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Abstract 
People can often learn a new task very quickly. This 
suggests that people are able to use skills that they have 
learned from a previous task, and apply them in the 
context of a novel task. In this paper we used a 
modeling approach based on this idea. We created a 
model of the attentional blink (AB) out of the general 
skills needed to perform an AB-task. The general skills 
were acquired from creating separate models of other 
tasks, in which these same basic skills are used. Those 
models showed a good fit with reported data, indicating 
that the basic skills we created are valid. Subsequently, 
we created the AB model by tying together the basic 
skills taken from the basic models. The AB model 
generated the same basic AB effects as reported in the 
literature. The models produced by the skill-based 
approach suggest that this is a feasible modeling 
method, which could lead to more generalizable 
models. Furthermore, it shed new light on previously 
difficult to explain findings in the AB literature. 
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Introduction 
Humans have the impressive ability to learn certain 

relatively simple tasks with minimal instruction and in 
a very short period of time. The experimental tasks 
used in (cognitive) psychology are particularly good 
examples of these types of tasks. Participants have 
often never encountered these tasks before, yet they 
are quickly able to work out what to do. This quick 
learning suggests that people reuse previously learned 
skills and apply them to new contexts (Salvucci, 2013; 
Taatgen, Huss, Dickison, & Anderson, 2008). For 
example, if a task requires a stimulus to be 
remembered for later recall, people do not have to 
work out how to remember the stimulus, but they can 
simply reuse the already learned ‘remembering-skill’. 
It would be unnecessary, in this case, to reinvent the 
wheel. Learning how to do a new task simply means 
selecting the appropriate skills, assuming all these 
skills have already been acquired. 

Reusing skills speeds up learning, but it can also 
have negative side effects that lead to sub-optimal 

performance even though the cognitive system is, in 
principle, capable of optimal performance. That is, it 
is sub-optimal strategy that underlies the impaired 
performance, not a fundamental information 
processing limit (e.g., Taatgen, Juvina, Schipper, 
Borst, & Martens, 2009). One factor underlying the 
sub-optimal strategy-choice might be the selection of 
the wrong skills, either because the "right" skill is not 
available, or because the interpretation of the task cues 
the wrong skill. A well-known instance of this is the 
Stroop effect (Stroop, 1935). Because people are so 
used to reading words, this automatically triggered 
skill interferes with the task of naming the color of the 
word. In this case, selecting the ‘reading-skill’ leads to 
worse performance. Another instance where this can 
happen is the attentional blink (AB).  

The AB is a well-studied phenomenon in cognitive 
psychology (Martens & Wyble, 2010). It refers to the 
finding that the second of two to-be reported targets in 
a stream of distractors presented at a rate of 100 ms per 
item is often missed when it is presented within an 
interval of 200-500 ms after the first target (T1) 
(Raymond, Shapiro, & Arnell, 1992). Interestingly, the 
second target (T2) is hardly ever missed if it is 
presented directly (i.e., within 100 ms) after the first 
target (lag-1 sparing). This suggests that the cognitive 
system does possess the processing capacity to identify 
both targets, but that the chosen strategy prevents the 
second target from being reported. 

The crucial aspect of the strategy that most 
participants use can be the selection of a sub-optimal 
skill to consolidate the targets in memory. Many 
theories of the AB assume that consolidation of T1 into 
memory underlies the AB. Memory consolidation is 
thought to be a serial process, meaning that only one 
consolidation process can occur at a time and that the 
consolidation has to be completed before a new item 
can be consolidated. This means that T2 cannot always 
be consolidated straight away, but sometimes has to 
wait for the consolidation of T1 to be completed. This 
leads to the AB when consolidation of T1 has not yet 
been completed before T2 has disappeared from visual 
short-term memory. However, such theories all 
assume that targets are consolidated as separate 



memory items, whereas in other areas of memory 
research it is assumed that multiple items are 
consolidated in a single chunk. 

The strongest indication that strategy underlies the 
AB phenomenon is an experiment by Ferlazzo and 
colleagues (Ferlazzo, Lucido, Di Nocera, Fagioli, & 
Sdoia, 2007). In their experiment, participants were 
instructed to report two target letters (which were 
always a vowel and a consonant) either separately or 
as a single syllable. In the latter condition participants 
did not exhibit an AB. A possible explanation is that 
the original instruction cues a strategy in which all 
targets are consolidated separately, while the syllable 
instruction encourages consolidation of both targets in 
a single chunk. We will explore this difference by 
creating two versions of an AB-model that only differ 
in their consolidation strategy. 

