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Abstract 

In this paper we present a new, data-driven mapping of five 
ACT-R modules on the brain. In the last decade, many studies 
have been published that evaluated ACT-R models based on 
their ability to predict fMRI data in certain predefined brain 
regions. However, these predefined regions were based on a 
reading of the literature, and might not be optimal. Currently, 
we used the results of a model-based fMRI analysis of five 
datasets to define a new brain mapping for the problem state, 
declarative memory, manual, visual, and aural modules. Both 
the original and the new mapping were applied to data of an 
experiment that elicited differential activity in these five 
modules; the results were compared to model predictions. The 
new mapping performed slightly better for the problem state, 
declarative memory, aural, and manual modules, but not for 
the visual module. In addition, it provides a more principled 
way of validating ACT-R models. Although the mapping is 
ACT-R specific, the methodology can be use to map any 
cognitive architecture or model to the brain. 
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Introduction 
Computational cognitive models often have an internal 
complexity that cannot be adequately assessed using only 
behavioral measures (Anderson, 2007; Myung, 2000; Pitt & 
Myung, 2002; Roberts & Pashler, 2000). Computational 
models typically provide a moment-by-moment account of 
cognition with a millisecond time resolution. In contrast, 
reaction times and accuracy are cumulative measures that 
give some indication of what happened during a task, but do 
not provide a moment-by-moment account. This situation is 
problematic, because the cognitive steps that lead up to a 
response can often be arranged in different ways (see e.g., 
Borst et al., 2010, Figure 2; Marewski & Mehlhorn, 2011). 
In the last decade, researchers have turned to eye 
movements (e.g., Salvucci, 2006) and neuroimaging data 
(e.g., Anderson, 2007; Just & Varma, 2007) for additional 
constraints and guidance in developing cognitive models. 

To constrain and validate models developed in the ACT-R 
cognitive architecture a methodology was developed to 
predict fMRI data (for introductions, see Anderson et al., 
2008; Borst & Anderson, 2013a). ACT-R simulates 
cognition as a set of independent modules that function 
around a central procedural module. There are modules for 
perception (visual, aural) and action (manual, vocal), and 
several central cognitive modules. These modules have been 
mapped onto small regions-of-interest (ROIs) in the brain, 
which are assumed to be active when the corresponding 

module is active. By convolving model activity with a 
hemodynamic response function, one can predict the Blood-
Oxygen-Level-Dependent (BOLD) response in these 
regions – which can subsequently be compared to fMRI 
data to evaluate the model. 

Although this approach has been very successful in the 
last decade – http://act-r.psy.cmu.edu/mri/ lists over 50 
publications that apply this methodology – the predefined 
mapping of modules on brain regions was based on a 
reading of the literature, and might therefore not be optimal. 
In this paper we will derive a new, data-driven mapping for 
five ACT-R modules from results presented in Borst and 
Anderson (2013b). To test the new mapping, we applied 
both the original and the new mapping to data of a 
multitasking experiment that was designed to elicit 
differential activity in the five ACT-R modules of interest 
(Nijboer et al., 2013). 

In the next section we will discuss the Borst and 
Anderson study on which we based the new mapping. 
Afterwards we will describe the new ROI definitions and 
the experiment, followed by the results. We finish with a 
discussion. 

Meta-model-based fMRI 
To find the neural correlates of five ACT-R modules, Borst 
and Anderson (2013b) applied model-based fMRI to five 
existing datasets with associated ACT-R models. Model-
based fMRI is a relatively recent method for analyzing 
fMRI data (e.g., Gläscher & O’Doherty, 2010). Instead of 
regressing the condition-structure of the experiment against 
the fMRI data, as is conventionally done, predictions 
derived from a computational model are regressed against 
the data. Thus, instead of showing where a certain 
experimental condition elicits activity in the brain, the 
method reveals which brain regions correspond to certain 
model constructs. Model-based fMRI has been successfully 
applied to locate regions involved in reinforcement learning 
(e.g., Daw et al., 2006) and decision making (e.g., Gluth, 
Rieskamp, & Büchel, 2012; van Maanen et al., 2011). 
Although the method is typically used with parameter 
values of mathematical models, we have previously shown 
that it also can be used with computational models, such as 
ACT-R (Borst, Taatgen, & Van Rijn, 2011). 

