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Abstract 

Because of limited cognitive resources, humans use heuristics 
in problem solving and decision-making. We argue that 
reasoning about mental states also comprises the use of 
heuristics. This has been tested in sequential games, in which 
one player’s outcomes depend on another player’s decisions. 
Empirical findings show that participants apply simple 
strategies, or heuristics, for as long as these yield expected 
outcomes. However, participants were able to revise their 
strategies when presented with superficially similar but more 
difficult games. We have built a flexible and task-general 
computational cognitive model that can simulate these 
findings. The model uses a heuristic for as long as the 
heuristic yields expected outcomes. If the model’s decisions 
yield suboptimal outcomes, the model updates its strategy 
level. This updating can be considered a deliberate process, as 
it is based on an interaction between factual knowledge and 
problem solving skills. 

Keywords: Theory of mind; sequential games; cognitive 
model; decision making; heuristics. 

Introduction 
In social interactions we try to predict others’ behavior by 

reasoning about their goals, intentions, beliefs, and other 
mental states. Reasoning about mental states requires a 
theory of how minds work. This theory has often been 
referred to as theory of mind, abbreviated ToM (Wellman, 
Cross, & Watson, 2001). ToM has been implemented in 
computational cognitive models before (Hiatt & Trafton, 
2010; Van Maanen & Verbrugge, 2010). However, these 
models either simulated one specific instance of ToM (Hiatt 
& Trafton, 2010) or attributed too much rationality to 
human reasoning (Van Maanen & Verbrugge, 2010). In 
contrast, we present a model that simulates task-dependent 
application of various ToM levels, ranging from simple 
heuristics to recursive ToM. 

Many studies show suboptimal reasoning about mental 
states, particularly in two-player sequential games (e.g., 
Flobbe, Verbrugge, Hendriks, & Krämer, 2008; Hedden & 
Zhang, 2002; Raijmakers, Mandell, Van Es, & Counihan, 
2013). Sequential games require reasoning about complex 
mental states, because Player 1 has to reason about Player 
2’s subsequent decision, for which Player 2 in turn has to 
reason about Player 1’s subsequent decision. A possible 
explanation for suboptimal performance is that we can never 
be sure whether our ideas about someone else’s mental 
states are truly correct. By means of hypothesis testing, we 
try and figure out which theory works best in predicting 
behavior (Gopnik & Wellman, 1992). However, a particular 
action or behavior can have many possible mental state 

interpretations (Baker, Saxe, & Tenenbaum, 2009), and 
testing these strains our cognitive resources.  

To alleviate strain on cognitive resources, humans 
oftentimes start testing simple theories, or experience-based 
techniques that have been proven successful before (Todd & 
Gigerenzer, 2000). Experience-based techniques or so-
called heuristics persist for as long as they yield 
expectations that come true. We argue that reasoning about 
mental states also comprises the use of heuristics, as 
cognitive resources are strained when applying ToM (e.g., 
Qureshi, Apperly, & Samson, 2010). In fact, Raijmakers et 
al.’s study about mental state reasoning implies that 
participants might have used heuristics: Children 
consistently used simple strategies that were incongruent 
with the logical structure of the games presented to them.  

In this study, we present a computational cognitive model 
that shows how suboptimal reasoning about mental states is 
due to the use of heuristics. Here, we regard heuristics as 
simple strategies that prove themselves successful even 
though they do not take into account all task aspects. The 
model starts out using a simple heuristic, and gradually 
revises the heuristic when its decisions yield unexpected 
suboptimal outcomes. This revising can be considered a 
deliberate process, based on an interaction between factual 
knowledge and problem solving skills, similar to Van Rijn, 
Van Someren, and Van der Maas’s (2003) model of 
children’s developmental transitions on the balance scale 
task. The model can be generalized to other two-player 
games, because it reuses a small set of production rules 
when reasoning about increasingly more complex mental 
states. The idea of reusing a small set of production rules is 
inspired by Taatgen’s primitive elements theory, which he 
presented in his paper on the nature and transfer of cognitive 
skills (Taatgen, 2013). Before we explain the model, we will 
first explain what task was used to measure reasoning about 
mental states.  