To create the model, we have used a novel approach. 
Instead of creating the model specifically for the AB, 
we built a model from the general skills that we have 
constructed as parts of other models. In other words, 
the AB model only links together existing skills. We 
chose this approach because it mirrors how 
participants performing an AB-task work out what to 
do. They do not start from scratch, but they tie skills 
they already possess together in such a way that allows 
them to perform an AB-task.    

We created this model in the cognitive architecture 
PRIMs (Taatgen, 2013, 2014). PRIMs is based on 
ACT-R (Anderson et al., 2004) and works in a highly 
comparable way. The architectures of both ACT-R and 
PRIMs consist of a ‘central workspace’ and a number 
of modules capable of performing specific cognitive 
functions. The modules can communicate (i.e., 
exchange the results of their cognitive operations) with 
each other through the central workspace, which is 
subdivided in buffers. This exchange of information 
between the modules in PRIMs is controlled in largely 
the same way as it is in ACT-R. In ACT-R this is done 
by productions, and in PRIMs it is done by operators, 
but they have similar functionalities. A crucial 
difference between ACT-R and PRIMs is that in 
PRIMs operators are further organized into skills. A 
skill is a collection of general operators capable of 
accomplishing a certain goal or processing step. The 
generalizability of skills makes it possible to use the 
same skills in models of different experimental tasks. 
The organization into skills thus allows us to employ a 
novel approach to constructing cognitive models, 
placing them in a context of related models, tasks, and 
skills. 

Each skill has a number of variables that are 
instantiated when a skill is used in the context of a task. 
It is by this mechanism that we tie together tasks, but 
also fill in specific values.  

We had two main goals in this project. Firstly, we 
wanted to investigate the feasibility of creating a 
cognitive model by tying together already existing 
skills. Secondly, we wanted to create a model of the 
AB which is capable of capturing most of the effects 

found in the AB-paradigm, including differences due 
to instruction.  

  

Method 
Instead of creating operators specifically for the 

attentional blink, we first considered which general 
skills are required to perform an AB-task and 
assembled the AB-model from these skills. 

Based on previous work and other models of the 
attentional blink, we identified four basic skills 
(cognitive processing steps) which had to be 
performed by our model of the AB. We developed 
these four skills by first creating models of other tasks 
which share (some) of these same basic skills. This 
step was done to get a better idea of what these general 
skills should be capable of and to test the plausibility 
of these skills. 

First, we will describe the three models that 
provided the building blocks for the AB-model. The 
three models are: (1) a visual search model, (2) a 
model of a simple working memory (SWM) task and 
(3) a model of a complex working memory (CWM) 
task. Not all parts of all three models will be used for 
the AB-model, but all three contain at least one of the 
four basic skills needed to perform an AB-task. 

The first model, the visual search model, is very 
straightforward. The goal of this model is to find a 
vowel on a screen filled with other letters. It is 
composed of three skills. The main search skill 
processes the current visual item and determines its 
category through memory retrieval. If it does not 
match the target category (vowel in this case), it 
transfers control to another skill which focuses on the 
next search item. In visual search this is a shift of 
attention to another item. If it does match the target 
category, it transfers control to a third skill, in this case 
a skill that clicks on the target with the mouse. Finally, 
if it runs out of items to attend to, it transfers control 
to yet another skill, which is not instantiated in the 
visual search model. In the AB-model, we will reuse 
the search skill to find targets, but we will instantiate 
it differently.  

To illustrate, here are the operators that make up the 
search skill, slightly abbreviated for clarity. In these 
operators Vx refers to a slot in the visual buffer, RTx 
refers to a slot in the retrieval (declarative memory) 
buffer, and Gx refers to a slot in the goal buffer. 

 
operator look-for-target { 
 V1 <> nil // if there is a visual input 
==> 
 *fact-type -> RT1 // build a 
 V1 -> RT3 // retrieval request 
 nil -> V1 // and clear the input 
} 
 
operator keep-looking { 
 V1 = nil 
 RT2 <> *target-type // if it is not a target 
==> 



 *next-stim -> G1 // change to the skill that 
       // selects the next stimulus 
} 
 
operator found-target { 
 RT2 = *target-type // if it is a target 
==> 
 RT3 -> G8 // Store the target in the goal 
 *after-found-target -> G1 // and 
  // switch to the skill to handle a target 
} 
 
In these operators, values that are preceded by an 

asterisk are variables that need to be instantiated for a 
particular task. For visual search, we instantiate 
*fact-type with vowel, *next-stim with the 
attend-next skill, and *after-found-
target with the click-item skill. 