Borst and Anderson (2013b) used model-based fMRI to 
locate the neural correlates of five ACT-R modules: the 
problem state (also referred to as the imaginal module), 
declarative memory, aural and visual perception, and right-



manual actions. These modules were localized in five 
existing datasets with associated ACT-R models, which 
ranged from paired-associate learning to multitasking. The 
results of these fives sets of analyses were combined in a 
meta-analysis to obtain a mapping that was independent of 
idiosyncrasies of the tasks and models. 

As expected, ACT-R’s right-manual model was localized 
in the left motor cortex, extending from the precentral 
gyrus, through the postcentral gyrus, into the parietal lobe. 
The aural module mapped onto a region around the superior 
temporal gyrus in both hemispheres. The visual module 
correlated significantly with activity in the left and right 
middle occipital gyri, extending into the inferior parietal 
lobules. Both the problem state and declarative memory 
modules correlated significantly with activity around the 
inferior frontal gyrus and the anterior cingulate. In addition, 

the problem state module mapped onto an extensive region 
around the intraparietal sulcus. 

To further dissociate the neural correlates of the problem 
state module and declarative memory, Borst and Anderson 
investigated for which regions the declarative memory 
predictions explained significantly more variance than the 
problem state predictions and vice versa. This revealed a 
region in the inferior frontal gyrus for declarative memory, 
and, not surprisingly, the region around the intraparietal 
sulcus for the problem state module. 

In the next section we will use these results to develop 
new ROIs for these five modules. 

Methods 
ROI definition 
To create new ROIs we used the meta-analysis of Borst and 
Anderson (2013b). We thresholded their results on p < 10-7

 
and at least 250 voxels per cluster. For the manual, visual, 
and aural modules, we then took the most significant voxel 
as a seed, and repeatedly selected the most significant voxel 
bordering the currently selected region, until we reached 
100 voxels.1 

For the problem state and declarative memory modules 
we followed the same procedure, except that we took the 
most significant voxels of the dissociation analysis as a 
seed. That is, for the problem state module we used a voxel 
close to the intraparietal sulcus as a seed, and for declarative 
memory a voxel close to the inferior frontal gyrus. These 
voxels were best in dissociating between problem state and 
declarative memory contributions to the BOLD signal, and 
will consequently lead to ROIs that can be used most 
successfully to distinguish between those modules.  

For reasons that will become clear below, we also defined 
a second manual ROI. Instead of using all results from the 
meta-analysis, we restricted ourselves to voxels in the 
precentral gyrus (as defined in the aal atlas; Tzourio-
Mazoyer et al., 2002; inspired by Gluth et al., 2012). It is 
well known that the primary motor cortex is located in this 
region, which might improve the results.2 Because only 80 
significant voxels remained, this ROI is slightly smaller 
than the others. 

As described above, we took the most significant voxel 
for each module as a seed. For all modules this voxel was 
located in the left hemisphere, yielding left-hemisphere 
ROIs. We mirrored those ROIs to additionally create right-
hemisphere ROIs. 

The resulting ROIs are shown in Figure 1, in yellow. The 
white squares indicate the original mapping of ACT-R on 
the brain. For most modules the original and the new 

                                                             
1 100 voxels is a somewhat arbitrary size. However, it results in 

ROIs that are small enough to yield a precise signal, while being 
large enough to account for anatomical and functional brain 
differences between subjects. 

2 We only used this approach for the motor region, because we 
know from the literature exactly where it should be located. For the 
other modules this is less clear; even for the aural and visual 
modules one could choose several different regions. 
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Figure 1. The new ROI-definitions. Yellow indicates the 
new ROIs, the white squares indicate the old, predefined 
mapping. 



mapping at least partly overlap. However, the new mapping 
follows brain structures, unlike the original mapping. In 
addition, the new ROI for the problem state is more anterior 
than in the original mapping, and the new visual ROI is in a 
different location than the original ROI (located in the 
fusiform gyrus; x = -43, y = –60, z = –16). The new ROIs 
can be downloaded from http://www.jelmerborst.nl/models, 
both as binary images and MarsBar ROI definitions for use 
with SPM (Brett et al., 2002). 

Predicting the BOLD response 
The reason for having a mapping between ACT-R and the 
brain is that it can be used to evaluate models. To this end, 
one can generate BOLD predictions for each ACT-R 
module by convolving the module’s activity with the 
hemodynamic response function, and subsequently compare 
these predictions to the measured BOLD response in the 
ROIs. 

