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“He knew what he had to do. It was, of course, an impossiblk. tBsit he
was used to impossible tasks..Y The way to deal with an impossible task
was to chop it down into a number of merely very difficult tagksl break
each of them into a group of horribly hard tasks, and each drithem into

tricky jobs, and each one of them”

Terry Pratchett —ruckers(Bromeliad Trilogy book I)

Abstract

A new Hierarchical Reinforcement Learning algorithm cdlldABs (Hierarchical Assignment of
Behaviours by Self-organizipgs proposed in this thesis. A#S uses self-organization to assign be-
haviours to uncommitted subpolicies.

Task decompositions are central in Hierarchical Reinforeet Learning, but in most approaches
they need to be designedpriori, and the agent only needs to fill in the details in the fixedcstme.

In contrast, the new algorithm presented here autonomadesthtifies behaviours in aabstracthigher
level state space. Subpolicies self-organize to speeiftizthe high level behaviours that are actually
needed. These subpolicies are then used as the high leiagisact

HABS is a continuation of the WSsSLE algorithm proposed by Bakker and Schmidhuber [1, 2].
HASSLE uses abstract states (called subgoals) both as its highskatesand as its high level actions
Subpolicies specialize in transitions (i.e. high level@ts) between subgoals and the mapping between
transitions and subpolicies is learnedA$$LE is goal directed (subgoals) and this has the undesired
consequence that the number of higher level actions (theitians between subgoals) increases when
the problem scales up. Thagtion explosions unfortunate because it slows down exploration and vastly
increases memory usage. Furthermore the goal directedenatevents HssLE from using function
approximators more than two more layers.

The proposed algorithm can be viewed as a short-circuitesioreof HASSLE. HABS is a solution
to the problem that results from using subgoals as actiongries to map all the experienced (high
level) behaviours to a (small) set of subpolicies, which barused directly as high level actions. This
makes it suitable for use of a neural network for its high lexaicy, unlike many other Hierarchical
Reinforcement Learning algorithms.
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Chapter 1

Introduction

1.1 Learning in Layers — Solving Problems Hierarchically

A rather recent addition to the happy family of algorithmshie concept oHierarchical Reinforcement
Learning. In contrast withflat” Reinforcement learning, this new class of algorithms isome sense
layered.

As with many terms in the field of Artificial Intelligence — forstance the buzz wordriulti agent —
the term ‘hierarchical’ has a rather wide meaning. Several different approaches ibeen put forward,
each using Reinforcement Learning (learningtiigl-and-error) in some way or the other. They com-
bine different levels, scales or layers of actions (time)/anstates (space) in solving Reinforcement
Learning tasks.

An Example — Game playing

A small example may illustrate the notion of hierarchiespj@se we are playing a complicated com-
puter game about building cities, armies and empirds this game, the ultimate goal is — of course,
what else? — to rule the world, but to achieve that (high Jegeal, many smaller tasks (subtasks) have
to be accomplished or subgoals have to be reached.

Suppose we have already figured out thatghbtaskof building a large army will most certainly
help us in achieving our ultimate goal of world dominatioeddig. 1.1). We might not yet knohow
exactlywe are supposed to execute the behavibuild large army’ perfectly, but we did learn that
executing it would be the road to victory.

Figure 1.1: Hierarchical planning in a strategy game.

Or perhaps we think that we need large cities (a stagibgoa) that generate a high revenue but we
don’t know yet how to build large cities. As we play the game,will learn how to build a metropolis
and learn how to deal with all the problems of managing mayiesc In effect we become better in
reaching the state or subgdalave large cities”.

On the one hand we are learning (on a high level of abstrgctitrether or nothaving large cities

IForinstance a game likgivilization or one of its many incarnations, clones, imitations and essors.



or building an army is an important aspect of winning the gaBwg on the other hand, we are learning
just how exactlywe can accomplish those smaller subgoals or subtasks.

1.1.1 Why Use Hierarchies?

There are several reasons for using hierarchies in leammbgcontrol. Hierarchies are a sensible ap-
proach, which humans use every day: we often divide the worlderarchical structures to facilitate
learning. We are able to plan better when using a hierarchgrgér and smaller subtasks (actions we
want to take) or subgoals (states we want to be in) than if wgdnalan everything in terms of low level
actions only. Also, most of the time behaviours that are wsestcomplish one subtask, can be re-used
in another subtask.

Furthermore, hierarchies and behaviours facilitate exgblon. A Reinforcement Learning agent
usually needs to explore, and it doesitially by random walking (basicallyacting like a drunk and
trying actions randomly birial-and-error. After some time it will have acquired some knowledge about
the environment, and its exploration will obviously be meficient and less random. However if the
agent could learn behaviours (actions that are extendednowiiple time steps) which do something
non-randomly, it could use these to explore faster. Instdadaking random decisions at every time
step, with behaviours the agent only has to make randomidasisvhen it invokes a behaviour: the
burden of random walking is shifted from the low level to thgtlevel.

1.1.2 Different Approaches

The learning on bothlayers can bintertwined a behaviour that is not yet fully learned on the low level,
can already be used at a high level. And goals that are chaosémedigh level, can force exploration
on the low level in certain directions.

There are lots of different ways in which to structure a hieiécal algorithm. Only the action-
part could be hierarchical, resulting in approaches foitgithe Options-framework (see section 3.3.1),
but there could also be abstraction or hierarchy in the Spéee, resulting in layered approaches (see
section 3.3.2).

The reasons for using hierarchies, and examples of sevepabaches that have appeared in the
literature, are presented in chapter 3. An introductiorfled,(non-hierarchical) Reinforcement Learning
is given in chapter 2.

1.2 HAssLE and HABS

Focus on Task Decomposition

Many (layered) approaches use the notion of task deconipusihe overall task is decomposed into
subtasks (andubsubtasksubsubsubtasks, .) by the designer. This seems like a good approach, becaus
humans are good at abstractions and identifying structuBes for many problems designing decom-
positions is cumbersome and time consuming, and we are deptan the designer’s intuition for the
task decomposition. This means we that the designer neentglesstand the problem in order to give a
good decomposition into subtasks.

Focus on State Abstraction

Alternatively, we can focus on th&tatesinstead of the actions: perhaps we have an abstraction of the
state space readily available, or it can be acquired €agdflye have a state abstraction, why not select

2For now assuming there are two levels. However, there isimgtbreventing us from extending this notion of ’layer’ to
more than two levels.

3If no high level abstraction of the state space is known iraade, algorithms are needed that divide the state space in
appropriate subsets. Hot spots in the state space needderidied, clustering needs to be performed, etc.



an algorithm that just uses this abstraction without batigewith designing task decompositions.

The HassLE algorithm Hierarchical Assignment of Subpolicies to Subgoals LEagniwhich was
the starting point for the research in this thesis, dealk wxactly that problem. For understanding the
new algorithm HhABS, it is useful to understand AEsLE (it is therefore described rather extensively in
chapter 4). KASsLE uses clusters of low level states that resemble each ottadasaimct stategn a high
level Reinforcement Learning algorithm. In effect it ha®tReinforcement Learning algorithms at the
same time: one for the high level, using the abstract statéoaé for the low level, using the normal
(“flat”) states.

What makes HssLE different from other approaches, is that is also uses ittratisstates as its
high level action®for the high level. This means thatadsLE works in terms of subgoals: the agent is
in a certain abstract state and wants to go to another hig $tate. Its high level action is this other
abstract state or subgoal. On the low level it just uses itsifive actions.

Starting with Uncommitted Subpolicies

It would be very inefficient to just assign a unique subpot@gach of the transitions from one subgoal
to another. If we needed to learn all of these transitionsusgply, there is a fair chance that so many
small problems together are tougher — and take far more tithan-the large problem we started with.

HASSLE uses a limited number of a subpolicies, which start totatigommitted|t is not known at
the start, which subpolicy will be used for which subtask{®)is small set of subpolicies together needs
to cover all the required behaviours. A behaviour like mgvihrough a corridor will probably be the
same in many corridors all over the place, so we would neeglam (somewhat flexible) subpolicy for
many roughly similar corridors. KSSLE needs to learn the association between subpolicies and high
level actions.

The system in effect has to organize itself by incrementaltyeasing its performance. Each learning
part (high level policy, subpolicies, the associatipuses the still rough and unfinished other parts, to
make itself a little more effective, and in turn other parte uhe results to make themselves a little
better. They bootstrap on each other, using still unfinisreddes as estimates. This is not as impossible
as it might sound, for most of the basic Reinforcement Lewyilgorithms already use some form of
bootstrappingusing estimates of estimates

1.2.1 The Problem with HASSLE: an Explosion of Actions

HAssLE has an inherent flaw that prevents it from being scaled ups Will be illustrated briefly here,
and it is analyzed in section 4.3. Suppose we have a state sfats say dhouse’— for our problem
and we increase the size of the problem to something moreedyopalled a‘palace’ (see fig. 1.2).
The bigger the problem, the more high lewasitionsare added to the problem (becaused3LE uses
transitions between high level states as its high levebasji

This is not the case for the low level actions, because noemhtiw large our palace is, there is
always the same (small) set of primitive actions, for ins&orth, East, SoutAndWest

On the high level, not only the number of states is increabatialso the number of actionshe
problem size grows in two ways — which is quite unusual forrRecement Learning! Thigction
explosionon the high level is a serious problem. It is hampering thenieg process, because the more
high level actions there are to take, the more there are tovasiigated. This makes the problem more
time consuming, up and above the usual effect of the incceasenber of (abstract) states. It also
prevents FASSLE from using neural networks as its high level policy or usingrenthan two layers.
Furthermore, it highly increases memory usage.

40n the low level there are several subpolicies, but only sreetive at each time step.

SNote that on the low level, the states are different from itteoas (as usual).

®Because if we haviS| high level states, we would hay§| x | S| combinations of subgoals each with a different subpolicy
to learn!



Figure 1.2: What happens when a house becomes a Palatee problem size (and the number of high
level states) increases, so an action explosion occursephigfi level. The arrows represent transitions
from one high level state (in this case a room) to another.

In section 4.4 an attempt is described to fix thtdion explosionn HASSLE by introducing a filter.
This gives FhssLE the ability to rule out transitions, which improves leampibecause there is less to
explore. However, this rathexd hocfix only remedies part of the problem.

1.2.2 A Rigorous Solution - a Brand New Algorithm: HABS

The new algorithm presented in this thesis is callesBE (Hierarchical Assignment of Behaviours
by Self-organizingdescribed in chapter 5), and is derived mainly frommg3LE. It was developed to
overcome thection explosiorproblem in HASSLE, and to allow neural networks to be used as function
approximator for the high level policy. If this feature cdube dropped and replaced by something
that always uses a fixed set of behaviours as high level actibe number of high level actions would
remain constant when the problem size grows. That way wedwetidin the useful aspects olldSLE,

like using the abstracted state space and startingayittiori uncommitted subpolicies.

The solution is tashort circuitthe HAssLE algorithm by directly using the subpolicies as high level
actions. But because A$sLE uses the high level subgoals as the targets when trainingoaies
(i.e. reward a subpolicy if it reaches the desired subgptie short circuiting creates a new problem:
how are the subpolicies to be trained, if there is no goaldimtthem on, because we just kicked out the
notion of ‘goal’?

Self-Organizing Characteristic Behaviour

The problem of an absence of subgoals is solved by introduttie notion of a tharacteristic be-
haviour’ of a subpolicy, which is used to train the subpolicij:it performs roughly as it normally
would, it is rewarded When learning has just started, the subpolicies basigadtybehave meaning-
lesd, but because they are randomly initialized, some are $jigess bad in certain tasks than others.
The feedback between what the subpolicies do, and when teaysad by the high level, allows a kind
of self organizatiorf. This way each of the subpolicies specializes in differemiaveurs.

1.2.3 Shifting the Design Burden

Many hierarchical approaches focus on (designing) taskrdeositions. This means that the design
burden lies with understanding and solving the task at aleigtl. The designer commits subpolicies to
certain subtasks which he or she has identified, and the ageus to fill in the blanks. In many cases
this is feasible, but sometimes not enough information &lalle about what a good solution would be.

HAssLE and HaBs on the other hand, focus on defining or identifying suitalidgesspace abstrac-
tions. In fact, like in the case of the ‘house’ example, thalsstractions may already be lying around
somewhere — begging to be used!

"As with HASSLE, they start uncommitted.
8This approach resembles the one that is used with evolutiaigorithms. Good behaviour that is present — though still
very poorly —is selected. It also has similarities with S8lyanizing Maps.



Focusing on state abstractions instead of task decompusitimply starting with uncommitted sub-
policies. Learning the commitments of subpolicies meanas time is needed for learning these as-
sociations. But the trade off is that abstractions of théesspace are sometimes far easier to get a
hold on, saving time on designing. It can be viewed as a camgéary approach to designing task
decompositions.

1.3 Relevance to Artificial Intelligence

Artificial Intelligence may, as Luger and Stubblefield [S4tst, be*defined as the branch of computer
science that is concerned with the automation of intelligeghaviour”. Even though we don't really
have a concise definition of ‘intelligent behaviour’ or &fiigence’ — let philosophers worry about that!
— it is clear thatearningis an important part of intelligence.

This thesis deals with the often occurring problem, thanRecement Learning does not scale well
when applied to large problems. Agents that are able to leardifferent hierarchical levels, can be
of great use in various fields of Artificial Intelligence, laeise they are a promising (perhaps partial)
solution to the problem of scaling.

1.3.1 Neuroscience

The proposed algorithm ABshas some similarities —in a very basic way — to the human wayatflem
solving. Both use abstractions and uncommitted behavimufggure out how to solve problems. In
that context work from this thesis was also presented at IRSK2007 workshop titledHierarchical
Organization of Behavior: Computational, PsychologicaldaNeural Perspectives{hosted by prof.
Andrew Barto) where research from the Reinforcement Legreommunity was brought into contact
with neuroscience. Viewed from that perspective, work veigf organizing behaviours could perhaps
give computational confirmation for theories on behaviarguasition.

1.3.2 Computer Games

Learning is also of relevance to the areaofmputer gamedResearch in computer games is a fast grow-
ing field and the game industry as a whole recently left Hotlgal behind in terms of revenue (see [5]),
and better Al can provide better selling games. The demancbimputer games that are as realistic as
possible (graphically) is high, but the disappointmentfismeven higher when opponents in a fantastic
looking game turn out to be the dumb cousin®tifky, Pinky InkyandClyde: highly predictable and
often clearly scripted, unable to respond to situationsambitipated by the programmers.

Many computer games would benefit from robust Artificial ligence algorithms that can handle
complex situations and large amounts of data. Opponeritietira how to play a game (and be interest-
ing, challenging opponents), might be preferable to lataly scripted, tweaked and tuned, hard coded
non-human players. In order to reach this goal, buildingdn@hies and learning different strategies on
different levels is almost certainly needed. If we want coibep players to put up a better fight against
human players, what better way to start than to imitate thmdruway of hierarchically dividing large
problems into smaller — and therefore simpler — ones?

9The four infamous ghosts in Pac-Man.



Chapter 2

Reinforcement Learning

“Reinforcement Learning is learning what to do — how to mapatibns to actions — so as to maximize
a numerical reward signal’according to Sutton and Barto [6]1t is the problem of finding out what
the best reaction will be, given the state you are in. In maneutar — somewhat biological — terms, it
is “learning by trial and error”. In Reinforcement Learning it is common that the learningrags not
told when to perform certain actions, but has to discoves th@pping from states to actions (its policy)
by trial-and-error, by interacting with the environment.

2.1 Some Intuitions and Basic Notions

The Reinforcement Learning agent has to base its decisioiis ourrent information. This information
is usually called a 'state’. The agent also has the abilitgxecute actions at each time step. After
executing an action, it receives a reward signal (not nec#gsion-zero) which is some measure of
how well the agent performs (see fig. 2.1).

state s reward r action a

environment

siojou

sSensors

Figure 2.1: The basis of reinforcement learning the agent-environment interaction. The shaded areas
can be considered the ‘body’ of the agent (including seraodsmotor controls).

The Agent

The agent is a rather simple mechanism, and the term ‘agegtitrbe confusing since it suggests
rational thought, planning, maybe even cognition or seli@ness. Nothing as fancy as this is the case
however. In effect thdrain of a Reinforcement Learning agent is nothing more than a haigie in
which the“goodness” (expected return) of being in a certain state and executingriin action is
stored. Every time the agent needs to execute an action] fowk up its currently observed state in the
table, and decide based on the values of each of the actitinsh) action it should choose.

The Environment

The environment is everything outside the agent, evergtltirat the agent cannot changsbitrarily .
Things like motor controls (for a robot) or muscles (for arnaal) are in this sense considered ‘outside

MTheir book, appropriately calletReinforcement Learning: an Introductioff8] is very good source on Reinforcement
Learning (although it has nothing on Hierarchical Reinéonent Learning).
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the agent and therefore part of the environment, even ththughare part of its (physical) body. The
agent needs to control its ‘body’ but this control is subjieclimitations (speed, tension, etc) from the
rest of the environment and the agent cannot change it withoit.

The State

The state the agent is in, is simply the vector or conjunabiball the variables (features) describing the
environment (as observed by the agent with some sort of s8nsbhis does not mean that the agent
cannot have a memory and is doomed only to react touteentenvironment. It is easy to incorporate
some form of memory into the state: memory — like a piece okepayth notes on it — is considered
‘external’ to the agent.

The agent has a ‘body’ (motor controls, sensors, etc) whichn control, but it can of course also
(in principle) monitor its own body. The state is therefonmly the collection of variables and their
values that are known to the agent, in terms of memory or ‘bfdternal) and external environment.

If the task that the agent needs to accomplish is episodice tare ‘terminal states’ in the environ-
ment. If an agent reaches one of those, the episode is taedin@his means that the trial is finished
and a new episode will begin (with the agent again in a stagivsition).

The Actions

The agent has the ability to manipulate its environmentgctvitidoes by executing actions (i.e. its motor
controls). These actions are often calfedmitive actions”. The agent has a limited set of actions, and
at each time step it selects one action to execute. Thisnaatity lasts until the next time step and then
terminates, after which it has either succeeded or failegl (hen an action “move” fails because the
agent collides with a wall).

Sparse And Dense Rewards

After each action, the agent receives feedback from the@mwvient. It might be that the agent always
receives 0 when taking an action, and only receives 1 if itgebes its task or reaches its goal. This
would be a task with vergparserewards. On the other hand the task could hdeeserewards, meaning
many non zero rewards. It might be that our agemds-Manrunning around in a maze, gatheripijs:
eachpill might be a small positive reward, but getting killed by tijl@ostsis a large negative reward.
However, ifPac-Manwould only get a 1 at the end of the game if it had survived akdriall thepills
(and 0 on any other moment) the task would be much harder.

In many problems, it is unclear how and when exactly the rdwareed to be given. Sometimes
the only certainty is whether the agent eventually succeedails the task, but nothing of the internal
structure of the task is known so no intermediate rewardseagiven.

The Learning Process, the Policy

The agent stores its knowledge about the environment inla +abr it is approximated with a function
approximator. It can either save information about how giidd to be in a certain state or save
information about how good it is to execute a certain actioa certain state. When values are stored
for pairs of a state and an action, it is often calle@-&alue(or Q-value functioly instead of avalue(or
value functioi.

If the term ‘value’ is used, it depends on the context whethervalue of a state or the value of a
state-action-pair (a Q-value) is used. This thesis maielgislwith Q-values (unless explicitly stated
otherwise) so this small ambiguity should not pose a problem

2In that case, when the agent needs to select an action to tldtmeeds to look one step ahead, calculate which states it
can reach, and then use those values to base its selecti@hisrcan be used if it is always known what the effect of ancecti
is.
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Interaction — Updating The Table

The agent learns by interaction with the environment. Onitge: things are important for the agent: the

stateit is in, the actionsit can take, and theewardsit gets (see fig 2.2). After an agent has executed
an action, it experiences a reward (given by the environjndiftis new information can be used by the

agent to update its knowledge.

reward X

action at

Figure 2.2: Transition between states

Updating could in principle be done bgplacingthe relevant entry in the table by the newly received
reward, but this would lead to undesirable effects: if theawls are statistical in nature, the table entries
will forever continue to fluctuate highly, never converging

It would be better to update the entry a little bit in the negw(@ard) direction. That way if the rewards
keep fluctuating, the table entry will still converge to ai¢avalue (only fluctuating a bit because it shifts
a bit in the direction of new rewards). The update is somethiithe form:

V(s) < (1-a)-V(s) + a-reward (2.1)

meaning that the valué in statesin the table is shifted slightly (a factar) in the direction ofreward
and away from the old valué(s). Equation 2.1 only considesgtates andV (s) would then just be an
indication of the ‘goodness of being &tate.
If we use Q-values, the value mentioned in equation 2.1 ivahee for a state-action pair, and the
equation becomes:
Q(s,a) < (1-a)-Q(s,a) + a-reward (2.2)

where Q(s,a) of course represents the value (the ‘goodnafsskecuting actior in states.

The Future

The update scheme described above does not takieltilme effects of any taken action into account.
But what if the agent finds itself in a situation like in figur&2

Figure 2.3: A ‘trap’ : the deceptive reward of 0.1 leads to punishment of -1 later o

At first is seems that taking actiaj is better than doing; because it has a higher immediate return
(0.1 versus 0). However leads to a subsequent reward-ef which is undesirable, angl actually
would have been the better choice because it leads to a i@&tarn

So how could thestapsbe avoided? It is clear that only looking at the immediateamelwill not
work, so thefuture must be taken into account. Reinforcement Learning algmstaccomplish this by
the elegant concept aliscounting The idea is, that if a certain acti@leads to a state from which a
next action could give a high reward, the valQés,a) needs to reflect this knowledge. This means that
the value of an action should not only represent what it veturn immediately, but also what can be
expected later on.
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Discounting is implemented by a simple constartyx 1. The primitive update rule presented in
equation 2.1 then becomes:

Q(statg,a) « (1-a)Q(statg,a) + a-(reward + y- VALUE (state)) (2.3)

where the term(reward + y-VALUE(state)) has replaced theeward term. VALUE(...) is used for
now to indicate that we need some sort of measurement of hod the next states{ate) actually is,
but that we don't know yet what measurement to use. Differeimforcement learning algorithms use
different formulas for MLUE (state ), see the sections on SARSA, Q-learning and Advantage Lregarni
(sections 2.3.2 2.3.4).

Using this new update rule, we can see that the agent is n@t@lgarn not to fall for the temptation
of the quick reward of 0.1 (in fig. 2.3) because fitiscounted rewardf the next state also plays a
role. The ‘goodness’ of the next state, representedAnUé (state ), is used in updatin@(state ,a).
When the agent executes actian it can update its knowledge about how gamds, with the value
0+Y-VALUE(state). And since ALUE(state ) in some way dependn the received reward, part of
this ‘goodness’ propagates back@gstate,a). The ‘goodness’ propagates back like ink in a glass of
water.

Note that \ALUE (state) andQ(statg,a) are only estimates. Reinforcement Learning algorithms
use rough estimates in calculating new estimates: thidleddaootstrapping

Episodic Tasks

If the agent needs to solve a task that just goes on foreviercélled “continuous”. If it ends at some
time or in some situation, it is called “episodic”. In episodasks there are terminal states that stop
the episode when the agent enters them. These terminad stat@usly have no successor states, so
discounting future rewards is not an issue there. Thesesséaé fixed points because they have no future
rewards that can influence them. We can just takeVO£ (terminal State to be zero.

Alternatively, we could add aabsorbing statdo the system, which can only be entered from the
terminal state and where the only transition is again to #fisorbing state and always with a zero
reward. This way each episode ends up in the absorbing #tate.consider episodic tasks in this way,
they are in fact continuous and we don’t have to worry abopeuajpoundaries (for summations etc) but
can just use ‘infinity’.

2.2 The Model

If our agent is going to solve a certain task, it had betteasineall the relevant information from the
past. Suppose we have an agent that has to retrieve somé afjebring it back to a certain point. If
it would forget on what part of the task it was working, it wdube unable to perform its task. If the
agent would only have information about its surroundingsép, or perhaps a radar identifying walls
and corridors) but not whether it has the object or not, theciding whether to go one direction or the
complete opposite would be impossible.

However, if the agent had remembered whether it had alreazkeg up the object, the decision
would be easy: if you don't have the object yet, go find it, &neu do have it, bring it to its destination.
In this example the agent can easily distinguish betweem ¢edes, by looking at whether it has picked
up the object or not. The same result would in this exampledbéesged if the agent knows of itself
whether it is carrying the object or not. Both the internaltstam | carrying the object?” [yes/n¢ or
“did | pick up the object in the past?]yes/nd would sufficé'.

3If the ‘goodness’ MLUE (state) did not in some way depend on the value of the rewardsate it would not be a really
good ‘goochess’ function because tlualy information about the value or ‘goodness’ of a state (orestattion pair) that is
available to the agent, actually comes from the reward $$gna

“Provided of course that the agent does not drop the objeatwbare after it has picked it up. If it could do that, tfid |
pick up the object in the padtyes/nd-internal state would obviously not suffice.
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Markov Property

If the state of the agent holds all the relevant informatiereded to carry out its task, it is said that it has
the Markov Property More formally the probability distribution

Pr(&-%—l = SI7 Mi1=r | S, &, -1, &-1, §-2, -2, ..., 0, aO) (24)

should for alls, s, & andr equal
Pr(s:1=9,rs1=r|s, a) (2.5)

This means that all the (relevant) information from the p@st.s 1, &1, -2, &2, ..., S, @) IS coded
into 5 anda; and the agent can make the same decision based on only teatcstate and action as it
can make when knowing the entire past, &_1, S-2, &_2, ..., S0, @8- In the earlier example of the
agent retrieving an object, the past actions and positions@t relevant, only the present position and
action and knowing whether you are in possession of the bhjeneeded.

It is often the case that there is hidden information (urlalsée to the agent) and the states are not
Markov. However, it is still good practice to regard the etads approximating the Markov property.
This is a good basis for predicting subsequent states arardsvand for selecting actions. The better
the approximation is, the better these results will be.

2.2.1 Markov Decision Processes

When a Reinforcement Learning task satisfies Merkov Property it is called aMarkov Decision
Process (MDP). An MDP describes an environment and consists of theviing items:

* Afinite set of state$={S,,...,Sn}
* Afinite set of action\ = {Aq,...,An}

» Areward functionR: Sx Ax S— R. R(s,a,5') gives the reward for the transition (action) between
statess ands'.

« A transition functionP: Sx Ax S— [0,1]. P(s,a,5') gives the probability of going from states
to s’ given actiona.

In a Reinforcement Learning task, the agent tries to maxntie rewards in the long run. This
means it tries to maximize;, the expected discounted return:

.
R =M1 +Y T2+ VP Trag oo = 3 Vo Trakin (2.6)
k=0

wherey is the discount parameter £0/< 1) andT is the last time step. Alternately, if we use absorbing
states, we can drop the upper boundargnd get:

R = i¢‘rt+k+l (2-7)
k=0

The discount is used to determine the present valdetafe rewards. It might be that the agent is
only concerned in maximizing its immediate reward in thespre, never caring what the future holds.
In that casey equals OR; then reduces to1 which is the reward received for the action it has to select
at timet.

SMDP’s can be summarized graphically by transition graphsnetihe states are the nodes. The arrows are labelled with
actions and their accompanying probabilities.

14



If y has a value strictly smaller than 1, the expected revRartever grows to infinit§, but the agent
still takes the future rewards into consideration whendglg its actions. The closaris to 1, the more
the agent takes into account the far future.

If yequals 1, every reward — now or in the distant future — is dgualportant. This means that
when the task is infiniteT{ - o), the expected reward also grows to infinity, which is notdése. So
the combination off - oo andy= 1 should be avoided.

2.2.2 Policies

Given a certain MDP, the agent now has to learn how to behakat policy to follow. A policy Ttis a
mapping from a state and an action to the probability of tgkivat action in the given state:

T: SxA—[0,1] (2.8)

soTi(s,a) denotes the chance of selecting actidn states. In every states € Sat timet an actionae A
is selected according to the distributios;, -).

If the agent did not have a clue about what actions would bandiwg or not, the policy might look
like Ti(s,a) = ﬁ, the uniform probability (where the agent in each statect¢gleach action with the
same probability).

The valuevV™(s) of statesis defined as

.
VT(s) = En{R s =S} = En{ > Y Mtuet|s =S} (2.9)
k=0

or more informally, as the expected return when the agertisstas and follows policyrtthereafter.We
can define the value of taking actiarin states as:

.
Q' (s.a) =En{Rs =S & =a} = Ex{ > ¥ rukeals =S & = a} (2.10)
k=0

This quantity is often called th@-valueor action valuefor policy Tt

The Value Function

The values/™ andQ™ can be estimated by the agent. During the interaction withetivironment, the
return values that the agent receives could be averagedidoy state (or for every state-action-pair if
we want to estimat®™). These averages converge to the actual valués™dior Q™. This kind of
approach is called/ionte Carlo taking averages over random samples of actual returns.lafger
problems however, or problems where the episode lengthsmgethis is not a suitable approach.

2.2.3 Properties of the Best Policy

For the agent to solve the task, it has to find a good policys Pphiicy has to achieve a lot of reward
over a long time. We can define a polimas better than or equal to another polityif for every states
Tthad a greater or equal expected return than paticy5o we can say that

> < VT(s)>VT(s) forall statess (2.11)

There is always at least one best pofioywhich we call theoptimal policyor simply*. The optimal
state-value function is denoted\ds$ and is defined as:

V(s)* =maxV"(s) for all statess (2.12)

SProvided that the rewards are finite.

"We can always construct a better (or equal to the curren) pedity by taking for every state the argmax. 1(s, &)
with 1 the set of all policies we have available. If there is morentbae optimal policy, they all share the same state-value
function.
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The same can be done for the optimal action-value function:
Q(s,a)" =maxQ"(s,a) for all statessand actions (2.13)

There is a fundamental property of these (Q-)value funstithrat is used extensively in Reinforce-
ment Learning. This is the Bellman (optimality) equation:

VT(s) m;le”* (s,a)

= méelen*{Rt |s=s & =a}

T
= mngm{Z\/<~ft+k+1 ’ S$=S & :a}
k=0

T

= mngm{rt+1+yZ\/<-rt+k+2 | S=Sa= a}
k=0

= MaE{rui+yVi(sa)ls=sa=a}

= m{;ax; P(s.a,s) (R(s.as)+y-V*()) (2.14)
For Q™ the last two formulas in the above derivation would be:

Q(sa) = E{rua+y: mng*(sHl,a’) |s =s & =a}

Y P(sas) (R(s, a,s) +y~maxQ*(s’,a’)) (2.15)
g a

These results are called Bellman optimality equations heg describe the properties of the optimal
Q- or V-function.

2.3 Decent Behaviour: Finding the Best Policy

If the structure of the problem (the MDP) is known, technigjérem the field of Dynamic Programming
(DP), like value iteration or policy iteration [6], could hesed. On the other hand we could use Monte
Carlo methods [6] (estimating the values from the returnem$odes) for which no knowledge of the
underlying MDP is neededr(odel fre¢. Temporal Difference Learning is the best alternative mvtiee
model is unknown.

2.3.1 Temporal Difference Learning

Temporal Difference Learning is a combination of both Mo@&alo and Dynamic Programming ideas
and uses the bootstrapping from DP and the power of Monteo@aethods to learn from experience
without the need to know the underlying dynamics of the emrnnent.

The results of the Bellman equation are transformed into @atate rule, by shifting the current
estimate oW (s ) towards the estimate f¢R(s,a,5) +y-V*(s)) (from equation 2.14). This estimate is
the actual experienc@,1+Y-V(s+1)) of the agent:

V(8) < (1-a)V(8) + a(fua+V-V(s:1)) (2.16)

wherea is the learning rate that indicates how much the estimateifted to the new value.

The idea is, to on the one hand making the policy greedy wipeet to the current value function
(policy improvement) and on the other hand making the valmetion consistent with the current policy
(policy evaluation). Policy improvement is done by adjogtthe policy such that it follows the current
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values greedily. Policy evaluation is done by using theentrpolicy and update thé(s) for everys
based on the rewards.

When the agent learné(s) for everys, it has to look ahead 1 step every time it needs to select an
action. The values dof (s.1) for every possible actioa need to be evaluated, and this is only possible
if the agent knows which state is the result of taking whictioac If this is not possible, the alternative
is to learn and stor€(s,a) instead. The algorithms SARSA, Q-Learning and Advantagariiag are
all examples of the latter.

2.3.2 SARSA

Instead of updatiny (s) we can also choose to updd@és,a) resulting in the update rule:

Qs &) <« (1-0)Q(s,a) + a(res1+Y-Q(S+1,841)) (2.17)

wherea is the learning rate.

This update rule is called SARSAIt is anon policymethod, meaning that it improved™ for the
current policyrtand at the same time changesowards the greedy policy. The action selection is not
strictly greedy, but highly prefers the (current) best @atiBy sometimes selecting a lesser action, the
policy can explore its environment. SARSA is illustratecalgorithm 1 in pseudo cod¥.

Algorithm 1: SARSA
initialize Q(s,a) arbitrarily;
foreach (episod¢ do

t=0;

initialize s;

while (episode not finisheddo
agent is in statg;

agent selects actioa; [l using policy derived fromQ, e.g. & greedy
if (t>0) then Il update rule eq. 2.17
| Q(st-1,8-1) < (1-0)Q(s-1,8-1) +O (1t +y-Q(s,&)) ;

end

agent executes acti@g resulting in new statg,; and rewardt, 1;

t<t+1;
end

end

2.3.3 Q-learning

SARSA use®)(s-1,a+1) — the value of the specific action that was chosen — for its tgsdaAnother
option is to use the maxX(s+1,a) instead. In that case the agent does not update its knowleitiye
the action that it has actually done, but according to whatldvdave been the best action (given its
current knowledge). Equation 2.17 then becomes:

8This idea stems from Dynamic Programming and is called Gaized Policy Iteration. In policy iteration (DP) these two
processes alternate, but in value iteration (DP) they destimined and each step only one iteration
9SARSA is named after the 5-tuple of values that it uses ingtate:s, at, e+ 1, S+1, &+1
10 Note that the time in the update in the pseudo code is shitiel bne time step in comparison with the update equation
to indicate that you can obviously only updd@s;,a;) when you knows;,1 anda;,1, so while at time step, the update
Q(s-1,a-1) is executed.
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Qsa) « (1- Qa0 + A Fiea +yMQ(s1.3) (2.18)

wherea is the learning rate.

The pseudo cod for Q-Learning (see algorithm 2) is nearly identical to tbhBARSA (see algo-
rithm 1): only the update rule has changed. However, totiifis that knowledge of the new actien 1
is not necessary at the moment of update (since the maximuseis instead of the actually selected
new action), the update and the selection of the new acteswapped.

Algorithm 2: Q-Learning
initialize Q(s,a) arbitrarily;
foreach (episode do

t=0;

initialize s;

while (episode not finisheddo
agent is in statg;

if (t>0) then Il update rule eq. 2.18
| Q(s-1,8-1) < (1-0)Q(8-1,8-1) +a (1t +y- M Q(s,a)) ;

end

agent selects actioa; /1 using policy derived fromQ, e.g. & greedy

agent executes acti@g resulting in new statg,; and rewardt, 1;

t<t+1;
end

end

Since Q-Learning is not dependent on ti@vaction g 1) that is selected, it is called afif policy
method. The learning in stateis done independently of the actiapn. ;. It only depends on actioa
and the resulting statg, 1.

2.3.4 Advantage Learning
Advantage Learning([14], [15]) was proposed by Baird ilts update rule is:

M1 +Y-MaXy A(S:1,8) - MapA(s, a)
K

Als,a) < (1-a)A(s.a) + 0((ma<31><A(st,a)+ ) (2.19)
wherea is the learning rate, anklthe scaling factor (& k< 1). Whenk =1 this equation reduces to
the Q-Learning update rule (equation 2.18). The pseudo*€ddethe Advantage-Learning algorithm
is acquired by simply substituting the update rule (eque®d.9) for the Q-learning update in algorithm
2. Because of the scaling, Advantage-Learning often wosdtebwith function approximators than
Q-Learning.

2.4 “Here Be Dragons”— the Problem of Exploration

Reinforcement Learning does not use examples of good spj so the only option for the agent is
to explore its world. It needs to figure out by itself what an8 on average lead to high or low returns.