Sequential games 
The two-player sequential games in this study can be 

represented by the graph in Figure 1. Each end node 
contains a pair of payoffs, left-side payoffs belonging to 
Player 1 and right-side payoffs belonging to Player 2. The 
end node in which a game is stopped determines the payoff 
each player obtains in that particular game. Each player’s 
goal is to obtain his or her greatest attainable payoff. As a 
player’s outcome depends on the other player’s decision, 
both players have to reason about each other’s mental states. 
Participants are always assigned to the role of Player 1, and 



decide at the first decision point whether to stop the game at 
A or to continue to the next decision point, which is Player 
2’s decision between his payoff in B and his payoff in either 
C or D, which in turn depends on Player 1’s decision 
between Player 1’s payoffs in C and D. Thus, before making 
a decision at the first decision point, participants have to 
reason about Player 2, who in turn has to reason about 
Player 1’s subsequent decision. In other words, participants 
have to apply second-order ToM when making a decision.  

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)  
Figure 1: An extensive form representation of a two-player 

sequential game. Player 1 decides first, Player 2 second, and 
Player 1, again, third. Each end node has a pair of payoffs, 
of which the left-side is Player 1’s payoff and the right-side 

Player 2’s payoff. Each player’s goal is to obtain their 
highest possible payoff. In this particular game, the highest 

possible payoff for Player 1 is a 4, which is obtainable 
because Player 2’s highest possible payoff is located at the 

same end node (i.e., B). Player 2’s payoff of 4 is not 
obtainable because Player 1 would decide left instead of 

right at the third decision point. 

Empirical findings 
In a previous study about second-order ToM reasoning in 

sequential games, participants’ performance was 
significantly influenced by the type of training presented to 
them (Meijering, Van Rijn, Taatgen, & Verbrugge, 2011). 
In stepwise training, participants were familiarized with 
sequential games by successively presenting each additional 
decision point, and thus each ToM level, in subsequent 
blocks of games (Figure 2). This procedure facilitates 
embedding the application of second-order ToM in the 
decision making process. In undifferentiated training, in 
contrast, participants were immediately presented with 
games that had three decision points. However, these games 
could be considered ‘easier’ to play than the superficially 
similar but more difficult game in Figure 1. The ‘easy’ or 
so-called trivial games in undifferentiated training (see 
Figure 2, rightmost panel) required first-order ToM at most: 
As Player 2’s payoff in B is either lower or higher than both 
his payoffs in C and D, Player 1 would only have to reason 
about Player 2 considering his own payoffs, irrespective of 
Player 1’s decision at the third decision point. First-order 
ToM would suffice during undifferentiated training but not 
anymore during the experimental phase, which consisted of 
truly second-order games. Participants who had received 

stepwise training performed better during the experiment 
than participants who had received undifferentiated training 
(Figure 5).  

Based on our cognitive model, we argue that participants 
in the undifferentiated training condition fell prey to using 
heuristics. As application of first-order ToM was sufficient 
during undifferentiated training, participants strengthened 
the corresponding “ToM1” strategy level, whereas higher 
strategy levels would have yielded correct decisions as well. 
However, from the start of the experimental phase, first-
order ToM did not suffice anymore. Consequently, 
participants in the undifferentiated training condition 
performed worse in the experimental phase than participants 
in the stepwise training condition, whose reasoning had 
been scaffolded by subsequent blocks of increasingly 
higher-order ToM games during stepwise training. 

Computational cognitive model 
The model is implemented in the ACT-R cognitive 

architecture (Anderson, 2007), and it can be downloaded 
from http://www.ai.rug.nl/~meijering/iccm2013. Our model 
is based on an interaction between factual knowledge and 
problem solving skills. Arslan, Taatgen, and Verbrugge 
(2013) successfully modeled the development of second-
order ToM using a similar approach. Factual knowledge is 
represented by chunks in declarative memory, which store 
what strategy the model should be using. The problem 
solving skills, or strategy levels, are executed by 
(recursively) applying a small set of production rules. The 
model plays the same payoff structures (i.e., items) as were 
presented to the participants. The goal is to make decisions 
that yield the greatest possible payoff. Decisions are either 
stop the game or continue it to the next decision. 

The model’s initial strategy, or heuristic, is to consider 
only its own decision at the first decision point and to 
disregard any future decisions. The model’s decision is 
based on a comparison between its (i.e., Player 1’s) payoff 
in A and the maximum of its payoffs in B, C, and D. If the 
model’s payoff in A is greater, the model will decide to 
stop. Otherwise, the model will decide to continue. 