The second and third basic model are strongly 
related and provide the final basic skills. Both models 
deal with working memory tasks which require the 
participants to remember presented items and, after 
presentation of the items, recall which items have been 
seen. Although they both include a consolidation step, 
they accomplish this step with a different skill. Both 
build a chunk in working memory, however they differ 
in the moment of consolidation. The “consolidate-
separate” skill, used in the SWM-model, starts 
consolidation immediately after an item is 
encountered. In contrast, the “consolidate-chunk” 
skill, used in the CWM-model, only starts 
consolidation after all items have been presented. 
Using these two consolidation skills, we created two 
versions of the AB-model, a “consolidate-separate” 
version and a “consolidate-chunk” version. 

Finally, these two working memory task models 
provide the “retrieve” skill and the “respond” skill. 
The “retrieve” skill retrieves the appropriate 
consolidated item from memory and the “response” 
skill gives the appropriate response based on the 
retrieved item. 

The four skills described above form the basic 
building blocks of both versions of our attentional 
blink model. To finalize the AB-model, the basic skills 
were put together in one model and were instantiated 
to fit the context of an AB-trial. This procedure was 
the same for both versions of the AB-model. In the 
AB-model, after presentation of a stimulus, the 
“search” skill checks, whether this is a target or a 
distractor. In other words, the *fact-type variable 
is instantiated with letter. If the stimulus is a 
distractor, it is ignored and the model waits for the next 
stimulus (*next-stim is instantiated with wait). If 
the stimulus is a target it switches to the consolidate 
skill (by instantiating *after-found-target 
with that skill) that moves the stimulus into a working 
memory slot. The consolidate skill is the source of the 
attentional blink in our model. Depending on which 
skill is used to accomplish consolidation, the model 
either starts consolidating directly after encountering 
the first target or postpones consolidation until the 

second target is encountered. If the chunk is 
consolidated, no other operator can be executed for a 
period of, on average, 200 ms (the imaginal delay 
parameter in ACT-R), leading to a possible attentional 
blink. If consolidation is postponed until the arrival of 
the second target, no attentional blink will occur at this 
point and the model will keep performing the task 
normally. After all stimuli are presented, the model 
will retrieve the targets that were consolidated on this 
trial (the “retrieve” skill) and then, after the retrieval, 
responding to the retrieved items (the “respond” skill). 

 

Results 
We compared the behavior of the models with 

human performance. This was done in order to verify 
the feasibility of the basic models and to check how 
well the final AB-model could model the AB 
phenomenon. The comparisons were made with 
existing data from the literature. 

We did not find suitable data to which we could 
compare our visual search model. This is likely due to 
the fact that our visual search model is very simple and 
does not have any other functionalities besides what is 
described in the method section. Furthermore, the 
visual search model was not our primary interest, as it 
is not responsible for creating the AB. 

Firstly, we will discuss the comparison between the 
SWM-model and human performance. The specific 
task we modeled required participants to remember a 
certain number of digits and report them at the end of 
a stream (Anderson et al., 1998). The critical 
manipulation in this experiment was that the digits 
were presented in multiple groups. This grouping was 
thought to influence chunking of the digits, digits 
grouped together during presentation would also be 
grouped together in memory (i.e., chunked together). 
The findings supported this expectation, such that 
participants showed longer reaction times during recall 
for the first item of a group, indicating that the groups 
were remembered (and recalled) as one chunk. The 
data from the simple working memory model showed 
this same pattern in reaction times as reported in 
Anderson et al. (1998). 

As can be seen in Figure 1, the reaction times 
produced by the model show the same typical pattern 
as the human participants. This reflects the strategy 
used by the model (and presumably the participants) 
of recalling the remembered digits. The digits are 
stored in chunks of three in memory and this 
influences how the recall occurs. Firstly, the full chunk 
containing all three digits is retrieved from memory 
and, subsequently, the three responses are given 
without any further memory retrieval. Note however 
that the model is unable to capture the extra-long 
reaction times at the start of the recall-phase. These 
increased reaction times are likely due to processes 
relating to getting started on a new task, an aspect of 
the task unrelated to working memory so we chose not 
to model it at this moment. 



 

 
Figure 1: Model fit for reaction times in the SWM-
task. Figure depicts the RTs produced by the model 
(dashed line) and human data (solid line).  

