of < 

0.01
○ 

RMS. The card images were shown on 20 inch LCD monitor with screen size of 1024×768 

pixels and screen resolution of 64 pixels/inch. The card images had size of 124×184 pixels, or 

4.02
○
×5.95

○
. The horizontal and vertical distances between images were 80 and 70 pixels 

respectively, which constitutes to 2.59
○
 and 2.27

○
. Angular sizes were calculated with an 

approximated viewing distance of 70 centimeters since subjects were given a certain freedom for 

head movement. The gaze position was calculated using the eye’s corneal reflection captured 

with an infrared camera compensated for head movements. The eye tracker’s default parameters 

were used to convert gaze positions into fixations and saccades. The calibration of an eye tracker 

was performed at the start and during the experiment, if necessary. A calibration accuracy of 0.8
○
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was considered as an acceptable measure. Before each trial subjects were asked to do a drift 

correction as an additional corrective measure. 

Experiment Results 

Reaction Times 

In total, there were 29 trials where subjects failed to find the set, constituting 3% of all 

trials.  Given this small proportion we treated them as response trials with a reaction time of 180 

s. Figure 2 shows reaction times by level and highlighted condition. It shows that having a 

highlighted card as a clue more than halves the reaction time, and that the reaction time increases 

as the set level increases. This latter effect was also observed in previous studies (Taatgen et al., 

2003; Jacob & Hochstein, 2008). 

As it is shown in Figure 3a, subjects differed significantly by mean reaction times. As can 

be seen in the graph, all subjects were divided into three groups of fast, medium and slow players 

based on their mean reaction times. Figure 3b indicates that there is only a small difference in 

speed among three groups when it comes to finding a level one set. However, as level increases 

the differences between three groups also increase. This result is consistent with description of 

fast and slow players provided in Taatgen et al. (2003). Hence, we expected the groups to exhibit 

different behavioral effects despite the post-hoc division. 
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Figure 2. The mean reaction times with standard errors in ordinary and highlighted trials 

clustered by the levels and averaged over all subjects. 

 

 

 

Figure 3. (a) Mean reaction times averaged over all trials for each subject. Subjects are divided 

into three groups of fast, medium and slow players. (b) Mean reaction times averaged over trials 

of the same level and player group. 

 

(b) (a) 
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Dimension Reduction  

The reaction time analysis shows that subjects require less time to find sets with 

perceptually similar cards. This suggests that subjects apply a similarity-based strategy. Even 

though dimension reduction is such strategy, we want to investigate in detail to what extent this 

strategy is used. In this subsection we will examine evidence for the use of the dimension 

reduction strategy. If subjects used dimension reduction strategy then the corresponding scanpath 

should contain consecutive fixations on cards sharing at least one common attribute value. 

To explore the existence of such pattern, the scanpath from each trial was transformed 

into labeled fixation sequences. Each card in a trial was assigned one area of interest with four 

different labels (see Figure 4). 

 

 

 

Figure 4. One of the problems shown to a subject. Card 7 is the highlighted card. Also shown are 

the fixations (circles) and saccades (arrows) produced by the subject. The outer thin black 

borders indicate 12 areas of interest. The four combinations of letters and numbers on top of each 
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card represent four labels for each of areas of interest. A set is formed by the forth, fifth and 

seventh cards. 

 

Each label describes one of the attribute values in a card and the position of the card in an 

array. For example, “G1”, “E1”, “W1” and “C1” are four labels describing the first card with 

values as green-open-two-oval. Then each fixation was tagged with four labels of an area of 

interest within which it falls. The consecutive fixations on the same area of interest are 

considered as a single fixation, and the corresponding fixation durations are summed. Combining 

all labeled fixations of a common attribute type into fixation sequences produces four distinct 

sequences for each trial. 

An analysis of the fixation sequences revealed the existence of a pattern of fixations 

related to the usage of dimension reduction. We will demonstrate this using the example problem 

from Figure 4. 

 

 

 

(b) (a) 
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Figure 5. (a) Single subject’s fixation sequence diagram for trial “lvl3_15”; (b) Changing 

proportion of subjects who used dimension reduction in trial “lvl3_15” as a function of fixation 

position in the sequence and attribute value. 

 

Figure 5a shows a fixation sequence diagram produced from the scanpath shown in 

Figure 4. Each horizontal lane in the diagram shows a subject’s fixation sequence with respect to 

the particular attribute type. One unit on the x-axis represents a fixation on one particular card, 

while the corresponding bars on four lanes represent attribute values of that card. In the diagram 

the labels are color coded according to the corresponding attribute value. The consecutive 

fixations on the cards with the same attribute value are shaded with a solid color if the 

probability of such a fixation subsequence occurring by chance is equal to or below 0.05 (refer to 

the Appendix for details of calculating the probability). 

From the figure we can see that at the beginning of the trial, the subject looked at green 

cards, and, by the end, at cards with an oval shape. We can conclude that the subject used 

dimension reduction strategy at least two times and each time with respect to a different attribute 

value: green and oval. The fixation pattern for this trial is not unique for this particular subject. 

Figure 5b shows the proportion of all subjects that used dimension reduction with green and oval 

values. This proportion is also contrasted against proportions of subjects that used dimension 

reduction on any of the three values from either number or shape attributes. The figure shows 

that at the start of the trial subjects preferred to search for a set among green cards and later 

switched to a group of cards with an oval shape while mostly ignoring all other values. 

Effects of an attribute type on dimension reduction. According to Jacob and 

Hochstein (2008), dimension reduction primarily occurs with the most abundant value. However, 
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it can be observed from Figure 5b that majority of subjects prefer the group of green cards to the 

group of cards with an oval shape despite the fact that the latter has the most abundant value. 

This suggests that the type of the attribute also plays a role in deciding the value to be used for 

dimension reduction. 

To find an effect of an attribute type, we have calculated an average proportion of 

fixation sequences where all subjects used dimension reduction for all problems. The result 

indicates that blocks of fixations with the same attribute value occupy on average 46% and 35% 

of an overall fixation sequence in trials with and without highlighted card respectively. Note that 

these estimates are on the conservative side, because some sequences may not have been 

recognized because they cannot be distinguished from a random sequence, either due to 

wandering fixations, sequences that are too short, or inaccuracy in the eye tracker. 

 

 

 

Figure 6. (a) Mean proportions of attribute types used in similarity-based scanning. Proportions 

are shown separately for trials with and without highlighted card. (b) Proportion of trials where 

subjects preferred to use a value for dimension reduction with the biggest group size among 

(a) (b) 
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other values of the same attribute type. The horizontal dashed black line indicates the expected 

proportion if the choice was made randomly.   