This strategy will work in some games but not in all. 
Whenever the strategy works, the model receives positive 
feedback and stores in declarative memory what strategy it 
is currently using. In fact, the model stores a strategy level, 
which is 0 in the case of the heuristic described above. 
Whenever the strategy does not work, the model receives 
negative feedback and stores in declarative memory that it 
should be using a higher strategy level (e.g., level 1). 

The higher strategy level means that the model should 
attribute whatever strategy level it was using previously to 
the other player at the next decision point. In the case of 
strategy level 1, the model attributes the model’s initial 
heuristic to Player 2. Accordingly, the model is applying 
first-order ToM, as it reasons about the mental state of 
Player 2, who considers only his own payoffs and disregards 
future decisions. 



Again, this strategy will work in some games but not in 
all. Whenever it does not work, the model receives negative 
feedback and stores in declarative memory that it should be 
using a higher strategy level (e.g., level 2). At a higher 
strategy level, the model will attribute whatever strategy 
level it was using previously to Player 2. At strategy level 2, 
the model attributes strategy level 1 to Player 2, who in turn 
will attribute strategy level 0 to the player deciding at third 
decision point: Player 1. Now the model is applying second-
order ToM. 

Assumptions 
The model is based on two assumptions. The first 

assumption is that participants, unfamiliar with sequential 
games, start playing according to a simple strategy that 
consists of one comparison only: Participants compare their 
current payoff, when stopping the game, against the 
maximum of all their future payoffs, when continuing the 
game. This simple strategy can be considered a heuristic, as 
participants who are using it ignore the consequences of 
possible future decisions.  

Our second assumption is that participants attribute their 
own strategy to the other player whenever the other player, 
at the second decision point, makes a decision that yields a 
payoff incongruent with the participant’s expected outcome. 
If participants obtain expected outcomes, they do not have 
to revise their strategy. However, if participants obtain 
unexpected outcomes, they have to acknowledge that the 
unexpected turn of events was caused by the other player 
deciding at the next decision point. Reasoning about the 
other player, participants can only attribute a strategy they 
are familiar with. This idea is based on variable frame 
theory (Bacharach & Stahl, 2000). For example, if two 
persons have to select the same object from a set of objects 
with differing shapes and colors but one person is 
completely colorblind, the colorblind person cannot 
distinguish the objects based on color, nor can he predict 
how the other would do that. The colorblind person can only 
predict or guess what object the other would select based on 
which shape is the least abundant. The same applies to 

reasoning about others: We can only attribute to others 
goals, intentions, beliefs, strategies and/or heuristics that we 
are familiar with ourselves. 

Mechanisms 
The simple strategy or heuristic is implemented in two 

production rules. The first production rule determines what 
the payoff will be when stopping the game; the other 
production rule determines what the highest future payoff 
could possibly be when continuing the game. Both 
productions are executed from the perspective of whichever 
player is currently deciding (Figure 3). The model will 
attribute this simple strategy from the current decision point 
to the next, each time the model updates its strategy level 
(i.e., incrementing strategy level by one). The model will 
thus heighten its level, or order, of ToM reasoning. 

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)

Player 1

Player 2
A (2, 1)

B (3, 2) C (1, 3)

Player 1

A (2, 1) B (1, 3)

4 zero-order games 8 !rst-order games 8 second-order games

Player 1

Player 1

Player 2
A (3, 1)

B (4, 2)

C (2, 4) D (1, 3)

24 trivial games  
 

Figure 2: Extensive forms of example games. Stepwise training consisted of 4 zero-order, 8 first-order, and 8 second-
order games. Undifferentiated training consisted of 24 trivial games. 
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Figure 3: Simplified representation of heuristic. In the left 
panel, the model compares its payoff if it would stop (light 

blue) against its maximum possible payoff if it would 
continue (dark blue). In the right panel, the model 

compares Player 2’s payoff if Player 2 would stop (light 
orange), against Player 2’s maximum possible future 

payoff (dark orange). The left panel schematically 
represents the application of zero-order ToM, and the right 

panel the application of first-order ToM. 
 



 
Zero-order ToM Before the model starts applying its 
strategy, it needs to construct a game state representation to 
store the payoffs that are associated with a stop and continue 
decision, respectively. To construct a game state, the model 
first retrieves from declarative memory what strategy level 
it is currently using. At the beginning of the experiment, 
strategy level has a value of 0, which represents the simple 
strategy. After retrieving strategy level, the model constructs 
its current game state. 