Figure 2 demonstrates how one can predict the BOLD 
response. Panel A shows a hemodynamic response function 
(HRF; e.g., Friston et al., 2007), which simulates the BOLD 
response in reaction to neural activity at time 0. Panel B 
shows the effect of convolving module activity (in gray) 
with this HRF. The size of the predicted BOLD response 
depends on the duration and the number of module actions. 
Panel C gives an example of this procedure applied to the 
problem state and manual modules of an actual model 

(Borst et al., 2010). For more details, equations, an example 
model, and Matlab code to generate BOLD predictions, 
please see Borst and Anderson (2013a). 

Experiment 
To compare the new mapping to the original mapping we 
applied them to an fMRI dataset of Nijboer et al. (2013). In 
their experiment, 16 subjects were asked to perform three 
different tasks: a visual tracking task, an n-back task, and a 
tone-counting task. The tasks had to be performed both in 
isolation as well as in combination (e.g., n-back and tone 
counting concurrently), resulting in six different conditions. 

In the visual tracking task, subjects were asked to track a 
horizontally moving dot on the screen by pressing right and 
left keys with their right hand. 

In the tone-counting task, 20 tones were presented at 
pseudo-random intervals in a 30 second period. Tones could 
either be high or low; subjects were instructed to only count 
high tones (10-17 per trial). During the tone-counting task a 
fixation cross was presented in the center of the screen, 
subjects were asked to give a response after the trial. In the 
single task and in the tone-counting & n-back condition this 
response was given with the right hand, in the tone-counting 
& tracking condition it was given with the left hand. 

In the n-back task a stream of letters was presented on the 
screen. Each letter was displayed for 1000 ms, followed by 
a 1500 ms blank between letters. For each letter, subjects 
had to indicate whether it was the same or different as the 
letter 2-back, using their left hands. 

In the dual-task conditions, both tasks were displayed on 
the screen at the same time. Trials lasted 30 seconds in all 
conditions, followed by a 10 second response period in the 
tone-counting conditions. This corresponds to a total of 20 
2-second fMRI scans. For details on subjects, stimuli, and 
procedure, see Nijboer et al. (2013). 

Results 
We will discuss the results on a module-by-module basis. 
For each module, we will discuss model predictions and 
results in the original and in the new ROI. To generate 
model predictions we used the model of Nijboer et al. 
(2013). The model predictions were generated before the 
experiment was run; no attempt was made at fitting the 
predictions to the results.  This makes it an unbiased – and 
therefore suitable – dataset for comparing the performance 
of the original and the new ROIs. Figure 3 shows the results 
for the problem state, declarative memory, aural, and visual 
modules; Figure 4 shows the results for the right and left 
manual modules. R2-values are reported in the figures. 

Problem State 
ACT-R’s problem state module is used for maintaining 
information that is necessary to perform a task (e.g., 
Anderson, 2007; Borst et al., 2010). It can contain one 
chunk of information at a time and is similar in that respect 
to working memory in recent theories (e.g., Oberauer, 
2009). 
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The model assumed that the problem state module was 
required for the n-back task and for the dual-task conditions 
involving the n-back task. For n-back & tone counting it 
predicted additional activity (see Nijboer et al., 2013, for 
details). The original, predefined ROI indeed showed 
activity for all conditions involving the n-back task. In 
addition, it showed an increase at the end of the trial for 
conditions involving tone counting, which is probably 
related to giving a response for this task. The new, data-
driven ROI shows a similar pattern, except that the 
conditions were more clearly separated. That is, especially 
n-back & tone counting maintained activity throughout the 
trial. Neither ROI showed any evidence of the predicted 
large increase in the n-back and tone-counting condition 
(indicating that the model should be improved, see Nijboer 
et al., 2013). 

Declarative Memory 
Declarative memory is ACT-R’s memory for facts. Activity 
in the ROI is assumed to reflect retrieving facts from 
memory, not passive storage. The model predicted a very 
similar pattern for declarative memory as for the problem 
state. It expected considerable activity in the various n-back 

conditions, and a very small amount of activity in the tone-
counting conditions (related to retrieving counting facts 
from memory). 

Both the predefined and the new ROI show activity for 
the n-back conditions, and some activity for the tone-
counting conditions. The results in the new ROI seem 
slightly cleaner, with higher activity levels overall, and 
therefore a little more activity in the tone-counting 
conditions. The differences were minor, however. 

