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Abstract 

The PRIMs (primitive element) cognitive architecture 
addresses the issue of deterministic programming of 
production-rules (Taatgen, 2017). Motivated by infants’ 
flexible discoveries of simple rule-like algebraic patterns (e.g., 
a-a-b, a-b-a, and a-b-b types of patterns, with variable 
individual syllable tokens), this study illustrates how the 
gradual integration of primitive operations to task-related 
contexts can be made possible through a reward-guided 
contextual learning mechanism. The promise of this 
prototypical model is demonstrated in its ability to (a) learn and 
generalize simple algebraic patterns, and (b) to account for 
infants’ differential focusing time on a learned pattern and 
other unexposed new patterns. The modeled results are 
summarized from a developmental plasticity perspective. 
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Introduction 
The ongoing presentation of distinct new micro-theories in 
cognitive psychology makes it difficult to see the forest for 
the trees (see Newell, 1990). Thanks to the advent of ACT-R 
(adaptive control of thought, rational; Anderson et al., 2004), 
seemingly disparate task-related aspects of cognition are now 
frameable within an overarching cognitive architecture. 
However, a priori programming of just one solution of a task 
again neglects other possible task-related solutions, and fails 
to capture the trial and error discovery processes observed in 
real-life task performance (see Taatgen, 2017). The need for 
modeling flexible discovery is especially motivated by infant 
learning, since young infants cannot be taught as how to 
complete a task but must arrive at their own solutions. In this 
paper, we present a model with particular focus on the 
flexible discoveries of simple algebraic patterns during 
infancy (see Marcus et al., 1999). We start by introducing the 
paradigm, and then briefly review previous models from a 
multilevel view (see Taatgen, 2017).  

Infants seem innately capable of detecting simple algebraic 
patterns, and generalize them without relying on statistical 
features of the learned patterns. In an experiment reported by 
Marcus et al. (1999), infants with brief exposure to audible 
sequential presentation of the a-b-a or the a-b-b type of 
pattern (note the symbols a and b here refer to distinctive 
syllable tokens that are variable), during the test phase 
showed longer preferential focusing time for the other 
unexposed types of patterns as compared to the just learned 
pattern. This held even when each of the syllable token within 
the pattern were drawn from a different set (e.g., focusing 
longer for “ko-ko-ga” as compared to “ko-ga-ko” at test, after 
just exposing to “le-we-le”). Recent years have seen 

replication of this phenomenon with visually presented 
patterns (for a meta-analytical review, see Rabagliati, 
Ferguson, & Lew-Williams, 2019), and its extension to more 
complex variants of algebraic patterns (see Wilson et al., 
2018). For instance, the acquisition of the a-b-a type of 
pattern is now considered a specific case of non-adjacent 
dependency learning, when an infant predicts that the first 
token a always matches the third token b. 

With sensory perception as a point of departure, some 
modelers speculated that the acquisition of algebraic patterns 
is merely a basic form of feature detection (see McClelland 
& Plaut, 1999). Nevertheless, most models were built from a 
slightly higher level of abstraction (see Altmann, 2017), in 
assuming infants to be capable of forming representations 
from features (see Saffran & Thiessen, 2007). These 
representational models implicitly assume that young infants 
can deriving relational rules from a complex representation. 
However, very young infants cannot flexibly retrieve for 
instance a syllable “le” as parsed from a complex pattern of 
“le-we-le” (see Richmond & Nelson, 2007). Even when this 
constraint is suspended, a recent biologically-inspired 
representational model is only capable of generalize simple 
algebraic patterns at chance level (Alhama & Zuidema, 2018). 
This observation calls into question whether feature and/or 
representation alone are indeed sufficient or plausible in 
explaining the acquisition of simple algebraic patterns (see 
Dawson & Gerken, 2012; Frank & Tenenbaum, 2011). 

On the contrary, models applying rule-based processes not 
only successfully modeled the learning of simple algebraic 
patterns (Seidenberg & Elman, 1999), but also stimulated a 
wide range of studies in the field of algebraic pattern 
acquisition (Frank & Tenenbaum, 2011). The Bayesian 
model of Frank and Tenenbaum (2011) demonstrated 
multiple algebraic solutions based on a hypothesis space of 
primordial rules. Moreover, the results modeled with this 
approach reflected emergent distinctions between type- and 
token-based processes (Frank & Tenenbaum, 2011). In other 
words, there is an empirical age-related distinction between 
young infants’ early capability of detecting the types of a-b-
a/a-b-b patterns; and their slightly delayed ability to detect 
the invariant a-b token pair in the a-x-b pattern where it is 
separated by a variable x (Dawson & Gerken, 2012). The 
distinction between type- and token-based processes are often 
interpreted in terms of the exogenous-to-endogenous 
transition, when early infants’ passive exogenous reactions to 
the environment are gradually augmented by their active 
endogenous flexible retrieval of information as parsed from a 
complex representation (Diego-Balaguer et al., 2016).  