 

Figure 6a shows how use of dimension-reduction distributes over the four attribute types 

and reveals an effect of overall attribute preference. Subjects are two times more likely to look at 

the group of cards with the same color than any other attribute. The distributions of the most 

abundant values in the 60 trials among Color, Shading, Number and Shape were 28, 27, 19 and 

26 respectively
2
. According to such, the corresponding bars on Figure 6a should have nearly 

equal height if choice of a value was dependent only on group size. This is not the case. The 

results suggest that the four attribute types have different saliency properties with color being the 

most salient while shape and shading being the least salient attributes. 

There is still an effect of the most abundant value within each attribute type. This means 

that among the three values of the same attribute type the most abundant values is preferred for 

dimension reduction. As Figure 6b indicates, in 85% of all trials subjects prefer the most 

abundant value over the other two values of the same attribute type
3
. The trend is consistent 

among all four attributes. 

Effect of dimension reduction on performance. There is also a difference between fast 

and slow players in how they use dimension reduction strategy. Figure 7a shows how the usage 

of dimension reduction strategy changes over time in trials with a highlighted card. There is a 

general trend among players to use dimension reduction at the beginning of a trial and gradually 

stop using it over time. It suggests that players gradually switch from a dimension reduction to 

some different strategy. Furthermore, the graph suggests that slow players are more likely to 

stick to dimension reduction longer than fast players. 
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Figure 7. (a) Changing proportion of trials in which dimension reduction was used. The 

proportions are calculated as a function of the fixation position within a trial. The proportion on 

fixation x is calculated by counting the trials that have a dimension reduction block that include 

fixation x.  (b) The mean overall similarity of all cards in a particular subsequence to the 

highlighted card. 

 

Dissimilarity-based Search 

In the previous section we have seen that subjects use a dimension reduction strategy to 

reduce the complexity of finding a set. However, it is not yet clear how a similarity-based 

approach can eventually find sets with many different attribute values. The fact alone that 

subjects were able to find level 4 sets, in which all attribute values are different, proves that the 

strategies they use are not limited to dimension reduction. In fact, Figure 6a has already shown 

that subjects use dimension reduction strategy only 46% of the time, even though this number 

(a) (b) 
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may be conservative given our analysis method. Figure 7a also suggests that players switch to a 

different strategy.  

It is our assumption that subjects gradually switch from a similarity-based strategy to a 

dissimilarity-based strategy.  It should be possible to observe this switch from one strategy to 

another in fixation sequences produced from trials with highlighted cards. 

Search subsequences. The next analysis involves only trials with a highlighted card. 

Preliminary inspection of the data revealed that subjects refixated on a highlighted card 

approximately every five fixations, presumably to refresh their memory and to restart a new 

search subsequence. For example, the following labeled fixation sequence “4-7-11-10-3-7-2-11-

4-3-10-2-5-9-5-6-4-7-5-8-4”, with 4 being a fixation on a highlighted card, can be broken down 

into three subsequences. In a similar manner fixation sequences corresponding to other three 

attributes can be broken down into identical subsequences. 

Breaking down a trial into separate subsequences allows us to analyze how a mean 

perceptual similarity of fixated cards to a highlighted card changes with each subsequence 

(Figure 7b). The calculations were done separately for slow and fast players. There is a general 

tendency to look at a less similar card with each new fixation and each new subsequence. When 

players start a search they seem to prioritize cards based on decreasing similarity to a highlighted 

card. Furthermore, Figure 7b suggests that with each new search subsequence subjects lower the 

similarity threshold and include in their visual search less similar cards that were not included in 

the previous subsequences. Finally, there may be a difference between fast and slow players in 

terms of bias to similarity-based search as Figure 7b indicates. Fast players appear to abandon 

similarity-based search earlier than slow players. 



SET as an Instance of a Real-world Task   21 
 

Using a mixed-effect regression analysis (Baayen, Davidson & Bates, 2008), we have 

further investigated how the tendency to look at perceptually similar cards changes during the 

trial. The dependent variable in the regression is the perceptual similarity of each fixated card to 

the corresponding highlighted card (the values on the y-axis in Figure 7b). The following fixed 

effects were used: Subsequence is a log-transformed position of a subsequence in a fixation 

sequence. Fixation is a log-transformed position of a fixation within a subsequence. Variable RT 

is subject’s mean reaction time in seconds shown in Figure 3a. In addition, two random effects 

on an intercept, Subject and Trial, were added each representing subjects and trials respectively. 

 

Table 1. The fixed effects’ coefficients, t and p values. 

 

Fixed Effects Coefficients Standard Errors t values p values 

Intercept 1.7376 0.0754 23.036 0.0001 

Fixation -0.1761 0.0158 -11.113 0.0001 

Subsequence -0.1634 0.0110 -14.812 0.0001 

RT 0.0046 0.0011 4.106 0.0012 

Fixation:Subsequence 0.0334 0.0072 4.647 0.0001 

 

Table 2. Variances and corresponding standard errors of random effects. 

 

Random Effects on Intercept Variances Standard Errors 

Trial 0.1037 0.3221 

Subject 0.0024 0.0495 

 

Resulting coefficients for fixed main and interaction effects are shown in Table 1. The 
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table also presents corresponding t and p values for fixed effects. The variances and standard 

errors of the random effects are depicted in Table 2. 

In the interpretation of coefficients we are mainly interested in their signs. Positive 

coefficients increase perceptual similarity to the highlighted card. Hence, the corresponding 

independent variables promote the similarity-based search. The negative coefficients decrease 

perceptual similarity. Therefore, the corresponding independent variables facilitate the transition 

from the similarity-based search to dissimilarity-based search. 

Both Fixation and Subsequence have negative coefficients supporting our assumption 

that over time cards that subjects look at decrease in similarity to the highlighted card. The 

significant main effect for Fixation indicates that transition occurs not only within fixation 

sequence as whole, but also within individual subsequences. An interaction effect between 

Fixation and Subsequence has positive coefficient. The interaction effect provides a threshold for 

the main effect of Subsequence after which subject cannot look at less similar cards anymore. It 

makes sense since it is impossible to look at cards that have more than four dissimilar attributes. 

There is a strong correlation between subjects’ mean reaction time and the tendency to 

look at cards similar to highlighted card. The variable RT serves as a strong predictor. Its 

coefficient’s sign indicates that slower players are more biased toward similarity-based search 

than faster players. And this bias increases as mean reaction time increases. 

Experiment Discussion 

Experiment Results’ Summary 

The mixed-effect regression analysis of the fixation sequences indicate that the subjects’ 

basic strategy of playing SET is similarity based. Subjects prefer to look for a set among the 

cards that are similar to each other. 
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One specific instance of a similarity-based strategy is the dimension reduction strategy 

(Jacob & Hochstein, 2008). The dimension reduction strategy can be used more than once 

(Figure 5 & Figure 6) within the same trial and each time with different attribute value. The 

player chooses one attribute value, to which we refer as a guiding value, and starts looking for a 

set among the cards that share that value. If a player fails to find a set with the current value, then 

another guiding value is chosen, and the new group of cards is defined as a next search space. 