11Advantagel_earningis often — at least in internet tutorials on Reinforcemerdarning like [8] — confused with Advantage
Updatind13]. Advantage Updating however uses both a value fundfi@md an advantag®&. The confusion arises because
for Advantage Updating tha is O for the optimal action and O for the other actions, but this is not the case for Advantage
Learning. However, this property is often erroneouslyroldl for Advantage Learning.

12Using examples of good (or bad) solutions for training isezhsupervisedearning.
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If the agent never explores but always greedily selects gitmr it thinks best, it will probably
turn out to be sub-optimal. This is because the initial kremlgle about what to do in what state, is
often incorrect®, and if the agent only followed this incorrect signal, it idjust always do the same
sub-optimal action, i.e. repeating the same error for endrever.

If the agent would only (or mostly) explore, it would of coarsee lots and lots of interesting things,
and would learn a lot about the world which it is in. But in thedet would just be trying to investigate
the entire environment, resulting in very detailed knowledbout all the uninteresting and unrewarding
places.

It is evidently true that in the end — when the agent has eggleverything in a static environment
— it could just greedily choose its actions. However, thia lEghly inefficient approach, and the agent
would basically just have executed some dynamic programraligorithm: just iterate through every
state and action for a great many times, until the entire Iprolis solved. Exploring your (static)
environment by just wandering around nearly infinite amewittime doesget you a perfect model of
your environment, but it might take whileand it only works in unchanging environments!

Balancing Exploration and Exploitation

Since we are only interested in an optimal (or nearly optjnsalution to the problem, thdetails of
the uninteresting and unrewarding regions are of no reat@wonto the agent. It only has to have a
rudimentary knowledge of them, since it has to know that oséhregions no good solutions are to be
found — and they need to be avoided — but that’s it. As far aadfeat is concerned, it could just as well
say“here be Dragons™4. No more information is needed than that it is a area it do¢svaat to go to,
and it would be highly inefficient to let the agent learn a# ths and outs of these uninteresting regions.
That time is better spent investigating more promising aesn

The agent also needs to exploit what it already knows modtetime. If it sometimes explores,
it will follow paths it deems good (for now) but sometimesaak wrong turndeliberatelyto see if it
is actually better than the agent thought it was. To balarpomtion and exploitation this way, some
selection scheme is needed.

2.4.1 ¢-Greedy Selection

By far the most simple selection methocetgreedy explorationlt just selects the best action (greedy)
with a large probability, but given a small valee (0, 1) it selects actions randomly. The agent selects
its actionagejectegaccording to:

argmaxQ(s,a’) with probability (1-€)
a’eactions

Aselected™ (2.20)
random with probabilitye

whererandomdenotes that an action is selected with uniform probabitityn the set of actions. It is
possible to decreaseslowly to 0 in order to reach convergence.

2.4.2 Boltzmann Selection

Boltzmann selection is a form of soft max selection. It isigiesd to overcome the problem with
greedy methods, that the action that has the highest vahlevés/s selected many more times than the
second (or third, ...) highest even if they don’t differ mu¢hmight be desirable to investigate all the
actions in some way proportionate to their Q-values, tormsiiat values that are only slightly less than

13For instance because at the beginning all entries in the el randomly initialized, or arbitrarily set to zero.

YThe expressionHMere be Dragonswas used by ancient cartographers to denote parts of thilwewhich one knew
nothing — or almost nothing — about. Instead of leaving utaeep areas of the map empty, cartographers were in the bfbit
drawing monsters and dragons there. Hence the expreddiene be Dragon’s
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the current maximum, are not ignored as witreedy methods, because in that case actions other than
the maximum only have probabilitm to be selected. ) _ - .

The Boltzmann selection rule works as follows: each acti@selected with a probability according
to the distributionPzgiz, WherePgqyt, is defined as

eQ(sa)/t
PBOltZ(S7 al ) = eQ(S,a’)/T (221)

>

a’cactions

wheres is the current stateg is the action under consideratioRg-(S,&) gives the probability of
selectingg; in sandt is called temperature, which determines the selectiomgtie If necessary; can
be changed during learning.

Boltzmann selection results in nearly equal probabilitisen the Q-values are nearly equal, but
a large selection pressure for the maximum Q-value when igtargte to the others is large. In fact,
the probability of selecting the maximum (i.e. acting gngedomes arbitrarily close to 1 when the
difference becomes large enough.

2.5 Generalization — Neural Networks as Function Approximé#ors

Reinforcement Learning was designed with look-up tablesiimd, but when problems get larger, tables
may not always be a good idea. Tables have no generalizatipacity: they either contain a certain
value, or they don't — there is no middle ground.

When a Reinforcement Learning problem has many statespitaie vast amounts of time and
memory to learn a good policy, simply because every statedas visited a number of times to get a
good approximation of the value function. Each state isumigs far as the look-up table is concerned
and has to be learned all by itself, even though some statgist ibé very similar to each other, and
closely resembling states might have closely resemblingiQes.

Q-value

state

Figure 2.4: Table versus Function Approximator. An example where one parabota{? +b-x+c) with
only three values(b andc) approximates nine values (the black dots).

Function approximators are often used when a problem growbig to handle with discrete tables
(for the Q-values) or when generalization is desired. Traggoximators use certain structures and
patterns in the problem space to compress the table to aesrsatl of values that is easier to learn and
store in memory (see for example fig. 2.4) because the lednmetion approximates the values between
the known data points.

2.5.1 (Artificial) Neural Networks

Artificial neural networks are often used as function appr@tors. There are numerous different ar-
chitectures, but the most important feature common to dhas they consist of — loosely biologically
inspired — neurons and connections with their associateghise

Neural Networks come in many flavours, from the most simpfesair Neural Network (see fig. 2.5(a))
that only has an input and an output layer, to the most comglitRecurrent Networks (see fig. 2.5(d))
where every neuron can in principle be connected to any agtberon. For the purpose of this thesis

5This is related to how flexible a function approximator is avitat types of functions it can represent, but that is not the
topic of this thesis.
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however, only two of the simple types are relevant: the Lifdzural Network and the Multilayer Neural
Network (see fig. 2.5(b)).

)
4“1

N

(a) linear neural net (b) one hidden layer (c) two hidden layers (d) recurrent neural net

Figure 2.5: (a) linear neural net the black circles represent inputs, the white circles aesautputs(b)
and (c) multilayer neural nets with one and two hidden layers the gray circles represent hidden units.
(d) recurrent neural net: the arrows represent the flow of information during comgiata

2.5.2 The Linear Neural Network

The linear neural network can be considered as an unthisthd?erceptron [10]. Its structure is ex-
tremely simple (see fig. 2.5(a)). The network consists ofput nodes anan output nodes, and each
input node is connected to all output nodes. Usually an exide that always has the value 1 is added.
This node called the bi&%

Every connection has a scalar value (a weight) associatgtitwiThe input is fed into the network
by giving the input nodes values. Then for each output ndue,sum of the inputs multiplied with
their associated weights is calculafédThe output of the network is simply the vector consistinghef t
values of the output nodes. All this is called the propagatibase.

The network consists of an input vectoand a matrix)) of weights, and an output vectgr The
weights matriX} has dimension§|X|+ 1) x |y|. The extra column contains the weights for the bias node.
The output of the network is calculated as follows:

y=X-W with weights matrix))) and inputsX (2.22)

Note that this matrix multiplication in effect calculatéstbeforementioned weighted sum.

By adjusting the weights, the network is able to act as a fonapproximator. The network can
be trained to give a certain output given a certain input. E\®v since the network architecture is
extremely simple, the functions it can approximate are aésy simple.

Delta-Rule (Backpropagation)

The training phase is also called thackpropagation phasd-or a given set of examplé&sand desired
outputsT atraining error is calculated. For convenience we only consider the case Witutput node,
but a network with more than 1 node can simply be treated adlection of networks with 1 output
nodé?® because the output nodes are independent of each other.

Usually the error is defined as:

E(W) = % > (ta—Ya)? withtgeT (2.23)
deD

®The bias gives the network more flexibility as it adds an inpdependent value to the weighted sum (since the value of
the bias is always 1, this added value is only dependent owelght connecting the bias to each output).

|f the network is a Perceptron, the outputs are not simplywibaghted sum, but a value of 1 or -1 (or 0) depending on
whether the weighted sum is above or below a certain thrdshol

Byith only one output node, the calculatigin: XW reduces tg/ = Xw with w being the vector with the weights
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The weights need to be adjusted in the direction that willimire this (or any other) error. To get this
direction, the derivative oE with respect to every component @fneeds to be taken. This derivative
(gradient)v E (W) gives us the steepest ascent along the error suEace

O0E OE oE
The vectory E(W) specifies the direction of steepest increasg,a&fo if we want to adjust the weights to
minimize the erroiE, we need to adjust the weights vectowith a factor-a v E(W) (wherea denotes

a learning rate).
Therefore the weights update for each individual weighis:

SE(W) - [ (2.24)

Wi <~ W — G-VE(W)i =W — C(~—_ (2.25)

The gradienty E(w) can easily be calculated:
0E 01

— - t4-Vq)? = tg—Vq) (=X 4 is the inputi for exampled 2.26
ow awizd%;(d Ya) (%;(d Ya)(~%a) (X P pled) (2.26)

And thus the weight updates become:
Wi < Wi+0 ) (tg—Yd) - Xid (2.27)
deD

The procedure outlined above is called batchversion because first all the examples are propagated
and all the errors summed up, and only then all the weightsdjtested.

Incremental Gradient Descent

When the weights are adjusted after each individual exaniple called stochasticor incremental
gradient descentWe get incremental gradient decent if we replace the ugdaquation 2.27 with:

Wi < Wi +0-(tg —Yd) - Xid (2.28)

and (obviously) use equation 2.29 instead of equation Z2Beerror for training example:

Eq(W) = %(td —yd)2 (whered is a training example) (2.29)

2.5.3 Neural Networks with Hidden Layers

Often the network architecture is expanded by introducing @ more layers of so callddddennodes
or units (see fig. 2.5(b) and (c)). The input layer is then emted to the first hidden layer, the first to
the second, and so on, and the last hidden layer is connexthad butput layer. This allows the neural
network to represent highly non-linear decision surfa@es] in theory approximate any continuous
function, given enough hidden units.

The nodes in the hidden layer and output layer calculate tighted sum of the inputs as usual, but
the hidden layer does not output these sums as in the linsar bat first applies a threshold function
to this sum, and then outputs the result. This thresholdtiomecan be amll-or-nothing threshold (see
fig. 2.6(a)), but usually a more smooth (and differentialote)ghly S-shaped function is used, such as
the sigmoid function (sometimes called a ‘logistic funatjo

The sigmoid functiond) is a function that goes asymptotically to O for —co and to 1 forz— +oo
and ascends fast in the region near 0 (see fig. 2.6¢1} defined as:

o(2) =
l+e?
The sigmoid function is used very frequently because it betiaimilar to theall-or-nothing threshold
function wherz <« 0 orz>> 0 but also has a very simple derivative which can be calctileg¢ey fast:
do(z)
S0z

(2.30)

0(2)-(1-0(2)) (2.31)
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(a) all-or-nothingthreshold (b) sigmoid

Figure 2.6: (a) all-or-nothing threshold-function: in this case the threshold is&t 0, at which point the
value jumps from 0 to 1(b) sigmoid function: going asymptotically from-oco to +oo.

Backpropagation

To train a multilayer network, an algorithm similar to that the linear network can be used. First the
error needs to be defined. Because these networks are odnwith multiple outputs, the error that
was earlier defined in eq. 2.29, needs to be extended. We nigwomk at thestochastic casebut the
batchversion is similaf®.

Eq 1 S (-0k)?  withtgeT (2.32)

2 ke outputs

Now to keep things ‘simple’, we'll use the following convents:

« xji is thei input to nodej

* wji is the weight associated with tff8 input to nodej

* net =w-X=3; wjiX; (i.e. the weighted sum of inputs for urji

* 0; the output computed by node(i.e. a(net;) if the layer uses a sigmoid)

* tj thetargetoutput for nodej

* next(j) for the set of nodes whose immediate inputs include the oditpon unit

As before with the linear case, we use erfEgr(eq. 2.32) to calculate the weight updates:

onet
awg - —q.JEd _ o OB oneh -, OB (2.33)
0Wji anet,- aWji anet,-
The Output Nodes
Sincenet; only appears imj, we can continue for the output unit weights (using the cinalie):
6Ed 601'
AWi = —0 - —2. 1y 2.34
Wi do; oney, (239

The third term on the right of this equation is the derivatifehe sigmoid (equation 2.31), so:

doj _odo(ney)
ane; ~ oney, 0 (2701) (2.35)

Here we see the benefit of using the sigmoid function. It hasrg simple (not to mention fast to
compute!) derivative. If the network uses linear functidos the outputs (as is often the case for

function approximation) the@% =1. Note that other differentiable functions could also beduas
threshold functions.

9E0r the batch version we need the exfige.p in eq. 2.32 to account for batching over all training exaraple D
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The second term in equation 2.34 is more complicated. We wastitute equation 2.32 fdty:

%i_91 v 0 (2.36)

00j 002 keout puts
And sincea%j(tk— o) is zero if j = k (because; andoy are different variables foj # k) we can drop
the sum and rewrite to:
0Eq

0 1 _a(t,- -0j)
0Oj i

1
= a—ojz(tj—oj)2 = 52:(t-0j) 3o, -(tj-05) (2.37)

When we substitute equations 2.37 and 2.35 in 2.34 we getuatieq for the value of the weight
update in the output units:
Awiji = a-(tj -0j)-0;(1-0j) - Xji (2.38)

or if we use linear functions for the output%fgf =1 in that case), instead of sigmoids:

Awii =G-('[j —Oj)-in (2.39)

The Hidden Nodes

For the hidden units, we can use the above derivation up tarehading equation 2.33. The weights
wiji can only influence the network outputs indirectly, becaus®yr case) is in the input laye?” and
j isin the hidden layer.

0Eq4
onet;
O0Ey oJne

a3 _d._tngi

keneXt(j)anei( onet;
0Ey _anek 00; -
yonef do; dnet
0Ey 0Oj

—_— Wi —— - Xii
sy ek aneg
0Eq4

= —a —— W 0j- (1-0j)-X;j
kenZ(:t(j)anet( kj~0j - ( i) Xii

~a-05-(1-0j) Y
kenext(j)

AWji

—-a
kenext(j

OB4
onet

W - Xji (2.40)

The quantity—a"niedt( is often called the, or error term associated with unik and is gotten from

neurons in the next layer (i.e. the layer closer to the endhefretwork, because the backpropagation
starts with theoutputsand propagates the error back to thputs.

We know from equation 2.33 thaéiw;; = —a - aar%, -Xji = o-9;-X;i so if a neuron in the next layer is
an output, we uséy = (tx — 0x) - ok (1-0x) from equation 2.38. If it is not an output (e.g. if the network
consists of multiple layers of hidden neurons) we use equati40 for hidden neurons.

The Backpropagation Algorithm

When we put all of the above together, the result is the (pseode for theBACKPROPAGATION al-
gorithm, as displayed in algorithm 3. Usually the algorithams until some termination criterion is
reached, for instance that the overall error is below a gettaeshold, or it is stopped after a fixed
number of iterations.

2OThis can also be generalized to more layers.

24



Algorithm 3: BACK PROPAGATION and FORWARDPROPAGATION: for a network with one
hidden layer with sigmoids. Outputs that can either be limeaigmoids. The incremental gradient
descent version is given.

BACK PROPAGATION ::
Data: a set of training examples and their target outpugst >
Result the network with updated weights

while (termination criterium not reacheddo

foreach (< X,t > in the set of training examplgsio
calculate all outputsy, using FORWARDPROPAGATION,

foreach (k € out put nodeysdo
if (outputs use sigmoidghen & = (tx —ox)ox(1-0k) ;
elsedy = (tk—0k); Il linear outputs
end
foreach (h e hidden nodegdo
| 8n=0j(1-0j) Lkenextj) HWk; ;
end

Wiji < Wii + adjX;i; Il update the weights
end
end

FORWARD PROPAGATION ::
Data: one training example and its target outpug, t >
Result the new values of the (hidden and) output nodes

foreach (h e hidden nodesdo

| Onh = c7(Zieinput nodesiWhi);
end

foreach (me output nodesdo

if (outputs use sigmoidghen oy = 0(Xhehidden nodeShWmh);

elseom = Yhenidden node@hWnh; Il Tinear outputs
end
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Chapter 3

Hierarchical Reinforcement Learning

The use of hierarchies in Reinforcement Learning is one efstinategies for dealing with large state
spaces (among others are the use of abstraction or fungtimmxmators or coarse tiling). The idea
is, to somehow improve on the normal 'flat’ Reinforcementringag algorithm by giving the agent the
ability to execute actions that aextended in timénstead of only taking actions that have a duration of
one time step.

Suppose we are training a robot to navigate through a hoesdifs3.1(a)). The house is just a grid,
using small squares (for instance the floor tiles) and thestre all the possible positions of the robot
on this grid. The robot could be at positi¢h0,24) which would meariO0 tiles to the north, and 24 to
the east, starting from the origin-tile

e kitchen gww
) NN oo
(o}
64—04—0 é 64—04—0 door2 9
E ¢
404040 gk«-o«o«o«g
corridor )ﬁo or,
I I living room
(a) primitive actions (b) temporally extended actions

Figure 3.1: (a) primitive actions: circles and arrows denote visited states and primitivéoast (b)
temporally extended actions the same situation as in (a), now divided into rooms (acisdigh level
states). The large arrows are the temporally extendedrectio

There is usually only a small number of primitive actions,endas there are Idt®f states. The set
of primitive actions might consist of the four cardinal acts of moving to the next tile North, East,
South or Wesbr perhaps only the three actionsstép forward one grid celturn leftor turn right. The
problem of navigating from one place in the house to anotlare) is just a question of which (possibly
very long) sequence of primitive steps the robot has to take.

Temporally Extended Actions

It is possible to definéeemporally extended actionghich are sequences of primitive (atomic) actions.
We can then treat these temporally extended actions asyifafeeone atomic action. As an illustration,
let's suppose, that we are able to come up with a more absgpesentation of the navigation problem
because we can use some of the underlying structure. We iméghible to group related tiles together,
for instance in &itchen aliving room etc. (see fig.3.1(b)), or perhaps we can identiff spotdlike
doors.

LIn fact, when the problem gets bigger and “lots” becomess“totd lots and lots”, we want hierarchies!

26



Subgoals

We can use these newly founasbmsassubgoalé. The robot starts in thiving roomand has to reach
the kitchento achieve its goal, and it needs to go through ¢baidor to reach thekitchen Now the
sequence of steps is much smaller (when viewed on this mateaablevel): first it needs to select the
subgoal“corridor” and then‘kitchen" and after that the subgoal that consists of moving toward the
“goal” . Now we need one policy that learns on the level of subgoals,saveral smaller policies that
learn how to reach the subgoals. In effect, we have intradladeigher layer.

Task Decompositions

On the other hand we could decompose the overall task ofiregatie goal into several smaller subtasks
(creating a task decomposition). Now we have subtasks &mhiag the corridor when starting in the
living room (or in the kitchen), for reaching the living roofrom the corridor, and for reaching the
kitchen from the corridor. The agent now learns in what otttlese subtasks need to be executed and
how the subtasks are to be performed.

Options

Another alternative is, to define two macros (calfegtions”): one option to go taloor; and one for
door,, because we have identified both doors as “hot spots” in thiglggm. We could now just add these
options as new actions to the set of actions (augmentingritmitipe actions). Now the agent could first
select the option tdoory, after that (or perhaps after some primitive steps) selextibor,-option and
then use some primitive steps to reach the goal.

Since the options are added directly to the primitive actjahere are no new layers introduced.
Nevertheless the optiorere temporally extended, and are therefore hierarchical ifoacand time.
Note that we could also introduce options that do not havegoaf, but are simply (perhaps even
random) sequences of actions likeove North twice, and then East”

3.1 Problems in “Flat” Reinforcement Learning

Before we embark on a search for solutions, it is best to firtdady exactlyReinforcement Learning
becomes hard when the problem grows larger, lama hierarchies could be of any benefit.

3.1.1 Curse of Dimensionality

The first obvious reason why Reinforcement Learning getd kadren the problem size grows is the
infamouscurse of dimensionality This is the problem that the number of states in a problenwvgro
exponentially with each new dimension that is added.

For instance, if we have a grid-woAdonsisting of a line divided in 10 pieces and an agent that can
walk along that line (each time choosing to go left or righin the problem consists of 10 states (one
state for each piece the agent can be in). Suppose we ingddesecond dimension, and make it a grid
measuring 10 by 10 squares. Now the agent can be il00different states But when we introduce
a third dimension, the agent suddenly ha2 dates (cubes) to wander in (see fig. 3.2).

So basically the size of the problem grows exponentiallymé&aew dimension (i.e. an extra sensor
or variable) is added. This is obviously undesirable, batitnot really be avoided, because real-world
problems often have many dimensions (that is probably whekes thenreal world instead oftoy
problems in the first place). The curse of dimensionalityréfere makes it harder for the agent to

’The way the hierarchy is introduced here, resembles the weysHE uses subgoals.

3More correctly called dine-world.

4Under the assumption that the actions that the agent carataksdso extended, so it can actually go to these new parts of
its world.

27



Figure 3.2: Curse of Dimensionality each new dimension exponentially increases the statespac

learn about the mechanics of its environment, because thement quickly becomes astronomical,
growing exponentially with every dimension that is added faroblem.

3.1.2 No Knowledge Transfer

There are regularities in many state spaces: parts of the sp@ce resemble other parts, and good
actions in one part might also be good actions in other pBusapart from function approximators, we
have no way of re-using this knowledge, or to transfer it frome part of the policy to another part.

A function approximator (e.g. a neural network) painstgkimeeds to figure out that it can gener-
alize over certain patterns, but it would be better to be #blest state that a certain part of the policy
can be re-used somewhere else.

3.1.3 Slow Exploration Due to Random Walking

A third problem is that the agents in the beginning of its hé@g phase just randomly walks because it
has never even seen its goal yet. This obviously is a big prolih tasks with sparse rewards, where the
agent only acquires non-zero rewards when it achieves #@k(go perhaps some subgoals in the task).
In problems with a large state space, this random walk whiehaigent executes when it has not yet
reached its goal, grows increasingly large.

In one dimension, when we have a random walk over the integbish starts in X z< a, the
expected time before the random walk leaves the intdfa) is z- (a—z). When we apply this to the
Reinforcement Learning case where the agent starts 'soerevih the middle’ (i.e. not close to either
end of the intervak0,a)) and when we only reward the agent when it reaches the endndtance
with —1 and 1 for reaching 0 @) then the expected time is quadratic in the size of the iatebhonger
intervals give quadratically longer times. For more diniens a random walks were simulafeshowing
the same quadratic relation between expected distancemaad t

So with increasing problem size, the estimated time befoeeagent reaches its target for the first
time increases disproportionately with relation to thetatise in the state space. This means that for
larger problems, the time before the agent actually starsarn, scales badly.

3.1.4 Signal Decay over Long Distances

A problem related to that of random walks is that of the praag of the reward signal over long

distances. It needs to be propagated back because not enfingth action before the goal, but also
actions before that probably contributed to acquiring tbalgeward. But when a problem scales up
these past actions will become more and more distant. Andrihie distant these actions are, the
more iterations it will take to propagate the reward sigrnatle way back, because essentially the
reinforcement learning algorithm looks ahead one step veledgcting an action (choosing from the Q

5A square grid (size) was created and a ‘random walking’ agent was put in the gitetn the random walk was simulated
until the agent arrived at a predefined coordinate (alwags tiee lower right corner atn—2,n-2)). The average time was
calculated just letting the agent walk his random walk a neinds times. The results were - not surprisingly - that the sam
roughly quadratic relation holds
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values of all actions possible in a certain state) and it tggdane step back (updating the Q value for
the past state and taken action with the new informationablai about the value of the resulting state).

So iterating back is linear in the distance between actitirdoes not matter if subsequent episodes
— after an episode where the goal was reached — actually db tea goal. It is enough for them to
reach some part of the problem space where the new informétiom reaching the goal previously)
has already been propagated to. After reaching the goah®fitst time this would only be in some
state(s) near to the goal, but as more and more episodesttresehstates with updated information, the
front’ progresses further and further away from the goal.

Suppose we are in staBe(see fig. 3.3), having two actions to choose from, where actiwill lead
us to stateC (which is the best move towards the eventual goal) and agtwaiti return us to staté\, the
state we just came from in the previous step amdll bring us fromA to B again.

QA=Y Vs

- V.= maxQ(s,a)
Figure 3.3: maze(-like) task after (Bellman)-equilibrium is reached.

Let us denote the maximum Q value in a st8teith Vs, soVs=maxQ(S a) (this is assuming
some kind of Q-Learning algorithm is used and the only naie-zeward is given when the (sub)goal
is reached). Now when the equilibrium is reached (i.e. thinB-equations hold) then the value of
taking actionx in B is y-Vc (or lower if the actions are non deterministic and the agentetimes fails
to accurately execute what it has selected). But the valseatgA is Va = max Q(A,a) = y-Vs = V- .
This means that actiopin stateB hasQ(B,y) = y’Vc. Which in turn means that the difference between
x (best) andy (worst) action inB is (y-y3)-Qc and(y-Vy®) ~ (1-y?) wheny - 1.

A difference in the order of1-y?) between best and worst actioyggar 1) might not be a problem
when a tabular representation is used for the Q-valuesubecatable stores the Q-values perfectly, but
it certainly poses a huge problem when function approximsadoe used. The smaller the difference, the
more fine grained the approximator needs to be. In terms ahhaatwork$, this means that more and
more hidden neurons are needed, and longer and longemgdinies are the result — and because the
networks are larger, each iteration of the forward- or basgpgation algorithm itself also takes more
time.

If the reward signal has to cover a lot of distance, the distealuey needs to be high (otherwise
the reward signal would decrease too rapidly to zero). Inarike problems (where the only reward
not equal to zero is given when a goal state is reached, ase iexdimple above) the difference between
best and worst action is in the order @gf-y®)!

Using Advantage Learning might somewhat alleviate thibjem because it does not use the Q-
values but scales their relative differences (see secti®dbut in general the problem remains: long
chains of actions need a high discount, but a high discoukemdiscriminating between actions diffi-
cult.

No Middle Ground

We observe that for long distance propagation (i.e. in lgmgdlems) a higly is needed because other-
wise the value would vanish too fast. But in maze-like taskannot be too high because then function
approximators cannot any longer discriminate between ¢s¢ énd worst actions.

Sthe most common approximators used
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So given a certain function approximator, these two coiirfifctiemands result in an upper boundary
in the propagation length and therefore in the problem $tt&ces where (non zero) rewards are received
cannot be too far apart because either the function appeigintan’'t handle it (with higty), or the
expected reward in distant states decreases to zero tocfasly).

3.2 Advantages of Using Hierarchies

3.2.1 Exorcising the Deemon of Dimensionality

Using task decompositions will usually reduce the stateepa each level of the hierarchy, because at
each node in the task decomposition, only a subtask needs soled, which most of the times will
involve only a subset of the variables or a subset of theestate space. So task decompositions are
helpful in reducing the size of the problem, and thereforexarcising the Daemon of Dimensionality,
as Dayan[41] eloquently put it.

3.2.2 Subpolicy Re-use

The use of extended (or high level) actions can be compar#tketeeasoning that a programmer uses,
when she introduces functions and methods in her progratrodincing functions allows her to write
larger and more complex programs, no longer being congttdio putting together long strings of basic
operations. In the same way defining (or learning) sequeotastions that can be grouped together,
and treated as if they were one atomic unit, improves Reiefoent Learning because it allows for
explicit use of similarity (see fig. 3.4).

task

subtask; l subtasks
subtask,

subsubtask, subsubtask
subsubtask, subsubtask,

Figure 3.4: Task decomposition dividing a task into several smaller subtasks, allowingse.

If the designer knows that a certain subtask or subgoal scaware than once, there is no need
to learn them separately. Knowledge gained from one instaan directly be used elsewhere in the
problem where this particular subtask also occurs.

3.2.3 Faster Exploration — Moving the Random Walk Burden Upwards

Hierarchies introduce behaviours (sequences of priméatens), and in principle these behaviours do
something non-randomly. The idea is, that behaviours meeagent in a non-random way through the
state space. So if the agent has a set of behaviours, but dbestyhave the solution for the overall
problem, it can execute a behaviour, and move purposefudly rjot needing random walking) for the
duration of the behaviour. After the behaviour is termidatnother behaviour can then be selected (at
random because the problem was not yet solved). In effecatisiom walk exploration is moved from
the low level of primitive actions to the high level of behauns.

The high level actions (or behaviours) are now consideredtasiic actions in a nevigh level
random walk, only this time the actions are temporally estsh and the agent walks with larger steps
(albeit still randomly selected). For this to work, the laiehical actions need to be more effective
(i.e. travelling further, doing more, etc) than what thengtive actions can accomplish in the same time
with random walking. Since the estimated time needed torcaistance is O(d?) this means that
the distance covered in a certain time O(1/t). The hierarchical behaviours need to be at least as
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good as this (on average) to be able to cover as much “ground’ore general, to cover more of the
problem space — as the random walk using primitive actions.

When the hierarchical actions amgeaningful that is, they are not completely random and they do
actually achieve something (on average they move the ageeit@n non-zero amount through state
space), then their use has a benefit over selecting the samlieenwf primitive actions. Instead of
selecting these primitive actions completely random,dhgionly one randomly selected (hierarchical)
behaviour, and the primitive actions that it executes fonmaasonably structured larger behaviour.

& W =

(a) random walks on average (b) one long random walk

Figure 3.5: Random walks on averagefour random walks on the “primitive action level” versusifo
random walk on the “high level”. All paths through the stapace are of equal length, but the random
walks on the high level each have only one random decisiamt fitie dots) whereas the random walks on
the primitive action level each have 6 decision points, éf@e on average they reach furth@ne long
random walk: walks of equal length (35) through the state space, butahdam walk on the high level
has far less random decision points (the dots) than thateprmitive action level.

This principle is most easily illustrated when we would the tfollowing experiment a number of
times (see fig. 3.5(a)). An agent has a small number of tinpsgteexplore (in fact just enough for one
behaviour, let’s say 6 time steps).

If the agent has no behaviours at its disposal, it needs woraty walk on the level of primitive
actions. This will result in covering an expected distarita is the square root of the available time.
But if it can select its actions from a set of different beloavs it will only make one random choice
(i.e. which behaviour to execute), and after that, it willlagurposefully. So on average, the area that
the behaviour level random walk will visit is larger than theea that the primitive random walk will
visit.

On longer timescales, this means that the agent can makegleaps through the state space and
cover more “ground” than a flat learner (see fig. 3.5(b)). Tlisws for faster (random walk) explo-
ration. This means thaf, behaviours are available or can be learned early on in tmeiteaprocess, the
agent can use these behaviours to cover more “ground” indlte space, which increases the probability
of solving the problem fastér It is even possible to do some exploration when executinghaviour,
as long as it does not completely destroy the non-randonactearof the behaviour.

3.2.4 Better Signal Propagation

Large steps of temporally extended actions allow the algarito propagate the rewards faster. A chain
of actions is faster traversed if you are allowed to regaretise atomic actions together as one large
step, and that way a state from which that large step was tadwerreceives meaningful reward signals
faster than if it had taken several small steps (and readteedame goal).

3.2.5 Different Abstractions for Different Subpolicies

Using subpolicies for subtasks, allows for different stgiaces (or abstractions) for each of the subpoli-
cies. Thisis in fact a spin off that we get for free when we uggpslicies. For certain subtasks, a certain

7Obviously under the condition that the problem can be solredrms of the available behaviours.
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variable might not be relevant at &llit is then possible to use different state space represemsafor
different subtasks by leaving out variables (sensor reglithat are not relevant to the particular sub-
task. This is for instance used in MAXQ, and it comes quiteiradly with task decompositions.

But hierarchies and subtasks allow another — more radicalssipility: to use completely different
state representations for different subpolicies that eteethe same behaviour. That way the agent is
allowed to select the best representation for each parteokthte space. That way it can switch its
representation (by switching subpolicies) but continuaglahe same task. It now simply has two or
more subpolicies that are trained on the same task, but tisesdit representations of the state space.

Of course all the different representations could be buhifito one large (and redundant) state rep-
resentation, but that would result in exponential growtlsize, and again the Curse of Dimensionality.
Splitting representations to different subpolicies, alohang the agent to learn when to switch, does
not have that problem. An example of this approach is desdrib [3] and was proposed at the same
workshop where work from this thesis was also presented.

3.3 An Overview of Hierarchical Techniques

3.3.1 Options — Hierarchy in Time and Action

As mentioned before, the most popular approacheadding optionandintroducing layers An option

is basically just a sequence of primitive actions, thadgedto the set of actions the agent can select
from. The primitive actions themselves can also be viewegpéisns, i.e. options that only invoke one
primitive action. They are sometimes callede-step options Options therefore have a hierarchical
structure in time, because the options are decomposed rimidies options, all the way down to the
primitive actions. There is no state abstraction or hidraror use of different abstractions of the state
space for different layers.

Options are known under many different names, some of thémg beacro-operators, macros, skills,
temporally extended actions, behaviours, maatexctivities but the basic idea remains the same. Some
Options approaches are described briefly section 3.4.

In principle, options should be able to execute not only i actions, but also to call other options
as 'subroutines’, although not every approach that usesrpalso uses this rather complex structure.

The Options Framework — Between MDPs and Semi-MDPs

Sutton et al. [17] proposed to use Semi-MDPs (SMbi®)extend the usual reinforcement learning
structure (the MDP, see section 2.2.1) to temporally ex¢drattions.

Options require that we extend the definition of MDPs to SMBR&h include actions taking more
than one time step, so that the waiting time in a state is ¢qulé duration of the invoked option. These
options can be completely fixed (i.eptionXis "always go North twice, and then Eagtir they could
themselves be stochastic policies. Since options are gustidered actions (although extended) and are
added to the action set, options are ideally suited for e2-ég option that is itself a stochastic policy
could be specialized in solving a certain sub-problem, louidt also be successful in solving similar
sub-problems somewhere else in the problem space.

An option consists of three components: a politySx A — [0,1] (same as in equation 2.8) that
gives the probability of selecting an action frokin a given state fron§, an initiation set ¢ S and a
termination conditior : S— [0,1]. An option(l, Tt 3) is available for execution in stageif and only if
s €. The termination criteriof allows for stochastic termination of the option.

The primitive actions are considered special one-steogtiThey are always available when action
ais available: [ =S assuming thaa is always available, of course), and always last exactlystep,
so always have a termination probability of\ds(e S: B(s) = 1).

8hecause it never changes during execution of this subtask
9SMDPs are used to model multi-step and continuous timeetis@vent systems.
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We can create policies with options, the same way that we alyrformulate policies (see section
2.2.2). More formally, when we leD be the set of options, we can formulate the options-pqlicy
Sx O — [0,1] where optiono € O is selected for execution in stagee S at timet according to the
distribution u(s,-), and terminates aftée steps in stats,x € S In this way the policyu over options,
just defines a “flat” policyrt. In fact flat policies are just a special case of the more gegpaticies over
options.

Note that the policy that results after “flattening” mighttrieave the Markov Property (see sec-
tion 2.2) because the selection of a primitive action at @agetimet does not only depend on the
current states, but on information available when the option started ssvime steps ago. This is also
the case, when a timeout is introduced, which allows thetagestop the policy after a certain number
of time steps has elapsesl/en though the termination criterighis still not met

Options Are Not Hierarchical In The State Space

Options extend the set of actions, and they are hierarcim¢hé sense that an option calls other options
(or at least primitive actions — one-step options) whenkeeb But the state space is not broken down
into hierarchical parts. In essence, an option augmeniagaet by giving it more (temporally extended)
actions to choose from. But the selection of a primitive@ttr an option are still based on the same
observed state, there is only abstraction in the actionsinniie states. This does not seem to be the
way humans do it though.

It would seem that much of the information that is availakleampletely irrelevant when you need
to make a decision about a destination that is far away and egien to choose to go there. On the
other hand this ‘local’ information would be extremely ned@t when we are near or goal.