Starting with the simple strategy, the model will 
determine its own stop and continue payoffs (see Figure 3, 
left panel), which will be stored in the game state 
representation. The model will then compare these payoffs 
and make a decision. After the model has made a decision, 
it will update declarative memory by storing what strategy 
level the model should be playing in the next game: If the 
model’s decision was correct, the model should continue 
playing its current strategy level; otherwise the model 
should be playing a higher strategy level. 

After playing a couple of games in which the simple 
strategy (i.e., level 0) does not work, the higher strategy 
level (i.e., level 1) will have a greater probability of being 
retrieved, as its base-level activation increases more than the 
simple strategy’s base-level activation. At the start of the 
next few games, before the model constructs its game state, 
it will begin retrieving strategy level 1 from declarative 
memory. 

 
First-order ToM Playing strategy level 1, the model will 
first determine what payoff is associated with a stop 
decision at the first decision point. However, before 
determining what payoff is associated with a continue 
decision, the model considers the next decision point (i.e., 
decision point 2) and attributes strategy level 0 to Player 2, 
who is deciding there. 

The model will apply strategy level 0, but from the 
perspective of Player 2 (Figure 3, right panel). When 

reasoning about Player 2’s decision, the model constructs a 
new game state, which references the previous one, to which 
it needs to jump back. The model will execute the same 
production rules that it executed before when it was playing 
according to strategy level 0: It will determine what payoffs 
are associated with stop and continue decisions, but from 
the perspective of Player 2. 

If the model would apply zero-order ToM from its own 
perspective, it would make a decision if it had determined 
the payoffs associated with stop and continue decisions. The 
model would make a decision because it would not have a 
previous game state to jump back to. However, the model’s 
current game state representation references a previous one, 
and therefore the model will backtrack to that previous 
game state representation. Note that the previous game state 
did not have a payoff associated with a continue decision. 
However, the payoff associated with that continue decision 
can now be determined based on the current game state (i.e., 
Player 2’s decision). The model will retrieve the previous 
game state from declarative memory. 

After retrieving the previous game state representation, 
the model has two game states stored in two separate 
locations, or buffers: The current game state is stored in 
working memory, or the problem state or imaginal buffer 
(Anderson, 2007, Chapter 1), and the previous game state is 
stored in the retrieval buffer. The model will determine 
what payoff is associated with a continue decision in the 
previous game state (stored in the retrieval buffer) given the 
decision based on the current game state (in the problem 
state buffer). It will update the previous game state and 
store it in working memory. 

Playing strategy level 1 and being back in the previous 
game state, there is no reference to any previous game state 
and the model will make a decision based on a comparison 
between the payoffs associated with the stop and continue 
decisions. As explained previously, the model will stop if 
the payoff associated with stopping is greater; otherwise the 
model will continue. 
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Figure 4: Proportion of models that apply strategy level 0, 1, and 2; plotted as a function of trial. The left panel 
depicts these proportions for the model that received undifferentiated training; the right panel depicts the proportions 

for the model that received stepwise training.  



Again, after the model has made a decision, it will update 
declarative memory by storing what strategy level the model 
should be playing in the next game(s). If the model’s 
decision is correct, it will apply the current strategy level. 
Otherwise, the model will revise its strategy level by storing 
in declarative memory that it should be using strategy level 
2 in the next game(s).  

 
Second-order ToM The model will first determine what 
payoff is associated with stopping the game and then 
consider the next decision point. There, the model proceeds 
as if it were playing strategy level 1, but from the 
perspective of Player 2. In other words, the model is 
applying second-order ToM. 

The strategy described above closely fits the strategy of 
forward reasoning plus backtracking (Meijering, Van Rijn, 
Taatgen, & Verbrugge, 2012). Meijering et al. conducted an 
eye-tracking study, and participants’ eye movements 
reflected a forward progression of comparisons between 
payoffs, followed by backtracking to previous decision 
points and payoffs when necessary. Such forward and 
backward successions are present in strategy level 2 as well: 
Payoffs of stop decisions are determined one decision point 
after another, and this forward succession of payoff 
valuations is followed by backtracking, as payoffs of 
previous continue decisions are determined in backward 
succession. 