The overall strategy of dimension reduction is top-down, but the choice of a guiding 

value is heavily influenced by two bottom-up elements: (1) the size of the group of cards that 

share the value and (2) its attribute type. The importance of group size (Figure 6b) was also 

found by Jacob and Hochstein (2008). However, contrary to their conclusion, we have found that 

an attribute type also plays an important role (Figure 6a) in choosing a guiding value. In 

particular, color is preferred to any other attribute type, while shape and shading are the least 

preferred attribute types. This result coincides with other studies concluding that people prefer to 

operate on colors rather than on shapes (Kieras, 2010; Kim and Cave, 1995; Pomplun et al., 

2001). The number attribute also seems to be preferred to shape and shading, at least in trials 

with highlighted cards. The presence of a highlighted card can bias players to values of that card. 

Such bias can override an effect of a group size or even attribute type. 

Another interesting finding is the fact that within a trial subjects decrease the use of 

dimension reduction strategy. This reduction (Figure 7a) nicely coincides with gradual reduction 

in reliance on similarity (Figure 7b). As the game progresses, players increasingly look at more 

dissimilar cards more suitable for finding higher-level sets. 

It seems that all players follow more or less these strategies. However, there are subtle 

differences between fast and slow groups of players. We found that fast players are less 
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dependent on similarity than slow players (Figure 7b and Table 1). Fast players are initially less 

likely to use dimension reduction and switch faster to the dissimilarity-based search than slow 

players. 

Additional Assumptions 

There are still open questions that were not answered by the data analysis. For creating a 

plausible model of a SET player it is essential that we have a complete picture of a player’s 

behavior. In this section we address the essential but missing aspects of a SET player’s strategy 

by referring to relevant literature or making our own assumptions. 

The two critical aspects of finding a set are reducing the search space by selecting an 

appropriate guiding value, and the search strategy itself once a guiding value has been selected. 

Choice of a guiding value. Although the decision to choose a guiding value is top-down, 

the choice itself, we assume, is not top-down. This choice is defined by two components: a static 

task-independent component that defines the saliency of an attribute value in the visual field and 

task-dependent factors, some of which change while the search for a set progresses. 

Task-independent components include attribute type and group size. The four attributes 

have different inherent saliency properties. The color is the most salient attribute type, and the 

number is more salient than shape or shading (Kieras, 2010; Kim and Cave, 1995; Pomplun et 

al., 2001). On the other hand, six green cards are more salient than four red cards because of an 

effect of group size on the saliency. These factors are not dependent on the current goal and are 

inherent properties of the visual object and the visual scene as a whole. 

Task-dependent components include the presence of a highlighted card and the current 

progress within a trial. The task for the player is to find a set that includes the highlighted card (if 

it is present). This connection of a highlighted card to the current task increases the relevancy of 
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the attribute values in the highlighted card. The relevance of an attribute value, however, 

decreases once we have already tried to find a set with that attribute value.  So, if the player has 

not been able to find a set among the green cards then the task relevancy of the green value 

decreases. This decreasing relevance can explain why the similarity of attended cards to the 

highlighted card decreases: once particular attribute values have been tried as a guiding value, 

their relevance decreases and other, more dissimilar values are selected to guide search. 

For example, in the beginning of the game, most players tend to focus on the group of 

cards that share particular color or number values, since color and number are the most salient 

attribute types. However, their relevancy will decrease over time, and eventually a player will 

focus on other attribute types. 

Strategies and within-trial strategy shifts. As described earlier, the data suggests a 

gradual shift from dimension reduction to a dissimilarity-based strategy. 

However, so far we have no concrete evidence for the mechanisms behind such a strategy 

shift. One option is that there is an explicit meta-cognitive process tracking the current state of 

the game and timing the strategy shifts. However, a far more elegant and simpler explanation 

would be one in which a  strategy shift occurs implicitly as a result of changing relevance of the 

attribute values as they are used as a guiding value. The second option does not require an 

explicit process of tracking current state and timing strategy shifts. The mechanism that chooses 

the guiding values, outlined in the previous section, does exactly that: initially, the attribute 

values of the highlighted card will dominate the choice of guiding value and will therefore lead 

to similarity-based search. However, once those values have been tried, their relevance 

diminishes, and other values are chosen that are not attributes of the highlighted card. This will 

lead to a dissimilarity strategy in which a third, dissimilar card will be necessary to complete the 
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set. 

Strategy implementation. Once a guiding value is chosen, a search process is needed to 

try to find a set using the guiding value. There are two basic strategies to do this: the first is to, in 

addition to the highlighted card, pick a second card on the basis of the guiding value, and then 

pick a third card that is perceptually similar to the second card. At that point, the three cards can 

be compared to see whether they constitute a set. Even with a highlighted card this search 

process is potentially expensive, because there are still 55 possible combinations to check. The 

use of a guiding value is helpful to look for the most promising combinations first, especially 

combinations that are potential lower-level sets. 

The second strategy is to select a second card in addition to the highlighted card, and 

predict what the third card should be. After making the prediction, the predicted card may or not 

be present among the remaining cards. If it is, it completes the set. This strategy is much more 

efficient, because there are only 11 combinations of the highlighted card with a second card, and 

two of those will complete a set. Even when there is no highlighted card, the prediction strategy 

is more efficient than the similarity strategy, because there are only 66 possible pairs, three of 

which are part of the set, but 220 combinations of three cards. However, the prediction strategy 

is more effortful and requires at least some experience with the game to be successful. 

Competitive parallelism of the two strategies. Even though we can identify two distinct 

strategies, several hybrid combinations are possible. For example, instead of predicting all 

attribute values of the third card, it is possible to only predict two values and use these two to 

guide the similarity strategy. In fact, both strategies and all possible hybrids can be produced if 

we assume two parallel processes, a bottom-up process that scans cards based on similarity, and 

a top-down process that makes a prediction for the third card. This idea is consistent with the 
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threaded cognition theory of multitasking (Salvucci & Taatgen, 2008), a bottom-up visual 

scanning and a top-down prediction task run in parallel collaborating but also competing to 

achieve the same goal. 

Competitive parallelism assumes that all players have two parallel processes 

independently of player’s proficiency. Slow players know how to predict, but they are not good 

at it, so typically the visual-scanning process will dominate performance. Faster players are 

proficient enough to make fast and accurate predictions, so the prediction process can keep up 

with visual scanning, making targeted search of a predicted card possible rather than just 

scanning on the basis of similarity. 

Competitive parallelism provides advantages over a pure sequential strategy. It provides a 

means for a more objective comparative evaluation of efficiency of one process over another. It 

prevents a one-sided choice of one process over another even if one is less efficient. The less 

efficient process has a chance to become more cost effective with training and rehearsal. 