3.3.2 Multiple Layers — Hierarchies in State Space

The problem of ’fine tuning’ versus the 'wider perspectiveat was sketched informally above, lies
at the heart of the second approach. Instead of just augngetiite set of actions with larger actions
(i.e. ‘options’), the state space is hierarchically decosga. The problem is viewed on two (or more)
levels with differing 'resolution’ or scope.

On a more global (higher) level, only globally relevant imf@tion is contained in the (abstract or
high level) state. On the lower level the more local, moraied information is present. This ensures
that on a higher level the agent is not bothered with triviad8 questions, but that on the lower level still
all the information is available with the same high resalntas in the corresponding flat Reinforcement
Learning problem.

To achieve these layers, the problem is decomposed intood isietrarchical sub problems which are
(hopefully) smaller and easier to solve. This implies thaiexarchy of MDPs is created. Each MDP
has its own set of states, and the higher level usually hasbfesratate set of more abstract states. Some
algorithms use a selection of states from the lower levdl iffstance bottlenecks in the state space)
while other algorithms construct entirely new ’higher [Bwatates which are abstractions of some lower
level features.

It should be noted, that abstracting on the higher levell, ofien result in suboptimal policies. It
is often the case that the optimal policy is no longer avéglab the set of policies that is still possible
within the constraints of the hierarchy. The policy can ofise still be optimal with respect to this
restricted set. Often this is a trade-off between getting@dg- though not optimal — solutidast and
finding the optimal solution aftest very long time It is up to the designer to ensure that its hierarchy
still allows for nearly optimal — if not optimal — policies.

Generic Framework

Layered approaches differ far more than approaches usan@ptions-framework, because they not only
have temporal hierarchies (temporally extended actidng)also allow for abstractions and therefore
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hierarchies in the state space. Any structure trying toyuthiém, is therefore doomed to be only a very
coarse and general high level descriptfon

A learning problem (with given state spa&dor a “flat” learner) is decomposed in subtask layers
{Ly,...,Ln} where each layer is defined ds:= (S,0;, Ti, M;, h;) with:

S is the (abstract) state space for layer i

» O, the set of actions

Ti, the set of training examples

M;, the machine learning technique that is used
* hj —» O, the "hypothesis’ which is the result of runnimd on T;

Given the diversity in layered approaches, it is hard to teeany more common features.

3.4 Relevant Work with Options

Some relevant algorithms are presented here that use then®itamework. The order is not chrono-
logical order, but rather in (roughly) ascending comphexits purpose is to give a very brief (and by no
means complete) overview of the many different ways in widghionscan be used.

3.4.1 MSA-Q, Multi-step Actions

Schoknecht [19] together with Riedmiller [20] have propbsevery simple but useful kind of options.
The idea is to define 'multi-step’ actions of degreasA(™ = {a"ae AV} (whereAD consists of the
primitive actions). Multi-step options are options thahsist of just repeating the same primitive action
n times. The rationale behind adding these multi-step astisrthat the agent can make greater steps
through the search space during its random walk exploration

When a multi-step action is executed, the discounted revwgambt only applied to the multi-step
action that was taken, but also to all the states that weitediduring execution, because executing the
multi-step action amounts to executing the primitive atiioeach of the visited states.

Comments

This way of distributing the (discounted) reward can be aered a form of offline learning which is
mixed with online learning. Because multi-step actionsehavfixed lengthn only a fixed amount of
space is needed to store the states that the multi-stepnadsitss. This principle does not seem to be
limited to this approach.

One could re-use one multi-step even further and see if @ @stains other smaller options. Ob-
viously ann-step action not only contaimsprimitive steps but also twa- 1-option steps, three— 2-
option steps, and all other intermediates betweennesiep anch one-step actions.

This approach could probably be used in virtually any hignaral approach thaadds options,
though for systems that use hierarchical layers and decsites, it is often unsuitable. In those
systems the primitive actions (lowest level) are not mixetthwigher level extended actions and often
subpolicies have their own goal conditions. So one cannadya extract ‘smaller’ options or primitive
actions from the extended action that was executed, andiithee-use the experience. It is of course
still possible to mixoffline and online learning in hierarchies because one can always store tlire ent
trace of the current extended action.

0The structure presented here is very similar to the apprtf@athStone and Veloso [26] proposed, though they restricted
their (abstract) state spaces for the different layers bsets of state features/variables from the original staéees, so each
layer has an input vector (state) that is composed of seldetgtures out of the original state space. Their layerseamed
independently and sequentially, the lowest layer first,@ach learned layer then provides the actions for the negt.lay
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Multi-step actions are especially good for reducing thadam walk exploration’ phase in the begin-
ning of learning. Since the options are available right ftbia start, the agent can use them immediately
to move purposefully through the state space, reducingubaeln of random walking.

3.4.2 Macro Languages

David Andre [18] has proposed some sort of Macro Languagesoribe options. This language con-
sists of programming language-like statements like IF a@d.D. UNTIL. The idea is, to try and build
these deterministic macro’s for each percept (observatieariable) that is perceived by the agent dur-
ing learning. These learned macro’s could then be used bsgbet in another, similar, environment to
speed up learning.

Comments

The problem is that building macro’s needs lots of memoryabee the past needs to be stored. A
path needs to be distilled out of the track-record and tededlinto statements in the language. Much
searching through the past seems necessary. Also, usilsttined) past to mine for paths, restricts the
algorithm to problems which don’t have a continuous (or lye@ontinuous) state space.

3.43 Q-Cut

The Q-Cut algorithm [21] by Menache et al. is a graph-théorapproach to automatic detection of
sub-goals. Using a max-flow/min-cut algorithm and a map efhocess history (trace) it identifies
bottlenecks in the state space by looking for cuts that ditige problem space. When a bottleneck is
found, the algorithm uses replay of experience to learn eyptd reach this bottleneck. The resulting
policy is then added as an option.

Comments

Q-Cut extensively uses the discrete nature of the problecause the max-flow/min-cut algorithm
works on tree-like structures, so (nearly) continuousesspiices represent a huge problem.

3.4.4 Predecessor-Count

Goel and Huber [22] have proposed an apprdasimilar to that of Q-Cut, but instead of using a graph-

theoretic approach, they use the difference in count of thaber of predecessors as a measure of
whether a state is a bottleneck. A significant increase féggna bottleneck. Policies are learned to the
bottlenecks, and added to the set of actions.

Comments

Unlike Q-Cut, the Predecessor Count seems able to handkedarcontinuous spaces. The only problem
might be that the 'predecessor’ function has spikes. Thisfai instance occur when large (fully)
connected areas are connected to each other by very smatdgs’. The function approximator that
needs to estimate the predecessor count might have a hagdapproximating the sharp spikes and
discontinuities, but this depends heavily on what kind gfragimator is used.

3.4.5 Discovering Subgoals Using Diverse Density

McGovern and Barto [24] have proposed yet another méthibt is similar to Q-Cut and the prede-
cessor count’. Their rationale is that when an agent justaarly explores, it is likely to remain within

Byithout giving it a name, so for clarity | have baptized it&ecessor-Count'.
12 ..yet anotheunnamedmethod. Hence for convenience | will call it 'Diverse DegSiafter the criterion the use for
discovering bottlenecks.
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the more strongly connected regions of the state space. #ionogn the other hand should connect sep-
arate strongly connected regions, because that is whatlarm®tk is in essence. By adding options to
these bottlenecks, these separated regions become meetyatonnected, allowing the agent to more
uniformly explore its environment. They reject using thedfuency of visit as a measure of how much of
a bottleneck some state is, because they deem it too noisyiamubt at all clear how such an approach
could be generalized to very large state spaces (when apgators are most likely usetf)

As an alternative they propose to use diverse density legurnthis is a learning approach to the
problem of multiple-instance learning. In multiple instarlearning [23], we are faced with the problem
that we only know that the training example can be repregeloyeoneof a set of given feature vectors
instead of the normal situation that you know that a giverui@avectoris the representation of the
training example. The sets of possible features are callgd,land if a bag contains at least one positive
instance (i.e. a feature vector that works for the targetept) then it is considered a positive bag, oth-
erwise it is a negative bag. The goal is to learn the concept the bags that are presented. McGovern
and Barto consider the mining of trajectories for bottldesean instance of the multiple-instance learn-
ing problem. A trajectory is viewed as a bag, and individuagervation vectors are considered as the
feature vectors. A positive bag corresponds with a sucekesajectory; negative bags are unsuccessful
trajectoriest* After some interaction with the environment (and a lot ofisip of trajectories) the bags
are made, the concept (for that subgoal) is learned, andatiends added.

Comments

Since this 'diverse density’ method relies on many exampfesiccessful trajectories, it only kicks in
later in the learning process. It does not help in the ingiiafje of exploration, but is designed to increase
the rate of convergence, at least it is in the experimentdwated by McGovern and Barto. It might be
interesting to investigate instances of this 'diverse dghapproach which are tailored to boosting the
exploration phase. But this is like the 'chicken-and-tigereproblem, because a criterion for success
is needed to classify the bags, and what other measure oéssican be used than the reaching of
the goal of the experiment? So it is clear that this approarhspeedup the convergence by simply
adding options that leap to bottlenecks that are on the sgfiddrajectories, but it would seem that this
approach is less suited to attack the exploration phadé itse

The use of memory (storing trajectories) might make it utadué for large state space, because the
'bags’ will greatly increase in size.

3.4.6 acQuire-macros

Amy McGovern [25] proposed ‘acQuire-macros’. This alganit looks at peaks in the temporal history
of the rewards, and these peaks are then used to form tragecto a continuing task. When acQuire-
macros finds a peak in the reward, it examines the saved cusfteisited stateS and sees if the cluster
that is visited with the peak in reward is a frequently viditegion. When such a much-visited space is
found, an option is posited that has reaching this space geil, and learning continues.

The aQuire-macros algorithm is specially designed for |lenmls with large or continuous state
spaces. The trajectories are stored, but they are greatipassed by using a clustering algorithm.

3.5 Relevant Work with Layers

In this section, several layered approaches to HierarcReaforcement Learning are described, be-
ginning with the most popular (MAXQ and variants, HAM and HEXand after that some approaches

Bthis is a question one can ask for the "predecessor count@@ut’ method, which both rely heavily on discrete states

Msuccesstul’ is problem-specific. It might for instance Hitlae trajectories that eventually reach a subgoal, or gesh
only those that reach it within a predefined time period, etc

BThis approach is designed for real values continuous stabasis not possible to register visits to discrete staidwre-
fore clusters are formed (with k-means or similar algorighnand visitations to these clusters are registered.
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that are more similar to WSSLE, or that are relevant for the design of the new algorithm.

3.5.1 MAXQ, MASH and Cooperative HRL

The first approach, called MAXQ Value Decomposition (MAXQ &hort) is arguably the most popu-
lar approach to hierarchical reinforcement learning. Isviest proposed by Dietterich in 2000 ([27]).
MAXQ uses a decomposition of the target MDP into a hierardrgnualler MDPs and uses a decompo-
sition of the value function of the target MDP into an additsombination of the value functions of the
smaller MDPs. MAXQ provides no way ¢¢arningthese decompositions, so it is up to the designer to
identify a set of individual subtasks which are deemed egieto solving the overall task. For each of
these subtasks (and of course for the overall task as welieit needs to be specified which subtasks
or primitive actions it can employ. Actions that are not valet are simply not included in the action set
of a given (sub)task. This information can be summarized’task graph’ (a directed acyclic graph).
Each node is a (sub)task, the leaves are the primitive agtéord the edges denote which subtasks a task
may use.

More formally, the MAXQ decomposition takes a given MBPand decomposes it in a finite set
of subtaskdVig, M1, ..., M, (whereMg functions as the root’, i.e. solving MDRI, solves the original
problemM) and each subtadd; consists of a tuple T;,A;,R >. HereT; denotes the set of termination
states, meaning that the execution of the subtask ends thetétask can only be executed in statds
A is the set of actions (i.e. a selection of primitive actiong/ar other subtasks), arR] is a pseudo-
reward function This function assigns 0 to all non-terminal states, andcally also to the terminal
states that are considered (sub)goal states. The pseudalréav entering a hon-goal terminal state is
negative. This function is only used during the learningcess.

Primitive actions are simply considered 'primitive sulbtsighat always terminate with reward Bt
can also always be executéd

The subtasks can have formal paramétessid subtasks with different parameters are considered
different subtasks. These parameters can therefore algielwed as being part of the name of a certain
task. For each parameter, a different subtask is learneé. stihtasks are pushed on a stack (similar
to stacks in normal programming languages). Because ostagk the hierarchical policy can be non-
Markov with respect to the original MDP, since the contemtd arder of the stack provide a means to
store some extra information that was not available in titeM2P.

A hierarchical value functiol (< s,K >) is then defined which gives the expected reward for policy
Tt starting in states with stack-content«. Also V'{(i,s), the projected value function of poliay on
subtaskV; is defined. This is the expected reward of executirgjarting ins until M; terminates. The
MAXQ value decomposition tries to decompds€0, s) in terms of the projected value functions of the
subtasks.

The learning happens using a Reinforcement Learning likiatgorule on a quantity called tllem-
pletion function C(i,s,a) which is the expected discounted cumulative reward for detimy subtask
M; after invoking the subtasid, in states. This completion function makes it possible to express the Q
function recursively aQ"(i,s,a) =V™(a,s) +C"(i,s,a).

At each time step during learning the valu¥; (i,s) needs to be calculated, and therefore a search
through the entire decomposition three. While this is notablem for small trees, this is computation-
ally intensive for larger ones.

Only the global structure of MAXQ is described here, and matkhe detail is left out. But this
description gives a sense of the way MAXQ works. The programdecomposes the problem into a
tree of subtasks (with their terminal states and pseudedigfunctions) which she deems useful. The
structure of the problem is therefore (roughly) given immerof tasks and subtasks. The agent needs to
learn the value function for each of the subtasks (and tlyefi@ithe entire task).

1630, does not specify the complement of the states in which thmeifive subtask can be selected.
1730 the subtasks defined above are in tagiarameterized subtasks
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Multi Agent Approaches: MASH, Cooperative HRL

Several researchers have created multi agent extensiondAXQ. Mehta and Tadepalli [28] have
proposed MASH (“Multi Agent Shared Hierarchy”) which is a liagent extension to HARL (“Hier-
archical Average-reward Reinforcement Learning”), whichurn is their extension of MAXQ.

Ghavamzadeh, Mahadevan and Makar [29] have also extendedlAXQ framework to a multi
agent situation, which they call “Cooperative-HRE” The idea is, to define certain levels as “cooper-
ative”. These “cooperation levels” are the levels on whioh &gents receive information about each
other. The benefit of only letting the other agents know wiwat gre doing on a higher level, is that the
lower levels are independent. On the lower level it does ratten what the other agents are doing, the
agent only has to complete its own subtasks.

Comments

Moving communication towards higher levels is of courseyopactical when cooperation is only
needed at the higher level, and the task can be decomposattasks that don't depend on the other
agents. If, for instance, the agents are game charactechwae to attack two enemies using magical
spells, it might be that their coordination is essentiallomlbwest level because their combined attacks
are more effective than when uncoordinated.

Suppose that two spells cast together (coordination at lachevel time step) are stronger than
when each each agent is just attacking the enemy as if he was @nly coordination at the level of
“let's get that enemy ndWout not at each individual time step). This can be the casenadnmighty
spell (“fire!”) is cast by one character, but at the same time the othes tastopposite (ater!”). This
will certainly result in lots of steam, but besides that tlotians have effectively canceled each other
out.

So Cooperative-HRL can most effectively be used when catioer can be pushed upward the task
graph, because each level that requires cooperation isehtleat has an explosion in the number of
states (because the states now become the Cartesian pobtheistates of all the agents).

This approach is not restricted to MAXQ like frameworks. éncas easily be incorporated in for
instance the HssLE or HABS framework or any other system where higher layers denoteehnigb-
stractions and longer temporally extended actions.

3.5.2 HAM - Hierarchy of Machines

Parr and Russell [34] have presented an approach to Reemf@mt learning which is based on con-
straining the learning policies by hierarchies of paiapecified machines. HAMs are nondeterminis-
tic finite state machines, whose transitions may invoke tdexel machines. The machines can be fully
specified (in which case no learning takes place and all weekla to be done by the designer) but more
useful is the specification of the general organization divéour into a layered hierarchy.

The machines are specified by a set of states, a transitiatidanand a start function (which de-
termines the initial state of the machine). There are sévgpas of statesaction states execute an
action in the environmentall states execute another machine (using it as a subrousio@states stop
execution and return control to the previous call state, @mcestates are places where the machine
non-deterministically selects a next state.

Learning this policy is achieved by (for instance) a vaoatdn Q-Learning. The Q-table contains
(statemaching-pairs instead of just the states, and there is a cumulatse@udnt for the gained re-
wards.

Comments

The hierarchy of machines in effect reduces the search spacause it constrains the policy to those
policies that are possible within the constraints of the mta&s. This reduction decreases the “random

Bprefixed with “COM?” for their further extension which incarpates communication in the framework.
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walk exploration” phase leading to faster knowledge abbetenvironment.

HAM can be considered the middle ground between reinforcénearning systems and teleo-
reactive approaches like RL-TOPs. It specifies plans @lamiachines) like RL-TOPs does, but on
the other hand it incorporates these machines in a MAXQHikearchical structure.

3.5.3 CQ, HEXQ and concurrent-HEXQ

In 2002 Hengst [31] proposed HEXQ, which tries to find (andle@Xprepeating sub-structures in the
environment. HEXQ tries to automate the process of findingsé hierarchy instead of relying on the
programmer to define it, as MAXQ requires. His HEXQ approachkiinilar to his CQ algorithm [30]
that was proposed a few years eatrlier.

The idea is to sort the variables in the state vector accgrtbnthe frequency of change. Faster
changing variables belong to a lower level and slower chrapgariables to a higher level. The algorithm
will then look for transitions that are not invariant withspgect to the slower changing higher level
variables. Such transitions are considered ’exit pointsere a lower level subtask may enter a new
domain and is finished. As an example, the “pickup” action iatrich’s taxi-domain is given. In
the taxi-world, the fastest changing variable is the posijtiand the has passengéivariable changes
much more infrequently. The “pickup-action” may or may notseed in picking up a passenger at the
pickup-location (because she may or may not be there) busifdceeds, the slower changing variable
(“has passengé@ris changed. Therefore the 'pickup’-action at the ’pickiggation’-state is a state-
action pair that could lead to a new situation on the levelhafs‘passengérso this state-action-pair is
considered anéxit’.

More precisely, arexitis a state-action pair where (1) the transition is non-Mueiko with respect
to the state at this level (2) a higher state variable may gham (3) the current subtask or overall task
may terminate. Thexitsare viewed as the subgoals for the subtasks at the next svéhat in fact a
sub-MDP is defined for each exit where the correspondingstate and action lead to a single terminal
state. This MDP can then be solved by dynamic programminginfarcement learning. This policy is
then added as a subtask to the next layer.

The original HEXQ-algorithm first completely finishes thecdmposition and then goes on to learn
using Reinforcement Learning. However, it might not be iddseé to wait with the learning process until
the decomposition is finished, but to intertwine learningl decomposing. This is what concurrent-
HEXQ ([32], [33]) does. It specifies a mechanism for fixing ltompositions on the run, and allows
learning while the decomposition is not yet complete.

HEXQ and its concurrent modification both use multiple Iayiartheir hierarchy. The layers consist
of the state variables and are ordered with respect to tregjuency of change. From this ordering and
the application of some statistics (to identify non-Marleov'exits’) the algorithm builds a MAXQ-like
subtask graph.

3.5.4 HQ-Learning

Wiering and Schmidhuber [35] take a different approach &rdrchical reinforcement learning with
their HQ-Learning algorithm. Instead of adding optionsrdraducing layers, they regard the problem
as a multi-agent problem.

A sequence of agents (each with their own policies) is defiard each of these agents will be used
once in solving the problem. Each of the agents is allowectlecs its own subgoal (the observation
it wants to see) and tries to reach this, starting with theé &gent. After the agent finishes, control is
passed over to the next agent and the process repeatstitg@lthe overall goal is reached (or timeout
occurred). After thi&®, each agent adjusts its own poliapdits HQ-table(the subgoal selection policy
which each agent has) using)X{earning®.

19Wiering et al use off-line learning, but they note that imgiple on-line learning during the episodes could also leelus
20Q()\)-Iearning is Q-learning with a trace. Visited state get abifdecaying) trace which is used in the updating rule to
increase convergence. See for instance [6] for details.
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The strength of this architecture is that this HQ-structsi@ble to solve partially observable Markov
decision problems (POMDP), i.e. problems where the sante @tgpout) occurs in different parts of the
environment, and different actions are required at theféereit places. This means that the agent would
need memory to differentiate between two states with theesaput but with different histori.

So where exactly is this memory in the HQ-algorithm? It is licipin the sequence of the agents.
Because the problem space is divided between the agergqadssible that two agents learn to behave
differently on the same state (input) because these samesiopcur at different stages of the problem,
and each agent just specializes in solving its small parth8ememory is located in the pointer to the
active agent.

This implicit memory is formed when the agents learn whatgsath to select (i.e. learning their
HQ-tables). Better combinations of sequential subgoalsresult in higher rewards and will tune
the HQ-tables to the sequence needed to solve the problesieetly. This way the agents cooperate
without explicit communication.

Learning of the lower level Q-values is rather straightfard; only with the exception that agents can
also learn from the Q-values of the next agent: when consrbbinded over to the next agent (because
the previous agent has reached its subgoal) this actiomalsds to be rewarded. This means that the
Q-values for each agent are global, they are expected reWardhe entire task, not for completing
the localized behaviour of the agent in question. The HQ@emlare updated in the same way as the
Q-values for the lower level. The values in the HQ-table espnt the discounted reward that the agent
can expect when choosing a certain subgoal.

The authors note a disadvantage of the sequential natur€@ofTHis is a structure that will work
on achievement tasks where a goal needs to be reached (fopkxaavigation tasks, search tasks, etc)
but not for maintenance tasks where a desirable state nedmskept for a longer time. In the latter
case, HQ will eventually run out of agents. Other architextithan the sequential one might provide a
solution here.

Comments

Itis interesting to note, that the hierarchy in HQ is not usespeed up learning as such, but to facilitate
learning problems that require memory, i.e. that requieeabent to keep track of certain events in the
past. This can be seen from the fact that HQ generates a plotitgan solve POMDP tasks which need
memory. Approaches like MAXQ, HEXQ or RL-TOPs on the othendhagive policies for problems
that could also be solved (albeit much more slowly) usingtadiaforcement learning algorithm.

In effect HQ makes a MDP from the POMDP by introducing a seqeemnd therefore a memory.
The problem could probably also be made MDP by changing titessto include (some) history, but
when it is not clear what history to incorporate and what g, risk of greatly enlarging the problem
space by adding many extra variables to the state is high. &9 dot add variables to the problem but
introduces a sequence of agents which then cuts the probterpieces that are themselves MDPs and
an overall structure (sequence and HQ-table) which is aMDR.

Because policies (agents) are sequential, HQ cannot gefeamin the exploration phase from re-use
of behaviours. It does not matter whether nearly all of tHetasks are identical, each agent has to learn
this task on its own. This hampers learning in tasks wheretghy is usually employed, i.e. where
much ground needs to be covered in different parts of theekesrace that resemble each other.

3.5.5 Feudal-Learning

Dayan and Hinton [40, 41] proposed an algorithm that resesihle medieval feudal fiefdom. Managers
are given total control over their sub-managers, and caardieem to do tasks and give punishments

2This is often explained using the traffic light problem: sap@ someone gives directions sayitgp left after the second
traffic light”. Given the fact that both lights look exactly the same, ohlytse of memory (counting traffic lights) will bring
you to your destination.
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and rewards just as they desire, but on the other hand maniages to obey their superior manager, and
so it goes all the way to the top.

The development is guided by two principles. The firgeisard hiding which means that managers
have to reward (or punish) their sub-managers for doing et are commandedhether or nothat
satisfies the commands of super-managers or is accordirng toverall goal. Sub-managers just need
to do as they are told, and are therefore rewarded if theyegelwhat was commanded even if this does
not help the manager that commanded it in furthering itsgjoal

The second principle imformation hiding The manager does not need to know the details of what
its sub-managers are doing. It also does not need to know thiaagoals of its superior are. Only
the command that needs to be executed is known to a managdets auperior needs to know how to
evaluate the results in order to be able to give the apprepraavard.

At each layer managers are assigned to separable partssibthespace. Each layer of the hierarchy
views the state space at a coarser level, so higher levets $raaller numbers of manag&ts Each
manager adds the commands from its superior to its stateslsviours for different commands can be
learned. At each level there is only a limited set of predefioemmands available (except at the lowest
level, where the primitive actions are used).

In their example task, these commands are just the insingto move into one of the four cardinal
directions. This is because their task is navigation in aewalzere the coarser view of the state space
is accomplished by taking blocks of two by two lower levelssatogether as one higher level state, all
the way up to the top where there is only one abstract stdte lef

Comments

Feudal-Learning can speed up the exploration phase betasaver level managers will learn their
behaviours early in the exploration phase. These learnkavilmurs are then used by the higher levels
to make larger steps, thereby increasing the distance aimabe covered by random walk exploration.

Feudal-Learning does — at least in the simple form presentsat re-use behaviours. This could of
course be fixed by implementing some sort of structure thet@ates behaviours with managers that
can use that behaviour. This would obviously mean extraires to learn.

Because the structure of the states is known on all levetsratvard conditions for the actions
(“commands”) on each level are available. This is importanhote, because it means that for each
state (on a certain level) the states that can be reachectlgirean be considered as its subgoals. So
each manager can be viewed as a collection of behaviourstimea to commands from the superior)
for reaching the subgoals (the adjacent higher level stat@snsidered this way, Feudal-Learning is a
hierarchical structure where all the subgoals are idedtifiefore learning starts, due to the fact that the
problem space is known on different levels of detail.

When this information is freely available, there is no reasot to use it, but in cases where the state
space is not known, Feudal-Learning is of no use, becaudeid¢herchical structure is not model free.
Unless of course (part of) the structure can be learned gékecution.

3.5.6 RL-TOPs

Ryan, Pendrith and Reid [36, 37] have proposed a hybrid systeich combines teleo-reactive planning
and reinforcement learning, called RL-TOPs. They obsdraé for many robotic tasks, the state space
is vast because there are so many (sensory) inputs. Taskidesiions like the ones used in MAXQ
or HEXQ and similar approaches are based on geometric amasions, and seem, according to Pen-
drith and Reid, ill-equipped to deal with high-dimensiosahsory information without simple uniform
geometry. A better approach would besabsumptiodike architecture as proposed by Brooks[38]. A
subsumption architecturbas several separate (hierarchical) learning moduleshnbirn their tasks
independently. The problem they identify with Brooks’ atehture is that it ihhand coded

220nly one manager on top.
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Ryan et al. propose a system that resembles a subsumptioiteatere but uses a planner instead
of hand coding on the upper level. They use a planner callégbdReactive Planning System (TR)
which is based on the notion ofteleo-operator(TOP)a: 11— A. The TOPs are (temporally extended)
behavioursa that have a pre-imaga and post-conditiorh (both conjunctions of predicates from the
planner’s state description language). This means tlaisiexecuted whilatis true, eventually\ will
become true.

Teleo-reactive plans are representedl&trees The nodes are state descriptions (the root is the
goal) and connections between the nodes are labelled witnacdenoting that if the action shown is
executed in the lower node, then the result is the upper ndBetrees are continuously re-evaluated,
and the action corresponding to the shalloviest node is selected.

The TOPs have another important function besides planiihgy can also be used as descriptions of
reinforcement learning problems for the lower level. Thad@ours (i.e. subpolicies) that are specified
by the TOPs are learned using reinforcement learning, amdubcess or failure of a TOP is defined by
its post-conditions.

Comments

RL-TOPs depends on a planner for its upper layer, which m#aatsknowledge from the domain is
needed, because suitable (pre- and post) conditions fdower level behaviours need to be specified.
For this, the dynamics of the domain needs to be known. Thés désadvantage because in many
reinforcement learning domains the environment is notrdgtestic or even completely unknown.

3.5.7 Self-Organization

The work of Takahashi and Asada [39] needs to be mentionesl HEneir algorithm does not have
a name, only the description “Behavior acquisition by milaiered reinforcement learning”. They
propose a multi-layered system that organizes itself, tidasll the work that needs to be done when
the designer needs to specify each and every subtask andagubg

They regard the neural netwofRsthat represent the subpolicies, as experts. The behawselirs
organize as each one tries to become an expert on a diffeaehbipthe problem space (the sensory
input).

The higher level state is defined as a vector consisting of,@és;a) for each behaviours(of course
being the current state of the robot), so the higher levét stactor actually is an indication of how close
each behaviour is to reaching its own subgoal, when the righiotstates. This is because the value
max, Q(s,a) is a measure for how close statés to the subgoal of a policy (at least in navigation- and
search tasks etc).

The higher level uses these behaviours as its actions, lunhritbe usual way. The outputs of
the higher level are vectors, and each element of the vepixifies the desirability for one of the
behaviours. This vector could be seen as a vector of Q-vdbres| behaviours available in a given
higher level state. So in each high level layer the input tooalute is a vector consisting of a measure
of progress for all the behaviours one level below, and theuwius a vector that denotes the expected
returns for the behaviours.

The behaviours neeslibgoalsto be able to learn anything useful at all, but since no exzlegoals
are given and no task decomposition is madariori , the system needs to identify its own subgoals.
This self organization is done by trying to distribute thégoals of the behaviours roughly uniformly.
This means that the subgoals need to be assigned and updéted o

The value function mayQ(s,a) is used as a measure of distance of a certain behaviour tm#ie g
Each behaviour then needs to shift its subgoal (a state istdte space) to a region where the maximum
of the Q-values of other behaviours is low — and if needed, Inelaviours are added or behaviours too
close to each other deleted. So the subgoals move aroundeanthb separate from each other, each
covering another part of the state space.

23They use Recurrent Neural Networks, but the same holds @rdtimction approximators are used.
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Comments

Because the behaviours each try to avoid subgoals closelico#izer, they will strive to cover the prob-
lem space uniformly. This means that no (or only litiéepriori information needs to be incorporated.
If a priori information is available, it can be used to fix the goals of samhthe behaviours, and these
behaviours can then be treated just as the others that dawr€tdnfixed goal.

The problem with this approach is, that there is no real faeklbetween the higher and lower level,
so there is no feedback to drive the subgoals in useful dext Subgoals are forced apart (as if they
repel each other) because they seek areas where the otherfuakttions have low values, but this
means that many of them could end up in utterly uninteregiangs of the problem space, because they
are driven outward instead of towards useful subgoals tiegp@rhaps near to other subgoals.
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Chapter 4

HASSLE — Using States As Actions

The HassLE algorithm was proposed by Bakker and Schmidhuber [1, 2]tahds forHierarchical
Assignment of Subpolicies to Subgoals LEarnikignsSLE is the starting point for the new algorithm
proposed in this thesis.

4.1 HAssLE— Hierarchical Assignment of Subpolicies to Subgoals LEarn-
ing

HAsSSLE is a layered structure that uses higher level states (slg)gbat are abstractions of the lower
level state space. Furthermore it leapriori uncommitted subpolicies that are dynamically assigned to
the task of reaching subgoals.

:abstract state ‘ policy, |

|Space: States,

| Actions,

I =
: States,

unique
transitions

Capacities
(Mapping,.,,)

Figure 4.1: The hierarchical structure of HASSLE: the large gray circles are the high level states
(subgoals). The Q-values of the high level policy are intdiday the thickness of the black arrows between
the subgoals. Thee represent the (unique) transitions between subgoals. &pacditieslapping-1)

are represented by the thick gray lines (thicker means higéygacity). Notations correspond to those in
section 4.1.1.

On the higher level, these subgoals act both as the statdsef@®einforcement Learning policy, and
also as the actions. This means that every abstract highelrdtate is a subgoal, but not that there is
one unique policy for each subgoal. There is a fixed numbeulgbalicies available and the algorithm
learns which subpolicies are best assigned to reachingairtsubgoal (starting from another subgoal).
For each subpolicy, KWsSLE keeps track of its ability or capacity to execute a transiti@tween two
subgoals. This is done by a mechanism callegbacities(see fig. 4.1).
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4.1.1 HassLE Formalized
HAssLE for an agent using 2 layérglayeri € {1,2}) is described by the following:

* sets of stateStates= {state 1,statg,...}:
States is the set of primitive states artates is a set of abstract (higher level) states (i.e. sub-
goals). ObviouslyStateg| < |[Stateg|. Stateg can in principle be continuouStates needs to be
discrete (see section 4.3.1).

* sets of actiong\ctiong = {action 1,action »,...}:
Actiong is the set of primitive actions, anfictions = States (because subgoals are used as high
level actions).

« sets of (sub)policieBolicies : Vi (policy;x ¢ Policies : Statesx Actions — R):
Standard Reinforcement Learning (e.g. Q-learning or Athge Learning) policiésfor each
layer. The top layer has only one policy (Bolicies = {policy,}), but the lower level hasy
policies Policies = { policyy 1,..., policyrm, }), each specializing in different subtasks. Only one
(sub)policy is active at each level at each time step.

» Agentlnternals variables describing the observations and memory of tleatagurrentState €
States, currentState € States, currentAction € Actions, currentAction € Actions and indica-
tors for detecting timeouts on both levet@neoui andtimeoup and which policies are active on
each layer.

e Mapping..1 : States x Actions — Policies:
A mapping from pairs of higher level states and actions toeloievel policies that are able to
execute the requested action in the given state. This is dovgst an appropriate subpolicy when
a certain transition between subgoals (a high level aci®sglected.

* stop conditionsStop : AgentInternals~ {terminate continug :
Determine whether a (sub)policy has reached terminatiowlitions.

terminate If timeoug v (S=S A S S eStates A S 9)
Stop . .

continue otherwise

terminate If timeoup v the agent reaches its goal
Stop = . .

continue otherwise

» reward function®Reward: Agentinternals-> R:
Reward is 1 if the agent reaches tistatec States that was selected byolicy,, and 0 otherwise
(during execution, after reaching the wrong subgoal orrdifiteeout). Note that this is an internal
reward, i.e. is not received from the environment.

0 If Stop =continue

1 If Stop =terminate A S= G A SGe States
A Gwas selected bypolicy,

0 If Stop =terminate A S= X A SG,X ¢ States
A G was selected bpolicy, A G+ X

0 otherwise

Reward =

For Reward the accumulated rewards that the environment gives thet @geing execution of a
subpolicy, can be used because they are related to sohéngytrall problerd.

A= Bindicates a transition from stateto B.

1The unmodified form of MssLEis not extensible to more layers, see section 4.3.3. Thigadat mathematical formu-
lation is not in the original papers. Nevertheless I thinkiit make the structure of WsSLE clearer.

’These policies also require that theeviousstate and action on both levels is stored.

3in sparse reward tasks this will amount to O when the goal iseached, andeward,o, When it is reached.
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Control Flow

The high level policypolicy, runs untilStop indicates termination. During executiopolicy, selects
actionsG to execute (i.e. a subgoal to goto) when in a sub§oalsingMapping..1(S G), a subpolicy
policyy active iS selected which must accomplish the transit®e G.

Control is passed tpolicy; active, Which is executed untbtop indicates termination. At each time
step during execution the subpolipplicy; active is updated with a 0 reward according to reward function
Reward.

After policyy active terminates $top = 1) it is rewarded according tReward. For reaching the
correct subgoal it is rewarded, for reaching a wrong subgo#diling to reach anything at all (timeout)
it is punished.

The agent then substitutes the subgéahat it has reached for subgadalthat it was trying to reach
(see section 4.2.3 for explanation).

The higher levepolicy, is updated according to thiRewarg (the accumulative reward) for selecting
(and reaching) subgo® in subgoalS and theMapping..; is updated with the new information that
policyi active Was (not) able to reach subgaat.

The control flow is illustrated in algorithm 4 and the relatioetween all the components in fig. 4.1.

4.1.2 Capacities

HASSLE needs to learn the associatioMap ping..1) betweereveb states and actions aheleh poli-
cies, when we want to be able to reuse policies and avoid mgediew policy for each new combination
of aleveb state and action.