How early infants might flexibly learn to recognize simple 
algebraic patterns remains to be explained. Emergent 
evidence now suggests that the infant brain possesses a 
modular architecture (see Dehaene-Lambertz & Spelke, 
2015), thus calling for its conceptual implementation in 
studying the cognition of infants. Specifically, the exogenous 
reactions can be mapped to the passive encoding and 
comparisons at various modules, and the endogenous 
processes can be mapped to the active retrieval from 
declarative memory (Colombo & Cheatham, 2006; cf., 
Stocco & Anderson, 2008). Moreover, recent evidence 
indicates that the language-related prefrontal area is already 
functional during infancy (see Dehaene-Lambertz & Spelke, 
2015), which can facilitate simple task-relevant processes 
such as the detection of syllable repetition (Bristow et al., 
2009). Nakano et al. (2009) further reported selective 
activation of the prefrontal cortex in infants upon repetition 
of a syllable, and upon alteration of the syllable, which 
demonstrates inherent sensitivity of frontal structures to the 
establishment and alteration of the task requirement. It is 
possible that frontal activation follows a reward-guided 
mechanism that integrates and strengthens the currently 
acquired adaptive skills for future use (cf., Duncan, 2010).  

Based on this empirical background, a modular and 
adaptive architecture is a well-suited tool for studying infant 
learning. Here, the PRIMs (primitive element) cognitive 
architecture is a promising candidate (Taatgen, 2013). It 
follows a modular structure pioneered by ACT-R, with 
additional prospects for the flexible discovery of rule-like 
patterns. This discovery mechanism is comprehensible from 
the perspective of functional development (see Bateson & 
Gluckman, 2011). To illustrate, initially randomly fired 
lower-level processes may occasionally lead to the successful 
detection of a repetition. This then entails a higher-level 
reward-guided mechanism that integrates various just applied 
lower-level operations to their associated task contexts, thus 
making them context-sensitive. 

In this paper, we first aim to show how simple algebraic 
patterns can be acquired and generalized. Based on that, we 
attempt to account for the empirical findings in infants’ 
focusing time differences in reacting to learned and other 
unexposed types of simple algebraic patterns. 

Model 
There follows a brief description of PRIMs operations at both 
the lower- and higher-levels.  

Primitive Operations 
The PRIMs cognitive architecture breaks down artificially 
programmed production-rules into elemental processes that 
can copy and compare information between separate slots in 
the input channel and the various memory modules (see 
Figure 1). These processes are called primitive operations, 
and they can be flexibly fired during task exploration. 

 
 

 
 

Figure 1: The PRIMs architecture for skill acquisition. 
 

This PRIMs model of infant learning includes all possible 
lower-level primitive operations that encode (e.g., encode 
information within the input channel to the working memory 
module; see Lencode) or compare (e.g., compare whether 
information within the input channel matches to the working 
memory module; see Lcompare) information between various 
modules (see Figure 1, Table 1, ik in table refers to slotk in 
chunki). However, a constraint is placed upon infants’ 
processing capacity. This constraint acknowledges that the 
infants cannot yet simultaneously process multiple 
representations (e.g., encode/retrieve distinct representations 
“le” and “we” at the same time), and neither can they retrieve 
detailed information (e.g., syllable token “le”) as parsed from 
a more complex representation (e.g., representation of the 
pattern “le-we-le”). When a condition is met for repetition 
detection, a scaffolding operation (Lscaffold) enables state 
transition to evaluation. Note that state transition to 
evaluation may also be flexibly entailed without scaffolding. 

 
Table 1: Primitive operations. 