Competitive parallelism actually provides an opportunity for slow players to become faster, 

because even a partial prediction (i.e., two attributes instead of all four) already provides an 

advantage over pure similarity-based search. 

Prediction works at a more conceptual level, and therefore requires a certain degree of 

proficiency that slow players may lack. Prediction is more beneficial in finding higher level sets 

in contrast to sequential perceptual comparison. However, it may provide little leverage against 

parallel bottom-up similarity detection in lower level sets. Those differences can explain why 

slow and fast players differ little in finding lower-level set and differ significantly in finding 

higher-level sets. 

An ACT-R Model of a SET Player 
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Briefly About ACT-R 

We have implemented the model using the ACT-R
3
 cognitive architecture (Anderson, 

2007). ACT-R has a modular organization where each module is dedicated to a distinct type of 

cognitive resources (visual, motor, etc.). Factual knowledge in ACT-R is represented by chunks 

with slots where other chunks serve as slot values. Each module has its own buffer where either 

new chunks can be created or existing chunks can be passed on. Three modules that are 

important for this paper are described next. 

The visual module handles visual mechanisms such as perception, attention shift and 

encoding of visuals stimuli. Visual stimuli are represented in form of chunks within the visicon, 

a virtual imitation of a screen visible to model. This module cannot create new chunks, but rather 

“perceives” chunks within the visicon by placing them in its buffer. 

Every chunk that has been cleared from any buffer is stored in declarative memory (DM) 

module and can be retrieved again. The DM module can retrieve only one chunk at a time, which 

is stored in the module’s buffer. Each chunk in DM has a base-level activation value, which 

represents frequency and recency of use (e.g., Anderson and Schooler, 1991). A chunk’s 

activation in DM can also be influenced by chunks contained in buffers at the time of retrieval, 

by a spreading activation mechanism. Based on activation the module computes the probability 

and time cost of retrieving a chunk from memory. We have implemented an additional extension 

to the ACT-R visual module, which enables chunks in visicon (i.e., the whole visual field) to 

spread activation to chunks in DM in the same manner as the chunks in buffers do. 

Lastly, there is a problem state module that serves as a working memory. This module is 

unique since it can create new chunks that are not perceived in the environment nor retrieved 

from DM. Slot values from chunks in other buffers can be used as values for the new chunk’s 
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slots. However, creating a new chunk is a time costly process that takes 200 ms, a parameter in 

the architecture that is typically not changed. 

The architecture provides an essential set of parameters by default including, but not 

limited to, times it takes to move the mouse, retrieve a chunk from memory or encode a visual 

stimulus. It also provides set of adjustable parameters and range of recommended values for each 

of those parameters. These elements of the architecture have received extensive experimental 

support (e.g., Anderson, 2007 and see http://act-r.psy.cmu.edu/).  

Model Design Decisions 

We will now describe the solution method that we outlined in the previous section in more detail. 

Threads. The model consists of two parallel processes (threads; see Salvucci & Taatgen, 

2008) reflecting both top-down and bottom-up nature of a task. A bottom-up thread is 

responsible for visual processes such as choosing a scanpath or shifting attention from one card 

to another. The top-down thread is responsible for higher-level processes such as deciding a 

guiding value and comparing cards. Both threads can influence each other’s processes indirectly. 

For example, the top-down thread chooses a guiding value based on what has already been tried 

earlier in the trial. However, bottom-up features such as what cards are visible or which card is 

being fixated also influence the choice. 

Algorithm for general strategy. The model largely follows strategies that we have 

deduced from the data and the assumptions we made in the previous section. The following is the 

description of model’s general strategy: 

1. Focus attention on the highlighted card HC. 

a. Let be a set of four attribute values in the highlighted card. 

2. Retrieve any attribute value VDM from declarative memory. 

http://act-r.psy.cmu.edu/
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a. Let AV be the attribute type of VDM. 

3. Pick the attribute value  from  that also has  as attribute type. 

4. If  then use dimension reduction. 

a. Define search space G as a group of cards that have VHC. 

5. If  then use dissimilarity strategy. 

a. Define search space G as a group of cards that does not have VHC. 

6. Start comparison cycles on G to search for a set (depicted in Figure 8). 

7. If a set is not found then go back to step 1. 

Implementation of both strategies in the model is liberal in a sense that model behavior is 

not hardcoded. There is no explicit control over the guiding value choice. Neither there is an 

explicit top-down control over strategy shift. The model decides all specific details of those steps 

on the fly based on a visual scene and progress of a current trial. Steps 2 and 6 are most 

important. The outcome of step 2 defines the strategy to be used, while in step 6 bottom-up and 

top-down threads run in parallel each trying to find a set separately. 

Saliency and relevancy. This subsection describes how model takes step 2 of the 

algorithm. The attribute value that is the most salient and relevant at the time is chosen as the 

guiding value VDM. Saliency is a constant feature within a trial, however, relevancy is not and 

calculated each time a new VDM needs to be chosen. Within the model we have used ACT-R’s 

activation mechanism to mimic both saliency and relevancy. Activation depends on several 

parameters such as values of a highlighted card, number of times the attribute value was used 

previously, the last time it was used, etc. 

The two main parameters defining saliency are attribute type and the size of the group of 

cards that have that value. Color is generally the most salient attribute type followed by number, 
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while shape and shading are the least salient types. Attribute type saliency is simulated using 

ACT-R’s chunk referencing mechanism (Table 3). 

In order to model the effect of the group size, we used a logarithmic function (see Table 

3) to map the number of occurrences of an attribute value i in the visual field onto a group size 

factor fani. This mapping is similar to the spreading activation mechanism in ACT-R's 

declarative memory. 

The relevancy of a value depends on whether it appears on a highlighted card and 

whether it was used previously. The highlighted card spreads additional activation to each value 

it has. The relevancy of a value is temporarily inhibited after it has been used and no set was 

found. The time and duration of the inhibition are calculated according to Lebiere and Best’s 

(2009) short-term inhibition equation. The complete description of the parameters used in 

calculating the activation is shown in Table 3. 

 

Table 3. Parameters for calculating activation for an attribute value i. 

 

Parameter 

Influence 

On 

Activation 

Implementation method 

Attribute 

type 
positive 

Base-level activation  is calculated for each attribute value based 

on initial number of references it is assigned. An initial number of 

references (n) is set for each attribute type as following (higher 

number results in higher activation): 

 Color chunks: 40 

 Number chunks: 36 

 Shape chunks: 32 

 Shading chunks: 28 

An exact calculation was used with the decay rate of base-level 

learning (d) set to default value of 0.5. (tj) is the elapsed time since 

the chunk has been used for the j-th time. 

Group size positive 
Custom extension for ACT-R that spreads activation from the 

visual field to the DM. The associative weight parameter (W) is set 
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to 0.7. 

fani - is a measure of how many chunks in the visual field are 

associated with chunk i. Higher fani results in more activation 

spread to value i: 

 

Highlighted 

card 
positive 

ACT-R’s equation for a spreading activation from a visual buffer. 