HAssLE was originally proposed with a specific way to do the mappMeyp ping..1, called“Ca-
pacities” or “C-Values”. The idea is that for every policy its capacity to do a traasifrom one subgoal
to another, is learned. This is done by storing an averagerpeance.

Everylevel policy (policyy,j) has its own table of so-calle@apacities The entries in these tables
are values that denote the capacity of the policy to perfdrenréquired behaviour, i.e. to realdveb
actionAwhen inleveb stateS.

When in alevel, state, théeveb policy selects a neleveb action and then needdevel subpolicy
to execute this action. It can seledeael subpolicy based on the Capacities of all lixeeh, subpolicies,
for instance with Boltzmann exploration. If this selectestel subpolicy indeed succeeds in reaching
the selectedieveb action, its Capacity is increased, otherwise it is decrtase

The Capacities are of the form:

Cy.1: States x Actiong — RIPolicies| (4.1)

whereC,.,1 k(hIStatehl Action) denotes the capacity stibpolicy x to accomplisthlActionin subgoal
hiState A selection mechanisiBelect RN — Policieg (for instance Boltzmann selection) can be used
to select one of the policies, thereby insuring exploratiod exploitationMapping..1 = SelectCy..,1.

The Capacities are updated after the subpolicy termin@dtes measure of performance, the expo-
nential functiony2' with 0 < yc < 1 is used to ensure that the performance is betweenandoneand
that a longer execution timé{() means a lower performance. The Capacities are updateddaugdo
the following equations:

Ciact (start,goal) <« G act(start,goal) + AC; 5t (Start,goal) 4.2
. at- (Y& - Ciact(start,goal))  success
th AC; tart,goal) = ¢ \IC hac ’ .
w act (Start, goal) { al-(0 - Giaut(start,goal)) failure

wherei is the level,act is the number of the active subpolistart andgoal are the current high level
(leveb) state and selected action (subgoal), whekeand a(f: denote the learning rates foeaching

4This could be extended to updatingapping..1 with the fact thatpolicy; active Was able to accomplish the transition
S= X, but this is not done in the original A&sLE algorithm.
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Algorithm 4: HASSLE in pseudo code updating the policies is done with standard Reinforce-
ment Learning. RLUPDATE (...) updates a policy with your favourite Reinforcement Leagnin
algorithm (see section 2.3)NULL" indicates that a value is unknown.

HASSLE ::
while (-Stop) do Il Policy, (high Ievel) |oop
accumRewargl= 0; /1 For high level reward
agent is in subgodbe States;
policy, selects subgodb € Actions; /1 Select HL-action "goto G'
Mapping..1(S G) selectspolicy active; Il Select (sub)policyiactive
while (TRUE) do Il (Sub)policyqactive (I 0w | evel) |oop

agent is in statg € States;
policyy active S€lECts primitive actiom, € Actionsg;
agent executes acti@ and receives rewaneceived Rewakd

accumRewargl« accumRewargh received Rewaicl /1 Accumul at e
if (Stop) then BREAK; /'l Termnate subpolicy
else RLUPDATE (policys active; S-1,8-1,0,%,a); Il Sparse rewards
end
Il See whether subpolicyigel. . .
determine current subgo8t € States; [l ...needs to be...
if (S"=G) then RLUPDATE (policys active, -1, -1,1,S, NULL); [l ...rewarded
else RLUPDATE (policyy active, S-1,8-1,0,S, NULL); [l ...or punished
substituteS* for G; Il For explanation: section 4.2.3
updateMapping..1(S S); /'l Update mapping...
RLUPDATE (policy,, S, S oldAccumReward S S"); [l ...and policys
S «§ /1 Save vars for...
S« S Il ...next iteration
oldAccumReward« accumRewarg|
end

RLUPDATE (POLICY P, STATE S-1, ACTION &1, REWARD ft, STATE §, ACTION &) ::
switch ( favourite Reinforcement Learning algorithrdo

case(Q-Learning Il See section 2.3.3
| update Q(s-1,&-1) < (1-0)Q(s-1,&-1) + a(re +ymaxxQ(s,a));

end

case(Advantage-Learning Il See section 2.3.4

update A(s-1,8-1) <
(1-0)A(s-1,8-1) +0 (MRA(S-1,8) + 7 (1t +ymaxy A(s, &) - MaxA(s-1,a)));
end

end

the selectedleveb goal (i.e.succesk or not (i.e.failure) andyét (with yc < 1) is a measure of success.
ShorterAt mean that the agent accomplishes the transition fastertasdeds to a higher capacity.

Using two different learning ratesi andaé) allows for more fine tuning. If the subpolicy terminates
because it reached its designated goal, it is updated te\a@rdequation 4.2—-success), but if it reached
another subgoal (or if it failed to get out of the current sodily the average performance is moved
towards O (equation 4.2—failure)
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4.1.3 A Simple Example

To get an idea of how HssLE works, we’ll examine a simple example (fig. 4.2). Suppose aeelan
agent which inhabits grid world and which can move in the four cardinal directions. The higtel
consists of clusters of lower level states.

states = {roomAroomB...,roomF}
B D F actions = {(goto) room A (goto) roomB...,(goto) room F}
Actiong = {North East SouthWest
A C E States = {all grid cells}

Figure 4.2: The Example Grid World

Simplification — No Reuse

We use as many policies davel as there are combinations l&fveb states and actions (there is only
one high level policy, s®olicies = { policy,}). This means we won't have any policies that are re-used
—ignoring one of the strengths of hierarchies, but it willkmadhe structure clearer. So for each pair of
subgoalsrpom X, (goto) roomY) we have a unique policypolicy; x—y, So the subpolicies are:

Policies = { policys x=y|X € States andY ¢ Actions }

Wherepolicy; x—y denotes the subpolicy that is used for executing the actigatt)roomB’ when in
the subgoatoomB Each of thoséevel -subpoliciespolicy; x—.y usesStates andActions as its states
and actions.

Since we use a unique subpolicy for each combination of salbgdapping..1 is defined as:

Mapping..1(room X (goto) roomY) = policys x=y

whereX e Stateg andY € Actions are the subgoals.

Learning

If the agent finds itself in room (subgoal) A, it can select ofiae actions (goto) room B (goto) roomGC,

.... Suppose it selectgoto) room F. It then usedMapping..1 to select a subpolicy that can execute
this desired transition. In our simplified case, there is @mgue subpolicy for each subtask, so the sub-
policy policy; o~ is selected and the agent hands over execution to this soypp®he subpolicy will
execute some primitive actions (i.e. frofittiong) and after some time either reach a new high level
state, or it times o6t During execution, it will (perhaps) receive some rewasdsich are summed up
(summedRewajdand will be used for the high level after termination.

After the subpolicy terminates, the agent can observe it Wigh level state it is, and can actually
use this information to determine what high level actionas lexecuted (as explained in section 4.2.3).
Suppose our agent actually wandered into room C insteaceef tmreachable — room F. The agent can
now update the high level poligyolicy, with the transition from room A to room C, as if it had actually
selected "goto room C" (for example with equation 2.18, @+ég):

Q(room AroomC) - (1-a)-Q(room Aroom C) + y-summedReward

SFor convenience, we don'’t allow going to the subgoal the tigesiready in. This slightly speeds up learning, and keeps
the structure more clear.
81f no timeout is used, a (bad) subpolicy could go on literédigever by just staying inside the high level stdteoping).
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The subpolicypolicy; a—.F always gets a zero rewariring execution (when it is not terminated),
and since it failed in its task to reach room F, it also getsra reward (or possibly a negative reward)
for its final action. If it would have succeeded, it would haeeeived a positive reward for its final
action.

Re-using Policies

Since we used a unique subpolicy for each transition betweesubgoals, there afBtateg| x |Stateg|
policies, each of which has to be learned separately. Wighgtiradratic relationship, that the number of
subpolicies that need to be learned will soon become toe laBgt by assigning unique subpolicies to
each transition, we ignored the fact that many transitioo&k remarkably similar (for instancé = B,
C= D andE = F — all entering a room to the north through a small passage)canttl probably be
executed by the same subpolicy, provided it has enough fligxib

Some mechanism is needed to learn which combinations ofosiltb@re associated with which
policy, soMapping.1 needs to be learned. This means that the agent needs to &xalsev the
available subpolicies to see which one(s) are best suitadgtich high level steps. The mechanism that
HASSLE uses, is the Capacities-mechanism (section 4.1.2).

subpolicy | (0)A B C D E F

(from) A - 0.97 o020 001 002 001
B | oo01 - 005 003 004 0.02
C| 004 003 - 0.76 o002 o001
D | 003 001 003 - 000 001
E| ooo 002 001 o001 - 0.89
F| ooo 001 000 001 001 -

subpolicy | A B C D E F

A - 0.27 0.17 o001 002 0.0
B | o0.00 - 001 003 000 0.02
C| 0.20 o.01 - 033 022 o001
D | 003 001 0.0 - 000 001
E | o0.00 002 0.15 o.01 - 0.99
F

0.03 0.01 0.03 0.01 0.00 -

subpolicy | A B C D E F

A - 000 001 000 001 002
B | o0.03 - 003 003 002 001
C| 099 o0 - 001 001 0.02
D| ooo 001 000 - 0.00 0.04
E | o003 000 0.91 o.00 - 0.03
F| oo 001 005 o001 041 -

Table 4.1: Snapshot of a Capacities-tablenote that impossible transitions like= F can still have
non-zero values, because Capacities start at random yaloiéistakes time to learn that a subpolicy is
incapable of reaching a certain (unreachable) subgoab Adge that a subpolicy can be good in one task,
but still perform on other tasks (although mediocre).

A limited number of subpolicies is created (7 in our exampaley)l each of these gets a Capacities
table (randomly initialized) that indicates the capacityh® subpolicy to execute a transition from one
subgoal to another. After some time, it might look like tadla.

Let’s look again at our example and suppose that the agemt@®m E and selects high level action
“goto room C”. This time it needs to figure out which of the 7 subpoliciesilt select for this transition.
For this it uses the mapping from pairs of high level subgtakubpolicies Mapping..1) which is the

49



combination of a selection mechanisand the CapacitiesMapping..1 = SelecbCy...1).

The Capacities of the subpolicies for the transitios> C can be found in the table (4.1), and are
0.01,0.15,...,0.91 (the_underlinedialues). Suppose thatbpolicy is selected (perhaps because of its
high capacity): this subpolicy then takes control of theraged after some timét it terminates because
the agent ends up in room E. The capacitysobpolicy for going to room E starting in C needs to be
updated. The current value (0.91) is moved towards the nUpta'formance/ét. So if (for example) the
agent reached the new subgoal in 5 stéyy éndyc = 0.99, then the performance \}ét =0.99°=0.951
and the update is (equation 4.2 in section 4.1.2):

Ciact(start,goal) <« Ciac(start,goal) + ag (yét — Gjact (start,goal))
< 0091 + 0.01-(0.99°-0.91)

After all this, the high level policy can select a new subpplio execute.

4.2 A Closer Look at HASSLE

4.2.1 Properties of the FhSSLE State Abstraction

Bakker and Schmidhuber don’t exactly specify the propertikthe state abstractichthat they use for
HASSLE, but it is clear that abstract states are generated aceptditne following:

(1) consistent mapping (to): states close together map toaabstiates near each other (or the same
abstract state)

(2) consistent mapping (from): neighbouring abstract stabe®spond to nearby regions in the orig-
inal State Space

(3) atransition in abstract state space is a meaningful chantipeioriginal State Space

(4) abstract state space needs to be significantly smaller lieaoriginal state space

These properties specify that the mapping that is used feedtdre abstract state space, preserves the
underlying “geometric” structure (not constrained to a en&patial” geometry) in the original state
space. This means that points close together in the state shauld be near each other in abstract state
space, and vice versa (see fig. 4.3).

primitive

i SSSS>€5_mapping
e e N
SO S S N

unique
abstract
actions

” TN S =
gt
< SOS
RIS 2
QXK =

state space abstract state space

Figure 4.3: Abstract states as used irHASSLE: the mapping from state space to an abstract representa-
tion preserves (some of the) underlying structure of theestpace.

This way the abstract state space and the state space hasantieeinternal structure (at least on
a coarse level). Note that it is up to the designer to recagttiis structure and use it to create a
suitable abstraction of the state space. If no structurgtekor remains hidden) creating an abstraction

’For instance Boltzmann argreedy selection.
8They use a clustering algorithm to derive their abstradestaBut using a clustering algorithm to create abstratestas
with the properties specified here.
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of the state space is of little use, because transitionsaimbistract state space will then most ofie
correspond to something useful in the original state spaeding the abstract state space in question
useless for planning or learning on a high level.

How To Get The Higher Level States?

Until now the higher level states are treated as given, but bould these states be acquired? This
guestion is not the subject of this thesis, but it cannot gmtined. One suggestion would be to pse-
fabricatedstates, derived from some heuristic that the designer arogred. Other alternatives would
be to let the agent discover these higher level states Wi iTd@s could be accomplished if the agent was
equipped with some clustering algorithm, for instance ARA{Adaptive Resource Allocation Vector
Quantization, [11], [12]).

The higher level states could then be constructed eftarelearning takes place (by just randomly
exploring the environment), or the clustering could ocduring the learning phase. This last option
would mean that during learning, new clusters (and theeefmw high level subgoals) are discovered
and that these new discoveries should from that moment orbalsised in the learning process.

4.2.2 Assumptions Behind the Capacities

The Capacities are the bookkeeping mechanism for mappamgitions between subgoals to subpoli-
cies. Itis based on two (hidden) assumptions. The first istittese is only a limited amount of different
behaviours in the problem. The second that these behaviaumrde classified in terms of transitions
from subgoal to subgoal.

The first assumption makes sense because if there is (\Wjtued similarity between any of the
transitions, then as many subpolicies would be neededgas #ne transitions. If there is only a limited
amount of substantially different behaviours, there iyored of a small set of subpolicies that together
cover all the needed behaviours. This gives rise to anottogrepty for the FASSLE state abstraction:

(5) there is a limited amount of groups of similar transitionsAmen abstract states

The second assumption is reasonable because we need sorokidentifying these behaviours. If
the behaviours would not be related to transitions from sabp subgoal, the whole idea of trying to
describe the problem on a higher, more abstract level, i futhis second assumption is equal to the
third property (a transition in abstract state space is a meaningful chaimgthe original State Spacg”
that was deducted above (section 4.6).

4.2.3 Error Correction: Replacing Desired with Actual Higher Level States

By replacing the selected high level actions with the adtibactually experienced, A5SLE can make
more efficient use of its experience. Suppose that a sulyp@liarting in statestartStatg reachedeveb
statereachedStatevhich is different from the selected subgoal (actgwalStat¢. HASSLE can simply
replacethe taken actiomgoal State(which failed) with the actually executed action (which fscourse
the reached subgoetachedState So the high levelleéveb) policy can lean as if nothing bad happened
and as if it had selectegachedStatall along. This also works for the Capacitidsit it won’t work for
the (evek) subpolicy that was selected to reagbal State since obviously this policy has to be trained
for what it had been selected to do, and not for what it accaligndid.

The use of subgoals as actions therefore has an interestiegect: after an action is executed
and the new state is reached, it is known whactionwas performed. This knowledge allows for error
correction by substitution of what was selected by what fsally experienced. This makes learning on
the higher level far more efficient.
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Primitive Actions and Motor Errors

When the agent has sensory information that is detailedgimatican correct for motor errors. If it
happened to execute an action other than the one it inteleéedse of an error in the motor controls),
it could calculate what primitive action #ctually did. This calculated action can then be used for the
Reinforcement Learning update, instead of the action itdeheicted (but did not execute).

However, for theprimitive actionsthis would usually not be feasible. The primitive actions ar
dictated by the structure of the environment and the linatest of the motor controls, but often the
information that the agent gets about the environment, isdetailed enough to allow calculation of
the action that was taken, and there is no way to correct faonesrors. Only in situations where the
sensor inputs contain enough information, this deductamle madé.

Furthermore, most of the time error correction for the ptivel actions is noheeded If the motor
controls are not too error-prone, an occasional error will greatly hamper learning. So using some
sort of error correction would introduce extra calculasomhich would only result in a very small gain
in learning speed. If the motor controls are (for instance)eSaccurate, at most a 5% gain would be
possible.

Inherent Error Correction in H ASSLE

HASSLE starts with uncommitted subpolicies and needs to learn #paclties (matching high level ac-
tions with subpolicies). Therefore its subpolicies aregndifferent from the primitive actions. KSSLE
will make mistakes very often during learning. This coulgopan when a policy with a high capacity
for the given state and subgoal failed to deliver on its psanor when a policy with a low capacity for
the given task was selected because of exploration for tpadcizes.

This means that unlike the primitive actions it does not h@ateleast at the start of learning) a
high accuracy for its high level actions. Subpolicies néegttto specialize for certain subtasks. This
means that the probability that a high level action goes wisrfar greater than the probability that it
actually works out alright. SSLE thereforeneedserror correction to compensate for the many errors
its uncommitted subpolicies and its untrained mapping &cejes) will make in the beginning.

This more efficient use of the available information is madegible because the subgoals are an
artificial construct created by the designer. That meansthigastructure is known to the agent, and it
is possible to calculate what kind of high level action itedly did in this artificial structure. Note that
this is often not possible in the “flat” state space becaubkastanunknownexternal environment that
we have not created ourselves.

4.3 Problems with the HASSLE Architecture

HAssLHSs taken as a starting point for the development of an algerithat uses self-organizifg.This
is done because A$SLE already starts with uncommitted subpolicies, has a focustate abstraction
instead of task decomposition and uses local reward fumgiisee section 4.6).

HASSLE uses subgoals (i.e. abstract states) as its actions ongherhével(s). This certainly seems
like a good choice, because having a goal is better than @viynt) some behaviour. Goals can be used
in planning, but when we want to use behaviours in that wag/réisulting state for each behaviour is
needed, so implicitly we would still be using goals.

This idea can be seen in many other approaches listed irose@i4 and 3.5. Subtasks or options
are defined in terms of reaching some goal state or set okst&e whichever way we look at it, the
notion of using (sets of) states as subgoals is a commonréeakiowever, for FASSLE it is also the
feature that gives rise to the problems described in thissec

9For instance when the agent is a robot that uses a high resousitioning system lik&PS

OThe self-organizing approach (section 3.5.7) was not kntavme at the start of this research. It only came up after |
had modified (readcompletely mangledHASSLEto create FABS. It turned out that the self-organizing approach has some
interesting similarities to KBs.

52



4.3.1 No Generalization on the High Level

The structure of the Hassle algorithm makes it unsuitablei$e of generalization (using function ap-
proximators) on the higher level. Function approximateee(section 2.5) are often used when a prob-
lem grows too large to handle with discrete tables (for thealies).

The ability to generalize depends on how the states aresepied:! If for instance the states the
agent can be in, only have an arbitrary unique number or labe¢heir description, there is no way to
compare two different states (see fig. 4.4(a)). That meaasittan action works good in one state,
there is no pattern to generalize upon to determine whetheillialso work in another state. There
is simply no common ground between the two states, becaegeotily description contains too little
information. So there is little room for generalization frat case.

. at (0,20)
° action a soe wall in front JEEYSI[s]alE) cee
near door
generalizing? generalizing
vvy at"(15,f20) Yyvy
i eoe wall in front 1 oo e
action a né;ar.dogr action a
(a) no generalizing (b) possibility for generalizing

Figure 4.4: (a) No possibility for generalizing The best action in state X is action a, and the best action
in state Y is also action a. But there is too little informatia the state descriptior{b) Possibility for
generalizing The best action in both states is action a, but since themeuish information about the
environment incorporated in the state, a function appratancould for instance learn that being near a
door and a wall is relevant for selecting action a.

However, if the state description contains much informratitiere is a far greater possibility that a
function approximator can extract relevant features aritep@ (see fig. 4.4(b)). On that basis a good
estimate of the usefulness of a certain action in a certaie sin be given.

Generalization on the Lower Level

HASSLE can use a state representation with many variables forsrltevel, so it does not have the
problem described above. This is just like normal reinfareat learning without any hierarchies. The
lower level can always use function approximators. Moreitsactually needsfunction approximators
because tables have no generalizing capabilities, so @gpgoximators provides a way of re-using
subpolicies in other parts of the state space.

Generalization on the Higher Level — The Q-Values

For the high level Q-values, a different state alw&yseans a different action, because the high level
states (subgoals) are used alsaetions A good subgoal in one part of the problem space, is obviously
completely useless in another part, because it is too fay avewven though the actual behaviour that is
required, might be essentially the same.

The problem lies with the fact that the answer needs talmolute because subgoals that were
useful in similar situationglsewhergare in principle not applicable in the subgoal under cogrsition.
Subgoals arebsolutedesignations, they refer to fixed points in the high levetesspace, and are
therefore only applicable in the neighbourhood of thos&isoiTwo similar situations in different places

Generalization obviously also depends on the type of ajitor. An approximator with good generalizing Capacities
is assumed here.

12Actually: nearly always, because in two adjacent subgoals A and B, the beshaen actually be the same subgoal C,
bordering on both A and B.
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generalizing?
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(a) different subgoals (b) no generalizing

Figure 4.5: Different subgoals, different actions In high levels states (subgoals) A, C and E the best
high level actions (subgoals) are B, D andNe generalizing even though the best high level action
(“move North”) is the same in all cases, the high level acti@B, D and F) differ.

in the state space, that require similar behaviour, negksis require different subgoals (absolute points)
to go to. This means that, even though both high level actigaigg to subgoals) can in fact use the
same subpolicy, a different high level action is taken. Thiflustrated in fig. 4.5(a).

This situation (fig. 4.5(b)) is even one step worse than thee ¢lustrated above (in fig. 4.4(a)).
There it was assumed that the actions would be the same itasBituations but the state description
contained too little information. In the case olBISLE, not only do the high level state descriptions
contain no information other than a nominal one, but alscaitteonsthat need to be taken in similar
situations, have different designations as well!

The problem of too little information and the absolute natof each of the high level actions, makes
it extremely hard for a function approximator to do the jobchuse in essence it must emulate a table
without any repetitive features or structure, each entmyrigjue Using an approximator to approximate
such a table would probably take much more time than jushiegrthe table itself.

Generalization on the Higher Level — The Capacities

When HassLE needs to be applied on a large problem, not only the Q-vahlgs-grows. The Capacities-
tables also grow quadratically with the number of subgosde (ig. 4.6).
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Figure 4.6: HASSLE — scaling both the Q-values table and Capacities tables grow quedligt

It would appear at first glance that for the Capacities tathlesame problem would hold as with the
Q-values and the uniqueness of subgoals. The Capacitiehigiagr level transitions (from subgoal to
subgoal) to subpolicies and because each higher levelstapdue, it would seem that the Capacities
suffer the same problem.

But this is not entirely true — there is a small but significdifterence. When a high level action
is needed, the Q-values-table needs to return a subgoah gicertain subgoal (state) as input, but the
Capacities table(s) only need to return a subpolicy. Asahbedore, thesubgoalsare only applicable in
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certain neighbourhoods, bstibpoliciesare applicable everywhere (though of course they can djzcia
in certain regions). The Capacities only have to return arigpslicy out of a small set of subpolicies,
and these subpoliciesan bere-used everywhere in the problem space. Similar situgtiordifferent
parts of the problem space, can in fact yield the same sudypoli

It will often be possible to identify patterns in the traiits between subgoals, that always require
a certain subpolicy. If for example the situation is as inid(a), then even though subgoals A, C and
E are in completely different parts of the problem spacd, thieé step from A to B, from C to D and
from E to F are essentially the same and can result in simidggoaCities for each of the transitions. So
there is room for function approximation here, as long aghilgh level states are not represented with
arbitrary numbers, but with meaningful state represemati(coordinates, proximity to walls or doors,
etc), in which case we have arrived at the situation depictdig. 4.4(b) again.

Even though the Capacities can probably be generalized gbed (higher level) state representa-
tions are used, the higher level Q-function cannot use géimation even in principle because of its goal
directed and absolute nature. Thereforeg3LE cannot use function approximators on its high level,
but is constrained to use tabular representations.

4.3.2 Action Explosion on the High Level

When a problem scales up, there is in general no upper limit#® number of lower level states, and
therefore also no upper limit for the number of abstract aiglevel states for WSSLE. At first one
might wonder what the difference is between this problemhanhigher level and on the lower level,
since the problem size increases on both levels, so why whbisléhcrease in problem size be a problem
specifically for the higher level, more than it is for the lawevel? The difference lies in the fact that

on the higher level states and actions are the safitee abstract states, the subgoals, are used both as
states and as actions for the high level policy.

=4

Figure 4.7: Action explosion the problem size increases, and therefore the number béhlgvel states.
An action explosion occurs on the higher levelASSLE.

So on the higher level, not only the number of states is irsge@das is normal when a Reinforcement
Learning problem scales up) but also the number of actionse(@nusual), so the problem size grows
in two ways (see fig. 4.7). This can also be seen in fig. 4.6 wisaleistrated that the Q-values table
and the Capacities tables will grow quadratically.

Since states are used as the actions (subgoals), the nufrdiions increases with the number of
states. This could greatly decrease performance for prubieith larger numbers of states10%), since
there are more actions (subgoals) to explore (the Q-vadhlds-needs to be filled in accurately), out of
which probably only a few are accessible from the curreriesta

This explosionof the number of actions on the higher level is a serious probit is hampering the
learning process, because the more high level actions #ner® take, the more have to be investigated,
making the problem more time consuming, up and above theteifehe increased number of states.
This means that the time needed for exploration increasst$/\end as a second problem the memory
required to store the Q-values and Capacities tables,asesequadratically. Thaction explosions the
central reason for introducing a new algorithm that getfithis problem in a radical way.
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4.3.3 Three or More Layers Impossible

If the problem size scales up, it will result in significanthore low level states. This means that either
the number of abstract states stays the same but they grogeiros their number increases. Increasing
the size of the abstract states will make those subproblemteh and we will get trouble usirgimple
and smallfunction approximators for our low level subpolicies, sattban only be done to a very limited
amount.

When the problem gets bigger it will results in more abstsdates. In general this would not be a
problem in itself, because we could introduce a new layeiat T¥ay all the subtasks on all the layers
remain at a reasonable size. But$ELE is not suitable for use with more than two layers.

The idea behind introducing extra layers (see fig. 4.8) whaldo enable the re-use of partial solu-
tions (subtasks) elsewhere in the problem and to managedineng number of (abstract) states when
the problem scales up.

top level policy

high level policy middle level policy 1 e middle level policy m

)Ub po% }Ub N }Ub ponc< }/b p0“c< ;Ub po% 7Ub p0”0<
primitive actions primitivlé.actions primitive actions primitive actions primitive actions primitive actions

(a) two layers (b) three layers

Figure 4.8: (a) Two layers the number of layers is determined by the number of (sulies! (b) Three
layers: in the middle layer policies all share the underlying sulipes. An alternative is, to give each
middle layer policy its own set of unique subpolicies, bus tleads to large numbers of subpolicies and
prevents re-use.

Unfortunately, since HSSLE uses absolute actions on the middle level, there is no plitgsior
re-use. The policiés on the middle layer are using fixed subgoals as their actiems, middle layer
policy that is a solution in one part of state space, is cotafle@iseless somewhere else, because it refers
to subgoals that are specific to other regions of the statespa

Note that three or more layecsain of course still be used, but there will then be no re-use ol (e
layer) subpolicies and all the layers above the lowest danse function approximators. This would
create a structure that is similar to Feudal-Learning {(8ec3.5.5). As noted there, Feudal-Learning
also does not re-use its policies and has all of its subgoatiefined. So WSSLE is unsuitable for three
or more layers.

4.4 An Attempt to Fix H AssLE — Defining Filters

HASSLE uses subgoals both as states and as actions, the problezwesivion the high level) as a fully
connected graph where the subgoals are the nodes and treagddhe transitions from one subgoal to
another (see fig. 4.9(a)).

As a first solution to the problem of action explosion, we dosimply eliminate certain subgoals
when in certain abstract states — at least if that infornmaigscavailable. We might concludepriori that
some subgoal X is just not reachable, so the agent is not deeved to try it. A filter could be defined
to drastically reduce the number of edges available in a eétle subgoals. To this effect, we could
add the following rule the formal description ofAdsLE in section 4.1.1:

B\When expanding to three layers, there will probably be se{sub)policies both on the lower and the middle layer, and
one policy on top.
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* Filter; : States— £(Actions), a filter that gives the available actions at a given state.

wherei is the layer, andStates and Actions are the sets of states and actions for that level (same
notations as in section 4.1.1).

(a) fully connected (b) restrictive filter (c) liberal filter

Figure 4.9: (a) Fully connected graph on the high level, the subgoals and their accompanying high
level actions (“goto subgoal.”) form a fully connected graph. Note that all arrows are wr@gctions.

(b) Restrictive filter: Only subgoals that are connected (i.e. can actually behegfc are allowed by
Filter, for the higher level(c) Liberal filter : subgoals that are near to each other, are allowdellbgr .
Both filters create a smaller model of the higher level probl& he black arrows depict which subgoals
are reachable from a given subgoal.

With this a priori filter we can specify sets of available subgoals (high lewtioas) such that
Filter,(someSubgoal= availableActions: °(Actions) (see fig. 4.9(b) and (c)). Note that this also
allows us (in principle) to specify restrictions on whichrpitive actions can be used in what states by
definingFilter; in a suitable way (if all primitive actions are always avhlk Vse States: Filteri(s) =
Actiong).

This approach is not very interesting, becausalpyiori excluding actions at certain subgoals, the
(high level) graph of the problem is simply preprocessedraddced beforehand. In the reduced graph
learning is obviously faster, because there is less to leammpared to the original graph.

4.4.1 Automatically Creating A Priori Filters

It is up to the designer to specify the entire filter — and sifiléers are proposed as a fix for the action
explosion when the problem size grows large, that would laadrious task to do manually.

If we would settle for a less efficient filter, we could do it antatically (given a suitable state
representation on the higher level). When we are solvingvégation task, each subgoal can have
coordinates, and those can be used to determine autorhatitedther two subgoals are too far away to
be adjacent, for instance because they are further awaythleasgent can travel before timeout occurs,
etc. This would generally result in more liberal filters @ikn fig. 4.9(c)) because the heuristics that are
used to prune the graph will most often be coarser (but fagtan manual pruning.

4.4.2 Learning Filters

Designing or automatically generatiregpriori filters might be a possibility in simple cases, but this
would not be the case in general. If the problem is too largestucting the entire filter is too much
work, and if we already know so much about the problem alrgathy try to solve it using Reinforce-
ment Learning, instead of just doing it ourselves, or maydeaiplanning algorithm?

The point is, that if we don’t exactly know the underlyingustiure of the problem (and the problem
is large), then filtering out subgoals is no option for us, &rdhe creation of a suitable filter we are
stuck with Reinforcement Learning-like solutions wherertg have to determingy themselves/hat
the structure of the problem is, and that certain subgo&gusmt unreachable and that it is a waste of
time even trying them.

However when a problem is large, and no reward signal is ptefse a long time because no goal
is reached yet, the agent will consider each of the subgoeddic option, even though most of these
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‘options’ are in fact never reached at all. This is becaugesiibbgoals thabtavebeen reached, don't
yield any non-zero rewards (because the goal is too far awdyttee positive rewards are not yet prop-
agated back). These reached subgoals (with zero rewarshotbe distinguished from the unreachable
subgoals (with zero reward) using only the rewards.

The normal Reinforcement Learning algorithms will be of mdghhere. We could try to punish the
agent for failing to reach a subgoal, but in the beginningdgent is probably not able to reach any
other subgoal at all, because its behaviours are not yatddarSo basically we would be decreasing
the expected rewarfbr every subgoaincluding the good ones, which is not very useful at all. This
would just leave us in the same situation that we starteddrknowledge whatsoever about good or bad
actions.

Subsets of the Action Set

Some sort of filter is needed to create a bias towards suctigssfached subgoals, even when they
haven't yielded any non-zero rewards yetA$SLE needs to be augmented with some sort of record
keeping device which keeps track of successful high leviébag (i.e. reachable subgoals). Tisigc-
cess rateneeds to be used in our filter, so we can add a more specificaassLE (formalized in
section 4.1.1) instead défilter;:

* ActionFilter; : Statesx successRate {(Actionsg), a filter that gives the available actions at a
given state, as a probabilistic function of the successrate

wherei is the layer, an&tatesandActions are the sets of states and actions for that level, so a subset
of Actionsg is given byActionFilter,(state, successRates

Since the agent is not very successful in doing anythinglahahe beginning, the learned filter
needs to be somewhat flexible and fuzzy. We cannot simply kaef of a list of subgoals that we
could reach in the past (and in that way just building up Fiileer, defined earlier). We need to bias
successful high level actionlsut we cannot remove subgoals that were unsuccessful (so faglgn

Keeping track of the success rate for reaching a certaincallogn be done in a table with the same
size as the Q-values table. Values in that table represamrang averag€ of the success rate. The
frequency with which subgoals are selected, might look sbime like fig. 4.10 after some learning.

Figure 4.10: Learned Filter: The arrows depict the selection frequency (only shown farti&g in
subgoal A or D). Darker represents higher frequency. Ttearss like going from A to F will gradually get
a lower frequency.

One way to use these success rates as a filter, is to proliahilis determine a subset of the ac-
tions each time an action needs to be selected. The acti@ieistad from this subset. Membership
is determined probabilistically as a functi@rof the success rate. Using success rates boosts explo-
ration towards those subgoals that are apparently easiehed than other subgoals (that are perhaps
completely unreachable).

L running average, because subpolicies change in behaawlfailure in a too distant past should not count negatively
on current performance.

15The probability cannot be equal to the success rate itsetfalise that would mean that a subgoal that is not reached yet
(success rate of 0) does never get into the subset. Hencefsnoti®n of the success rate is needed.
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Boosting Boltzmann Selection

Alternately the success rate can be used to bias the selengchanism, and we don’t need to make
subsets of available actions. By adding the success ratel{lyuscaled or transformed) to the Q-values
when Boltzmann selection is executed, the selection candsed towards those subgoals that were
successful in the past. Equation 4.3 in section 2.4.2 thangds into:

e(Q(s7a4-) + o(s,a,successRajg/t

Psoitz(S, ai, successRabe= 3

Z e(Q(s,a’) + o(s,a,successRabg/t

a cactions

wherePgoi2(S, &, successRadegives the probability of selecting in s, sis the current stateg; is the
action under consideratiosuccessRates the success rate amds,a,successRadeis some function
transforming the success rate into a good “boost”.

Boosting selection does not work when usgigreedy selection, because it only looks at the max-
imum Q-value. Incorporating success rates (in some wag)this selection does not have the desired
effect because-greedy selection focuses on one (the best) action, wheveasant to bias the ex-
ploitation toall the successful subgoals. Because Boltzmann selectionnsof selection in general)
selects proportional to some function of the Q-values,stiged for boosting successful subgoals during
selection.

When theActionFilter is used to produce a subset, there is no restriction on whexdts®1 mecha-
nisms can be used, because it does its vbafloreaction selection starts.

The various filters proposed here are needed for the intgles of learning. When the agent has no
meaningful information yet about the goal (no non zero relwafet) a filter can bias learning towards
thosefew subgoals that are reachable, instead of equally dividiediite — andwastingit — on all
subgoals. When information about the target becomes &lail#éhe filter is redundant, because the
Q-values then implicitly carry information about subgo#iat can be reached successfully and will
eventually lead to the goal. The effects of the filter can likiced after more information becomes
available, or it could be removed entirely.

4.4.3 Filters — What Remains Unfixed?

Thea priori filter proposed here requires that information about rebitibais availablebeforelearning,
which means that the agent needs to have information abeut#ults of each action (i.e. selecting a
subgoal) when determining if a state should be selecteds Satution therefore imposes a restriction:
the entire environment needs to be known to the agent: ittisnoalel freé®.

The advantage oflearnedfilter is that it does not neealpriori information about the entire environ-
ment, because reachability is learned during exploratBuri.still the agent needs knowledge about what
subgoals there are in its world. This is however not relateithis fix, but to the structure of KSSLEIn
general.

On the other hand there is a new problem: the agent now hasctag&ble that grows quadratically
(Q-values, Capacities arsdiccess ratgs So even though the agent can now learn what is reachable, it
still needs to do this by exploring, so in the beginning thift remain quadratically many subgoals to
explore. Only after some time the effect of using successkiaks in and exploration will be biased to
more successful transitions. Therefore this fix is only dipbsolution to the exploration produced by
the explosion of actions and it does not solve the accompgnyiemory problems but even increases
them slightly-’.