Results 
The model was presented with the same trials as in 

Meijering et al.’s (2011) study, with stepwise training 
versus undifferentiated training as a between-subjects factor. 
The model was run 100 times for each training condition. 
Each model run consisted of 20 (stepwise) or 24 
(undifferentiated) training games, followed by 64 truly 
second-order games. The results are presented in figures 4 
and 5. 

Figure 4 shows the proportions of models that apply 
strategy level 0, 1, and 2, calculated per trial. The left panel 
of Figure 4 shows the output of 100 models that received 24 
undifferentiated training games before playing 64 second-
order games. As can be seen, initially all models apply 
strategy level 0, corresponding with zero-order ToM, but 
that proportion decreases quickly in the first couple of 
games. The proportion of models applying zero-order ToM 
decreases because that strategy yields too many errors, 
which can be seen in Figure 5. Therefore, models start 
applying strategy level 1, corresponding with first-order 
ToM. The proportion of models that use strategy level 1 
increases up to 100% towards the end of the 24 
undifferentiated training games. Models do not start 
applying strategy level 2, because strategy level 1 yields 
correct decisions in each of the undifferentiated training 
games, which can be seen in Figure 5. However, in the 
experimental games, which are truly second-order games, 
strategy level 1 yields too many errors, and models start 
applying strategy level 2, which corresponds with second-
order ToM. Initially, the accuracy drops, but it increases 
again as a greater proportion of models start applying 
second-order ToM, as can be seen in Figure 5. 

The right panel of Figure 4 shows the output of 100 
models that were presented with 20 stepwise training games 
(4 zero-order, 8 first-order, and 8 second-order games) 
before playing 64 second-order games during the 
experimental phase. As can be seen, all models start 
applying strategy level 0, and they use it longer than the 
models that received undifferentiated training. The reason is 
that strategy level 0 yields the correct answer in the first 
four games during stepwise training, because those are zero-
order games. As can be seen in Figure 5 (right panel), 
accuracy is 100% in the first few games. In the next eight 
first-order training games (Trials 5 – 12), the proportion of 
models that apply strategy level 0 decreases, as strategy 
level 0 yields too many errors. Simultaneously, the 
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Figure 5: Proportion correct decisions, or accuracy, across subjects (left panel) and models (right panel). The solid lines 
in the left panel represent the fit of statistical model, which is added to visualize the proportion trends. 



proportion of models applying strategy level 1 increases. In 
the next eight second-order training games (Trials 13 – 20), 
the proportions of models that apply strategy levels 0 and 1 
decrease, as both strategy levels yield too many errors. 
Simultaneously, the proportion of models applying strategy 
level 2 increases. As strategy level 2 yields a correct 
decision in the remainder of the games, accuracy increases 
up to ceiling, which can be seen in Figure 5 (right panel). 

The accuracy trends in the models’ output qualitatively fit 
the accuracy of the participants in Meijering et al.’s study 
(Meijering et al., 2011). The quantitative differences are 
probably due to the fact that not all participants start out 
with the simple heuristic, whereas all models do. Some 
participants probably start with intermediate-level strategies, 
and due to large proportions of optimal outcomes, do not 
proceed to the highest level of reasoning. The model trends, 
changing as a function of type of game, correspond with our 
prediction that humans use heuristics, or simple strategies, 
for as long as these yield expected outcomes. 

Conclusions 
Based on previous empirical findings (Meijering et al., 

2011) and our computational cognitive model, we argue that 
humans use heuristics when reasoning about others. We 
show that interplay between factual knowledge and problem 
solving skills, in contrast to a more implicit process of 
utility learning (Taatgen & Anderson, 2002; Van Rijn et al., 
2003), allows the model to exploit the possibility of using 
simple strategies, not considering all task aspects. Although 
the update rule to assign a particular strategy to the other 
player might seem simplistic at first sight, the model does 
gradually master second-order ToM. As the model does not 
need to have task-specific productions rules, the model is 
flexible and can accommodate many two-player sequential 
games. 

The methodological implication of this study is that 
experimenters should be careful in selecting ‘practice’ 
items, as participants exploit the possibility of using 
heuristics when possible. The theoretical implication is that 
participants do not necessarily perceive sequential games in 
terms of interactions between mental states. They know that 
there is another player making decisions, but they have to 
learn over time, by playing many games, that the other 
player’s depth of reasoning could be greater than initially 
thought. Over time, participants’ reasoning becomes as 
simple as possible, as complex as necessary. 
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