(j) indicates to a value in j-th slot of a chunk that is in visual module 

buffer. (fanji) is a measure of how many chunks in DM are 

associated with value in j-th slot. Higher fan results in less 

activation spread to value i. 

Maximum associative strength (S) is set to 4, a sufficiently high 

value to prevent negative spreading activation. 

(Wj) is the amount of activation to be spread from in value j-th slot 

to value i if two are associated and set to 0.13.  

 

Frequency 

of use 

negative 

(inhibitive 

effect) 

ACT-R extension for a base-level inhibition is used with short-term 

decay rate (ds) and time scaling (ts) parameters set to 1 and 10 

respectively as recommended by Lebiere and Best (2009). 

 
Latency of 

use 

negative 

(inhibitive 

effect) 

Random 

noise 
positive 

εi – ACT-R’s transient noise generated from logistic distribution 

with mean 0 and with :ans parameter set to 0.1. This noise ensures 

that model’s behavior differs each time even if presented with 

exactly same trial and starting conditions. 

 

Values for most of the constants mentioned in Table 3 are taken from the range of 

recommended values mentioned in ACT-R literature (see http://act-r.psy.cmu.edu/publications/). 

However, we fitted the four initial numbers of references for attribute types. Two other 

parameters that required fitting are the associative weight parameter W and spreading activation 

amount Wj. The first parameter defines scale of influence of a group size, and the second one 

defines scale of an influence of a highlighted card. 

Combining all parameters from Table 3 results in following equation for calculating 

activation for attribute value i: Ai = Bi + Si + Gi - Ii + εi. The value with the highest activation is 

chosen for retrieval from declarative memory. The time cost of retrieval is calculated via ACT-R 
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equation:  where A is an activation value and F is the latency factor set to 0.2, a 

value most commonly used in other models. 

Top-down versus bottom-up processes in comparison cycles. After deciding which 

strategy to use, the model proceeds by scanning a chosen group of cards. This is described as a 

step 6 in the algorithm. Individual steps of scanning are described in Figure 8. The entire 

scanning can be divided into comparison cycles. In each cycle the model picks two cards, further 

referred to as C1 and C2, to compare to the highlighted card. The model first chooses C1, and 

then C2. In each cycle the model picks as a C1 a card that was not chosen as C1 before. Hence, 

the number of cycles is the same as the number of cards that match the scanning criteria. 

The order in which cards are chosen as C1 is mostly defined by the order in which those 

cards were fixated since the scanning began. Earlier fixated cards have higher chance of being 

chosen as C1. The model is free to choose its own scan path with the only restriction that it will 

not refixate on the cards it fixated before until all other cards have been fixated. 

Two different approaches are used in parallel to make the decision about C2: bottom-up 

and top-down. In the bottom-up approach, the model continues scanning the search space and 

compares the first fixated card with the highlighted card and C1 (a box in Figure 8 denoted Wait 

for bottom-up scanning to return C2). At the same time, the top-down approach tries to make a 

prediction about C2 based on the available rules (a box in Figure 8 denoted Predict C2 values). It 

generates the abstract representation of C2 and asks the visual thread to find the card matching 

that representation. The success and completeness of the prediction depends on availability and 

accessibility of prediction rules. Both approaches compete with each other. The approach that 

requires less time is favored over the other. In other words, if the model is able to make a 

prediction before the visual thread fixates and encodes some card as C2 then prediction is 
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favored. 

Given all three cards, the model verifies if the cards really make a set. If cards do not 

make a set then the model goes back to visual scanning. If a set is still not found then model 

interrupts the scanning and refixates on the highlighted card to choose another guiding value. 

Due to limited number of cycles and the liberal way the model chooses C2, the search is not 

exhaustive, and model can fail to find a set even if search space contains it. 

 

   

 

Figure 8. An algorithm for searching for a set given specified group of cards G. Two shaded 
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boxes represent two approaches that model uses in parallel to find a set. The right shaded box 

shows the bottom-up approach to find a set, and the left shaded box shows the top-down 

prediction approach. 

 

Prediction rules. Predictions are made based on prediction rules. Rules are declarative 

chunks that have to be retrieved from memory when necessary. An example of such a rule is: 

Given(Textured, Solid) => Expected(Open). It should be noted that Given(Solid, Textured) => 

Expected(Open) and the previous rule are treated as different ones. There are also rules for 

similarity such as Given(Red, Red) => Expected(Red). In total, the model can have 36 rules: 

nine rules for each attribute. 

Model Results 

In each trial, the model is presented with 12 cards. One card is always highlighted 

indicating that it belongs to a set. The model has to find the other two cards forming a set. The 

same 30 trials from the experiment with human subjects were used.  

We created eight versions of the model. The only difference between model versions was 

the availability of prediction rules. The first model had no prediction rules in declarative 

memory. The second model had 12 prediction rules for predicting similarity of the corresponding 

12 attribute values (e,g., Given(Red, Red) => Expected(Red)). The third model had 16 rules: 12 

similarity rules and four rules for predicting dissimilarity, one for each attribute. The number of 

available rules in subsequent models was increased in a similar manner by four. Each version of 

the model was run 10 times. 

Reaction times. Figure 9a shows reaction times for all eight models averaged over four 

difficulty levels. As was hypothesized previously, the model’s reaction time gradually decreases 
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as model becomes better at making predictions. The model with zero rules is the slowest model 

and the model with all rules is the fastest model. For low-level sets, there is little difference in 

RT between different versions of the model. However the difference is quite high for trials with 

high-level sets. This effect resembles the one found in human data. Overall, Figure 9a suggests 

that the main boost in performance through predictions is produced by trials with high level sets. 

In Figure 9b, the mean reaction times (dashed lines) of the fastest and slowest models are 

compared to the mean reaction times (solid lines) of corresponding fast and slow groups of 

human players. As it can be seen, the models closely reproduce reaction times of both slow and 

fast human players. The fixation sequences produced by these two models were further 

compared to human data from fast and slow groups. 

 

 

Figure 9. (a) Reaction times of eight models averaged over four difficulty levels. (b) Reaction 

times of the slowest and fastest models comparing to the reaction times of the human players in 

trials with highlighted cards. 

 

(b) (a) 
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Dimension reduction. Both the fast and slow models are quite good at replicating the 

subjects’ tendency to use dimension reduction and preference to certain attribute values. As an 

example, the fast model’s (Figure 10a) and the subject’s (Figure 5a) fixation sequences from the 

same trial are compared. The model’s fixation sequence closely resembles the sequence 

produced by the subject. At the beginning of the trial, the model also preferred to look at the 

green cards and later on switched attention to a group of cards with oval shape in a same manner 

as human subjects did. This decrease is consistent with behavior of the human subjects. 