8The reinforcement learning techniques described in ch&paee allmodel free They can be used even when the only in-
formation available to an agent is its current state, iteastand possible rewards. So model free means that no (utistia)
model of all the transitions and states is needed.

Y The main memory problem comes from the Capacities tableguse there is one for each subpolicy, whereas there is
only on (high level) Q-values table and only one successtzhte.

59



Furthermore, filters are also no solution for the lack of galigation and the inability to use more
than two layers, because they are related to the absoluteragde nature of the subgoals, not to the
number of subgoals. For this reason only a few experimestd@ne (and only with boosting Boltzmann
selection) as a proof of concept.

4.5 Identifying the Underlying Problem in HASSLE

There is a recurring theme in all the problems identified ictisa 4.3. Generalization is not possible
because each of the actions is unique (because subgoalsegrasiactions). For the same reason it is
not possible to use three or more levels because each ofltpelsties of the second or higher layer has
subgoals as actions, so each of those subpolicies is onlicalple exactly in that part of the state space
where those subgoals are. Furthermore using high levelsstat actions results in a quadratic growth
of the high level Q-values table (and specifically for$sLE. also a quadratic growth in the Capacities
tables) because the number of actions grows with the nunithéglo level states (aaction explosioh

These problems with generalization, more layers and aetipiosion are not specifical forA$sLE
only. They will occur in every algorithm that like A8SLE uses high level subgoals directly as actions.
Defining behaviours in terms of subgoals to be reached, istsolate way of defining behaviourhe
behaviours are determined by a fixed point in the state sdite( the flat state space, or a higher level
abstract state space).

4.5.1 Analyzing Primitive Actions

This absolute nature of the behaviours is in stark contrait the way that the primitive actions are
defined. An agent does not usually have a thousand actioeliddhction,...,actionggewhen itis in

a grid world consisting of a thousand cells (like in fig. 44}( Most of the time it only has a small set
of primitive actions

(a) 1000 primitive actions (b) only neighbouring states

Figure 4.11: (a) 1000 primitive actions primitive actions defined in an absolute way. There are 1000
actions if there are 1000 cell@) only neighbouring states primitive actions defined in an absolute way,
but limited to neighbouring states. There are still as mastjoas as there are states, but in each states
only a few actions are available.

For a start, the largest part of these other cells are prgbaiileven reachable from a certain cell, so
the set of actually useful actions in a given cell is very srtsde fig. 4.11(b)). But still this is not the
most natural way to define primitive actions, because it @aonéan that for each cell the connectivity
needs to be stored explicitly, because each primitive aatiould still be unique, each pointing to one
specific cell.

Instead, an agent usually has (and the environment provioiedyg a very limited set of actions, for
instanceN orth, East SouthandWestor the ability to rotate and move straight ahead. This wotild s
be of little use when the states themselves are not relatétbge actions (but for instance labelled or
numbered arbitrarily, as in fig. 4.12(a)) because explicitagye would then still be needed. Even though
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we seem to have only four primitive actions in this situatiese still would need to store that from cell
328, we would end up in cell 105 if we executed the actimrth.

(a) four primitive actions (b) four primitive actions with ap-
propriate coordinate system

Figure 4.12: (a) four primitive actions: the actiondNorth, East, SoutlandWest(N,E,S,W) are intro-
duced. For each cell the results of the actions need to bedst(h) primitive actions with coordinate
system actions are now related to a coordinate system which is gfattte state features. Results of
actions are implicit in the coordinate system.

So what is commonly done, is using some sort of coordinateesysThis need not consist of spatial
coordinate¥, but could also be more abstract notions likgént has objettor “door is opefl. So
what we usually do, is something like depicted in 'fig. 4.)2(here the primitive actions\orth, East,
SouthandWestin this case) are used together with states that have cadedin

This way there is no need to explicitly store all effects dfaimitive actions. These effects are
implicitly present in the coordinate system and the way tlimigive actions are defined with respect to
the coordinates. If the primitive actiddorthis executed, the effect is something that is relative to the
state where the agent came from. Provided there is no wallhéw state of the agent is just one cell to
the north of the previous staté.If we started in state (2,5) and executed the primitive addorth (i.e.
add 1 to the y-coordinateyve would end up in state (2,6).

Primitive Actions Are Relative

The primitive actions are not defined in a goal-directed waghisolute way in terms of specifimints
in the state space that they should go to. Instead they ameddf terms of what theglo, relative to
the state they are invoked in. This is possible becauster the hoodhe environment has a certain
geometry. The geometry is most obvious for grid-world liksks, but it is not constrained to those
kind of tasks, as noted before. This geometry defines dinestin the environment, and because of the
geometry it is possible to define meaningful difference @ecin the environment (or state space).
These difference vectors can then be used to define the penaittions, and there is no need for
using explicit subgoals as absolute targets for the primnitictions. Actions are coupled with certain
difference vectors, and although the agent may not be flaydesl sometimes fails to execute the action
correctly and fails to achieve the usual difference, theptiog nevertheless works because there is at
least a statistical connection between an action and arecto
In all four cases (fig. 4.11 and fig. 4.12) the environmenthis samebut our description of the
environment differs, with greatly varying results. Absieluvays of defining the primitive actions would
lead to an explosion of actions (as many primitive actionshase are states) and enormous storage
needs. Defining actions relative to some (smart) coordigigdem results in virtually no storage at all,
and incidentally also introduces the possibility for getligation (see section 4.3.1)! Both generalization

Bowever, because spatial tasks are intuitive, they arelynoséd as examples here.

19even when the environment is non-deterministic, and thetdges not know what the results of its actions will be, still
the actions in the environment are defined relative to thie stawhich they are executed, the only difference being that
resulting states are defined by probabilities.
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and relative definition of primitive actions are made poesiby using good, information rich state
descriptions.

4.5.2 Behaviours Should Be Like The Primitive Actions

Subpolicies (behaviours) in A8SLE are constructed similar to the primitive actions when theyde-
fined in a unique way. The high level subgoals thatsldLE uses, are defined in an absolute way (fixed
points in state space). In fig. 4.13(a) and (b), this sitmaisdllustrated.

106:107

(a) absolute actions (b) fully connected (c) neighbouring states  (d) a (restrictive) filter

Figure 4.13: absolute actions, fully connectedsee fig. 4.11(a) and fig. 4.9(a) for more information.
neighbouring states, filters see fig. 4.11(b) and fig. 4.9(b) for more information.

The results after applying(priori or learned) filters, is comparable to what we get when weiggstr
the (still unique) primitive actions to only neighbouringtes (see fig. 4.13(c) and (d)).

A good situation was obtained for the primitive actions, wiigey were defined relative to some sort
of coordinate system in the state space. This is somethikggskE does not do, and it is the reason why
HASSLE needs a new action for each new subgoal (action explosiahfamnot use generalization on
the higher level (and related to this, why it cannot work witbre than two layers).

This is not something that is restricted toABSLE, because it is related to the use of high level
abstractions of the state space. When such abstractionsede the abstract stateannotbe used as
high level actions in an efficient way.

So if we want to design an algorithm that does not run into lemols with generalization or exploding
numbers of high level actions, it seems that we need to defifielével actions in a relative way, similar
to the way primitive actions are defined.

4.6 Comparing HASsSLE To Other Approaches

HASSLE is compared (see table 4.2) to the other algorithms merdiamehe previous chapter. The
various Options-approaches are so similar in structurd &ndifferent from the layered approaches),
that a comparison with the general options-framework sesfic

Abstract States

HASSLE focuses on giving a good abstract representation of the spaice. It not only breaks up action
(and time) hierarchically, but also decomposes the stateesim a hierarchical manner. This allows for
smaller state spaces at higher levels.

The state abstraction inA$SLE is not constrained to subsets of features from the stateespabi-
trary abstractions allow the designer to use his or her kadgé from the problem domain to define a
suitable abstract structure for the higher level statesn&iance using a clustering algorithm, or perhaps
some entirely different heuristic (or just a selection ddttees from the lower level after all — if that is
most suitable).
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Table 4.2: Comparison of different Hierarchical Approaches: a “+” means that a feature is present,
and “—" that it is not. The approaches are listed in the sarderas they were described above.

HASSLE stands out because it uses higher level abstract stateh wdnicbe arbitrary instead of just
a clustering of lower level states or a selection of featunasof the lower level states. In this aspect
it resembles Feudal Learning. Other approaches createrigVel states out of selections of variables
(features) in the lower level state, as MAXQ, HEXQ, RL-TOIRd athers do.

Like HQ-Learning it uses a Q-values table for the higherliéweselect high level states as subgoals
to go to. HassLE and HQ both learn which subgoals to select, but HQ uses loel Eates as its
subgoals, while HSSLE uses its abstract higher level states for this.

Using Neural Networks On The High Level

In section 4.3.1 it was shown thatAldsLE cannot function with function approximators (including
neural networks) on its high level. This is due to the fact tha subgoals are used as high level actions.
For generalization, some structure and predictabilitydeded, but the KssLE high level actions will
always be different in different subgoals (even if thententis the same).

Many other hierarchical approaches also have trouble usingal networks on their high levél.
They are (with the exception of Feudal Learning and the Sedfanizing approach) all dependent on
some elements that pose problems for function approxirediecause of their highly discrete nature.
The Self-organizing approach on the other hand is expficibinstructed with a neural network on both
layers.

20The high level uses a vector composed of low level valuessatécisions, but each behaviour has a low level subgoal.

2'HAM has a Q-values table that contaifsate maching-pairs. It all depends on how the machines are constructed.

2’The exit states are used as subgoals. These are fixed lacatitime state space, making generalization hard (see sec-
tion 4.3.1).

233ee section 4.3.1 for full discussion.

2There is no task decomposition (Options are added to the peinative actions).

25 HQ has a completely fixed execution order, so it hdixed task decomposition! Each of the subpolicies (viewed as
agents) is always executed in the same order. It is not spedifough what each of the tasks should be, so it is fair tolsaty t
the subpolicies are at least partly uncommitted.

26Depends on the specific options approach.

2Tt least, as far as can be deduced on the basis of the desngpiresented in the literature.
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MAXQ uses a hierarchical value function™(< s,K >). This function gives the expected reward
for policy Tt starting in states with stack-content&. But this makes it dependent on the subtasks that
are still on the stack and these are (probably) discrete.llSaréations in the stack contents will often
results in entirely different policies. This could make étion approximation difficult.

The Q-values table that HAM uses, contains information ot lbe state and machinebecause
it consists ofstatemachinepairs. These machines act as the high level actions in HAMeMWér or
not HAM can use a neural network for its high level machin¢headepends on how these machines
are constructed. If they rely on information about posiiam the state space (i.e. absolute) then there
will be problems similar to those ASSLE runs into. However, if these machines can be constructed in
terms ofdoing thingsinstead ofreaching subgoalsa function approximator like a neural network will
probably be able to cope with them.

HEXQ depends on identification of 'exit’ states, and thedeseserve as subgoals for subtasks. This
makes HEXQ goal directed and a function approximator wouddbably run into the same problems as
with HASSLE.

HQ learns subgoals for each of its sequential agents. Thanmie will have problems similar to
HEXQ. Only if the problem is somehow repetitive, generdlaa is possible, because more than one
agent would in that case have a similar subgoal in a similaason.

Feudal Learning has only a limited set of orders on each Jayetthese orders need not be dependent
on specific (absolute) subgodfs. This means that Feudal Learning could in principle use aateur
network on a higher layer.

RL-TOPs does not even use a Reinforcement Learning polid{sdrigh level, but uses a planning
system instead. Planning and calculation are not the spoimgs of neural networks.

The ability to use function approximators (more specificakural networks) for the Reinforcement
Learning policy on the high level, would be very useful. Neduretworks are often used when a tabular
representation is infeasible because the problem is tge.ldf a Hierarchical Reinforcement Learning
algorithm (for its high level) depends on information thaishan absolute nature, or that requires too
much precision (e.g. stack contents) however, it is haratoline it with a neural network.

(No) Focus On Task Decomposition

The HassLE algorithm does not define a task decomposition (like foranse MAXQ or HEXQ) but
only needs the definition of abstract states for use on theehigvel. The focus in KSSLE is not on
decomposing the task into subtasks, but on defining suittid&ract states (and therefore on ordering
the state space hierarchically). In this reduced stateespdearning algorithm can learn to solve the
problem, using standard Reinforcement Learning techisique

This means that the focus is on designing good abstractatherthan task decompositions. A
decomposition of the task is useful when the designer knowghly how the task needs to be solved
and what kind of subtasks are needed. The focus on state apsiraction on the other hand is useful
when a solution to the problem is not so clear but when sonte atsstraction is evident.

This is rather similar to the way RL-TOPs works. RL-TOPs defiteleo-operators (TOPS) with pre-
and post-conditions. A planning algorithm then searches feolution (but the subpolicies are trained
with Reinforcement Learning). The decomposition is onlylicitly present in the way the TOPs are
defined.

HASSLE can work in non-deterministic and unknown environmentsabise of the use of reinforce-
ment learning on all levels, while those unknown environtagrose a problem for RL-TOPs because
planning in is difficult in an environment with unknown ruleBut aside from that, WSSLE could to a
large extent be reformulated in RL-TOPs terms, becausevimira in HASSLE can be viewed as TOPs
that have the high level state (or better: all the low levatest falling under the same high level state)
that they start in as a pre-condition and likewise have tlstimkgtion high level state as postcondition.

2| fact, Feudal Learning is rather similar to arpriori fixed version of HABS, see section 5.1.2.
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(Not) Directly Adding Subpolicies As Actions — Capacities

HASSLE uses the Capacities mechanism as a link or interface betiveesubgoals and the subpolicies.
Most of the other approaches use their subpolidiesctly as behaviours and incorporate them directly
in task decompositions. Feudal Learning is the only otheeption: it uses a system ofanagersthey
receive orders and themselves give orders to lower submeasiag

These managers form an interface between the orders angdbetion of behaviour. The managers
are free to decide how to execute the orders, and it coulddigtite manager has a selection of suitable
behaviours to choose from. The managers in Feudal-leathmgfore act in a similar fashion to the
HAsSsLE Capacities.

There is no specific reason why adding subpolicies direstlyetter or worse than using some sort
of interface mechanism (like the A$sLE Capacities or the managers in Feudal-learning). Using an
extra interface mechanism means that there is more to lbation the other hand it provides flexibility,
because the (learned) interface provides the ability totfime. An interface could receive the same
order (the same high level behaviour) in two different ditw@s, and in one case translate it to one
subpolicy in one case and to another subpolicy in another, tesause the interface observes more fine
grained information and sees differences that are absttanwvay on the higher level. This keeps the
higher level decision and learning simpler.

On the other hand this fine tuning could also happen insidsubgpolicy. If the subpolicies that are
used are flexible enough, they are able to provide the sarfeatitiation of one high level action into
many similar (but not entirely equal) behaviours. In the samay as with an extra interface, this would
keep the higher level decision and learning simpler.

Uncommitted Subpolicies

HASSLE uses its Capacities-mechanism to organizeaitgiori uncommitted subpolicies. Each sub-
policy starts out uncommitted, but using the Capacitiebpslicies can specialize and organize them-
selves. This is unlike most of the other approaches. MAXQirfigstance has a predetermined task
decomposition and certain subtasks are assigned to cetthpolicies, so it is known before the learn-
ing phase which subpolicy should accomplish which subtask.

The self-organizing algorithm is the other exception: igdrto find low level states which cover the
state space and that way tries to organize its subpolidiés structured to self-organize the behaviours
over the state space, and each behaviour shifts to regiahe atate space where the maximum of the
Q-values of other behaviours is low.AdsSLE usesa priori information in the form of high level states,
unlike the self-organizing approach. The high level state$ Capacities restrict the organization of the
system.

If enough information is available to construct a suitalalgktdecomposition, it makes sense to use
committed subpolicies. However, if it is not clear (for thesgyner) which kind of subtasks are needed,
subpolicies need to start uncommitted.

Local Reward Functions

HAsSLE uses local reward functions: subpolicies have their owrards/ which are completely inde-
pendent of the rewards the agent gets for solving the ovgrabllem. This means that the behaviours
are viewed independently from the overall tasMike for instance in HQ, MAXQ and HEXQ and can
therefore be re-used fairly easy.

In this aspect MssLE resembles RL-TOPs or Feudal-Learning or the way n@tionsapproaches.
A behaviour is just rewarded for doing what it is ordered tq dot for contributing to the eventual
(global) rewards or for completing the overall task.

Consider the situation in fig. 4.14 where the state space theagoal is depicted. It is clear that
behaviours “A= goal” and “B=- C” are very similar in this problem and could (evehould) be
executed by the same subpolicy. This means that in bothtisiisathe agent should be rewarded if it
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Figure 4.14: Subpolicies independent of global reward a navigation domain where behaviour
"A = goal” and "B= C” are essentially the same. Behaviour “geaB” is the opposite, but has a
similar high level Q-value as “A> goal”.

executed the behaviour correctly, regardless of whetteeb#haviour actually brought the agent closer
towards its overall goal.

Now suppose that the local (subpolicy) reward is dependanthe global reward. In that case
the behaviours “A= goal” and “goal<= B” would be rewarded with similar rewards (because in both
cases the agent receives a reward for reaching the goal)Baag C” would get a far lower (or zero or
negative) reward because it moves the agent away from tHe goa

But when training a certain behaviour, we are mainly intexgsn that behaviour, irrespective of
whether it actually helps us in our overall task. The sulgyotinly exists to execute transitions between
high level states, and if that is what it should do, that is twhavill be rewarded for, no matter the high
level situation. So a dependence between the high levelrdesavad the low level reward functions for
the subpolicies is not desirable. This way of rewarding &sotly what the reward functions inA$sLE
do (see section 4.1.1). A subpolicy will only be rewarded wilieactually reaches the subgoal it was
meant to reach.

Comparison — Final Remarks

It is interesting to note that AsSLE shares many features with both the Feudal-learning andetifie s
organizing approach, althoughaldsLE and Feudal-learning use look-up table, whereas the sgéfrizing
approach is designed specifically for the use neural nesvorke structure of the self-organizing ap-
proach is completely different than that ohRSLE or Feudal-learning.
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Chapter 5

HABS — Self-Organizing Behaviours

From our analysis of HssSLE (section 4.2), we can conclude the following: the usestate space
abstractionsis useful. A focus on abstract states allows for a shift awaynfdesigning task decom-
positions by hand. Also, the use ioidependenteward functions for the subpolicies creates reusable
behaviours.

Furthermore from the section on problems with$£LE (section 4.3) we know that using subgoals
explicitly as actions will not work, because it is the rootatifsorts of problems. Instead we should aim
for behaviours that are defined relative to the abstract stat&gmnalogous to the primitive actions.

5.1 HaBs — Hierarchical Assignment of Behaviours by Self-organizing

A new algorithm based on ABsSLE cannot use absolute (high level) actions. Instead, wheavialrs
are defined in a relative way, there is a mapping between thaviomurs (transitions between high level
states) and the high level actions. It classifies each betwa@s belonging to one of the high level
actions. This can be compared to how all primitive actiorss thove an agent Northward all map to the
same primitive actiomNorth.

5.1.1 Short Circuiting HASSLE

A classification algorithm is used to map the transitionsMeein high level states to characteristic be-
haviours. These behaviours are then added directly to titelbivel policy as (high level) actions. By
this short circuiting of the HASSLE algorithm, both the Capacities and the usesiaites (subgoals) as
actionscan be avoided. The Q-values of the high level policy nowatliyedetermine which subpolicy
is suited for which transition, because the Q-values gieeviidue for a high level action (behaviour) in
a high level state (see fig. 5.1).

The algorithm that results from short circuitingaldsLE is called HABS, which stands foHierarchi-
cal Assignment of Behaviours by Self-organizimgause instead ofA$sLE (Hierarchical Assignment
of Subpolicies to Subgoals LEarninigg does not use subgoals but organizes itself by dynanyiced!
signing (classifying) behaviours to its uncommitted sulujes.

Reverse Order

It is interesting to note that the relative nature of thegd behaviours is accomplished by reversing the
chain that links transitions between subgoals to submdi¢see fig. 5.1). KBS starts with classifying
many transitions to a small set of characteristic behagiguany-to-ong and then associates each of
these with a specific subpolicgife-to-ong This reverse order is possible, if high level behaviowas c
be defined in a relative way (as is later explained). Wheni¢hilie case, many transitions can be treated
as roughly the same, and can be mapped to one group and or@isybp
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Figure 5.1: The hierarchical structure of HABS: the large gray circles are the high level states. The
black arrows represent the high level Q-values (the thitkey are, the higher the Q-value). The actions
(behaviours) on the high level are classified to a small sethafacteristic behaviours (dashed arrows
leading towards the gray arrows). The classes are eachiatesbuwith a particular subpolicy. Notations
correspond to those in section 5.1.3.

HAsSLE on the other hand first treats each of the transitions as ar{@ne-to-ong and then relates
each transition to all the subpoliciesne-to-manyby means of the Capacities (see fig. 5.2). The prob-
lems with HAssLE were all related to the number of high level actions, andrthivique nature. But
since HABS uses the characteristic behaviours, of which there areafayy, it does not suffer from the
same problems.

:abstract state
|Space: States,

1

1

| Actions,
I =

unique
transitions

Capacities
(Mapping,.,,)

| "flat" state
| space: States,

Figure 5.2: The hierarchical structure of HASSLE: the large gray circles are the high level states
(subgoals). The Q-values of the high level policy are int#iddy the thickness of the black arrows between
the subgoals. Thee represent the (unique) transitions between subgoals. @padctieslapping_.1)

are represented by the thick gray triangles (thicker meé&tseh capacity). Notations correspond to those
in section 4.1.1. (Same as fig. 4.1, placed here for easy ausppawith fig. 5.1).

No More Explicit Goals

There is oneslight problem with HABS as it is proposed here. By kicking out teabgoals as actions
idea, we have lost our easy way of training subpolicies. @Witrexplicit (sub)goals we cannot train a
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subpolicy for a subtask with the trivial heuristic thabbiSLE uses:the behaviour of the subpolicy is
good, if the subgoal is reachéd

Since there are no more goals, a new mechanism is neededdomileing when a subpolicy should
be rewarded (at least, if the classification is not gieepriori by the designer). Self organizing is
proposed as a solution, based on some extra restrictiorfseastdte abstraction.

The idea is that a good representation of the abstract stalieprovide meaningful behaviours.
Given such a state abstraction, it then becomes possiblassify and organize the occurring behaviours
such that clusters of similar behaviours are identified. sehdusters will represent behaviours that are
neededo solve the problem and because the behaviours within @eclase similar, it is possible to
accomplish them with one (suitable) subpolicy which can seduirectly as a high level.

HABS can start with uncommitted subpolicies because the cleasdn is learned. The classification
will provide the reward conditions for the subpolicies, the classification is updated according to what
the subpolicies do.

5.1.2 Comparing HaBS to Other Approaches

In the previous chapter, several approaches were compaedde 4.2 is reprinted here, with an extra
column for HABS (table 5.1) to illustrate similarities betweemBs and other approaches.

MAXQ and HEXQ focus on task decomposition (although theyehemme form of state abstraction)
and therefore try to accomplish a structure likag$ by defining suitable pre and post conditions for
their subtasks. They reduce the vast number of unique tramsito a manageable amount of subtasks
by a suitable choice of conditions on each subtask.
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actions by high level policy

subpolicies start uncommitted+ - - — £ - — + + +

subpolicy rewards independentof . _ _  _  _ 4+ 4+ 4+ 4+ 4
reward for overall task

Table 5.1: Comparison of different Hierarchical Approaches: a “+” means that a feature is present,
and “—" that it is not. The approaches are listed in the sarderas they were described above. This is an
extension of table 4.2. See there for more information.

It is interesting to note, that this is somewhat similar te structureimplicit in RL-TOPs (see

'Note that this is not a problem for the primitive actions, retleough they are also relative. This is because the prieitiv
actions area priori given and not learned, so there is no need of training or gddisrefore if behaviours were predefined,
this would not be a problem for the high level(s). This is sainat similar to the way the Multi-Step actions (section B)4.
work: those options were also predefined instead of learfibid. is however not suitable when the environment is not kmow
well beforehand.
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section 3.5.6). The RL-TOPs algorithm is based on the nati@teleo-operator(called a TOP) which
consists of atemporally extended behaviour (a Reinforegioegarning policy with a neural network as a
function approximator) and a set of pre and post conditigdhough RL-TOPs still defines behaviours
in terms of desired goals, it does so in a rather general wagtdting post conditions that the TOP
should reach, not by stating specific (high level) states.

Both the TOPs and the subtasks in MAXQ or HEXQ are an attemplefme rather generic be-
haviours, that are not limited to certain specific sets otrabs states. Unlike the primitive actions,
they still are somewhat goal directed (because of the poslitons they need to achieve) but this goal
directed nature is what makes TOPs useful in plarthing

Another possible parallel is between relative behaviound @ptions. Some Options approaches
allow for the inclusion of Options that do something “relati like moving the agent through a small
passage, instead of moving the agent to a certain goal. Thier@mpproaches however do not use
multiple layers or state space abstraction.

Feudal Learning as anA Priori Fixed Form of HABS

Feudal Learning is an interesting case because in its géiscriDayan et al. only note that each layer
has a limited set of commands. As already noted in the comsrergection 3.5.5, for each command
the (sub)goal is already knovanpriori so this makes it somewhat similar to RL-TOPs or MAXQ and
HEXQ with their pre and post conditions. However, the cliéssiion of the commands on each level is
(in their example task) derived directly from the undertyigeometry. KBS is built around the same
principle, but unlike Feudal Learning it has agriori defined behaviours. In a sense, Feudal Learning
can be considered as a version ofg$ where the classification is fixed from the beginning.

5.1.3 HaBs Formalized

In this section the formal structure ofA#s is presented. The same format as in section 4.1.1 is used
to highlight the similarities and differences betweends$ and HASSLE. The structure that is presented
here, is in fact a framework. The details need to be filled ithwieuristics, in order to get an algorithm.

HABs for n layers consists of the following (withe {1,...,n}):

* sets of stateStates= {state ,,statey,...}:
States is the set of primitive states aiBtates., are sets of higher level states. Each of$tates
can be continuous.

* sets of actiong\ctiong = {action 1,action »,...}:
Actiong is the set of primitive actions, buctions,, = Policies_; (i.e. actions are lower level
subpolicies) saction x = policyi_1 x fori>2.

« sets of (sub)policieBolicies : Vi (policy; € Policies : Statesx Actions — R):
Standard Reinforcement Learning policies for each layehe Top layer has only one policy
(so Policies, = {policy, }), but the other levels havey policies (soPolicies = {policy: 1, ...,
policyi m }), each specializing in different subtasks. Only one (solXp is active at each level
at each time step.

» Agentlnternals variables describing the observations and memory of tlemtagurrentStatee
Stateg currentAction € Actions, and indicators for the timeoutimeout and which policies are
active on each layemlicy; active)-

2RL-TOPs uses a planning tree on the high level, not Reinfoece Learning.

3For a hierarchyStates, 1| < |Stateg is needed. But iStatesis continuous|States, 1| < |Stateg needs to be understood
in a different way. If two spaces are continuous, they bothtaio an infinite number of points, so comparing size that way
is impossible. Instead, the statem¢Stiates, 1| < |Stateg should in that case be understood as indicating that thé late
space is viewed on a coarser level by the abstract state.sp&i® could for instance be the case when the abstract states
contain less variables or if it has the same number of vaegltlut averages values over a wide range.
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e n-1 functionsExeg., : Actions_; x Actions_1 x ... x Actiong_; - R™M
A means of getting from the actions that the agent executéld palicy; active t0 a suitable de-
scriptionexeg. (Instead of defining it in terms d&ctions_; it could also be defined in terms of
Actiong. This does not matter, as long as a good representation goexecuted behaviour on
each level can be defined.)

e n-1 classifierClassifief., : exe¢ — Policies_1
A behaviourexeg executed by dayer; policy is always classified as “belonging to”layer,_;
(sub)policy. This means th@iassifief(exeg) = policyi_1  for a certaink. Classifief classifies
the actually executed behavioexeg that results when the active polipolicy, x executes one of
its actionsaction active € Actions. Since the actions for layers 2 are entire (sub)policies on the
level below,policy; x in fact executepolicyi_1 active- The classification defines sets of behaviours
that are similar. (obviously there is no classifier for thedst layer)

* stop conditionsStop : AgentInternals~ {terminatecontinug :
Determine whether a (sub)policy should terminate whenstrhaved from§to §'.

terminate If timeout v distancéS,S’) > &

Stopa = {continue otherwise

Stom continue otherwise

{ terminate If timeouf, v the agent reaches its goal

» reward functiondReward : Agentinternals> R:
TheRewardg., depend on how the higher lev@lassifiet,; classifies executed behaviawec If
Classifief,1(exeq = policyi,1 active the agent needs to be rewarded. Other rewards/punishments
are given for a wrong match and for timeout. During executi@policy receives 0 reward. Note
that this is an internal reward, i.e. it is not received frdra environment.

0 If Stop = continue
1 If Stop =terminaten Classifief,1(exeq = policy; active
Pfailed If Stop =terminate
A Classifief.1(exeq = policy: ciosestMatch
A closestMatch: active
Ptimeout  Otherwise

Rewardgl.p, =

For Rewarg, (top layer) the accumulated rewards that the environmerdsgihe agent during
execution of a subpolicy (possibly with nested subpolicets), can be used because they are
related to solving the overall problém

Selecting Heuristics — Filling In The Details

In order to get a working algorithm, a Reinforcement Leagrailgorithm needs to be selected for all the
policies®. Several of these are described in section 2.3.

Also, a suitable abstraction of the state space is needede §eneral properties can be formulated
(described in section 5.1.6) in general. But the selectiba certain abstract state space is related to
which types of classification or distance measurement id.ugestate abstraction on the assumption
that high level actions can be approximatedviegtorsis described in section 5.2.

Furthermore classifiers are needed anddfstanc€S,S’) (i.e. the distance that the agent moved
through state space from the st&bf the subpolicy until the current situatid’) needs a concrete
measurement. Examples of these will be described in sebtihB.

“In sparse reward tasks this will amount to 0 when the goal iseached, andewardyo, When it is reached.
SOr even different Reinforcement Learning algorithms fdfedent (sub)policies.
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Algorithm 5: HABS in pseudo code an example with two layers. RLUPDATE (...) (same
as in algorithm 4) updates a policy with a Reinforcement by algorithm (see section 2.3).
“NULL” indicates that a value is unknown.

HABS ::
while (TRUE) do Il Policy, (high level) Ioop
accumRewargl= 0; /1 For high level reward
agent is in abstract stage States;
policy, selects (sub)policyolicyi active; Il HL-action = subpoliCy1active
while (TRUE) do 1" (Sub) policyqactive: (I 0w | evel) |oop
agent is in statg € States;
policy; sel selects primitive actiom € Actions;;
agent executes acti@ and receives rewaneceived Rewakd
accumRewargl«~ accumRewargh received Rewaigcl /1 Accumul at e
if (Stop) then BREAK; /1 Term nate subpolicy
else RLUPDATE (policyy active, S-1,8t-1,0,%, &); Il Sparse rewards
end
determine current abstract st&ee States;
if (timeoui) then RLUPDATE (policys active; St-1, &1, Ptimeout; &, NULL); /1 Ti meout
else

determine behaviougxecthat was executed byolicy active;
calculateClassifiep (exeq = policyi closestMatch

if (pOIiCyl,closestMatchz pOIiCyl,active) then [l Match:...
‘ RLUPDATE (policys active, §-1,3-1,1,S, NULL); [l ...reward
else RLUPDATE (policys active; S-1,&-1, Pfailed, &, NULL); /1 No match

end

updateClassifiep with new dataexe¢
RLUPDATE (policy,,S™,0ldSUBoldAccumReward S, policy; ciosestmatch);

S «§ /] Save vars for...

S« S; [l ...next iteration

oldAccumReward« accumRewarg|

oldSU B« policy; closestMatch Il see section 5.1.4 for explanation
end

RLUPDATE (POLICY P, STATE S-1, ACTION &-1, REWARD ft, STATE §, ACTION &) ::
switch ( favourite Reinforcement Learning algorithrdo

case(Q-Learning Il See section 2.3.3
| update Q(s-1,a&-1) < (1-0)Q(§-1,a&-1) + a(re +ymax Q(s,a));

end

case(Advantage-Learning Il See section 2.3.4

update A(s-1,8-1) <
(1-0)A(s-1,8-1) +0 (MRA(S-1,8) + 7 (1t +YMaxy A(s, &) -MaxA(s-1,d)));
end

end

Control Flow

An example is given for two layers: the high level polipglicy, runs untilStop indicates termination.

policy, selects a subpolicpolicy: active (its high level action) that it wants to execute when the agen
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in abstract stat&e States.

Control is passed tpolicys active, Which is executed untibtop indicates termination. At each time
step during execution the subpolipplicys active iS updated with a 0 reward according to reward function
Reward.

After policyy active terminates its executed behavioexecis determined with the functio&xeg.
Then it is classifiedClassifiep(exeq = policy ciosestmatch If closestMatch: activethen policy; active
is rewarded because it was the closest match. If it is notldsest match becaug®licy; active €XecCuted
a behaviour that fits better with some otlpalicys gtherrolicy then it would receive a punishmepiaiied-

If policys active terminated because of timeout it is also punish@ghéour-

The higher levebolicy, is then updated according Rewar@ (the accumulative reward) for select-
ing policys active iN abstract stat&. Classifiep is also updated.

The control flow (with two layers) is illustrated in algonth5 and the relation between components
is depicted in fig. 5.1.

5.1.4 Replacing Desired with Actual Behaviour

HAssLE could use the actually reached subgoal instead of the desiregoal. It just substitutes the
high level action that it selected to execute, by the actiat it did actually execute (see section 4.2.3).
That way HassLE can make more efficient use of its experience and correctsede to not yet fully
learned subpolicies or exploration (see section 4.2.3}.dfids up in subgoaX it will always use the
knowledge thatgoto) X was the actually executed action.

HABs is very similar to HhssLE in this respect. After the active subpolicy has executedh lavel
action, the agent can observe which abstract action it Haalycperformed. Usually this will resemble
what this subpolicy actually should do, but sometimes dwexoration it might have done something
different. In fact, it will sometimes execute behaviourtthiaelongs” to another subpolicy (i.e. when
Classifier(exeq = policys actuallyexecuted@nd actuallyE xecuted- selectegl. In that case we can use
this information to better train the high level policy. Wetw@ally know that the agent has performed
behaviourexecso we can update it fqpolicy; actuallyexecutednstead of for selectingolicyy active.

This is possible because the designer created the statadlust and knows its mechanics. In that
case an action can be deduced from the knowledge that thefagewas in abstract sta# but now in
B. HABS and HassLE both use this principle to correct for errors (mainly in thegimning of learning).

5.1.5 Self Organization

If the classification is not given by the designer, it mustdsehed. HABS couples subpolicies to classi-
fications, so this learning involves self organization oa plart of subpolicies and classifications. This
occurs because subpolicies are rewarded for executingioeindhat is classified as belonging to their
own class, and on the other hand updating the classificatiwartls recently executed behaviours (if
they were successful, i.e. they matched).

During the learning phase, the agent can discover clustdrst@mviours, and subpolicies are associ-
ated with these clusters. This is done by updating the fiesson with the behaviouexeg_ . a; that
the active subpolicyolicy; active €Xecuted. If the recently executed behaviexee._.t.: is classified by
Classifier,1(exeg.t.at) as belonging to the class that is associated with the sudyptblat executed
exeg.sat Or whether it is classified as belonging to the domain of agroglabpolicy. On the other hand
the classification is used to measure their performance @mard the subpolicies accordingly.

Subpolicies are punished when they don't succeed in leavinigh level state (if they don’t cover
much distance if the state space is continuous) so thefpared outward This prevents the subpolicies
from specializing irstanding stilland becoming experts mhoing nothing at all
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Burden Of Random Walk Exploration

The subpolicies (by means of a good classification) need werdbe occurring behaviours as good
as possible, if they are to be useful as actions for the higél jgolicy. But since there is na priori
knowledge about what behaviours are needed, the subpotiet without meaningful behaviour and
with randomly initialized characteristic behaviour. Tihgsa crucial difference with other hierarchical
Reinforcement Learning approaches, where the structulesifed behaviours (macro-actions, options,
subtasks) is typically predefined.