 
Secondly, we will discuss the comparison between 

the CWM-model and human performance. In the task 
we modeled, a series of 3, 4, 5, or 6 digits were 
presented to the model. In between presentation of the 
digits, the model did a word-decision task in which it 
had to distinguish between nouns and adjectives. We 
compared the performance of our model on this task to 
a similar experimental task (Daily et al., 2001). In this 
task, participants were instructed to remember a series 
of digits (also 3 to 6), but here the digits were presented 
among letters which they were required to read aloud. 
Both of these tasks have in common that working 
memory is required to perform the interrupting task 
(either deciding between a noun or adjective or reading 
a letter aloud). This demand on working memory 
makes it impossible for the participants (and the 
model) to chunk the items in memory. 

 

 
 
Figure 2: CWM-model fit for accuracy data. The 
average accuracy as a function of list length for the 
model (dashed line) and the human data (solid line). 
 

We compared model performance with human 
performance with respect to accuracy (see Figure 2). 
Generally, the model shows a good fit to the human 

data reported by Daily et al. (2001). Both the model 
and the participants show decreased accuracy when the 
length of the presented list is longer. This decreased 
accuracy for longer lists occurs in the model because 
the presentation of the longer lists takes a longer time 
to be completed. The longer time required for 
presentation allows for additional item-decay in 
memory, leading to reduced accuracy for longer lists. 
The model, however, generally underestimates 
accuracy, this is probably due to the model being 
unable to capture the primacy effect (Murdock, 1962). 
The primacy effect is often modeled by including a 
rehearsal mechanism. The fact that we did not include 
such a mechanism to the model could thus explain the 
general underestimation of the accuracy.   

Finally, we compared our AB-model (which 
resulted from the combination of the above discussed 
models) with human AB-performance (see Figure 3). 
The exact task we modeled is the classic AB-task 
reported in Chun & Potter, 1995. In this standard 
version of the AB, participants are instructed to 
identify two digits within a stream of distracting letters 
and, at the end of the stream, report which digits they 
have seen. We modeled this experiment with the 
version of the AB-model that used the “separate-
consolidation” skill. The crucial effect in an AB-task 
is, unsurprisingly, the attentional blink itself. This 
refers to the strong performance decrement at lags 2 
and 3, which our AB-model nicely captures. In the 
model, the AB occurs because consolidation of the 
first target (T1) is still in progress when the second 
target (T2) is presented. Therefore, T2 cannot be 
consolidated and will not be reported at the end of the 
stream. Our model also shows the typical lag-1 sparing 
effect. This is because consolidation of T1 often has 
not started at the moment that T2 is presented at lag 1. 
Therefore, they can both be consolidated into a single 
chunk and reported at the end of the stream. Finally, 
the model shows the slow performance increase for the 
later lags (lag 4 and higher). This is caused by the slow 
increase of the likelihood that T1 consolidation is 
finished by the time T2 is presented. 

   
Figure 3: AB-model fit for T2 accuracy. Figure 
showing T2 accuracy in an AB-task for the model 
(dashed line) and human data (solid line).  



 
Using the other version of the consolidation skill 

(the “consolidate-chunk” version) in the AB-model, 
however, will prompt the model to always try to 
consolidate both targets into a single chunk, thereby 
eliminating the AB all together. We compared the 
performance of the AB-model instantiated this way to 
the data from the study reporting a reduced AB when 
participants were instructed in a way that promoted 
chunking (Ferlazzo, Lucido, Di Nocera, Fagioli, & 
Sdoia, 2007) (see Figure 4). The model mirrored the 
general performance level and, crucially, showed no 
blink. The model, however, shows a slight 
performance decrease at lag 1. This is caused by our 
means of simulating noise in the visual system, which 
meant that occasionally T2 had already disappeared 
before it was processed fully and therefore it was 
missed. We do not consider this problematic, because 
in many AB experiments lag 1 performance is slightly 
lower than performance on long lags. 

 

 
Figure 4: Model fit for the alternative AB model. 
Figure showing T2 accuracy for the alternative AB 
model (dashed line) and human data (solid line).  
  

Discussion 
Computational models of cognitive psychological 

phenomena are often able to accurately capture one 
specific phenomenon, however they are often hard to 
generalize to other tasks and cognition in general 
(Anderson et al., 2004). In this paper, we attempted to 
(partly) bridge this gap by employing a novel approach 
to building cognitive models, which mirrors the way 
people approach a new task. People do not consider 
every task in isolation but they use knowledge gained 
from the past. That is, they reuse skills learned from 
doing other tasks and apply them to the (new) task at 
hand (Salvucci, 2013; Taatgen, 2014). This paper 
describes our attempt to apply a similar approach. We 
created a new model of the attentional blink by reusing 
the models of other cognitive tasks. In short, we had 
two goals: (1) test the feasibility of the described 
approach and (2) create a model with the potential to 
shed new light on differences in AB due to instruction.  