 

 

 

Figure 10. (a) Model’s fixation sequence diagram for trial “lvl3_15”. (b) Changing proportion of 

blocks where the models used dimension reduction in trial “lvl3_15”. Proportions are calculated 

from both slow and fast models’ data. Proportions are shown as a function of fixation position in 

the sequence and attribute value. 

 

It is obvious from multiple model runs that half of the times the model prefers to look at 

the green cards in the beginning of the trial although they form the second largest group after 

cards with an oval shape (Figure 10a). Nevertheless, the fact that color is the most salient 

(a) (b) 
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attribute type is enough to compensate for a smaller group size. Defining separate saliency 

values for attribute types works quite well for modeling players’ bias to an attribute types. 

It can be observed from Figure 10 that the model favored shape in the later stage of the 

game, which is the least salient attribute type. This is due to the effect of a group size. Oval 

shape compensates its inherent lack of saliency with bigger number of occurrences. The fact that 

oval value provides strong competition to green value even at the beginning of the trial suggests 

that the effect of a group size is stronger than it should be (compare Figure 10b to Figure 5b). 

 

 

 

Figure 11. Mean proportions of attribute types used in similarity-based scanning. The overall 

values of all subjects’ trials with the highlighted card are compared to the overall values of both 

models’ trials. 

 

Overall, the saliency and relevancy mechanisms work well in modeling subjects’ strategy 

to use dimension reduction. Combined data from both models shows similar order of preference 

for the attribute types as the human subjects. Figure 11 shows that, in general, models clearly 
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prefer color and number while they make little difference between shape and shading. Both 

models gradually stop using dimension reduction if it fails to find a set (Figure 12a). This 

behavior is again consistent with behavior of human subjects. However, models are more 

dependent on dimension reduction strategy than the human subjects. We attribute this difference 

to the difference in manner of scanning between model and human subjects. We discussed earlier 

that human subjects can get distracted and produce wandering fixations in the middle of the scan. 

On the other hand, model is precise and does not produce such fixations.  

 

 

 

Figure 12. (a) Changing proportion of trials in which dimension reduction was used. The 

proportions are calculated as a function of fixation position in the sequence. Results are shown 

separately for slow and fast models. (b) A mean overall similarity of all cards in a subsequence 

to a highlighted card shown separately for slow and fast models. 

 

Finally, as Figure 12a shows, the slow model is more likely to use dimension reduction in 

latter part of the trial than the fast model. In overall fast model is less biased toward dimension 

(b) (a) 
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reduction than the slow model showing effect similar to one produced by the fast human players 

(Figure 7a). 

Dissimilarity-based search. Our experiment revealed that the subjects gradually switch 

from dimension reduction strategy to dissimilarity-based search (Figure 7b). To test whether the 

model exhibits the same pattern of behavior as the human players, the same type of analysis was 

done on fixation sequences produce by the model. The results can be observed in Figure 12b. 

There are gradual transitions from the similarity- to dissimilarity-based search for both slow and 

fast models. The difference between fast and slow models with respect to bias to the perceptual 

similarity is smaller than in human players, however it is present. It can be seen that graph for the 

fast model comes to an abrupt end at 10
th

 subsequence. This is due to the fact that the fast model 

rarely required more than 10 subsequences to find the set. 

General Discussion 

Bottom-up and Top-down Processes 

Improvement in playing SET can be explained by the interplay between the two types of 

processes. Slow players initially tend to rely on bottom-up processes, because their top-down 

strategies are too slow to keep up. Improvement in the game is characterized by an increase in 

efficiency and involvement of top-down processes. 

A similar development was found in studies of other games such as Scrabble (Halpern & 

Wai, 2007). In that study, slow and fast players also differed in the interplay between top-down 

and bottom-up processes. Slow players prefer to rotate and rearrange the letters physically to 

check whether they form a word. It makes players very much dependent on bottom-up motor 

processes and perceptual stimuli representing the letters. On the other hand, fast players prefer to 
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rotate and rearrange the letters mentally. Hence, an fast player prefers to use top-down processes 

to manipulate the abstract representations of the letters. 

Another example of a shift in balance between bottom-up and top-down processes is 

observed in Tetris. Initially it was believed that slow players prefer to rotate and translate tokens 

mentally to check whether that piece will fit at various parts of the screen while more 

experienced players prefer to rapidly manipulate the tokens physically (Kirsh & Maglio, 1994). 

However, a later study showed that players with extensive experience prefer to rotate and 

translate pieces mentally rather than physically (Destefano, Lindstedt & Gray, 2011). This means 

that they no longer require perceptual input to verify their solution. This is similar to learning in 

Set, where prediction processes make it unnecessary to “see” the third card in order to infer it is 

part of the set.  

In light of these findings, we conclude that such shift in balance between top-down and 

bottom-up processes may be a very common learning process. 

Implications of This Study 

Threaded cognition for bottom-up and top-down processes. In earlier studies, fast 

players substitute bottom-up with top-down processes through substitution of physical with 

abstract, but otherwise identical, actions. However, our model showed that fast players can 

combine bottom-up and top-down processes beyond that of simple substitution. The fast model is 

able to perform actions, such as prediction, that are otherwise beyond capabilities of bottom-up 

processes. This capability requires viewing bottom-up and top-down processes as parallel and 

competing processes. Earlier, we referred to it as a competitive parallelism. This is in contrast to 

conventional sequential or hierarchical view, but in line with theory of threaded cognition 

(Salvucci & Taatgen, 2008, 2011). However, in addition to the separation of processes into 
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threads by tasks, we also have a division of processes into threads by their types within a single 

task. As such, this study can be viewed as a theoretical and practical example of threaded 

cognition and can contribute to general understanding of this theory. 

Having two threads for the same task, competitive parallelism, has a direct implication in 

learning. Competitive parallelism ensures that when the same task can be accomplished by both 

bottom-up and top-down processes training will ensure the most suitable one will be chosen 

eventually. Competitive parallelism can be a cornerstone for problem-solving tasks. For 

example, it can explain how Tetris or Scrabble players minimize cost of mental operations while 

still doing the same task physically. Further study is needed to confirm those assumptions. 

Implicit decision making. As we indicate there are several interesting findings in this 

research. SET players can apply more than one strategy during the game, similarity- and 

dissimilarity-based. Our model has shown that shifts between those strategies can occur as a 

result of evolving activations triggered by basic bottom-up elements such as inherent memory 

associations, inhibition and influence of perceptual stimuli. Such a choice of a strategy is not 

deliberate explicit decision, but rather implicit bottom-up decision. Perhaps, absence of explicit 

meta-cognitive control can explain why SET players are often unable to clearly describe their 

strategy. Furthermore, the similarity-based strategy is bottom-up and dissimilarity-based strategy 

is top-down. It suggests that there is not only an implicit shift in strategy, but also in type of 

processes. All together it suggests that bottom-up decision may have bigger role in cognitive 

processes and should be paid more attention in future studies. 