This means that in the beginning (much) exploration is néegteboth levels. The high level selects
actions (subpolicies) to execute and the subpolicy (whifgaging) might stumble upon new high level
states. Since high level states are nearby they are reaallgae in the learning phase by just randomly
exploring. The overall goal on the other hand can only beheddy a long chain of primitive actions,
so the expected duration before a random walk would reaclydhg is very high (because the time is
quadratic in the distance).

This means that early during the learning phase, the agaiieésto discover meaningful behaviours
that provide transitions between abstract states. Thgseriences are (provided the state abstraction
is good) clustered together, and the agent will be able tmassibpolicies to each of these newly
discovered clusters. These subpolicies will specialimmielves, and will in turn be very useful in
solving the overall problem because they execute usefidwhetrs (subtasks) that are purposeful. And
as illustrated in section 3.1.3 and section 3.2.3, largeraodom sequences of primitive actions allow
the agent to explore further and faster by random walking.

In essence, the burden of random walking is during the lagrphase shifted from the level of
primitive actions to the level of behaviours. This prineiptan easily be extended to more than two
layers. Once the agent has mastered (small) behavioursd@eicond layer, it will use these in random
walking and then reach third layer abstract states. Theommndalking burden will be shifted to higher
and higher layers.

5.1.6 State Abstraction Suitable for HABS

HASSLE uses abstract states in an absolute way, but as we illusiragection 4.5 this is not an efficient
way to define states, because each action becomes uniquensuithble for generalization. Abstract
states should be defined in a manner similar to the state®iariginal state space if we want abstract
high level actions to be relative.

HABS uses its classification mechanism to go from many (absottde¥itions between high level
states, to a few (relative) behaviours. If this classifmativere givera priori and if the designer just
specified which high level transitions mapped to which behag, there would be no need to learn
it, and neither would there be a reason to look for propexiesuitable abstractions. However, if the
problem is large, the abstract state space will also be J|lange specifying the entire mapping might
not be feasibl&. So, we need a way to automatically discover this classiinatind for that we need a
suitable state abstraction.

The properties implicit behind the ASLE abstract states, can also be used faBH. HASSLE has
the following properties (section 4.6):

(1) consistent mapping (to): states close together map tosambsttates near each other (or the same
abstract state)

(2) consistent mapping (from): neighbouring abstract stabeespond to nearby regions in the orig-
inal State Space

(3) atransition in abstract state space is a meaningful chante ioriginal State Space

(4) abstract state space needs to be significantly smaller higaoriginal state space

8Similar to why defining ara priori Filter is not feasible when the problem is too large (seeiceet.4).
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(5) there is a limited amount of groups of similar transitionsa®en abstract states

All these properties still hold for WBs. The fifth HASSLE-property is related to the capacities and
subpolicies: it assumes that there are only a limited amofi(gubstantially) different transitions. The
Capacities map these transitions to different subpolidias the function of the Capacities is replaced
by the identification of clusters in the Behaviour Space. d@hails of the fifth FABS-property will
therefore depend on the specific heuristics that are usdtidarlassification.

Circular?

It should be noted that the fifth property seem somewhat leirciVe need some knowledge about the
solution of the problem to derive a good state abstractimrder to solve the problem. We need to know
whether a state abstraction is good (in terms of how manypgrdlere are) but we will only know this
for sure after we have mastered the problem and have actegbgrienced the occurring behaviours,
and observed whether they are clustered appropriately.

This means that creating a good state abstraction is anivenarocess where some intuition is
needed for the designer (just as in the case where the desigeés to specify a task decomposition for
an agent). The designer might try a state abstraction, ebdbe results, and perhaps tweak it a little
and try it again.

Humans are experts in abstraction, and a state abstrabhabsdems reasonable to a human designer
will often be according to the properties stated above. Aesides that, subpolicies can use function
approximators and are therefore flexible enough to handieesaegularity. After all,quick and dirty
learning is desirable above painstakingly slow learningi@iearning at all. So even if a hierarchy is
not perfect, it will at least increase learning times anddy good (though not perfect) solution in a
reasonable time.

5.2 Heuristics For HABs — Filling in the Details

HABs is (as presented here) a framework. Depending on what chaieemade, different algorithms
are created. A choice needs to be made for a suitable statacm (and a means of classification)
and for the termination criteria.

5.2.1 Action Space and Behaviour Space

For convenience, let’s define &wction Spaceo bethe set of all possible difference vectors in that state
space(see fig. 5.3). Thelifference vectorare the vectors that result when the difference between the
vector representations of arbitrary states is calculaldds means that thAction Spaceonsists of all
possible vectors that are confined within the dimensionb®ftate space (fig. 5.3).

Figure 5.3: Behaviour Spacethe space of all possible difference vectors in a stateesfvaith dimensions
b1,b2,b3). The arrows are examples of difference vectors betweé¢assta

It is important to note that the primitive actions are alsst juectors in arction Spacgthey form a

subset of the entire space. Moreover, the difference vethat correspond to the primitive actions are
the only vectors in the Action Space that aeml in the sense that they do actually occur when solving
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the problem. A transition between two states that are natected by a primitive action, will not occur
in the problem, and is only a theoretical possibility.

There is something else that can be said about the ActioneSgraat the primitive actionslf the
primitive actions are defined in a relative way (see secti@nl4, then the primitive actions will all be
cluttered together. All the instances of one type of priveitaction (e.g pickup” or “North” ) will map
to the same (or nearly the same) difference vector in theoAcBpace because of their definition that
was relative to the structure in the underlying state space.

We can also construct an Action Space for the Abstract Stasee(like those that KssLE and
HABsS use). The result is aAbstract Action Spacer Behaviour SpaceThe actions in the Behaviour
Space are entire behaviours consisting of sequences otigaractions.

5.2.2 Assumption on Difference Vectors

The high level (abstract) actions are treated here as diftmvectorsbetween two abstract states. This
is obviously a simplification.It is not hard to find a counteample against this assumption: suppose
we have an obstacle and the agent needs to go around it (sBel{@)). It can either go left (through a
corridor) or right (open space). The difference vector &ss$ame for both behaviours, because they end
up in the same location. But the behaviour itself is very clexgmoving through a corridor, avoiding
obstacles, etc) and a subpolicy would have a hard time dzogpon these widely different behaviours,
even though the state abstraction suggests that they aetiadry similar.

(a) counter example (b) solution

Figure 5.4: Counter example the abstract state (indicated by dashed lines) are so thagéwo com-
pletely different behaviours (black arrows: left or righband the obstacle (gray area)) result in the same
difference vector (dashed arrowgolution: the abstract states are smaller, resulting in more — bst les
complex — behaviours.

This counter example is the result of making the state ati8tratoo coarse. This is not what we
want when we introduce hierarchies. One of the leading ideesto obtain small reusable subtasks, but
the task that the agent is confronted with here is itself § laage task.

Increasing the number of abstract states (i.e. making ierfioe grained), could solve this problem
(see fig. 5.4(b)). It results in more abstract states andvi@ins, but these are less complex and more
similar to each other. When abstract (high level) actiomsraughly similar, this opens up possibilities
for approximation. It now becomes possible for one subgdii specialize in moving through the
corridor, and for another to do something else. Each of thesaviours is now different according to
the abstraction.

5.2.3 HassLE Behaviour Space

The Behaviour space thatA3sLE uses, is very simple. Since the abstract state space hasiotust
and the abstract states are onfyminal they only have a “name” (or a number) as designation. In this
case each differenc&— B of two subgoals forms its own dimension, or in the casédoB andB— A
they share the same dimension, but are complete opposites!

For n subgoals there would just bex (n-1) arrows (no transitions from A to A) pointing in
% xnx (n-1) different dimensions (because of the opposites). Therasrany dimensions as there
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AB CD

(a) abstract state space (b) abstract action space

Figure 5.5: Abstract State Space foHASSLE: a very simple abstract state space. Only A and B, B and
C and C and D are connectetibstract Action Space becausé{ASSLE subgoals are only nominal, there
are4x (4-1) different vectors for 4 subgoals, so there §I564 x (4-1) = 6 different dimensions, so each
line depicts another dimension! The black arrows denoteadlgt occurring transitions, the gray arrows
are transitions that will not occur while solving the prablebecause they are impossible transitions.

are pairs of abstract states. Some of these arrows arelgatoalirring (high level) actions because they
represent transitions between subgoals that are adjasmmfiy. 5.5).

5.2.4 Demands on the KBS Behaviour Space

The abstract state space that$$LE uses, will not do for ABS. A space where each occurring tran-
sition has its own dimension leaves no room for defining thgh hevel actions in a relative way and
classifying them automatically — which was what st needs.

However, we are not restricted to nominal descriptions ef dbstract states. These abstractions
where derived from the underlying (original, flat) state @gaand that state space has its own structure
or geometry. In fact this structure is the reason that thaipisie actions do not behave badly but can be
defined in a way relative to this underlying structure (sesise 4.5.1). Note that this is all under the
assumption that the original state space is sufficientlyctiired, but this is not unreasonable, because
many real-world problems have highly structured state epagsually Reinforcement Learning problem
state spaces do not consist of states that are only nomuhesigribed.

BELH
AD L= 4 b
AlBlC/ID s e s |
(1) [ (2) | (3) | (4) 321012 3
(a) abstract state space (b) abstract action space

Figure 5.6: Abstract State Spacethe same simple abstract state space as in fig. 5.5(a),ibuirtfe the
abstract states have an internal structure that is refléctéeéir state descriptiorAbstract Action Space
due to the internal structure of the abstract state spaedyghaviour space is only one-dimensional. The
black arrows denote actually occurring transitions, theygrrows are transitions that will not occur while
solving the problem (because they are impossible tramsfioMany transitions (high level actions) map
to the same difference vectors.

If we make good use of the underlying structure when we createbstract states, we can prevent
the situation where each transition needs a new dimensicaule the states are all nominal. This
is illustrated in fig. 5.6 where a very simple abstract stgi@cse and its accompanying abstract action
space are depicted. The abstract states use the underamgedry of the original state space in their
descriptions and therefore many of the high level actiong map to the same difference vector.

This concept is not limited to abstractions that are pelfeegular and where the difference vectors
are identical between many of the abstract states (as dftéwe icase for the primitive actions between
states). If high level actions are roughly the same (as ir5fig) these difference vectors will still be
close to each other even though they are not exactly the séhege are in fact several distinct groups
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(a) abstract state space (b) abstract action space

Figure 5.7: Less regular Abstract State Spacethe same simple abstract state space as in fig. 5.5(a) and
fig. 5.6(a), but now the state descriptions of the abstratéstare less regulaAbstract Action Space

for the less regular abstract state spacethe abstract action space still has only one dimension.yMan
transitions (high level actions) are represented by routtd same difference vectors.

or clusters of difference vectors. This means that theregsa probability that one subpolicy would
be able to execute all the behaviours in a cluster. We woulglreeed as many subpolicies as there are
clusters and that is also the number of actions that our kgl policy would have.

Many Different Abstractions Are Possible

While it is true that FAsSLE and HaBs can work with the situation in fig. 5.8(a), it would cost a lot.
There are so many different behaviours, thatddLE and Haes would need many subpolicies (in fact,
both would need the same number of subpolicies) and manyesetbubpolicies would only be good
for executing a few transitionar even only ongbecause there are so many different transitions between
high level states.

* [ ok

E F e»Ge>H

(a) state abstraction 1 (b) behaviour space 1 (c) state abstraction 2 (d) behaviour space 2

Figure 5.8: state abstraction 1 and behaviour space: the behaviour space has two dimensions, but the
actually occurring transitions between abstract statesseattered (black arrows) all over the behaviour

space. state abstraction 2 and behaviour space :2the behaviour space has two dimensions and the
actually occurring transitions are clustered togetheuaddfour vectors.

Both algorithms can in principle deal with situations likg.f5.8(a) as long as the dimension of the
behaviour space is not too high, but it would need many sudipslto cover all the needed behaviours.
This is only a two dimensional example, but it is clear thahgnbehaviours scattered all over a high
dimensional behaviour space require way too many subpslic be practical.

The problem with the situation in fig. 5.8(a) is that all thet(glly occurring) high level actions are
scattered all over the behaviour space (fig. 5.8(b)). Indage it will be hard to use any generalization
(or more layers), because each of the high level actiondfexreint from the other, and if many of the
high actions are still unique, we would still have an actiaplesion. HABs and HASSLE both need
many similar transitions (property (5) in section 5.1.6).fact, any hierarchical approach that wants to
re-use subtasks, needs something like this fifth property.

But there are many ways to do state abstraction for a givde sf@ce. Suppose we would do it
like in fig. 5.8(c), then we would obtain the behaviour spageeen in fig. 5.8(d). This does result in
a desirable situation, because many high level actions ampad to vectors that are near to each other
and into four rather distinct groups.
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Filling In The Fifth Property

In conclusion,we demand from our abstract state spacetthiges us these useful clusters of high level
actions, instead of behaviours scattered all over the plBgss is illustrated in fig. 5.9.

primitive . appng abstract
. s < :
actlons :";:‘:‘::"éz‘:‘ actions
NSNS
P =< *
)\
state space abstract state space behaviour space

Figure 5.9: Abstract states as used itHABS: the mapping from state space to an abstract representation
preserves (some of the) underlying structure of the stateespnd ensures that the actually occurring high
level actions are highly clustered (the black arrows). Sgetfi3 (theHASSLE mapping) for comparison.

In light of the analysis above about the need of an underlgingcture in the abstract state space
(in order to derive a good heuristic), we can now fill in theHfifiroperty that we gave for ABs (see
section 5.1.6). The fifth property can be made more precigerins of the Behaviour Space and the
assumption related to difference vectors (section 5.28)ue included:

(5’a) actually occurring transitions between abstract statesl ne be distributedhon-uniformlyin the
Behaviour Space. They need to form a limited amount of distmoups

(5’b) difference vectors that are similar should correspondrtolar behaviours

In fact, the more non-uniformly the behaviours are distiglol) the less distinct groups or clusters
there are and the fewer subpolicies (i.e. high level acjietrs3s needs. This means that a state abstrac-
tion is better if it has fewer clusters of behaviours.

5.2.5 Classification and Clustering

For the experiments described in this thesis, a very simgehanism is used to do the classification.
Since behaviours are treated as vectors (which is a singilific) it is reasonable to use a method that
is suited to vectors, therefore an adaptive clusteringrdtgo was selected.

A cluster is assigned to eaclubpolicy. The cluster centechar, can be considered theharacter-
istic behaviourof that subpolicy. During learning, the cluster center isvattowards newly executed
behaviourif this recent behaviour was already classified as belongitiyd@luster. The update is done
according to:

charLHm <« (1— (JO) 'Chari’t + W- e)(—e>¢,t_>t+At (51)

where(%)qtﬁum is the behaviour that the subpolicy executed starting a¢ timnd ending at + At

(calculated withE xeg) andtmit is the characteristic behaviour vector (i.e. cluster cgnteat was as-
signed to the subpolicy that just execu&T(da)(aHMt. The factorw (0< w< 1) is learning rate determines
how much the characteristic behaviour is moved towards ¢wdynexecuted behaviour.

The definition ofExeg is related to the clustering. This function needs to cateuthe executed
behaviour(%)(; and represent it in a suitable way. When the behaviours eegetl as vectors, it is
defined as the difference vector between the abstract states

exeG=ExedSS)=S|-5 (5.2)

Each subpolicy is assigned a cluster center and will speeial that cluster, but these clusters will in
turn provide the goal conditions for the subpolicy. If a soligy does something that is similar to “its”
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cluster, then it will be rewarded, but at the same time thsteling is updated with this recently executed
behaviour (equation 5.1). This way the subpolicies wilktimon clusters of behaviours that are actually
occurring in the problem, they will self organize to coves tiheeded behaviours. If the clustering and the
state abstraction are suitable, each characteristic mmiraiclassification) will gravitate towards actual
clusters (illustrated graphically in fig. 5.10).

Abz |||t:r:1|e|} Ab2 |||t:r|n|e|} Abz

by b by

Figure 5.10: Changing characteristic behaviour vectors The gray areas depict pockets of behaviours
that actually occur in the abstract state space. The arrogvthacharacteristic behavioursrganizing
themselves to cover the needed behaviours.

Not All Features Are Related To Behaviour

In principle all elements of the behaviour vectors could beds However, this is often not a good idea
because many of the elements in the so-catleaviourvector, have nothing to do whatsoever with
the behaviour of the agent. An object that moves by itselfdcoteate the illusion that its movement is
actually part of the behaviour of the agent.

This can be illustrated by a simple example where an agenbtigghe two actiondJp andDown
and is situated in a grid world where objects move by thenesebr appear and disappear autonomously
(see fig. 5.11). The state (observation) of the agent cansighe following: (position object(+1),
object(+2), object(+3), object(-1), object(-2), object-3)). The termobject(d) indicates whether
or not there is an object present at distaddeom the agent. So at the first time step, the observation is
<2, 0,0,0, 1,0,0> because the agent is at position 2, and there are no objestydsp (nothing at +1,
+2 and +3), but there is one object (object A) one step dowdsyasoob ject(-1) = 1.

stata = (2, 0,0,0, 1,0,0)
state = (3, 1,0,0, 0,1,0)
statg = (4, 1,0,0, 1,0,0)
state, = (5, 0,0,0, 0,0,1)

Figure 5.11: Autonomous objects this illustration shows four progressive time frames waith agent
moving and some objects moving and (dis)appearing withoualvement of the agent. The stars denote
(spontaneous) creation or deletion of an object. The lieetee “world lines” of the objects and the arrows
depict the actions of the agent. To the right, the obsematat different time steps are given. The state of
the agent consists of the followingposition ob ject ;,0bject.»,0bject s, object1,0bject,,object ),
whereob jecty indicates whether or not there is an object present at disthifrom the agent.

If we would calculate the executed behaviour from time s$tept + 1, using the difference between
the vectors, we would arrive at:

behaviouf = state -statg (+1, +1,0,0, -1,+1,0)
behavioup = statg-state = (+1, +1,0,0, +1,-1,0)
(+1, -1,0,0, -1,0,+1)

behavioug = state -stateg
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It is obvious that the first element of these vectors (+1)esponds with the move upwards. How-
ever, some of the other elements are rather confusing. lagent would try to discover clusters of

similar behaviours in this action space, it would discovatbehavioug andbehavioug are similar for
five out of seven elements, but that thieject ;1 andob ject , differ radically. On the other hand, for

behavious andbehavioug the element denotingb ject,; is opposite, and so oh.

It would seem that elements in the environment that act oin twen, are rather disruptive for the
notion of an action space, because many of the featuresagisphtradictory values at different time
steps. On the other hand, these disruptive elements carebified easily. They are the features of the
state (or state abstraction) that are not related to whaadleat does, but to what is happening in the
environment. These can be filtered out by the desigrniori (as is done for the experiments reported
in this thesis, see section 6.4.2) or possibly even by thetdtgelf (see section 7.2.2 on future work
with automatic detection of features).

5.2.6 Termination and Moving Significant Distances

The specific way in which the termination criteria are haddtepend on what kind of state abstraction
is used. The definition foBtop., for HABS:

terminate If timeout v distancéS,S’) > &

Stopan = {continue otherwise

does not resemble that forA3sLE:

terminate If timeoutv (S=S A SS eStates A S#9)

Stop = {continue otherwise

Instead, the definition for the termination criteria fonBis is stated in terms of the (rather vague)
distancéS,S’). This term indicates that the agent has movsijaificant distance through state space
This leaves open how exactly we would determine the sigmiieaf a certain moveme#it.

This open formulation allows freedom on the part of the desig A criterion similar to that of
HASSLE could be used, but separation of the termination critedenfthe abstract states, also allows the
use of continuous high level states for determining sulsgdirmination, or even a mixture of discrete
conditions for terminatiomnd a continuous high level state for the high level policy.

Stopping Like HASSLE

If the state space abstracti@bates ; is discrete, then the significant movement through stateesgamn
simply be equivalent to moving from one abstract state tataro The termination criterion for the
subpolicies in the layer belovd{screteStoy) can then simply be:

terminate If timeoutv (§S=9' A S,SjeStateg; A §S+S))

discreteStop = {continue otherwise

This means that the active subpolicy terminates as soon aw digh level state is reached. This
is exactly the same as inA$sLE. In effect thesignificant distanceés implicit in the state abstraction:
reaching a new high level state by definition means that tlemtagas moved a significant distance
through the underlying “flat” state space.

Note that this way of defining significant movement, resuitsituations where the agent just steps
from one side of the border to the other with one primitiva@tt This will always happen when state
abstractions are discrete.

The problem remains if we would use absolute coordinatethpositions of the objects instead of coordinates that are
relative to the position of the agent. The fact remains, tihatobjects move with respect to each other, in whatevereeée
frame we take.

8The termination criteria could even be defined in a probsiidliimanner, though not in with the definition presented here
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How To Stop In A Continuous (Abstract) State Space

The abstract state space can also have a continuous natuaecontinuous (abstract) state space the
distance could be measured measured in terms of a diffeventer between start and current location:

terminate If timeoutv (distanc€S S)>0 A S S eStateg,)

continuousStop, = {continue otherwise

—
This distancecould be the standard Euclidean distaniistancéS S') = |[S-5. However, some
other measure of distance, more appropriate for that pdati@bstract state space, is also possible.

Hybrid Approach

The abstract state space could also be continuous, whileethenation criterion is still discrete (or
vice versa). The high level policy uses the continuous absstate (for instance because it has a neural
network as function approximator) and at the same time thigeasubpolicies are terminated when a
new (discrete) area, similar to that used bx3$LE, is reached.

5.3 A Simple Example

To get an idea of how KBS works, a simple example (fig. 5.12) will be presented. Thihesame
setup as in the WssLE example, section 4.1.3. Only now the states have a bettere(mfmrmative)
description: coordinates derived from the structure ofstage space.

states = {room A 2s,03),M00M Bo207);--.,100m Rogo7s) }
actions = {subpolicy, subpolicy, ..., subpolicy } = Policieg
Actiong = {North East SouthWest

States = {all grid cells}

Figure 5.12: The Example Grid World

Heuristics — State Abstraction, Classification and Terminaion

The coordinates provide the the first heuristic (see se&igh With the coordinates of the underlying
state space, the high level abstract states can be givedicatas (for instance with a clustering algo-
rithm). These coordinates will become the descriptionshefdbstract states. The abstract states can
now be used to define behaviours and termination criteriaulslicy always terminates if it reaches a
new abstract state (and of course when it reaches its timeout

The behaviour space is just a two-dimensional space (seg.fi§(@)). The executed behaviour is
defined as

exec-ExedS S) =S —S= (Xo— X0 Ya—y1)

and the actually occurring behaviours are just the vectelsrging to the differences between adjacent
high level states.
There are seven subpolicies, and each of them gets assidimétialy completely random) vector

char;. These vectors are the characteristic behaviour vectotiseofubpolicies. These vectors will be
updated according to equation 5.1:

—_— _—> R
chariar < (1-w)-char; + w- exeg_t at
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The characteristic vectors, together with a means of deétémg distance constitut€lassifiep. The
distance between vectors in the behaviour space are mdagiihethe Euclidean distance function:

W= VII= /> (wi-v)2

If the agent finds itself in room (abstract state) A, it carestebne of the high level actiorssibpolicy,
subpolicy, ..., subpolicy. Suppose it selectsubpolicy. Perhaps the agent is going to explore (se-
lecting a random high level action) or perhap&oom A subpolicy) has a higher value than any other
high level action in that state.

The agent hands over executionsigbpolicy. The subpolicy will execute some primitive actions
(i.e. from Actiong) and after some time either reach a new high level state, timés ouf. During
execution, it will (perhaps) receive some rewards, whicgharmmed upsummedRewajdand will be
used for the high level after termination.

Learning

cluster center  distance &xec(0.25;-0.05)

Yy subpolicy | (-0.039 ;-0.321) 0.396
subpolicy | (0.109 ;-0.549) 0.519

subpolicg | (0.057;0.727) 0.801

subpolicy | (-0.454 ;-0.117) 0.707

X subpolicg | (-0.007 ; 0.001) 0.262

subpolicy | (0.361;0.051) 0.150

subpolicy | (0.013;-0.002) 0.242

(a) behaviour space (b) characteristic behaviour vectors

Figure 5.13: Example Behaviour spacédor fig. 5.12 characteristic behaviour vectors a snapshot of
the cluster centers, and the Euclidean distance to the ss@behaviouexec= (0.25;-0.05).

Rewarding the Subpolicy and Policy

After the subpolicy terminates, the agent can observe wight level state it is in, and can determine
what high level action it has executed (as explained insedil.4). Suppose our agent actually wan-

dered into room C, then its actually executed behav&Tﬂccan be calculated:
exec= C - A = (0.5;0.25) - (0.25;0.3) = (0.25;-0.05)

The next step is to cIassinge)cwith Classifiep. The classifier checks the distance betwerec
and all the cluster vectors (see table 5.13(b)). The winolasgteris the cluster belonging to subpolicy 6
soClassi fie@((%)c) = subpolicyg. This means thatubpolicy has executed a behaviour that “belongs”
to it, and needs to be rewarded for that. It receives a rewhidfor its last (low level) action. During
execution of the subpolicy, all the primitive actions geeamwreward.

Suppose that it was naubpolicy that the agent had selected, wibpolicy, but the agent still
ended up in room C. In that case the winning cluster was natltister that executed the behaviour. In
that case it receiveSsajeq @s a punishment. The other alternative is, that the activpdicy failed to
get out of the high level state it started in, and times ou timeout occurs it is punished withimeout
In these cases the clustering is not adjusted.

%If no timeout is used, a (bad) subpolicy could go on literédlisever by just staying inside the high level stdt@ping).
10A more complicated classifier could mogkar; away from the behaviour executed sybpolicy (exeg if it was not the
winner.
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On the high level, the agent will updap®licy, (equation 2.18, Q-learning):

Q(room Asubpolicy) < (1-a)-Q(room Asubpolicy) + y-summedReward

Adjusting the Clustering

Finally, the clusterin@lassifiep needs to be adjusted (assuming tDEtssi fie@((%)c) =subpolicy):

chars < (1-w)-charg + w-exec
~  (1-0.03)-(0.361;0051) + 0.03-(0.25:-0.05) - (0.358;0048)

After all this, the high level policy can select a new subpplio execute.
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Chapter 6

Experiments

Several experiments were done to test both the fix fassLE (the filter proposed in section 4.4) and
the new algorithm HBs. The first part of the experiments deals wittngELEAfilters. The second
with experiments where KBS uses a tabular Q-values function on its high level (and ispamed to
unaugmented WSSLE). The third (and most extensive) part consists of experimamere HABS uses
a neural network on its high level and is compared to a flahkear

The experiments are partly spatial, but also contain n@i@pelements. This is done in order to
show that FhBs and HAssLE can handle problems whose state space has elements whiubt apatial
(but still have some inherent geometry or structure) likgeots which can be picked up and dropped
and which can either be or not be in the agent’s possession.

6.1 The Environment

6.1.1 Grid Worlds

All experiments were done in grid worlds (like the one in figl)pwhere the agent needed to retrieve
one or several (similar) objects and drop them at a desidriatation. Some of the cells were marked
aswalls (i.e. impenetrable) and other cells@®p zones

area / region

Figure 6.1: Grid World : an example of a grid world. The small squares are the (geds.cthe large
(gray scaled) areas are the (high level) regions and theeshzells represent “drop zones”. Black cells are
walls (i.e. inaccessible). Black dots represent objects.

High Level Regions

The cells in the grid worlds are clustered into areas or regid hese regions are used for the high level
states (see below). They represent a spatial abstractidheogrid world. The regions form natural
divisions of the state space, for example rooms or corrifees fig. 6.1).

Objects

There were one or more objects present in the environmeaffigges.1). These objects were distributed
randomly over the free cells (i.e. not on walls and not on dropes). There could only be one object
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in each grid cell, but the agent could carry many objectseastime time (up to its cargo capacity). The
objects carried by the agent were not considered as beingriid aell.

The agent in all experimentdwaysreceived a reward of 1 when it dropped an objectdtop zone*
In some of the experiments additional “pickup rewards” wais® applied in order to help the learners
in solving the task: the agent received a small “pickup relv&0.1) for picking up the object, and a
corresponding small punishment (-0.1) for dropping it éetless of the location).

6.1.2 The Agent

For the experiments with MssLEand Hags, the agent was given two layers (therefore the subscripts ar
i andy, instead of the less descriptiveand,). On the top layer there is always only one policy and the
low level always consisted of several (sub)policies. Thimber varied depending on the complexity
of the task. Both the policy and the subpolicies éskvantage Learning(see section 2.3.4) in these
experiments. The “flat” learners that were used for compariglso used this Reinforcement Learning
algorithm. Advantage Learning was selected instead of theeroommon Q-learning, because it works
better with neural networks due to its scaling fadtor

Low Level Motor Controls

The agent was given the primitive actioN®rth, East, South, WeéstPickupand Drop (similar to Di-
etterich’s well-known taxi task [27]). These actions wexeauted perfectly: when the agent selected
one of the actions, it executed exactly that action. Acti@msl sensors) without noise are used because
we are (for now) not interested in how well a Hierarchical fiRe@icement Learning agent performs with
noisy motor controls or sensors. Given the fact that alliaye the hierarchy use standard Reinforce-
ment Learning techniques, the tolerance for noise in matatrols or sensors will probably be similar
to that of flat learners with the same techniques.

Low Level Sensors

The low level sensors (the low level states) are (in priiphe same in all experiments foraldsLE
e
and HaBs. The lower levektatg, results from observation. It is a vector composed of thefuithg:

_— - = - > - > —
statg = radarj opjects + radalydropzones+ radarwais + position + cargo (6.1)

wherea + b denotes concatenation of vectasand b .
—_— —_— _—

Part of this observation vectoradatr objects: radar gropzones@ndradar wais) was generated by a
sensor grid. The area around the agent was divided into atmceircles — although perhaps “concen-
tric squares” would be a better term because the grid woed sguares as cells (see fig. 6.2(a) and (b)).
The sensor grid was also divided into eight arcs.

Areas between circles that are further away from the agenkaager because the space between the
circles increases. This allows for a fine grained obseraatiear the agent but at the same time prevents
an overflow of information. Areas that are further away areofiserved in detail but less fine grained.
For the grid world, this sensor grid was implemented by reipla the circles with squares, as can be
seen in fig. 6.2(b).

The division in rings and arcs creates areas (in multiplesigtit) and each of the areas corresponds
with an element in the observation vector. Tdneeragedensity of the observed entity in the area is the
value that is used in the observation vector (i.e. the gegsdn fig. 6.2). Each of the observable entities

1Simpler experiments were done where the agent only neededith a certain location. These experiments served only
to develop and debug the algorithms and are not shown hereptfor one example in the section omssLEfilters.

2Some experiments were also done with the actidnse, Rotate-left, Rotate-right, Pickup, Drbpt these didn't provide
different results, other than that all times were somewbragér, because each turn costs the agent another time stefhese
motor controls.
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(a) circular sensors (b) square sensors

Figure 6.2: Circular Sensors concentric circles around the agent (black dot) and a igiwig eight arcs.
The further away from the agent, the larger the space betWeeaircles.square sensorsan adaptation
of the circular sensors to a rectangular grid. Each arealyiehe value for the observation vector. The
colours represent the values of each aréaoming in on the sensor grid the average density of the
observed quantity in each of the 24 areas (8 per ring) is aevaltthe observation vector (a gray area in

fig. 6.2(b)). In this example the vector resulting from thisservation would be{ %, 2, &, &...., 3.0,
07%""71’ %’07%’17 %70’ 0’07 1’170’170’070’0)'
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Figure 6.3: Zooming in on the sensor grid the average density of the observed quantity in each of the
24 areas (8 per ring) is a value in the observation vector &g grea in fig. 6.2(b)). In this example the
vector resulting from this observation would bk, 2.2, %...., 2,0,0,2,...,1, 2,0,1,1, 2,0, 0,0,
1,1,0,1,0,0, 0,0).

(i.e. walls, objectsanddrop zonedas its own sensor grid. An example of a calculation of pathef
observation vector is illustrated in fig. 6.3. For experintsenvolving only one object, the area that the
object was in simply yielded 1 instead of the average. Foeerpents with more objects, the average
was also used farmdar gpjects-

The positiori of the agent was added as two scaled values between 0 anded(sctéhe width and
height of the grid world) t(sT)aten , resulting in the vectoposition= (Xscales Yscaled)-

The cargo par(%é equals 1 if the agent is carrying the object, m@z (0) otherwise.

The Subpolicies

HABS and HAssLE both use the same kind of subpolicies. Each of these sulgmbonsists of a set
of neural networks. Each of the primitive actions has its m&aral network, so for the low level each
subpolicy has six networks, and each of the networks caksia(s,a) for actiong for one of the
subpolicies!

The low level structure is the same for alhdsLE and HABS experiments (although detalils like the

3Initial experiments without the position were also carred but the results did not differ much from those with infaem
tion about the position, so they are not described here.

4The alternative is to give each subpolicy only one large ndtwith as many outputs as there are primitive actions. If
there is no hidden layer, these two alternatives amount aotixthe same structure. If there is a hidden layer, ther is
difference: the hidden layer is used by each of the actiotiseratter case, but not in the former. Initial experimeittsveed
that separate networks results in significantly highergremince, probably because the actions cannot interfeey: don’t
share the hidden layer.
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number of hidden neurons or learning rates differ).

6.1.3 Some Remarks on Boxplots

Many of the graphs presented in this chapter use box plotghwdre an easy way of indicating the
spread of a data set. The box indicates the middle 50 pertém data (all data between the firgi6)
and third & 7s) quartile). The thick line indicates the median.

For a normal box plot, all values that are lower thags — 1.5- (X 75 — X 25) or higher thanx 75 +
1.5-(x75—X25) are considereddutliers’. The “whiskers (i.e. the lines) would indicate the data point
closest to (but inside) these boundaries. The outliers $eéras would be represented by dots. However,
since the graphs in this thesis often compare multiple plt&ill blown box plot would become to
complicated, obfuscating the graph. Therefore in thisighiéee bars above and below the box indicate
the maximum and minimum value in the data %et.

Some of the box plots in this thesis are not using a data set fnee experiment run several times
with the same setting$nstead, several experiments with different settings waneseveral times, each
yielding an average performance for that particular seitirmrhese averages are then used as the data
set for a box plot, resulting in a plot that shows the spreaalvefages over different settings.

This way of showing the data was selected because it giveiea lmkea of how robust the algorithms
are and how they perform for various different settings. Alevspread means that different settings
yield very different performances and indicates that thlyp@ihm in question needs much fine tuning.
Even if in the best case it can perform very good, it could k&l outperformed on average by another
algorithm that has far better performance over a wider rarigettings. It is also easier to tune the latter
algorithm because it performs good on a wider range of ggttin

6.2 Augmenting HASSLE — Filtering

As explained in section 4.4, A8SLE can be augmented by some sort of filtering mechanism to ingprov
learning times. A very simple learnifidilter was implemented to illustrate this principle (seati4.2).

The learning filter consists of a filter table (similar to thgtlevel Q-values table) that registers the
amount of success that the agent has had in executing ancact#n in a certain state. The success rate
obviously changes during the learning process, so somefsarbving average or window is needed.
This is implemented by updating trseccessRatealue in the direction of 1 when a certain action
resulted in reaching a new state, and to 0 when the agent dédwe its current high level state:

successRatstateaction) < 0.9-successRatstate action) + 0.1-newSuccegstateaction) (6.2)

where 01 functions as a learning rate andwSuccegstateaction) = 1 when a new high level state is
reached and 0 otherwise. This is similar to a Reinforcemeatirhing update, but without discount.

When thesuccessRatis above a threshold for a certain action, a conétaalueo is added to the
Q-value of that action:

o If successRatstateaction) > 0.05

0 If otherwise (6.3)

o(stateaction successRabe= {

The combined valu€(stateaction) + ¢ is used for action selection instead @fstate action), using

5Experiments with the same settings were repeated at legdttenes, for some experiments more.