The comparisons between our models and human 
data show that our models are reasonably able to 
capture human performance. This result demonstrates 
the basic feasibility of the described modeling 
approach. It is possible to break a task down into a 
limited set of skills that are reusable in different tasks. 
This is an important first step towards creating more 
generalizable models, because it allows for a method 
of creating models that are built up from the same 
building blocks. Using existing building blocks when 
modeling a new task allows for much more integration 
of any new model into the already existing collection 
of models and, more importantly, might better reflect 
the way people approach a new task. 

Note, however, that the devil is in the details. 
Building a model using this approach can be 
challenging, especially when it comes to determining 
how small differences between tasks should best be 
handled. Such differences make it difficult to use 
exactly the same operator (and therefore the same 
skill). Every operator has a condition-checking part 
(which checks whether this operator should be 
activated now) and an action-performance part (which 
actually executes the ‘cognitive action’ or PRIM). The 
action-performance part is relatively easy to generalize 
across tasks, but the condition-checking part is more 
challenging. Basically, the condition-checking part 
checks whether the situation matches the predefined 
situation in which this operator should be executed. 
This makes it difficult to generalize the condition-
checking across tasks since a different task usually 
also means a different situation. We solved this 
problem in the models described in this paper by 
defining the conditions in such a way that they work 
for all the modeled tasks. This is a workable solution, 
but it is time-consuming and a better method for 
condition-checking is needed. 

A further limitation to the models described here is 
that they did not perfectly capture all aspects of human 
performance. However, we do not see this as a major 
issue because we did not set out to create complete 
models of the described experimental paradigms. 
Instead we aimed to create models of the main findings 
only because we were merely interested in the skills 
that are important for the AB. Although there remain 
limitations and improvements to be made to the skill-
based method, we consider it a feasible and promising 
approach to improve the generalizability of models. 

The second goal we set out to achieve in this paper 
was to create a model of the AB that can account for 
differences due to instruction. The model described in 
this paper produces most of the basic effects from the 
classic AB-task, showing lag-1 sparing, the AB itself 
and the gradual improvement on later lags. Although 
there are many additional aspects of the AB reported 
in the extensive literature which we did not discuss, we 
believe that the model described here is an adequate 
first attempt that we will build on in future work.  

For now, the fact that the model captured the basic 
AB-effects implies that these effects, at their core, may 



be caused by improper selection of skills. At the start 
of a new task, a participant has to figure out which 
skills to combine in order to be able to perform the new 
task. The models we created suggest that there are (at 
least) two different skills which can take care of the 
consolidation into working memory aspect of the task: 
(1) consolidate every presented target into working 
memory separately (as in the CWM-task) or (2) 
consolidate targets as larger chunks (as in the SWM-
task). The chunk-consolidation skill as used in the 
SWM-task would be the optimal pick in this situation, 
two items can be consolidated into one chunk and there 
would be no negative unexpected effects. This 
approach is perhaps employed by participants after 
receiving the experimental instructions from the 
Ferlazzo et al. (2007) study. However, given that 
standard AB instructions consider targets as separate 
items probably prompts most participants to use the 
separate-consolidate skill from the CWM-task.  

The emphasis put on strategy by our model could 
explain previous findings in the AB literature that have 
proven difficult to explain. This includes the effect of 
instructions as well as the existence of non-blinkers 
(individuals who do not show an AB) (Martens, 
Munneke, Smid, & Johnson, 2006), and the reduction 
of AB-magnitude because of training (Choi, Chang, 
Shibata, Sasaki, & Watanabe, 2012). All these effects 
could be explained by the type of consolidation 
strategy. Different instructions might cue the ‘correct’ 
consolidation skill, non-blinkers could be more 
naturally inclined to use the ‘correct’ chunking 
strategy compared to blinkers, and the training 
procedure by Choi and colleagues might nudge 
participants toward using the same optimal strategy.  

To summarize, our novel skill-based approach to 
cognitive modeling resulted in valid models, created 
using a more natural and human-like method. In 
addition, we believe it shows great potential to 
generate more generalizable and thus more flexible 
models. Furthermore, it can lead to interesting new 
perspectives on well-established cognitive phenomena 
such as the AB. The choice of consolidation-strategy 
may play an important role in the AB, explaining 
individual differences as well as instruction and 
training effects of the AB. 
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