 

Lencode 

inputik ⇏working/decl. memoryik ignore 

inputik ⇒ working/decl. memoryik encode 

working/decl. memoryik ⇒ controlik encode 

Lcompare 
inputik = working/decl. memoryik compare 

inputik ≠ working/decl. memoryik compare 

Lscaffold “evaluation”  ⇒ controlik transition 



Reward-Guided Contextual Learning 
In addition to the firing of lower-level operations, adaptive 
skills need to be arranged to satisfy and accomplish a defined 
task more efficiently. This is achieved by another higher-
level evaluation operation. In this model, the evaluation 
operation is activated only when the presented stimulus at the 
input channel matches to the stored representation at the task 
control module (Hevaluation, see Table 2). This operation 
quickly entails a reward-guided contextual learning 
mechanism that reinforces the associations of just fired 
operations with their relevant task contexts – namely, which 
operation to fire at what context. For instance, to successfully 
detect a repetition in “le-we-le”, the model always needs to 
encode the first token “le” with reference to its task contexts 
such as its general position “first” or its specific value “le”. 
Gradually, the flexible firing of operations starts forming 
robust context-sensitive skills (i.e., encode-“first”, or encode-
“le”), which may be employed during relevant future contexts. 
Primitive operations can also be compiled to process more 
efficiently (e.g., “input ⇒	memory” and “memory ⇒	control” 
may be compiled into “input ⇒	control”). 

 
Table 2: Task-related operations. 

 

Hevaluation 

inputik = controlik match 

inputik ≠ controlik mismatch 

 
In this model, the weight of contextual association between 

a certain operationj and its relevant task context - in this case 
the specific syllable token stored in sloti of modulek - is 
reflected in the following equation: 

 

∆Sjik = β ( Sjik (current trial) - Sjik (previous trial) ) 
 

in which, Sjik (current trial) = default association ⨉ ( expected 
time – actual time ) / expected time 

 
In this equation, actual time is the actual trial completion 

time, while expected time is hypothetically set initial trial 
completion time. The changing rate of the association weight 
Sjik is moderated both by (a) how efficiently the task was 
completed (when actual time < expected time) and (b) a 
learning rate parameter β. The default association sets the 
maximum weight for any contextual associations. 

Default-Mode Operations 
At the stage when the task is well learned, the firing of task-
related operations become more efficient, increasing task-
negative transitional spaces between them. The transitional 
spaces can become frequently occupied by the default-mode 
operation (Hdefault-mode, see Table 3), which are reinforced also 
by the contextual learning mechanism (cf., Smith et al., 2018). 
In other words, default-mode operation starts also to bind 
with task contexts whenever task-relevant operations are not 

active. The activation of default-mode operation is initially 
set at a low magnitude, but is gradually increased when it is 
more often fired and integrated also to the task contexts. 

 
Table 3: Default-mode operations. 

 

Hdefault-mode inputik = “empty” task-irrelevant 
processes 

 

Methods 
The modeled algebraic paradigm is adapted from Marcus et 
al. (1999, Exp. 2 and 3). In the first simulation, the focus is 
placed on the learnability of the a-a-b, a-b-a, and a-b-b 
patterns, each based on 100 model runs. The individual 
tokens of the trisyllabic pattern are presented each for 330 ms, 
with an ISI of 250 ms following each syllable token, and an 
ITI of 1000 ms following each pattern. The patterns are 
randomly drawn from a pool of 16 examples for each pattern 
type as adapted from Marcus et al. (1999, a-b-a/a-b-b type 
from Exp. 2 and a-a-b type from Exp. 3). The modeled trial 
is considered successful when repetition is detected during 
the evaluation operation (e.g., if inputik = controlik, estimated 
success = 1). This will in turn issue a reward to the model, 
strengthening associations of the manifestly adaptive lower-
level operations with their relevant task contexts. Otherwise, 
the model is considered unsuccessful (e.g., if inputik ≠ 
controlik or no comparisons were made, estimated success = 
0), and contextual associations for the operations during this 
trial will remain unchanged. To illustrate the gradual learning 
progression, 400 trials for each of the a-b-a, a-b-b, and a-a-b 
patterns are included.  

Alternatively, simulations 2 and 3 focus on the 
generalization of the learned patterns, each based on 100 
model runs. In the learning phase, the models are identical 
with the first simulation, except for the number of learning 
trials included. Specifically, simulations 2 was run for 150 
learning trials, while simulation 3 was run for 500 trials to 
illustrate the effects of overlearning. The capacity of the 
model to generalize was then tested with novel examples of 
the learned pattern (e.g., ko-ga-ko) or other unexposed types 
of patterns (e.g., ko-ga-ga, ko-ko-ga). In the test phase that 
exams pattern generalization, specifications of primitive 
operations were not included. Instead, the models directly 
apply those operations and skills acquired from the learning 
phase to generalize them in the novel task contexts. To 
illustrate the trajectory of generalization, 150 transfer trials 
were included for each of the a-a-b, a-b-a, and a-b-b patterns.  