6Creating are priori filter is not interesting enough to investigate furthercsirt would only involve selecting by hand
which high level actions are available at which time

It might be interesting though to expand this filtering methen to include discounting.

8Usingo(state action successRale- successRatstate action) or some other (monotonously) increasing function would
favour the actions that are easiest. Using a constant giyes boost to each action that the filter allows.
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the Boltzmann selection mechanism (described in secti®2p.

e(Q(sa)+o(sa successRaly /T

PsoltzFilter(S, &) = (6.4)

Z e(Q(s,a’)+0(s,a’,successRat)e/r

a cactions

wherePsitzriiter(S, @, successRadegives the probability of selecting in s using the filter mechanism,
sis the current statey; is the action under consideration ang the temperature.

6.2.1 Tabular Representation of the High Level Q-Values

The high level states for tasks where the high level has daabepresentation of the Q-function, are
rather straightforward. As explained above, the cells enghid world are clustered. These regions are
used for the high level state.

The tabular representation was used for the experimenitsomly one object, so it suffices to use one
boolean that indicates whether the agent is carrying thecblor not. The high level state (i.e. sensor)
is the tuple of the high level region the agent is in, the higlel region the object is in, and a boolean
for possession of the object:

(6.5)

R —_—
Stat@u Hassie = (egiorgen, regionyp jec, cargo)
Obviouslyregionyject = regionygent if the agent is carrying the object. This means that nearli’ha
of the possible combinations, liKeegion, regions, 1) will not occur in reality. It is impossible for the
object to be irregions and the agent to be iegion, and possess the object at the same time.
This does not pose a huge problem fox$$LE, although it means it has nearly twice as many high
level actions as would be possible if the illegal possiktiitwere filtered out. Furthermore it is not a

large factor. Leaving the illegal possibilities availakle high level actions, illustrates thabBISLE can
cope with them.

Capacities

HAssSLE has its Capacities mechanism to match high level actionsitpdicies. For this, some param-
eters need to be assigned values. This was done during tesittng. The Capacities mechanism was
of the following form (eq. 4.2):

Ciact (start,goal) <« G act(start,goal) + AC; act (Start,goal)

. ot (YA - Ciact(start,goal))  success

th AG; . (start,goal) = ¢ ’ ’ .
w act (Start, goal) { aé-(o — Ciaqt(start,goal)) failure
whereag andaé are learning rates, and is a discount, measuring performanceas$Le worked well
with ag = (0.03, 0.003), a(f: =(1,0.1)-ag andyc = 0.99 (all yielding the same performance) so these
values were used for all ASSLE experiments. The Capacities also need a selection meanaAis in
[1] and [2], Boltzmann selection was used, with 0.03 (but other values yielded similar results).

Subpolicies

HASSLE uses subpolicies with linear neural networks. The learmatga; for each of the low level
networks was set to 0.01 and for the high level to 0.05. Thé kegel uses a tabular representation.
Both layers use a simpkegreedy selection.

9Nearly half of the possible combinations will not occur, @ese if the agent is not carrying the object, all combination
are possible (half of the total number). But if the agent isydéag the object, onlyregioragent, regionagent, 1) is possible, but
this is only a very small part of all the possible combinasiafi regions.
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6.2.2 Experiment 1 — Moving to a Fixed Location

Two tasks were created to investigate the performance o$ithple learning filter. The first consists
of an environment with several rooms (fig. 6.4, with same disi@ns as the environment used to test
HAssLE in [1] and [2], but with slightly different layout). Each ohé rooms was considered a high
level state, and the corridors were divided into areas oflaimsize. If the agent reaches the target, it
receives a non-zero reward and the episode ends. If the taglsrtb reach the target in the allotted time
of 1000 (low level) steps, the episode is also terminafedt the beginning of each episode, the agent
is placed randomly on one of the cells (target excluded) eftid world. The calculated optimum is an

average of 54 steps. This is calculated by selectirfgraBdom starting locations for the agent and for
each calculate the shortest path to the target.

N

Figure 6.4: environment for experiment 1 a grid world similar to that presented in [1] and [2], cortisig
0f68x 48 cells and 15 high level states. The shaded area represerterdfet.
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Figure 6.5: performance of filters in experiment 1 HASSLE without filtering is compared withkHASSLE
augmented with filters (for various settings of the filter stamtc). (a) yuL = 0.95 and(b) yq. = 0.99.
The graphs show boxplots over different settings0{ 15} subpoliciesy; = {0.0167, 0.04} andty =
{0.01677 0.033}. ap = 0.003 an =0.03, Yii = 0.95, YHL = 0.99, K = 0.3 andKHL =0.3. Higher values
for the temperatureg)( = 0.10 or 1y = 0.10) for either of the levels resulted in bad performance folhbot
filtered and unfilteredHASSLE) The averages of the different settings are the data forahplbt, resulting
in plots that show the robustness of the algorithms.

The graphs shown in fig. 6.5(a) and fig. 6.5(b) illustrate teefqggmance of HssLE' with and

01 fact, the agent was allowed to finish the current high legion (i.e. until timeout or success), meaning that at most
1000 +timeouy; steps were taken.

MHaBs s also able to solve this problem in roughly the same time asdE, i.e. in 25- 10° time steps, reaching conver-
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without filter. For this experiment, two different high arml level Boltzmann temperatures and two
different numbers of subpolicies were tried (resulting imiferent combinations of settings). Sev-
eral runs were done for each of these settings and averagescaleulated. These averages are then
displayed in the form of a box plot.

When a discount of 0.95 is used for this task, the unaugmeresisLE is unable to even reach
the optimum value. The filtered version has no problems dbalihis low discount. In fact, given a
good value of the constait the filtered version can solve this task in under half a milliow level
steps very consistently for all settings (which is the samersugmented kssLE with yq. = 0.99).
Higher o values (not shown here) will deteriorate the learning psscevhereas lower values signify
less influence of the filter. A value af = 0.01 for this experiment amounts to the same as not using
a filter at all. HASSLE can also reach nearly the same performance without filtgiimdjcated by the
bottom of the boxplots) but only for some of the settings. édgettings result in average performances
that are far from optimal. Filteringa(= 0.1) can reach values near 57 steps and on average reaches
61 steps. KssLE without filtering can still reach performance below 70 foms®settings, but other
settings perform as bad as 180 steps on average.

The graph depicting the results for a high level discogt= 0.99 shows that HSSLE is able to
catch up better for higher discounts. On average it perfareasly as wellputits spread is wider than
when using a strong filteio(= 0.1). Unfiltered HASSLE is able to reach a similar highest performance
as the filter, around 57 or 58 steps, and the average perfaariamlso similar, around 60 or 61 steps.

6.2.3 Experiment 2 — Retrieving an Object

A second experiment was done to see how the simple filter wzerdidrm on a task with more high level
states, because that is where the filtering should benefindst. An object is introduced at a random
location in the environment shown in fig. 6.6(a), and the agerds to retrieve this object and drop it
at one of the cells marked as a ‘drop location’ (“G”). As expéal in section 6.2.1, the high level state
of the agent consists of the area the agent is in, togethértivt area the object is in and a boolean
indicating whether the agent is carrying the object. Thigsnsethat there arex’7 x 2 = 98 high level
states and therefore 98 high level actiomgst of whichare not reachable from many of the other high
level states, because the agent cannot for example go<rbys, false> to < 1,3,true > in one high
level step.

1000 p

300

steps until goal

100 |

30 L L .
0 steps 110’

(a) s-curve (b) results

Figure 6.6: experiment 2 an object needs to be retrieved in an s-curved grid wopkel:formance of
filters in experiment 2: HASSLE without filtering is compared withtHASSLE augmented with filters (for
two settings of the filtering constaa). The graphs show boxplots over several different sett{imgsrder
to show robustness). The graphs show boxplots over diffesettings:{10, 15} subpoliciesyy = 0.95,
YHL = {0.95, 0.99}, T = {0.02, 0.04}, THL = {0.02, 0.04}, ayp =0.003 ay =0.03,K;; =0.3 andKy =0.3.

gence just below 60.
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The same effects as in experiment 1 can be observed in exgrrizrn(see fig. 6.6(b). Unaugmented
HASSLE s able to reach a near optimal value, but clearly not foregtdd settings. Using the filter (with
o = 0.1 makes the algorithm twice as fast (on average) and reachearaoptimal performance of 34
(optimal ~ 33.7) for some settings, and an average of 55 for the worst sedings. KA SSLE without
filtering reaches similar values for its best case settibgsdoes far worse for other settings (100 or even
200 steps on average) and takes far longer time. Settingltdrechnstant too high © = 0.2) results in
failure for some of the runs, that is why on average it performrorse than unaugmentediBisLe and
HAssLE with more moderate filtering.

6.2.4 On the Usefulness of Filtering

Experiment 1 and 2 show that (some kind of) filtering can bdulse\ filter biases exploration (and
thereby learning) towards high level actions that can dlgtinee executed by the agent. A4SLE aug-
mented with a filter can reach the same (or better) performana shorter time — if the filter is properly
tuned. With a good filter HSSLE is able to perform good under a wider range of parameters.

The filtering proposed here can only work in conjunction vBthitzmann selection however, which
means that it is also dependent on the weakness of Boltznedectien: it will be slow when there are
many actions because the computationally heavy funcfimeeds to be calculated for all actioffs.

It is not hard to give a good guess for the valuecdbecause the effectiveness of this constant is
related to the size of the problem and the Q-values that greated. Ifo is far greater than the Q-
values, the value(@(3)+9)/Twjll be nearly the same (i.e (®@/7) for each of the actiona;. This would
result in a uniform probability distributioover all reachable actionfor the Boltzmann selection. &
is too low then the difference betweef?&)/T (a reachable state, but no Q-value) afd &o reachable
state) will be too small to make a difference, again resgliina nearly uniform probability distribution,
this time over all actions, both reachable and unreachatitéh is simply the situation that AsSLE
also runs into without the filtering and before learning megful Q-values.

6.3 Comparing HASSLE, HABS and the Flat Learner

HAsSSLE (in its unaugmented form, without any filters) is comparecHt®es on two large tasks to
demonstrate the limits of the A$SLE architecture. A “maze” and a “big maze” environment were
created and the task was to collect the object (placed atdomarocation at the start of every new
episode of 1000 time steps) and drop it at the drop area.

When the agent dropped the object at one of the correct totait received a reward of 1. Two
alternatives were tried for the maze: one where this is tHg mward that the agent ever gets, and
another where the agent also receives the small “pickuprosiiéor picking up an object.

6.3.1 The Learners

HABs and HassLE both use subpolicies with linear neural networksag$ uses the samstatg, as
HASSLE (equation 6.1). Both layers of both algorithms use a singpieeedy selectioh®. HABs and
HASSLE use a tabular representation for their high level policies.

2\When the Q-values are approximated with — for instance — aaheetwork, calculating them becomes more time con-
suming than the Boltzmann selection. Bui$ELEworks with a tabular high level policy, so its Q-values amagly stored in
a look-up table (which is many times faster than a neural agthand in that case the computatidhigrelatively heavy.

Bt is difficult to solve this task with HSSLE using Boltzmann selection (the experiments used for tuRlAgSLE with
Boltzmann selection are not reported here). This is probdi to the fact that there are so many high level actiongzBwainn
selection (see equation 2.21) has random selection (umidtistribution) as one of its limits (for high, the other is-greedy
selection for lowr). With many actions, a lower selection temperatuie needed, creating a higher selection pressure. This
has its own problems however, which are mainly computatidffat is low, then the value of¥s@)/T near the target (where
Q(s,a’) ~ 1) will sky-rocket and easily become larger than what thegmmming language can compute with the standard
data types.
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A few heuristics need to be selected fongsLE and HaBsS. They both need a suitable state space
abstraction. Furthermore, A#S needs criteria for classification (section 5.2.5) and fomieation
(section 5.2.6). Despite the fact that all these heurigt@yend on each other, they will be described
separately. It should be noted however, that a choice fortecpkar state abstraction is partly driven by
considerations about what kind of classification it coukelgj and vice versa (see section 5.1.6).

HABs Heuristics — Abstract State Space

HASSLE can use the vectﬁmL,HASSLE defined earlier (equation 6.5) in section 6.2.1a83% needs a
suitable representation of the state abstraction, bedtseds structure to be able to discover behaviour
vectorg\ nominal description of the high level state in terms of aggi contains not enough information.
Therefore the position of the regions is usédrhis results in the vector:

— —
statey Hass = (Xagenta Yagent Xobject; Yobject; B‘Cargo) (6.6)

wheref3 is a scaling factor, which is needed to give the vector eld@rfarthe cargo roughly the same
size as the elements for the position to ensure that a chargggo (picking up or dropping the object)
creates a difference between vectors that is of the same asdbe difference created by moving from
one region to anothér. A value of 3 = 0.1 worked well, but this obviously depends on the size of the
grid world and on the distances between abstract sfates

HABS Heuristics — Classification

The vectorstatgy Hass Was used as a measure for the executed behaviour when thenagesd from
one high level state to another. The behaviour space therefmsists of the dimensions contained in

statey_Hass . The characteristic behaviour vectors are allowed to sgimize in this space. A simple
vector clustering algorithm (eq. 5.1, as described in sacdhi.2.5) was used, that moves a cluster center

(char) towards the recently executed (and observed) behaﬁxpum:
—_—> —_— —_
chara < (1-w)-char; + w-exeg_i at (6.7)

The characteristic behaviour vectors were always initédiwith small random valués.

HABS Heuristics — Termination Criteria

The termination criteria for BS were very simple. Entering a new high level region or increg®r
decreasing the amount of objects in cargo by one, indic&etetmination of a subpolicy. This amounts
to stopping criteria equal to those ofaldSLE (see section 5.2.6).

Flat Learner

For comparison, the tasks were also solved using a standanfoRcement Learning agent . This “flat”
agent used a tabular representation of the Q-function. dtegibn (x- and y-coordinates) were used as
state (because they are unique). The tabular representdiavs a rather high learning rate. The flat
learner used advantage learning (k = 0.3, same asAaisHE and HABS) and uses Boltzmann selection.

YThis position is the average (scaled) position of all cefistained in the region and is denoted,Y) whereX andY are
scaled to a value [0, 1] according to the dimensions of the grid world.

5s0me sort of scaling will always be needed when differenesypf dimensions are compared. If comparing dimensions
is impossible, the classification by vectors cannot be dortbe simple way it is done here. In that case, a behaviourtmigh
for instance consist of multiple vectors, each represgrdifferences in parts of the behaviour space #trattomparable. See
section 7.2.1 (Future Work)

®\When a continuous high level state space is used, the sealiig depend on the distance used in the termination aijteri
see section 5.2.6.

some tests were done with initializing each vector with thst fbehaviour that the accompanying subpolicy actually
executed. This made no difference however, because nore dfubpolicies is actually capable of performing reasanabl
behaviours in the beginning.
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6.3.2 The Maze

The Maze (fig. 6.7(a)) has 29 areas, resulting ix29x 2 ~ 1.7 x 10° different high level statesafea
that the agent is irx area that the object is itx whether or not the agent carries the objecthe flat
learner is able to solve the task in somewhere ovdfitime steps and reaches a best result of around
50 steps (see fig. 6.7(b)). The calculated optimum for thoblem is 40.2.
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Figure 6.7: (a) maze The maze i81x 28 cells, has 29 areas, resultingd@x 29x 2~ 1.7 x 10° abstract
states(b) flat learner results: with and without the “pickup reward” and fars 5 = {0.25, 0.10}. K¢ =
0.3, T1jat = 0.02 (same results fors = 0.01 andts 4 = 0.04) andysa = 0.99
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Figure 6.8: maze experiment box plots over averages of runs fefAssLe and HABS. (a) pickup
reward: The agent receives an additional reward of 0.1 when it pigkshe object, and a reward of -
0.1 when it drops the objec(b) no pickup reward: there is no additional rewardsettings HASSLE
andHASSLE have 10 subpoliciesy = {0.15, 0.1}, ey = {0.1, 0.05}, o} = 0.01, an = 0.05, yj; = 0.95,
yHL = 0.99, Ky = 0.3 andKy = 0.3, al> = {0.03 0.003} andal. = {1, 0.1} xay; (a- andal. are learning
rates for the Capacities mechanism, see section 4.H&gs usesg; = {0.15, 0.1}, ey = {0.1, 0.05},
andw={0.001, 0.01, 0.1} (w is the learning rate for the clustering). The agent recedvesward of 1 for
dropping the object at the correct location.

HaABsS and HASSLE can both solve this task. A#$SLE is however much more sensitive to the high
level discountyy, than HaBS, which makes is harder to fine tune (see fig. 6.8(a) and 6.8(B))-
thermore, H\BS is able to reach a slightly better performance, especialiymwthe task gets more
complicated (i.e. without the “pickup reward” that spliteetlarge task into two smaller tasks).

The most striking difference is thatA#s has no real problems when the task increases in size
(no more “pickup rewards”), whereas the number of steps ltretSLE needs to reach convergence,
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increases much more. The time thati$ needs until convergence roughly doubles butsidLE need
three times as much low level steps at its best performancg{f = 0.99).

6.3.3 The Big Maze

A second maze was created with more high level states andecoorplicated layout. This “big maze”
(fig. 6.9(a)) has 50 areas, resulting in>580x 2 ~ 5.0-10° high level abstract states. The agent only
received a non-zero reward when the object was correctlymd.

All experiments done with WSsSLE on this large environment, simpfgail due to lack of memory
(on a computer with 500 Megabyte of RAM). The “big maze” clganarks the limits of FASSLE. The
smaller maze, with some2:10° high level states, was still manageable, but an environnvéhtthree
times as many abstract states pushes the envelope too far.
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Figure 6.9: (a) big maze 36x 39 cells, 50 regions. (b) results: performances foHABS and the
flat learner for a range of parameterslABs: 25 subpoliciesyy = 0.95 yu = {0.95,0.99}, g, = 0.85,
EHL = {O.Ol7 0.05}, , oy =0.01, ag. =0.03, K;; =0.3, Ky =0.3, Prtailed = {1,0.3,0, —0.3} Flat: Eflat =
{0.7,0.85,0.95}, a5t = 0.2, Y1t = {0.9,0.95,0.99} and advantag¥; o = 0.3. (Higher discount/
results in slower learning.)

Performance

HABS can solve the “big maze” task consistently in under well® time steps, whereas the flat learner
takes 4~ 6-1CP time steps. The flat learner is able to reach a higher perfocemaf around 70 but
HABS only reaches 90. The optimum for this task is 59.6. If accouiamf the essence and there is
enough time, the “flat learner” is preferable.ABis is however able to solve this problem ingaick-
and-dirtyway an order of magnitude faster and with far lower memoryesments.

Memory Requirements

The failure of HASSLE, due to lack of memory, is not surprising, because five thodiségh level states
amount to(5.0-10*)? ~ 2.5- 10" Q-values that need to be stored (i.e. for each of the stai@aagairs),
and on top of that, the same amotimt each subpolicypecause of the Capacities tablésThis means
that HASSLE would need to store someSto 50- 108 values if 10 or 20 subpolicies are used. Coded in
(standardlavg doublesof 32 bits, this would mean some 2 to 4 Gigabyte of memory. Qisly some
memory can be saved by only storing high level states thactelly possible within the environment.
This roughly halves the amount of memory needféd.

BThe few kilobytes needed for storing the neural networks,szfely be ignored.
19 hash table was used to accomplish this: only storing a teghllIstate and all accompanying high level actions when
the agent was in that particular high level state.
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Furthermore, memory can be saved by usifgyteinstead of &yte(Javadoublg values, or even a
2 bytecoding (resulting in coarser representation, but sincé&thalues are limited to a relatively small
range, this does not pose a problem: it only needs to appeigifnr10, 10] (to be on the safe side),
not all of R.). With all these approaches combined, the amount of menvasystill too much for the
available computer.

Obviously the precise boundary is dependent on the amouRAM memory that a computer has
(and also partly on how efficient the algorithm is programraed the memory is used) but the square
Q-values tables (as many high level actions as there aes¥td the accompanying Capacities-tables
(with the same dimensions) are an integral part afSHLE, and will therefore always cause this kind
of trouble?®. Large amounts of abstract states clearly present probfemdAssLE because of their
enormous memory requirements.

The memory requirements of the “flat” learner are less exérent doesn’t have the high level
subgoals and neither does it have the Capacities and soiggolso it can describe the problem in
2x (39x 36)? ~ 4- 10P states positiongentx POSitionypject x hasOb jec}, and therefore some-20" Q-
values (one for each of the six primitive actions in eache3takhis requires something just unded 2’
Megabytes (when 8 byte Jadaublesare used).

HABS needs to store far fewer Q-values than eithersiHLE or the “flat” learner. It has the same
number of high level states, but does not use these stateghakehel actions, but uses its subpolicies.
And since there are only a few subpoliciesag$t does not have a square Q-values table but only needs
to storenx 5.0-10° Q-values (whera is the number of subpolicies, for ea€{statesubpolicy)-pair),
together with the few Kilobytes for the subpolicy neuralwetks. This amounts to some 40 10°
Kilobytes, orders of magnitude less thams$tLE or the flat learner.

6.4 The Cleaner Task — Description

One of the reasons thatAgs was designed, was that the structure @f9$LE is unsuitable for use of
neural networks on the high level. The following task wasglesd to illustrate the ability to use neural
networks for the high level policy.

An environment is created (see fig. 6.10(a)) that containdomly scattered objects that need to be
picked up and dropped at the drop zone. The agent is allowealtp as many as 10 objects in its cargo
bay. The agent has 1000 time steps to return as many as the#sobgepossible to the drop area, after
which the episode was terminated and a new one was startedhgitagent and the objects at random
locations. All the graphs depict the average number of @bjd@at was dropped at the drop zone per
episode.
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Figure 6.10: snapshot of the cleaner environmenthe black-and-white dotted line denotes the boundary
for the objects. No object was placed randomly above thismbaty at the beginning of the episode.
distribution of objects: objects are placed at random at the beginning of each episath an average of
89 objects and a standard deviation of 11 (normal distrm)tiA histogram over 486 runs is shown.

20if a filter were used, yeanotherhuge table would be added to this!
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6.4.1 Object Placement

The number of objects is determined by the (normal) distidoushown in fig. 6.10(b) with an average
of 89 and a standard deviation of 11. At the beginning of eguiboele the objects are scattered in
20 patches or clusters &b cells, the centers of which are selected randomly), bugetlpatches may
overlap and not all the cells in a patch are filled with an dbfeee fig. 6.10(a) for a snapshot). No
objects were placed above the dotted line in fig. 6.10(a) tkenttze task harder.

Objects In The Cargo Bay

The agent uses neural networks as function approximatdis dothe lower level and on the higher
level and its cargo can be up to 10 objects ¢apacity). Simply giving the number of objects in cargo
€ (0,1,...,10) or scaled ¢ (1%),1—1(),...,%)) would give the neural network not enough information.
Differentiating between 6 or 7, or even between or somethingothing in cargo, is very hard for a
function approximator.

The current cargo of the agent was therefore representedniora complicated manner to give the
neural networks a better opportunity to discriminate befvealues. The cargo paxtgrgoBay) of the
observation vector consists of the following elements:

cargo cargo
capacity = capacity

cargoBay-= ( cargo>, 2, cargo>,4, cargo>,6, cargo>, 8) (6.8)

wherecargo>, nis defined as:

CAIOSAT = +1 If cargo>n
99220 =1 _1 If cargo<n

The vectorcargoBayis substituted for the simpleargo used in equation 6.1, resulting in:

——

_— _— —
state{LH ags = fadaropjects + radar dgropzones ++ radanwais + position + cargoBay  (6.9)

6.4.2 High Level States Used with Function Approximation othe Q-Values

For experiments where multiple objects need to be colleaedbular representation of the Q-Values is
not suitablé®! This also means that another representation for the high &ates is needed, because
SH%LHABS as presented above (in section 6.2.1), gives too littlermé&tion for a neural network.
The problem is complicated further because there ia priori unknown (but high) number of objects
present in the environment, and the state representatiedsrie be able to represent all these varying
numbers of objects and locations accurately.
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Figure 6.11: High Level Sensor Grid The grid world is viewed on a coarser level by the high level
sensor gridadary, . Blocks of many grid cells (in this cage 5 cells) are averaged and with the resulting
values the same calculation as in fig. 6.3 (the low level segnsd, radar ) is done.

2l fact, that is exactly the reason why such an experiment sefected: to demonstrate thatbis can use function
approximators for its high level, unlike &6sLE, and therefore solve tasks thanBisLE can’t because of its tabular nature.
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This is a problem that is very similar to how the low level ne¢a represent the locations of all the

walls, objects and drop zones. In fact, the high level sensafary . can be created similar to those
of the low level. But now each square in fig. 6.3 representsyngaid cells (for instance blocks of:65

cells), instead of only one grid cell. This process is deidh fig. 6.11. The resultingadary objects
_ EEEEr—— — L. —_—
radaryy dropzonesaNdradary wais are then used to creasl;laatéHL,HABS (similar tostate):

———— _— _— —_— —
statefﬂL’HABS =radary objects ++ radaryi dropzonest radaryL wais + position+ cargoBay (6.10)

Preprocessing the grid world in this manner means that thelesh areas in the high leveknsor
grid (i.e. those consisting of only one square in the sensor gritgi 6.11) now represent an average
over a block of many grid cells in the grid world.

Reduced Radar Range

In most experiments, the high level sensor grid consistedntf two or three rings. This was done
because the fourth ring is so far away from the agent, that ofothe time it actually observed cells
outsidethe grid world! In those cases the radar detecting the poegabsence of walls by default
registered walls (i.e. “outside” is inaccessible) and njedis or drop zone¥

HABs Heuristics — Classification and Filtering Out Irrelevant Features

For classification, the vector described in equation 6.6cmstering described in equation 6.7 are used:

—
stat@y Hass = (Xagenb Yagent Xobject: Yobject: O.1~cargo)

and
—_— —_— —_—
chara < (1-w)-char; + w-exeg i at

This vector worked well for the experiments with the tabuiagh level policy as well as the Cleaner
task with the function approximator as high level policy.

For the experiments reported in this thesis, the relevaatufes are determineal priori by the de-
signer. The features for the high level abstraction are #rgacand position of the agent and of the
object. For determiningpehavioursthe position of the object is actually irrelevant. Thisitios is only
relevant for the agent when it needsselectwhat kind of behaviour it will execute, but the area the
object is in, is not related at all to what kind of behavious Hgenexecuteslt is needed in the abstract
state, but is it not needed at all for classification of betawi

This irrelevant feature could have been excludettiori in the classification pha$&but this was not
done. Leaving the irrelevant feature(s) in the vector, asidgithem in the classification (even though
their influence can only be disruptive or neutral at bestwshthat HaBS can deal with some irrelevant
features.

HABS Heuristics — Termination Criteria

The termination criteria for BS for the function approximator tasks, are the same as forahelar
case. Entering a new high level region or increasing or desing the amount of objects in cargo by
one, indicated the termination of a subpolicy.

22t the preprocessing takes blocks ofx% cells, the fourth ring ranges from 22 cells from the agem, ta 42
cells away (2Zells= 2 (fromthe center areatothe first ring- 5 (first ring) + 5 (second ring + 10 (third ring) and 42=
22 (until third ring) + 20 (fourth ring), whereas the grid worlds were between 20 and 40 cells wide.

During initial experiments with the range of the high levatiar, it was discovered that adding or removing the fourtly ri

did not make any difference (apart from saving a lot of rugrime due to smaller observation vectors and thereforelemal
neural networks!). Even removing the third ring (only usimg rings with a range of only 12 cells), resulted in ratheodo

results, although somewhat lower than with three rings.

23Excluding irrelevant features can be done by assigmergas a scaling factor for the irrelevant elements of the vector
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This is an example of the hybrid case mentioned in sectios 5The abstract state space is treated
as continuous by the function approximator (the neural ogt)y although technically the low and high
level radar observations are only discrete (thoagtronomicalin size: each of the roughly 100 (for the
low level) or 80 (for the high level) values in the observatizector delivered by the radar, can have
many values ranging between 0 and4).

6.4.3 Forcing HABS to Explore

Since HaBS works with neural networks on both levels in the Cleaner tds&re were some concerns
about whether Boltzmann selection would do the trick. Neoeaworks are sometimes unstable with
Reinforcement Learning (leading to early suboptimal cogwece or even to all weights fading to zero
exploding to infinity) and on top of that &8s uses subpolicies that are untrained at the start.

The high level uses subpolicies as its actions, so if a sidypisinot yet fully trained, it might be that
it fails too often on a certain task, making the Q-values liat subpolicy rather low. Another subpolicy
that does something different, but with higher Q-valuesyldohen be preferred by the high level policy.

Suppose that it is optimal for the agent to completely fillde&sgo bay, but that it is still not that
good in locating and picking up objects, meaning that it esst lot of time searching and eventually
the 1000 time steps are over and the episode stops. Everttlitadig collect some objects in its cargo
bay, it didn’t return them to the drop zone and therefore diditeive any rewards. On the other hand,
if it just picked up one object, and then raced for the dropezand repeated this process over and over
it definitely wouldreceive some rewards, albeit only small ones.

This (in fact inferior) course of action gets the highest ues because one subpolicy (locating and
picking up objects) often fails initially. There is a riskathafter a while — once the pickup-subpolicy
is fully learned — the Q-value of selecting this subpolagain once the agent has one object in cargo,
is so small compared to the Q-value for subpolicies that lvithg the agent to the drop zone, that the
agent will never (or only after a very long time) discoverttiidgs more beneficial to go on collecting
objects until its cargo bay is nearly full, and onhenreturn to the drop zone. Instead it would get stuck
in suboptimal behaviour.

Combining Boltzmann and e-Greedy Selection

To avoid the situation described above, it seemed prudesglext a random action withprobability
and use Boltzmann selection only witth—€) probability € =0.01 in all experiments). This leads to
what could be called Boltzmarsiselection:

from the distribution By, with probability (1-¢€)

8selected™ (6.11)
random with probability €

wherePgq iz indicates the Boltzmann selection that was defined in eguat21 andandomdenotes that
an action is selected with uniform probability from the skactions. So just as iB-greedy selection,
sometimes actions are selected completely at random, bat(large) probability(1-¢), the normal
Boltzmann selection is applied. This means that the prdibabf selectingg; is:

eQ(S-,ai)/T €
S Q6D " actions)

a’eactions

Peoltz¢(S,8) = (1-¢€) (6.12)

wheres is the current stateg; is the action under consideratioRg-(S, &) gives the probability of
selectingg; in s, ||actiong| stands for the number of actions ani$ the temperature.

This is a safeguard against premature convergence to dyctdroptimal behaviour. Even if the
probability of selecting a subpolicy according to the Bolemn selection mechanism is (very close to)

24s0me initial trials were conducted with using a continuousasure for the distance as a stopping criterion. However,
there was no time to investigate this option any further.iltlwe described in more detail in “Future Work” (section )..2
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zero, it will still be selected once in a while by the randortesgon (on average about 1 in a 1000 times,
because the cleaner uses 10 subpoliciessan@01).

6.4.4 Expected Performance on the Cleaner Task

This task is too difficult to solve optimally with a simple calation. Unlike the previous experiments,
no exact value can therefore be given for the optimum valueuran is able to collect all objects within
the allotted timé®, but a human probably uses visual cues and planning unbiaiathe learners. For

comparison, a flat learner was created that also neededvi thal task.

HABS uses two sensors (“radars”), one for its low level and onetédnigh level, and the flat learner
needs the same information ag\s, in order to make it a fair trial. But the flat learner by defioit
only has one layer, so all this information is combined inte @ector which is used as its observation.
Its stat&ﬁ)eﬂat is therefore defined as:

N N  —
stateyjy = Stat€) pyaps + Stat€n Haes (6.13)

Tuning the Flat Learner

The “pickup reward” divides the task into several smallasktafind and pickup objects, find target and
drop objects, find and pickup objects, find target and drogectsj...). This helps the flat learner to
solve the task in a reasonable time and yields a good meakwigab performance to expect.

The flat Reinforcement Learner that needs to solve this W@ak tuned in order to find out what kind
of performance is typical for this task. Extensive testingg fig. A.2 in Appendix A.1) shows that the
performance of the flat learner depends highly on sever#hbias. Most striking are the influence of
thee andy parameters.

The discouny; 5 Nneeds to be around®b~ 0.97, otherwise the agent cannot learn the task. ke
parameter (determining the amount of “greediness” of thectien) has a large influence on how long
the agent takes to learn the task. A low value gf; vastly increases the learning time, but the policy
that is eventually learned is better, because random — siulep- actions are selected with smaller
frequency?®

The flat learner can solve the task reasonably 34éfl some 510° steps, returning an average of
around 60~ 65 objects. The best performance (around 70) is only reaafted 4 10" steps, but the
agent can not do this consistently: some runs fail whilerstheach this high performance. On average
there are 89 objects in the environment so the flat learneblesta collect and return just over three
quarters of the objects in the allotted time on an averag&dun

6.4.5 Running Time

HABS and the flat learner both make extensive calculations (& lpagt of which are the forward- and
backpropagation parts of all the neural networks). Taklegies an impression of the time that the flat
learner and KBS need with various configurations.

25Episodes with a longer duration of 3000 steps, show that th&ttilat learner and W8S can increase there performance
to around 70- 80 on the task without “pickup rewards”.

21t is of course possible to adjust the valuesaf, during learning, starting with a high (quick-and-dirty)lve, and
gradually increasing the accuracy by decreasifyg . The result in terms of time needed to convergence would begdere
in between that of the quick and the accurate values{igr. The performance would be roughly equal to that of the adeura
€415t Value. This would require another parameter and addititumang.

27The flat leaner could solve the task a little faster with Bolnn selection and “pickup rewards”, but was slower with
Boltzmann selection when no “pickup rewards” were used.sgeédon A.1.3 in the Appendix for a short discussion.

281 ABS was also tested on this simple task. Itis able to achieveyntéer same (suboptimal) performance that most of the
flat learners reach (just under 60, not shown here) but in 2rl3- 10° so it is slightly faster. No extensive tuning was done
for HABS in this simple cleanup task. In fact, the parameters weexssd based on the results of the harder task without the
pickup rewards.
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actions/ms

flat learner (5 hidden neurons) 125
flat learner (15 hidden neurons) 5.7
flat learner (25 hidden neurons) 3.8

HABs (2 hidden neurons (ll), 5 hidden neurons (HL), 10 subpadicie 13.4
HaABs (2 hidden neurons (ll), 15 hidden neurons (HL), 10 subpesy 11.6
HABS (5 hidden neurons (ll), 5 hidden neurons (HL), 10 subpadicig 10.3
HABs (5 hidden neurons (Il), 15 hidden neurons (HL), 10 subpes 9.7

Table 6.1: Running times the average speeds (in primitive actions per second) fimwsconfigurations.
Calculated on a Pentium IV with 2.4 GHz and 500 MB RAM.

The important factor for Bs is the number of low level neurons. The subpolicy neural oeta
are used at every time step, so at every time step there isnarrpropagation for all six primitive
actions, and a back propagation for one of these six actibhs.high level policy only uses its neural
network once every few (possibly only once evérgeouj steps in the beginning)

Since the flat learner uses its neural networks every timg, $tiet it also needs it for the kind of
large scale learning thatA#s does with itshigh level policy it has a large disadvantage. Even more
so, because it has only one state vector as input, which isahjginction of both the low level state
and high level state of KBS (otherwise FABS would receive information that the flat learner does not,
and the trial would not be fair). It therefore has a largewinyector to process at every time step, than
HaBs does, if HABS has the same number of hidden neurons for its subpolicidgedat learner has for
its policy. HABS on the other hand has an extra overhead because of the itlgsiad other calculations
related to its layered structure, and of course the higH fvkcy with its neural network.

The difference is most notable with many hidden neuronshdfftat learner uses 15 neurons, and
HABs uses the same amount for its high level (even though it onbdeé to solve the problem), it
can still be twice as fast because it only needs a few (2 ajrpagved enough) hidden units for its
subpolicies.

6.5 The Cleaner Task

For the real Cleaner task the agent received no no extra méigiform of “pickup rewards”. As can be
seen in fig. A.4, this task is rather tough for the flat learner.