As a possible line of future research in this direction, we would like to draw similarity 

between the way our models shifts between strategies and perceptual decision making models 

based on decision threshold. These mathematical models assume integration of sensory evidence 
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until decision variables reaches decision threshold after which categorical choice is made from 

alternatives (Smith & Ratcliff, 2004; Usher & McClelland, 2001). Similarly in our model, 

evolving activation in memory influenced by items in the visual field can be viewed as an 

accumulation of sensory evidence, and resulting probability of retrieval as a decision threshold. 

However, mathematical models provide no information about processes that govern the 

contextual regulation of the perceptual decision making (Domenech & Dreher, 2010). In 

contrast, our model provides a set of perceptual and cognitive processes backed by theory. As 

such, integration of mathematical and ACT-R based models may provide much more insight in 

domains of decision making and problem-solving in general. 

Predictability and learning in problem solving task. The ability to predict is a useful, 

but understated, in our opinion, process of human cognition. There are limitations on the amount 

of visual information a human brain can process, and many consider selective attention shifts as 

mechanism to deal with the limitation. However, recent studies suggest that prediction also plays 

important role in mitigating processing limitations (Alink, Schwiedrzik, Kohler, Singer & 

Muckli, 2010; Soga, Akaishi & Sakai, 2009). Important parts of visual stimuli that are not 

processed are predicted based on previous experience. Furthermore, prediction is used to 

anticipate future stimuli. Recent study showed that predictability of the environment has 

significant influence on the decision making process (Domenech & Dreher, 2010). 

In this paper, we showed how predictability of the environment in combination with a 

player’s proficiency influences decision making. The fact that, in our model, difference in ability 

and accuracy of prediction was able to explain major difference between fast and slow players 

suggests that prediction possibly has important role not only in decision making, but also in the 

learning process. 
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Conclusion 

It is our hope to contribute to the understanding of visual cognition where both internal 

conceptual knowledge and external perceptual stimuli converge in a goal-driven task. As one 

step toward this goal we have studied the importance of perceptual and cognitive processes in 

complex tasks requiring both internal planning and reaction to perceptual stimulus from the 

environment. 

Firstly, there is an interaction between two types of process in accomplishing an 

immediate task. Such interaction involves both a sequential cooperation and a parallel 

competition with emphasis on the latter. Such competition gives a chance for top-down processes 

to gain edge over faster but limited bottom-up processes. 

Next, both bottom-up and top-down processes are involved in decision making. On the 

one hand, bottom-up processes can influence top-down decision. On the other hand, bottom-up 

process, such as evolving memory activations, can result in decision without need of top-down 

control. This suggests that decision making may not be an explicit process only. 
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Footnotes 

1
 SET is a game by Set Enterprises (www.setgame.com) 

2
 The sum of distribution numbers exceeds the total number of trials because the same trial can 

have two or more most abundant value groups of equal size but different attribute types. 

3
 To eliminate possible influence of the highlighted card, only trials without highlighted cards 

were considered in calculating the proportion. 

4
 ACT-R stands for Adaptive Control of Thought - Rational

http://www.setgame.com/
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Appendix 

The probability of k subsequent fixations falling on cards that share at least one value in 

common if the fixations are assumed to be random is calculated with a following equation: 

 

 

k  –   the number of fixation in fixation subsequence 

nij – a number of cards in array of 12 cards that have value j for an attribute i 

 

Before further explanation, one should consider that this analysis is done on collapsed 

fixation sequence where consecutive fixations on the same card are considered as a single 

fixation therefore the next fixation always falls on another card.  

Let’s assume that there are five green cards among 12 cards on the desk. If we assume 

that subjects is always fixating on one of the cards before fixating on another card then the 

number of possible cards on which subject can fixate is 11. Probability of randomly fixating on 

one of those 11 cards is 1/11. Now if we assume that subject started looking at green cards then 

the probability of the first fixation on any green card is 5/11. However the probability of second 

consecutive fixation on another green card is 4/11, since subject is already fixating on one of the 

green cards. The probability of each of next consecutive fixations after the second fixation will 

be 4/11 as well. If subject did seven consecutive fixations on green cards then the probability of 

entire block of fixations will be . If instead we want to calculate a probability of seven 

consecutive fixations on cards that share any attribute value (not just green color) then it will be 

the sum of probabilities for each individual attribute value.  
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If the calculated probability of the block of k fixations is below 0.05 then it is assumed to 

be not produced by chance. The blocks are calculated for an each attribute type. If two blocks of 

fixations from different attributes overlap then the block with the least chance probability is 

preferred. The other block is cut at the point of an overlap, and its probability is calculated again 

based on the block’s new length. If the two blocks overlap and have an equal chance probability 

then the longest block is preferred. If the lengths are also equal then one of the blocks is 

randomly chosen and removed. Finally, Holm-Bonferroni correction was used on initial 

significance value of 0.05.  The correction compensated for the inflation of the chance 

probability when multiple solid blocks are present in the same trial. 
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Answers to the comments from editor. 

 

Comment_E_1: 

 

This reviewer's concerns derive from your definition of expertise, both in the human data (splitting continuous data 

into two groups), and the model (modeling performance using two discrete groups from continuous reaction-time 

performance). The reviewer sees this as especially problematic, and recommends rejection. 

On my own reading, I do agree with this reviewer that this seems like a rather indirect definition of "expertise." As 

you note on p. 9, the evident differences in strategy suggest that this works as a criterion. Still, speed of responding 

is not, by itself, directly indicative of expertise; instead, does it reflect high vs. low performance, or perhaps skill? 

Part of this issue is a terminological one. Some clarification would help. 

Another issue is how you analyze the human data. As Reviewer 1 notes, your subjects near the criterion boundary 

exhibit almost exactly the same reaction time. Perhaps you could compare these subjects and show that strategy 

composition at the boundary line is similar in predictable ways? This would lend credence to your grouping, and 

suggest that the deployment of bottom-up/top-down strategies is more different at the opposite ends of this 

distribution (from Fig. 3). 

 

Answer_E_1: 

 

We have removed the definition of expertise from this paper. Furthermore, we have removed any claim related to 

expertise or experience. The subsection “Expertise” on page 9 is renamed to “Performance”. The reaction times are 

treated as an indicative of difference in deployment of similarity/dissimilarity based search. We also tried to make it 

clear that we are interested in subject’s performance only in terms of difference in strategy. 