Finally, the same learning and transfer models are applied 
in simulation 4 to illustrate critical differences in the 
empirical finding - in other words, infants’ preferential longer 
focusing time on other unexposed types of patterns versus the 
learned pattern during test phases. The simulation consists of 
100 learning and 10 transfer trials for each pattern, 
whereupon the frequency of default-mode operations during 
transfer trials is then calculated.  



Results 

Learning 
Results of simulation 1 demonstrate the model’s ability to 
learn simple algebraic patterns (see Figure 2, averages with 
95% CI error bars). Acquisition of all patterns converged to 
high percentages of correct predictions, albeit at different 
learning rates.  

 

 
 

Figure 2: The discoveries of a-a-b, a-b-a, and a-b-b algebraic 
patterns. Horizontal axis shows learning trials from 1 to 400. 
Vertical axis shows the averaged percentages of correct predictions 
across 100 model runs (with 95% CI error bars). 

 
It is easy to grasp that the learning of a-b-a is slightly more 

difficult than a-a-b, since irrelevance of second item b in a-
b-a needs to be additionally acquired for repetition detection. 
However, it is less straightforward to explain the slower 
learning rate of a-b-b. This is nevertheless consistent with a 
recent finding showing 11-month-olds difficulty in detecting 
repetition in the a-b-b-c pattern (Schonberg, Marcus, & 
Johnson, 2017), and the slight advantage of initial versus late 
repetition (a-a-b versus a-b-b) in neonates at the neural level 
(Exp. 3, Gervain, Berent, & Werker, 2012). Note both 
findings were interpreted in terms of the primacy effect. 
Similarly, the simulation results similarly show a primacy 
effect at the skill level (see Figure 3). The first token in a-b-
b must be “ignored” (orange) against the readily firing of 
various “encode” operations at the first position that are 
otherwise essential in learning a-b-a and a-a-b.  

Another feature of the model is found in its ability to select 
an initial range of operations, while remaining capable of 
converging on to relatively invariant solutions when robust 
skills are formed (Figure 3). For instance, the model can 
flexible encode the item to the task control module, either 
from the working memory module (brown) or from the 
declarative memory module (purple). Nevertheless, when 
selection of the declarative memory route gradually 
organized into a robust state, it then becomes difficult to 
return to the initial flexible state in selecting an alternative 
working memory route. The modeled results in Figure 3 also 
revealed a gradual increase of default-mode operations (blue) 

when the selection of task-relevant operations gradually 
stabilize. 

Generalization 
Simulations 2 (150 training trials) and simulation 3 (500 
training trials) demonstrates the generalization of algebraic 
patterns from learning, based on 100 model runs (see Figure 
4, averages with 95% CI error bars). Results in simulation 2 
show that an optimal level of learning facilitates transfer of a 
learned pattern for other novel patterns (Figures 4A, 4B, and 
4C, cf., Taatgen, 2013). Note that the transfer rates are 
moderated also by the degree of difficulty to learn that pattern. 
To the contrary, modeled results of simulation 3 predict 
hindrance of transfer due to overlearning (Figures 4A, 4B, 
and 4C). Although infants may not realistically be expected 
to participate in a prolonged learning session, overfitting to a 
particular context may still render the system less adaptive to 
a slightly altered context (e.g., a deterioration of prediction 
rates even for the same pattern with altered tokens). 

Lastly, results of simulation 4 shows a higher frequency of 
default-mode operation when a pattern has been learned 
(Figure 5, averages with 95% CI error bars). Default-mode 
operations may cause infants to divert from the task, and are 
therefore likely to have an inverse relation to the time they 
would be focusing on the task. These simulated results are 
consistent with the findings of Marcus et al. (1999). 

 

 
Figure 3: Operation selection over learning trials. Horizontal axis 
shows the number of learning trials. Vertical axis shows the 
frequency of various operations applied in a trial as averaged over 
100 model runs (with 95% CI error bars). Color coding: purple, 
declarative mem. encode; brown, working mem. encode; orange, 
ignore; light-green, other primitive operations; dark-green, other 
compiled operations; blue, default-mode operations.  

 



 
Figure 4. Generalization after learning or overlearning. Horizontal axis shows learning trials (150 trials in A, B, and C; 500 trials in D, E, 
and F) and the transfer trials (150 trials followed from the learning trials). Vertical axis shows the averaged percentages of correct predictions 
across 100 model runs (with 95% CI error bars).