6.5.1 The Flat Learner

Without the extra help of the “pickup rewards”, the best festrhers need some 20’ steps (compared
to only 3~ 5-10° steps with the “pickup rewards”!). Furthermore, the vacarn convergence time
is larger, so some learners take far longer to reach gooaipeaince (or don’t reach any significant
performance at all). Results of these experiments can belfsuAppendix A.1.4.

Two settings are interesting: 15 hidden neurgng; = 0.97, €4t = 0.1 andafj4; = {0.01, 0.02} (see
fig. 6.12). The first@ 5 = 0.01) provides a high performance (just above 60) about halfithe’®. The
other alternative is to go for a “quick and dirty” solutionttvia higher learning rates( 5 = 0.02). This
allows the flat learner to reach values between 50 and 5% fzorisistently.

2%The boxplot visualisation is somewhat misleading hereabse roughly half of the runs reach performance around 60
and the other half stay near 0. The boxplot “box” thereforly @ontains one or two runs. Nearly all other runs are either i
the top or at the bottom. That is why the lines denoting theskivand highest quarter of the data are so small.
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Figure 6.12: flat learner. no “pickup rewards”. 15 hidden neurortsa = 0.02, €415t = 0.1 andysat =
0.97. Foratj5t = 0.005there was zero performance.

6.5.2 HaBs does Some Cleaning Up

Even though it is also interesting to see howd4$LE and HaBS relate to each other on tabular prob-
lems, the focus of KBS is on the use of neural networks on the high levehgld was therefore most
extensively tested on the Cleaner task. The most integesgsults are presented here.

The High Level Policy

The performance of the high level is virtually independdrihe number of hidden neurons (fig. 6.13(a)).
A lower number of neurons does degrade performance slightlyeven with only one neuron in the
hidden layer, HBs is still able to solve the task (although about half the titnenly reaches a lower
performance of 30 or 40 objects retrieved). This indicales the structure of the problem as viewed on
the high level, is fairly uncomplicated. One or two hiddemirms are sufficied?.

Just as with the flat learner, a learning reig of around 0.01 proved best (see fig. 6.13(b)). The
flat learner uses its neural network both for large scale andllsscale learning, but for KBS these
functions are done by the subpolicies and the high levetpoéspectively.

Interdependencies

Fig. 6.13(d)) gives an overview of behaviour of learnershwdifferent yiy (for Ty = 0.025). It is
plausible the range of good values fgy is dependent on the selection mechanism. The discount
determines the Q-values, and the selection mechanismhiytdgpendent odifferences betwedhese
values3!. For this reason the discount was investigated for otheregabf the Boltzmann temperature
(see fig. 6.14). It turns out that lower valuestpi are more stable and give better performance for all
testedyy . values. Foryy = 0.99 all tested values afy; give good performance, butyfy. is lowered,
then the learner with the highesy, is the first to drop. Ifyy. is lowered further toyy, = 0.95 then the
performance of the learners with lowsy_ values also start to degrade.

As can be seen in fig. 6.14, the performance aBH for otherty, is roughly the same. The discount
is of great influence on the performance of the learner. Aevéthat is too high or too low leads to low
performance. Values arounyg, = 0.97 ~ 0.99 yield good results.

The same kind of dependency was suspected of the discounhartivantage scaling factéty,
because this factor scales the Q-values and therefore rm@yave an impact on the action selection.

300ne or two neurons for each of the networks: there are as metyorks as there are high level actiamsbecause each
network only calculate®(s, &) for one action.

3parameters like the learning raig; and the number of hidden neurons are presumably not relatdtdiscount: the
speed of adjustment of the weights of the neural networkdependent of thdifferencedetween the different Q-values.
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Figure 6.13: HABS — Settings related to the high level policy No “pickup rewards”. Defaults: T =
0.05, Ty =0.025 Kj; =0.3, Ky = 0.3,y =0.95, yy =0.99, oy =0.01, . = 0.01, 2 hidden neurons (low
level), 5 hidden neurons (high level), 10 subpolicies, suiog-timeout= 20, Ptajied = 0, Ptimeout=—1, W=
0.03. (a) hidden neurons (high level) 5 hidden neurons (low levellb) learning rate ay : Ky =0.2, 7
subpolicies(c) AdvantageKy\ : (defaults).(d) discountyyr: Ptailed = 0.3, Ky =0.2.

The results of several tests with different values for thesmmeters are depicted in fig. 6.15. There
seems to be no significant dependency betweertigheand the Advantag&y, because the learner
behaves roughly the same for varyikg, with each of the tested temperatures.

The effects of differenKy values atty, = 0.025 is depicted in fig. 6.13(c). Small&g, values
give a boost in convergence time, but are less stable. Higllaes ofKy, give worse and/or slower
performance?

The Subpolicies

The low level subpolicies are able to do their subtasks wstlfieas as two neurons in the hidden layer
(see fig. 6.16(a)). There is no significant difference in genance between two or five neurons. This
was to be expected: the subtasks are designed sinfggebehaviours. A value ofy = 0.01 for the
subpolicy learning rates was found adequate in initialigstT his learning rate was used consistently in
all HAaBs Cleaner experiments. No results regarding performande weitying low level learning rates
o) are presented here.

The selection temperature for the low level policies (fid.6§b)) show a smaller window of good
parameterst € [0.025 0.05] yields a good performance. But since the behaviour of thedidies is

32nitial tests confirmed tha = 0.2 ~ 0.3 was also suitable for the low level subpolici&g [ and for the flat learnem(s 4t ).
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Figure 6.14: (a — d)HABS — Varying Boltzmann temperaturety for yq. = {0.995, 0.99, 0.97, 0.95}:
No “pickup rewards”. 1) = 0.05, Ty = 0.025, y;; = 0.95, yy = 0.99, aj =0.01, ay. = 0.01, 2 hidden
neurons (low level), 5 hidden neurons (high level), 10 suibfas, subpolicy-timeout 20, Ptailed = 0,

Ptimeout= -1, w=0.03.

rather similar in the different tasks, good values in oné& {¢éike one of the maze tasks) turn out to be
good values in another task, and little real tuning is needed

The number of subpolicies thatAss uses to solve a task fig. 6.16(c)), does not influence the per-
formance it reaches, unless of course there are so few soiggahat not all behaviours can adequately
be covered. This is the case when only five subpolicies am Usis easy to imagine that there are six
distinct behaviours in the cleanup task: four behavioursrfoving (roughly) in the cardinal directions,
one for locating and picking up objects, and one for droppivem.

Tests with five subpolicies show that the agent managesrievetas many objects as with seven or
more subpoliciesor some runs, but not for other3his is remarkable. Apparently A8S is sometimes
able to use one subpolicy to execute two kinds of behavio@se of the runs with 5 subpolicies
was investigated, and the following characteristic vextoere observed after-30° steps (i.e. near
convergence):

char; = (-0.0795+0.0022-0.0362) char, = (+0.1265 —0.0036 —0.0000)
chars = (-0.0141-0.1696 0.0000) chars = (-0.000Q +0.000Q +0.1000)

The agent usedhar; for dropping the objects at the drop zone, but also for motintpe left.

Tests with four subpolicies the agent is unable collect aggificant amount of objects. The per-
formance does occasionally reach 1 or 2 because the agemtilgeat drops an object correctly, but
nothing more.
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Figure 6.15: (a—d)HABS — Varying Boltzmann temperaturety, for Ky ={0.2, 0.3, 0.5}: No
“pickup rewards”.1; =0.05, Ty = 0.025 Ky =0.3, v =0.95, yy. =0.99, ay =0.01, ay = 0.01, 2 hid-
den neurons (low level), 5 hidden neurons (high level), Iipslicies, subpolicy-timeott20, Pt ajeq = O,
Ptimeout= —1, w=0.03.

Clustering and Self Organizing

The parameters related to the clustering and self organstiow some surprises. These parameters are
the clustering learning rat and the rewards (or punishments) for timeuit{cou) and for executing
a behaviour that is not clustered as belonging to the cus@mpolicy O+aied)-

It was suspected that punishingsfieq < 0) slightly would work best, but insteadAgs reaches
better performance if failure (but not timeout) is rewargégdhtly (ptajieq = 0.3), as shown in fig. 6.16(e).
Even if the subpolicy did something that actually needs tolbstered in another cluster (i.e. belongs to
another subpolicy), it still interferes more to punish thigsong) behaviour than to reward it a little bit.
Doing something wrong is apparently (in this environmengrensimilar to doing it right than to doing
nothing at all (timeout).

Punishing a subpolicy for doing nothing at aif,eout< 0) proved useful (see fig. 6.16(f)). A negative
return of primeout= —1 OF Primeout= —2 results in faster convergence and slightly higher peréoroe.

The clustering learning rate behaved rather good (fig. 6.16(d)) for a very wide range ofies)|
only w=0.001 proved too low, though not on all runs. Apparently evethilis very smalko value,
the learner is still able to cluster the data most of the tifrtas is probably because it executes so many
iterations. If HABS takes 310° steps to reach convergence and if a subpolicy on averagéntess
every 10 steps and there are 10 subpolicies, then each ofusters has had some “adjustments of
its cluster center.
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Figure 6.16: HABS — Settings related to subpolicies and clusteringNo “pickup rewards”. Defaults:

T = 0.05, 1y =0.025 Ky =0.3, Ky =0.2, Yii = 0.95, YHL = 0.99 a; =0.01, ay. =0.01, 2 hidden
neurons (low level), 5 hidden neurons (high level), 10 suibfes, subpolicy-timeout 20, Psajled =

0, ptimeout= —2, w=0.03. (a) hidden neurons (low level): (defaults), (b) BoltzmannTt), : tyL = 0.05,

Ptimeout= —1. (¢) number of subpolicies:Ty = 0.10, ptimeout= —1. (d) clustering learning rate w: Psailed =

0.3. (e) fail-reward piajieq: (defaults).(f) timeout-reward primeout (defaults).

Robustness

As can be seen from the data presented hemgdHis fairly easy to tune for this hard probleff.
HABS is able to reach convergence in just ovel@ time steps, and it can reach average performances

%3 That is, using Boltzmann-selection. Usiagreedy selection proved harder: witkgreedy the performance was inferior
with same settings iy, Y4, 0L humbers of hidden neurons, subpolicies and settings f@d-tlustering!
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of between 55 and 60 objects returned per episode. This is@s @ performance as the flat learner is
able to reach, but KBs does it far more consistently and for a wide range of pararseiéhe flat learner
needs an order of magnitude more time (ovet@ steps) to reach convergence, and the variance in the
moment of convergence is far greater. This is related togdhdam walking distance for both algorithms:
the flat learner has a very long chain of actions, bagH a far shorter one because once its subpolicies
start acting non-randomly, it only needs to random walk anhfgh level. Shorter distances result in
less variance in the time when convergence is reached.

6.5.3 Forcing HABS to Explore, Some Tests

As explained in section 6.4.3, A#s was forced to explore with probabilityy, = 0.01. Initial tests
suggested this value, so it was used as a precaution in aleabmeriments.

Using Boltzmanre selection on the high level seems to make no real differeacednvergence
time and reached performance for most of the runs. Significdaigher ey obviously lead to lower
performance, because gfy. = 0.05, in 5% of the time, some subpolicy is selected at randonr.aFo
lower Boltzmanr this led to increasingly worse performance: fot 0.1 ande = 0.1 the performance
is still above 50 (fig. 6.17(b)), but fary = 0.025 ande = 0.1 it has dropped to an average of about 30
(fig. 6.17(b)) with only some of the runs reaching 50.
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Figure 6.17: Boltzmanng selection:no “pickup rewards”defaults: K, =0.3, Ky =0.2, yij =0.95, yq =
0.99, aj =0.01, ay =0.01, 2 hidden neurons (low level), 5 hidden neurons (high levi@)subpolicies,
subpolicy-timeout 20, P+aijled = 0.3, Ptimeout= —1, w=0.03. (@) Varying ey at Boltzmannty_ = 0.025:
T = 0.05. (b) Varying en. at Boltzmannty = 0.0.10:1 = 0.05. (c) Varying € : TnL = 0.025.

However, wherg was varied (fig. 6.17(c)), the agent was observed to takerado¢ time for some
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runs with very lowg (if gy = 0 this amounts to regular Boltzmann selection, not showe bat same
results as witkg; = 0.001), but otherwise performed the same as with 0.01. Increasingy had the
same effect as with increasireg, : lower performance because more random actions are sgélecte

It seems that a little precaution was good, especially ferlttv level. Boltzmanre selection with
gy = 0.01 performs nearly the same as Boltzmann selection (Botinraaselection withe = 0) but is
less variance in the time when convergence is reached.

Combining the best of Boltzmann selection (selection priopoate to Q-values) anggreedy se-
lection (forcing exploration with probabilitg) is — at least for HABS — slightly more stable than either
of the two selection mechanisms (see Appendix A.2 for tedits MABS ande-greedy selection).

108



Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis some of the problems were analyzed that afsmReinforcement Learning is used in
combination with hierarchies. This knowledge was used isigiteng a new Hierarchical Reinforce-
ment Learning algorithm called A8S. The existing algorithm HssLE by Bram Bakker and Jurgen
Schmidhuber [1, 2] was used as a starting point for this ngardahm.

State Space Abstraction and Task Decompositions

Itis clear that Hierarchical Reinforcement Learning canddé from using state space abstraction, where
each higher layer has a coarser view of the state space. sptate abstraction allows the designer to
use his (perhaps only intuitive) grasp of a problem, to ereatarser representations of the problem.
Furthermore, the designer is not forced to solve the prolilenself: there is no need to creataask
decompositionThe agent can learn which behaviours it should execute &t aibstract state.

Behaviours Should Be “Relative”, Not “Absolute”

HASSLE uses high level states as its high level actions. In sectoit was shown that one of the mayor
problems with high level actions is that they are (often) mediin an absolute sense (unlike primitive
actions), referring to fixed locations in the (abstractjestpace.

First of all, no (or virtually no) generalization is pos®blvhen high level actions are defined in an
absolute way (see section 4.3.1). A high level action thafoed in one particular abstract state, is
useless in nearly all other abstract states, because ifiteeden terms of specific abstract states. This is
unlike the primitive actions or for instance theleo-operato(TOP) in RL-TOPs. Primitive actions and
the TOPs in RL-TOPs are only defined in terms “relative” to skeating point, formulated in terms of
doingsomething, not imeaching states

When generalization is impossible, it is not useful to useariban two layers (see section 4.3.3).
When a third layer is introduced, we run into the problem that middle layer should consist of sub-
policies that are applicable everywhere.

The third problem is specific to ABSLE (or structures like it), because it stems from the use of
high level statess high level actionsso other algorithms that use similar constructions wiloabe
hampered by this effect. If such a construction is usedgetioecurs araction explosion the amount
of high level actions grows with the number of high level sta{see section 4.3.2). This is something
unusual and certainly something undesired in Reinforcérhearning. A larger problem has more
states and therefore more high level abstract states, anefdie requires more time to learn. But in
HAsSLE the extra burden is that a larger problem also implies a tangenber of high level actions to
be explored, increasing the learning time and the memonyireapents even more.

109



A Solution - Do it in Reverse

In this thesis a solution was proposed that can most eadilyrdmitively be illustrated by two pictures
(fig. 7.1), showing the structure ofA$sLE and HaBS. Compared to SSLE, HABS does its mapping
from high to low level in reverse order. Instead of treatiigtze transitions between abstract states as
unique high level actions and then mapping each of theseitoited set of subpolicies, it first maps
many transitions to more generic high level actions or behas and then associates each of these
generic classes of behaviours to one subpolicy.

abstract state policy, abstract state
space: States, space: States,

Actions,
States,

i
. o+ Classifier, s
unique
transitions

Actions,
Capacities =

(Mapping,_,,) Policies,

ot smte o O
space: States, Polion, POl

"flat" state
space: States,

(a) HASSLE (b) HABS

Figure 7.1: HASSLE: same as fig. 4.HABS: same as fig. 5.1

Obviously this is not the only way in which a structure likenss could be created: other types
of mapping and/or classification could be used instead, ®rcthssification could be fixed priori
(resulting in an algorithm somewhat like Feudal Learningthe mapping between classes of behaviour
and subpolicies could be flexible. In this thesis a simpleioer of HABS was presented. The high
level behaviours were represented as vectors and thefadatisn was done using a simple clustering
algorithm on these vectors.

7.1.1 Results
Augmenting HASSLE with Filters

HAssLE was tested with and without filters on two experiments. h$usut that, given the right filtering,
the augmented form of ASSLE is more robust for a range of parameters.

Comparing HABS with H ASSLE

HABsS was compared to HWSSLE, to see whether KBS is a good solution to the problems that were
identified with HASSLE. In order to see the destructive effect of the action explgséxperiments were
done in larger environments to see whethersdLE would indeed be hampered by its many high level
actions, and to see whethemBls would be any good as an alternative. In one experimens$ie
slowed down, in the other it needed orders of magnitude mamaony than was actually available
(resulting in a crash on every run). The experiments alseveldadhat HhBS was able to perform this
difficult task without any problems.

Comparing HABS with “Flat” Learners - Tabular Case

HaBs also outperforms “flat” Reinforcement Learning in speed mleoof magnitude in the same maze
problem. This is not surprising since Hierarchical Reinfanent Learning algorithms are designed
especially with that goal in mind. These experiments onlyficm that the time that WBS needs for its
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self organizing and classification, is insignificant in carigon with the time saved by using a hierarchy.
This means that behaviours need not be fiagutiori but can be identified during execution.

It should be noted that it is difficult to compare “flat” tabulaarners with Hhes because KHBs al-
ways has function approximators as its subpolicies, eveanwhuses a tabular representation for its
high level. This is unavoidable, because#$ treats its subpolicies directly as high level actions, and
if these subpolicies would be tabular, they would not be &blgeneralize, which would in effect result
in a situation where KBS needs to leareachof the individual high level behaviours that would nor-
mally be generalized over by a function approximator. Corispa between KBS or HASSLE and a
flat learner is therefore always unfair.

Comparing HABS with “Flat” Learners - Function Approximator Case

HABsS was created to be suitable for the use of function approxirsatsuch as neural networks, to
approximate the value functions at all levels in its hiengrcThis means that it can boldly go where
HAssSLE cannot. To illustrate this, an experiment (with an abstsiate space too large for tabular
representation of the Q-values) was designed where thé agsmrewarded for collecting (and correctly
returning) objects scattered all over the world.

The “flat” learner was now equipped with a comparable newstdork (with hidden layer). HBs was
both faster and more reliable. It was faster — both in timgypienitive action (because of the smaller net-
works) and in steps until convergence — and also had a widgerahsettings that allowed it to perform
very good.

In contrast, the “flat” learner was very hard to tune, and exfegr much tuning and searching through
many parameters, it still often performed very badly. Thipriobably due to the fact that the distance that
needs to be travelled through state space to accomplistotigeig very large. This means that random
walking takes an enormous time which allows the neural nétwmfade out before the agent has had
time to discover something meaningful ABIS on the other hand doesn’t run into this problem because
its random walking distances are smaller, both on the hightha low level, due to the hierarchical
structure.

Suboptimality

The suboptimality of ABS and HASSLE when compared to the “flat” learner was to be expected. It is
probably because the characteristic behaviours are tqueifsee future work for more on this), or the
abstract state space does not allow optimal policies.

In fact, this is a common characteristic of hierarchical rapghes: optimal behaviour given the
constraints of the hierarchy may be near optimal, but diyghiboptimal given the space of all policies.
However, often this is a price worth paying for far more e#idi learning in general, and the ability to
learn in cases where Reinforcement Learning without hibias is completely infeasible because of
the distances involved and the random walking it implies.

7.2 Future Work

Several approaches for future work omets are given. They could be classified in several ways. Some
of the suggestions deal directly with better representatior the characteristic behaviours (curves in-
stead of vectors or decomposing the behaviour space intbesraabspaces (7.2.1) and automatically
detecting features (7.2.2)) whereas the other two (coatiadermination criteria (7.2.3) and extending
the hierarchy to more layers (7.2.4)) do not. On the othedhére first topic (curves and decomposi-
tion) could be considered heuristics that help the desjgmeereas the remaining three are solutions to
problems that arise when the tasks become larger (and mot@gous).
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7.2.1 Representation of Behaviours: Curves and Decompogih

It should be expected that practical problems arise whesdHs extended to larger problems. Intro-
ducing a the third layer (see below) will necessarily implyealy coarse abstraction, which means that
a simple vector representation for the behaviours mightbeosuitable any more. Even for only two
layers, this situation already could occur.

This issue was already dealt with briefly in section 5.2.2vds noted there, that high level actions
that result in the same difference vector, should in factdmemarable. But the more abstract the problem
is represented, the greater the risk that this assumptibmetihold whenvectorsare used.

Vectors, Adieu!

The first option is to look at other representations for thid feetween two locations in the abstract state
space. Another function could be used to represent the pathhe agent must take from one location
to another. Instead of a characteristic behavigotor, something like a characteristic behaviaurve
(see fig. 7.2) osplineor something else entirely, could be tried.

Figure 7.2: Bezier curve the executed behaviour between start (dot) and end (stagpiesented by a
simple bezier curve (dashed arrow), instead of a vector.clinee is a better high level description of the
behaviour, than a vector from start to end.

Decomposing the Characteristic Behaviour

But suppose we have a problem where kmowthat some of the abstract high level dimensions are
completely unrelated to some of the other dimensions. dhase it would be difficult to use one vector
as a representation for the characteristic behaviour. dt) f@e know that some of the dimensions are
incomparable. In fact, it would be counter intuitive to ty queeze all these values into one vector
using many different scaling factors for all the values amtty to use this many-dimensional space to
self-organize these vectorsin.

As an example, suppose that we have three (abstract) diomsngjy andz. The usual approach
would be, to compare the executed behavexecwith all the characteristic behaviours (associated with
the subpolicies) in this three-dimensional behaviour spds illustrated in fig. 7.3(a) this could result
in strange classifications. Thexecvector is closer tos, thanvy (dp < di) but the executed behaviour
with regard to thex andy dimensions was almost opposite to wixatoes in those dimensions. In fact,
vy iIs much more similar if onlk andy were considered. Unfortunately it is simply not the closestor
when all dimensions are considered.

The alternative would be to decompose the behaviour spateraate smaller spaces consisting of
comparable dimensions. This approach would make sense thhlatimensions in the (abstract) state
space are very different from each other and cannot easitpb®ared by introducing a scaling factor
(as is done in section 6.2.1). In our example the dimensi@msly are related and can be compérédt
one dimensionZ) is incomparable to the other two. In this case it would bdulge split the behaviour
space into two smaller subspaces (behaviour subspaces).

The first subspace is generated dimensioraady, and the second space is formed by dimengion
This means that a characteristic behaviour now considisa¥ectors, one in th&y-space, the other in

Lin fact, this “counter intuitive” but simpler approach wadken in the experiments conducted here. This illustrates th
(useful)a priori knowledge is not in principle needed in simple situations.

The dimensions andy might for instance both be spatial, or both related to (d#ifee kinds of) objects in possession.
Dimensionz measures something completely different, e.g. fuel-condion or energy.
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Figure 7.3: (a) Simple behaviour spaceall dimensions in the behaviour space are taken togetheér an
used for one behaviour vector (exec). The characteristiabeur vectors (black arrows) can assume
any value.(b) behaviour space with separated dimensionsthe behaviour space is separated into two
parts Ky andz). Each characteristic behaviour consists of two vectong ia thexy-space and one in the
z-space (the first characteristic behaviour consists of wesolid black arrows, the second has dashed
arrows). The executed behaviaxec(gray arrow) is decomposed and projected onto the two spands

its projectionexegy andexeg are used for classification.

the space generated hyWhen the agent has executed a certain behavexa)( this behaviour needs
to be decomposed into its projections on all the spaceslagrdted in fig. 7.3(b)). The resultirexegy
andexeg can then be used for classification.

This classification needs to combine the distance fetagy, to char,xy and exeg to char,z
One alternative is, to use something quadraticstancé(char,exeq = distancéy(charhxy,exeg;y) +
distancé(chari;,exeg). This would lead to the normal Euclidean distance, but tlierdince with
regarding all dimensions as one space, is that with sepagaters there are separate processes of self-
organization each of the vectors is independent of the others. If all Hiees are taken together in one
vector, the different (but in principle incomparable) dms@ns influence each other, because they are
used in determining which subpolicy is the best match fonateted behaviour. If the behaviour space
is separated into several subspaces, and if the char#éicteBstors are constrained to those subspaces
then unwanted influence can be avoided. The downside is thatould need as many subpolicies as
there are combinations of vectors from all Behaviour subspa

7.2.2 Automatic Detection of Relevant Features

In many cases where it is natpriori clear which of the features of a state space abstractiorebaeant
for behaviourbut on the other hand it is known that there could be featuresdteatess relevant then
others. When this happens it is not possible to excludeeiveglt features: priori (as was done in the
experiments presented here, see section 5.2.5 and 6.4.2).

Some kind of automatic detection of the relevant featuresuggyested here. Features that are cor-
related to behaviour also have a statistical property taathe exploited for automatic detectidrihe
prediction error betweeaxecand the characteristic behaviour that is the closest matitie small.

If these features cannot be appropriately described by acfasters, the average error between
the features and the corresponding values in the charstatebehaviours will always by high. This
suggests some kind of error minimalization algorithm. Thpeeted difference (scaled to for instance
its standard deviation) for featuiebetween the nearest clusteustek and the executed acticexec
will be large for irrelevant features but small for featuretated to behaviour. Each of these features
contributes to the overall err@eyecciuster, - Each featureis assigned a weight (similar to how each input
in a neural network is assigned a weight). This weight ireesavhenever its contribution to the error
Eexecclustey, 1S loW, and decreases when its contribution is HigFhis relation can for instance be ensured

3Perhaps this property is even used implicitly by the desigiteen relevant features are identifiagbriori .
“This error probably needs to be related somehow to the stamtviation in the feature in question, to avoid problems
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by demanding that the sum of all weights remains constgmtdight = 1). Perhaps each characteristic
behaviour will have a separate set of weights or one set dmikhared between all subpolicies.

Using weights to automatically scale each feature will tegsua process wheren averagethe
features that are related to the behaviour will end up witthhiveights. This is because on average
they are more properly clustered then the irrelevant oned tlaerefore on average have a lower error.
Maximizing the weights of relevant features and minimizthgse of the irrelevant ones, will ensure
the lowest average error between executed behaviour andhéracteristic behaviour vectors. This
should happen intertwined with the self organization of tharacteristic behaviour vectors. In the
beginning some exploration in the weight-space is unabiéjeecause it will take some time before
the subpolicies will start to behave non-randomly. Front thament on, a better set of weights will lead
to better classification, and better classification willdea more consistent training of the subpolicies,
and so on, presumably.

7.2.3 Continuous Termination Criteria

In section 5.2.6 it was stated thakBs can in principle use continuous termination criteria:

terminate If timeoutv (distanc€S S) >0 A S S eStateg,)

continuousStop, = {continue otherwise

However, in the experiments presented in this thesis, oislgrete criteria were investigated due to a
lack of time. Using a continuous termination criterion weburhply that the agent agent after each lower
level step needs to compare its higher level state and nmeediseidifference between its current state
and the state it was in when it started its current (sub)polic

As a distance measure for two vectors in the behaviour splaed;uclidean distancecould be used.
But in situations where it is not known what the relevant tiees are, using this metric would mean
that some completely irrelevant feature could change alargount and bring the distance over the
thresholdd even though naignificantchange would have been achieved by the agent.

When automatic detection of features — as proposed abovased; it makes sense to also use the
feature weights in the definition of the distance. The lerajtthe weighteddifference vector

distancé€S S) = \/Zweight- (§-9)

would presumably be a better metric than just the length eftlifference vector.

It would make sense to use automatic feature detection aredginted (continuous) termination cri-
terion. If the relevant features are not clear, and cannatfiréori be excluded, they need to be detected.
But if the relevant features are not clear, they cannot bd &Hesimplim))ssibly discrete) termination

criteria and not even for something as convenientliasanc€S S') = |S - §. This would mean an ex-

tra complication because good sets of feature weights wesldlt in good termination criteria and the
other way around. But bad weights would result in wrong (patire or late) termination of subpolicies
and therefore probably degrade the capacity of the agedetuify and classify meaningful behaviours.

7.2.4 Three or More Layers

It would also be useful to study performance ok#t on larger problems, where three or more layers
(together with function approximators) are needed. Thenggdavork for HABS has already been done
because KBs is shown to behave well when neural networks are used fordbensl level. This means
that there is — in principle — no problem with extending theiciure and adding new layers with more
abstraction on top of it. Because of the fact that the pdide the second layer can be regarded as
relative actions, applicable anywhere in the problem, rmehat HABS can also use these second layer
policies as subpolicies in a third layer, and so on.

with features that always remain zero.
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Appendix A

Cleaner Task

A.1 The Flat Learner (with “Pickup Rewards”)
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Figure A.1: flat learner — e-greedy selection results for the flat learner when the “pickup rewards” are
used. The total reward accumulated per episode (1000 tieps)sis displayedd ;5 = 0.01, ysat = 0.97
and 15 hidden neurons.

The flat Reinforcement Learning agent was tuned on the sin@lieaner task with the “pickup
rewards”. This gives good indication of what performancestpect in the harder task without the small
rewards.

Parameters — withe-Greedy Selection

If €is low (ef15t = 0.01, fig. A.1) the flat learner is able to reach a very high reéaer 70 objects
returned on average). However, it takes ovek(® time steps to do this on average, and some runs don't
show any progress even after®’ time steps! Higher values {jx = 0.1) yield lower results (around
65 objects returnedjut are able to learn this 10 times as fast.
The discount parametss 5 is also of significant influence. When 4 is too high {4 = 0.99,
fig. A.2(c)) the learner is unable to reach a good performambés is probably because a (too) high value
of yf1ar makes discriminating between actions with nearly equak{®eas too hard (see section 3.1.4).
A low value ofys 5 = 0.9 also leads to bad performance (because the reward sigmniahes too fast).
The flat learner was able to solve the task with 5 (good) or Haldém neurons (best) per neural
network (a network for each of the 6 primitive actions). kasing the number of neurons to 25 leads
to a lower performance, probably due to overfitting. Thishiewsn in fig. A.2(b). More hidden neurons
mean more calculations, so smaller networks are desiraiate & computational viewpoint.
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Figure A.2: flat learner — “pickup rewards” — e-greedy selection results for the flat learner when the
“pickup rewards” are used. The total reward accumulate@pésode (1000 time steps) is displayed. (The
graphs have the same scale for easy comparidoafaults: €¢ 5 = 0.1, 015 = 0.01, ys15t = 0.97 and 15
hidden neurons(a) learning rate oyt : (defaults). (b) hidden neurons (defaults).(c) discountyyat :
€flat = 0.05.

The learning ratex¢ 5 (fig. A.2(a)) cannot be pushed too high, because a high vaiuers perfor-
mance. This is probably due to the fact that the adaptiorighlanetwork makes in its weights, are too
large: the network steps over the optimal value. A low vaki@assible, but increases the time until
convergence (which is undesirable).

A.1.1 Parameters — with Boltzmann Selection

fig. A.3 The flat learner in combination with Boltzmann selectwas also briefly investigated. The
behaviour with respect to the discounty is the same as with theselection (a peak at aroungl g =
0.97, see fig. A.3(b)).

The relation between the selection and the performancdfésefit from where-greedy selection is
used. Foe-greedy selection a sharper selection (lowgyg) meant higher performandsut far longer
time until that performance was reached. With the Boltzmselection this does not seem the case
(see fig. A.3(a)). Different temperatures do yield diffdrperformances (highery 4 result in lower
performance) but there does not seem to be a real differertbe time until that convergence is reached
(at least for the values that were investigated).

The learning rate ¢t behaves stranger (fig. A.3(c)). The higher vatugy = 0.02 that doesot
work for thee-greedy case, does perform good here. However there sedmsatdependence between
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Figure A.3: flat learner — “pickup rewards” — Boltzmann selection: results for the flat learner when
the “pickup rewards” are used. The total reward accumulptgepisode (1000 time steps) is displayed.
(The graphs have the same scale for easy compariBefaults: T¢ 5 = 0.02, 0 ¢4 = 0.01, yf15t = 0.97 and

5 hidden neurongla) Boltzmannty 4 : (defaults).(b) discountys 4 (defaults).(c) learning rate O ¢4

for various Boltzmann 15 values (defaults)

temperature 5z and learning rat@ ;. When the learning rate is lowered fromy 5 = 0.02 to 0.01,
the time until convergence for the learner with a low valua ef0.02 increases, but not for the higher
value oft.

A.1.2 Performance

The performance of the flat learner is highly dependent oséfection parameter ;; and the discount
Yriat If €-greedy selection is used. Values aroung; = 0.1 andys|5 = {0.95, 0.97} yield good perfor-
mance. Lowek; 5 values result in the best performance (around 70 objeatevet), but also in far
longer times to convergence (up to an order of magnitudeddhg

If the flat learner is used in conjunction with Boltzmannesgion, it is able to reach the same per-
formance, but is does so faster (convergence-r821(° steps).

A.1.3 Boltzmann Versuse-Greedy Selection

It is observed that the flat learner on average seems to l&ghtl faster (but no better performance)
with Boltzmann selection than witkrgreedy selection in the Cleaner tasith the “pickup rewards”.
However, for the Cleaner taskithout these extra rewards, it todknger to reach convergence for
Boltzmann selection (not shown here), but it reached s\idtigher performance of around 6065.
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A.1.4 Cleaner Task (without “Pickup Rewards”)

In fig. A.4 the results for the flat learner without pickup reds are displayed. The flat learner needs
2~ 4.10' steps to arrive at a performance of arounc-5D.
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Figure A.4: flat learner: no “pickup rewards”Defaults: 15 hidden neuronsy 5 = 0.02, €115 = 0.1 and
Viiat = 0.97 (a) e-greedy: (defaults).(b) discountys 4 : (defaults).(c) hidden neurons ot = 0.01. (d)
learning rate o454 - for o5t = 0.005there was zero performance.

A.2 HABS

A.2.1 Asymmetries

The flat learner learned better with Boltzmann selectionwipgckup rewards” but better witb-greedy
selection without the extra help (Appendix A.1.3). Someghsimilar was observed for &8s, but
the other way aroundsee fig. A.5)! Using Boltzmann selection yielded slightg$ variance in the
time that convergence was reached (when no “pickup rewanegse used). Foe-greedy selection, it
sometimes happened thanBls did not learn anything at all in a reasonable time (in congmariwith
HABSs together with Boltzmann selection), even though all sg#tiother than the selection mechanism
were the same. Boltzmann selection proved better o8 $] and was therefore used to solve the Cleaner
task (without the “pickup rewards”) in section 6.5.
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Figure A.5: HABS — g-greedy versus Boltzmann selection (no “pickup rewards”) forg), =
{0.90, 0.95, 0.99} andey = 0.99 (for e-greedy selection)r; = 0.05 andty. = 0.025 (for Boltzmann
selection)Ky = 0.3, Ky =0.2, yj; =0.95, yq =0.99, a; =0.01, ay = 0.01, 2 hidden neurons (low level),
5 hidden neurons (high level), 10 subpolicies, subpolizyebut= 20, p+ailed = 0.3, Ptimeout= —2, W= 0.03.

For Reasons Unknown ..

The reason for these asymmetries is unknown, but they migielated to the number of actions that
both algorithms have. The flat learner has only six primtiggoms, but FABS uses 10 (or even 20)
subpolicies. With so many (high level) actions, it will hgppmore often that two Q-values have nearly
the same value. In that casereedy selection will with probability1l-€) select the maximum action,
but Boltzmann selection will assign roughly the same prdlbglio the winner and the runner-up. This
might help thecomeback kido really make a comeback: the action with the second higQestlues
has a greater chance of being selected.

Boltzmann selection is therefore more helpful to actiors (eventually) are the best, but (currently)
have a slightly lower Q-value: they have a better chance whaoag up and becoming the highest Q-
value. With fewer actions this effect becomes less and lesspooblem because the probability that
these actions are selected at random, is higher.

HABs has (high level) actions that first need to be learned. Thiansi¢hat there is a good chance
that subpolicies will run into exactly this problem: theyghit still be inadequate for a certain behaviour,
but as their performance improves, the Q-value of seledtirggsubpolicy as high level action, becomes
better. The flat learner does not have this extra complicabecause the primitive actions don’t change.
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