We have changed the grouping of subjects to fast, medium and slow subjects (pages 12-13). The subjects that form a 

plateau (have more or less same reaction times) in the middle (Figure 3a, page 13) are included in the group of 

medium players. Accordingly, models are compared to corresponding groups of fast and slow players. We tried to 

emphasize the difference between slow and fast players by contrasting these two groups in Figure7a and Figure 7b 

(pages 18-19). Furthermore, to add more credence to grouping based on RT, we have used subjects’ mean reaction 

times (from Figure 3a, page 13) as independent variables (instead of dummy variable indicating the group) in linear 

mixed-effect regression analysis results of which are shown in Table 1 (pages 21-22). The results suggest strong 

correlation between reaction times and type of deployment of bottom-up/top-down strategies used by players. 

Finally, using the ACT-R model, we show that a difference in deployment of bottom-up/top-down strategies can 

produce similar gradience in reaction times observed with human subjects (Figure 9a, page 36).  

 

 

Comment_E_2: 

 

A third issue is how you are modeling it. It appears, from p. 35, that the subjects are captured with the model 

discretely: Two completely different classes of model. The human data suggest a gradiency of performance. Is there 

some way you can address this in a revision?  

 

Answer_E_2: 

 

The novice and expert models are actually completely the same. They have exactly the same set of production rules 

and parameter settings. The models use exactly the same algorithm. Both models try to do both top-down prediction 

and bottom-up scanning in parallel. The only difference between two models is the number of rules available in the 

declarative memory when the models perform the task. The novice model has no rules available. However, it still 

tries to make predictions, although, all attempts will be unsuccessful. The expert model has all possible rules. 

Therefore its attempts to make prediction can be successful. Our previous Figure 8 probably gave the impression of 

two separate models, and we have therefore updated to clarify this point. 

Furthermore, current model can show the gradiency of performance (pages 35-36). Gradiency from novice model to 

expert model can be achieved by gradually increasing number of rules available in a declarative memory. The 



Figure 9a, page 36, shows the model’s mean reaction times when it is run with a different number of rules. The 

number of rules is gradually increased from model 0 to model 7. Correspondingly model’s RT decreases as the 

number of rules increases.  

In the first version of the manuscript, we have briefly mentioned about model’s ability to learn and transit from 

novice to expert by generating random rules each time model finds a set. However, parts related to learning where 

removed in the second version of this manuscript due to reviewers’ comments stating that more study is needed with 

this respect. 

In the revised version of the manuscript we have included (in the section Model Results) a short description of six 

other models. The corresponding reactions times are also shown in a Figure 9a. The overall results show how 

gradual increase number of available prediction rules results in gradual decrease in reaction times. 

 

 

Comment_E_3: 

 

As an additional (more minor) note from me, I also observe on p. 42 that you equate mental rotation in the Tetris 

task (for example) with the top-down processes explored in SET; yet these seem to be significantly different kinds 

of top-down processes (where mental rotation *is* simply rotation, just not in the form of epistemic actions, a-la 

Kirsh and Maglio). I wonder if that note on p. 42 may be rephrased or explained in slightly more detail. 

 

Answer_E_3: 

 

We have slightly expanded the explanation of the correspondence on page 41. Also, in Tetris players are not just 

doing mental rotation (also translation, which we added), because they also have to decide whether and where the 

rotated piece fits in the rest of the puzzle. 

 

 

Comment_E_4: 

 

Finally, I do notice there are several typos in this manuscript (e.g., stray apostrophe on p. 9, middle; missing 

determiner "the" in "expert model" on p. 36, etc.). I suggest proofreading it carefully to ensure that there are no 

errors or awkward phrasings. 

 

Answer_E_4: 

 

We have corrected the grammatical errors. 

 

 

 

 

Answers to the comments from Reviewer #1 

 

Comment_R1_1: 
 

The distinction between experts and novices is solely based on speed. The slowest 7 subjects are novices and the 7 

fastest subjects are experts. There are two problems with this. First, there are only 14 subjects in the experiment, and 

each subject performed only 60 trials so this is a very small amount of data (840 trials). Second, Figure 3a shows 

that reaction times for the fastest novice and slowest expert are virtually the same. There is no natural separation, 

and the distinction between novices and experts is arbitrary. 

 

Answer_R1_1: 

 

Please, refer to Answer_E_1. 

 

 

Comment_R1_2:  

 



On p. 9, the authors state: "[We define] expertise as the relative time it takes a player to find a set." Yet, expertise in 

ACT-R is modeled by inserting rules in the model. This constitutes explicit knowledge, and there is no measure of 

whether this explicit knowledge is present in human experts. In fact, the authors state on pp. 43-44: "Perhaps, 

absence of explicit meta-cognitive control can explain why SET players are often unable to clearly describe their 

strategy." This is a contradiction between what is assumed of the subjects, and how they are modeled (In Anderson 

et al., 2004, knowledge structures in ACT-R are explicit). 

 

Answer_R1_2:  

 

There is no clear mapping between the notions of implicit and explicit memory onto knowledge structures in ACT-

R. Procedural knowledge typically cannot be considered as explicit knowledge, because the cognitive system has no 

direct access to them. Declarative knowledge is used to model aspects of both implicit and explicit memory and 

learning: a particular fact can be considered as explicit knowledge, but a collection of experiences onto which a 

skills can draw typically has the characteristics of implicit knowledge. In the Set model, an aspect of expertise 

consists of declarative rules that help in the prediction of the third card. The knowledge itself is explicit in the sense 

that the model knows that green is the third color if the other two are red and blue. But that does not mean that the 

model's problem solving process in which this knowledge is used is fully open to introspection and subsequent 

reporting. 

Anderson often draws parallels between ACT-R’s vision module and declarative module (In Anderson, 2004, How 

can the human mind occur in the physical universe: Human associative memory). Chunk in a visual-location buffer 

is not explicit knowledge until it is encoded into visual buffer. Similarly, chunk in declarative memory is not explicit 

until it is retrieved. 

 

 

Comment_R1_2:  

 

Finally, although this paper focuses on the distinction between novices and experts, most analyses pool expert and 

novice data together. The only exceptions are reaction x set level (figure 3b) and strategy switch (Fig. 8b). If experts 

and novices are truly different, differences should emerge in other measures, and it would be wrong to perform 

pooled analyses. 

 

Answer_R1_2:  

 

The distinction between expert and novice players is not the main focus of this paper. However, we do agree that 

fast and slow players differ in measures other than mentioned in this paper. For example, mean fixation duration for 

faster players is shorter than fixation duration for slower players. Similarly, slower players need more fixations to 

verify if three cards make a set. However, there are two reasons why we did pooled analysis in certain parts of this 

paper and did not mention differences in other measurements. Firstly, it is due to space limit for the manuscript, and, 

secondly, ACT-R as a cognitive architecture does not provide means to model to level of details necessary for those 

measurements (fixations durations for example). Nevertheless, in the current version of the manuscript we did 

separate analysis of fast and slow players for three main effects on which major content of the paper is based: 

reaction times with respect to set level (Figure 3a, page 13), usage of dimension reduction (Figure 7a, page 19) and 

transition to a dissimilarity-based search (Figure 7b, page 19). 