 
Figure 5: Frequencies of default-mode operations in transfer. 
Horizontal axis shows the learned type. The bar colors denote types 
applied in the 10 test trials on generalization. The vertical axis shows 
frequencies of default-mode operation per trial, as averaged across 
100 model runs (with 95% CI error bars).  

Discussion 
An Aristotelian axiom nihil est in intellectu quod non sit prius 
in sensu holds that there is nothing in the intellect that was 
not originally derived from the senses. However, more recent 
literature on cognition in infants has disputed whether the 
detection of simple algebraic patterns is purely a lower-level 
statistical process or follows higher-level rules. Towards 
reconciling these two disparate views, results of our present 
PRIMs model suggest that seemingly rule-like patterns can 
be gradually acquired from the bottom-up. The promise of the 
model is reflected in its ability (a) to learn and generalize 
simple algebraic patterns (cf., Marcus et al., 1999; Schonberg, 
Marcus, & Johnson, 2017); and (b) to account for differences 
in infants’ preferential focusing time on learned patterns 
versus other unexposed types of patterns (cf., Marcus et al., 
1999). The modeled results may be framed in terms of a 
contemporary view on developmental plasticity (cf., Bateson 
& Gluckman, 2011).  

Contemporary biology and psychology may be said to be 
correcting an earlier overemphasis on whether cognitive 
development is innate or learned. It is now clear that altering 
an innate property (e.g., presence or absence of certain trait-
related genetic factors) is not always equatable with changes 
in learned characteristics. Instead, environmental conditions 
are crucial in shaping the precise characteristics of a learned 
skill (Bateson & Gluckman, 2011). The present PRIMs 
model demonstrates equal possibility of various routes in 
detecting syllable repetition. For instance, when flexible 
retrieval is not yet developed, infants can still distinguish 
between algebraic patterns (Dawson & Gerken, 2012). 



Nonetheless, an innate structural architecture undoubtedly 
provides the basis for primitive operations to function. 

Furthermore, distinct characteristics such as robustness and 
plasticity are not as cleanly separated as once thought. For 
instance, people maintains certain typical ways of dealing 
with a problem, but can also become flexible when the 
problem is changed. An emergent view now holds that robust 
outcomes can be derived from individual’s plasticity 
(Bateson & Gluckman, 2011). This present PRIMs model 
shows that robust context-sensitive skills can be gradually 
integrated through a reward-guided contextual learning 
mechanism, and that the achieved robustness also raise 
barriers against the application of other possible skills that 
were currently not integrated. In addition, robust skills may 
be co-opted in other task contexts achieving generalization 
(see Taatgen, 2013). On the other hand, the present model 
also points to the detriments of overlearning and extreme 
robustness during one learning instance, which hinder the 
system for instance to accommodate the same type of pattern 
with just the syllable tokens altered. This extreme case may 
be taken as similar to a deterministically programmed model 
that only monotonously performs one single task. 

Furthermore, the present PRIMs model suggest that the 
empirical finding concerning infants’ shorter focusing time 
on the learned versus the other unexposed types of patterns 
may be product of the degree of robustness. Specifically, 
efficient processing of robust skills encourages the firing of 
default-mode operation, and gradually diverts the system 
from the focused task. In real terms, this may be associated 
with displacement of the infant’s attention to need for food, 
comfort, play and so forth, curtailing the focusing time for 
the simple algebraic pattern. As illustrated from the present 
model, the accumulation of default-mode operations could 
occur whenever the system is still exploring the task. This in 
turn suggests that focusing time difference may not be 
directly relevant to how well an infant habituates a 
representation or masters a rule. Currently we are applying 
the same model to account for the counterintuitive reversed 
focusing time findings (longer focusing time on the learned 
versus the other patterns) to the generalization of non-
adjacent dependency pattern a-x-b (Gómez & Maye, 2005).  

Conclusion 
Our PRIMs model firstly shows that simple algebraic patterns 
can be discovered bottom-up through the interplay between 
flexible primitive operations and a reward-guided contextual 
learning mechanism. This adaptive process produces robust 
context-sensitive skills that not only satisfies a given task, but 
may be also generalized in other relevant tasks. Secondly, the 
present study shows that infants’ differential focusing time 
on the learned versus other unexposed types of pattern may 
be indirectly related to the robustness/plasticity of skill 
integration. In other words, efficient skill processing may 
encourage default-mode operation that reduces task focus. 
The modeled results suggest a more cautious position on 
drawing a direct link between infants’ focusing times and the 
habituation/rule-bound operation of simple algebraic patterns. 
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