Aural 
The aural module processes sounds. In the current model it 
was used to listen to the tones and determine whether they 
were high or low. Both the original and the new ROI 
showed a clear response to the tone-counting conditions. 
However, the new ROI showed sustained activity levels, 
while the levels returned to baseline halfway the trial in the 
original ROI for the dual-task conditions. In addition, the 
conditions not involving sounds were more closely together 
in the new ROI, thereby presenting a clearer separation 
between conditions with and without sound. 

Figure 3. Model predictions and results for the problem state, declarative memory, aural, and visual modules.  
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Visual 
The visual module is used for processing visual stimuli. 
According to the model, it is activated most in the tracking 
task, to a lesser extent in the n-back task, and not at all in 
the tone-counting task. The results in both ROIs were 
dissimilar from the predictions. N-back & tracking reached 
the highest activation levels in the original ROI. In addition, 
the original ROI showed intermediate activity levels for n-
back and tracking separately, and almost none or negative 
activity for the conditions involving tone counting. These 
results were not present in the new ROI, which seemed to 
exclusively reflect tracking activity. 

Manual 
Figure 4 shows the results for the manual module, 
separately for the left and the right hand of the model. Note 
that right-handed responses (tracking) will be reflected in 
the left motor cortex, and left-handed responses (n-back) in 
the right motor cortex. The final response in the tone-
counting task was given with the right hand in the single 
task and tone counting & n-back conditions, and with the 
left hand in the tone counting & tracking condition. We 
therefore expected a late peak for the single tone-counting 
and tone counting & n-back conditions in the left motor 
cortex, and for tone counting & tracking in the right motor 
cortex. The model predictions reflect these considerations. 

The results in the original, predefined ROI matched this 
pattern closely. The results in the new ROI, on the other 
hand, did not: most conditions show some activity in the left 
ROI. However, the alternative ROI, based on voxels in the 
precentral gyrus, did reflect the model predictions closely. It 
was very similar to the predefined mapping, but showed a 
less negative response in conditions that did not use the 
respective hands. 

Discussion 
The results in the new, data-driven ROIs were in general 
similar to the results in the original, predefined ROIs. This 
was not unexpected, given that the predefined ROIs have 
been applied successfully in a large number of studies. 
Although the differences were relatively minor, the new 
ROIs present a more principled, data-driven mapping of 
ACT-R on the brain, which follows anatomical brain 
structures. In addition, the new ROIs for the problem state, 
declarative memory, and aural modules were better at 
differentiating between the different conditions of the 
experiment. The BOLD response in the new manual ROI, 
based on all voxels, fitted badly to the model predictions. 
However, when we restricted the voxels to the precentral 
gyrus it also matched slightly better to the model predictions 
than the original ROI. 

The results in the new visual ROI were clearly different 
from the results in the original ROI. Whereas the BOLD 
response in the original ROI responded both to the n-back 
and tracking conditions, the new ROI responded exclusively 
to the tracking task. It seems that the new ROI is only 
involved in visual-spatial perception, whereas the original 

ROI also reflected detailed processing of the letters in the n-
back task. The regions in the respective ROIs indeed 
correspond to the dorsal ‘where’ and ventral ‘what’ streams 
of visual perception (e.g., Haxby et al., 1991; Mishkin, 
Ungerleider, & Macko, 1983). 

Because there is no ground truth, it was difficult to 
compare the two mappings (note that we do no claim that 
these are the only regions reflecting the modules’ 
processing, and neither that these regions exclusively reflect 
the modules). In the current paper we used a priori model 
predictions as a way of comparing the performance of the 
two mappings. However, the model is obviously not perfect 
(for instance, neither mapping reflected the predicted 

Figure 4. Model predictions and results for the manual 
module. 
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activity in the problem state and declarative memory 
modules; see Nijboer et al., 2013, for a discussion on the 
model). We therefore judged the mappings both on how 
well they matched the model predictions, and how well they 
could differentiate between the different conditions.  

Although the presented results are specific to the ACT-R 
cognitive architecture, we have shown that the methodology 
itself worked well. The methodology can be used for any 
cognitive architecture or model, and provides a powerful 
way of constraining and guiding modeling efforts. 

In conclusion, we would recommend using the new ROIs 
for the problem state, declarative memory, aural, and 
manual (based on the precentral gyrus) modules. With 
respect to the visual module it seems better to use the 
original predefined ROI in the fusiform gyrus, at least for 
ACT-R’s visual module. However, given that the new ROI 
seems to reflect visual-spatial activity, it might be used as an 
ROI for ACT-Rs visual-location buffer, which has not been 
mapped onto a brain region up to now. 
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