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“He knew what he had to do. It was, of course, an impossible task. But he
was used to impossible tasks. (. . .) The way to deal with an impossible task

was to chop it down into a number of merely very difficult tasks, and break
each of them into a group of horribly hard tasks, and each one of them into

tricky jobs, and each one of them. . .”

Terry Pratchett —Truckers(Bromeliad Trilogy, book I)

Abstract

A new Hierarchical Reinforcement Learning algorithm called HABS (Hierarchical Assignment of
Behaviours by Self-organizing) is proposed in this thesis. HABS uses self-organization to assign be-
haviours to uncommitted subpolicies.

Task decompositions are central in Hierarchical Reinforcement Learning, but in most approaches
they need to be designeda priori, and the agent only needs to fill in the details in the fixed structure.
In contrast, the new algorithm presented here autonomouslyidentifies behaviours in anabstracthigher
level state space. Subpolicies self-organize to specialize for the high level behaviours that are actually
needed. These subpolicies are then used as the high level actions.

HABS is a continuation of the HASSLE algorithm proposed by Bakker and Schmidhuber [1, 2].
HASSLE uses abstract states (called subgoals) both as its high level statesand as its high level actions.
Subpolicies specialize in transitions (i.e. high level actions) between subgoals and the mapping between
transitions and subpolicies is learned. HASSLE is goal directed (subgoals) and this has the undesired
consequence that the number of higher level actions (the transitions between subgoals) increases when
the problem scales up. Thisaction explosionis unfortunate because it slows down exploration and vastly
increases memory usage. Furthermore the goal directed nature prevents HASSLE from using function
approximators more than two more layers.

The proposed algorithm can be viewed as a short-circuited version of HASSLE. HABS is a solution
to the problem that results from using subgoals as actions. It tries to map all the experienced (high
level) behaviours to a (small) set of subpolicies, which canbe used directly as high level actions. This
makes it suitable for use of a neural network for its high level policy, unlike many other Hierarchical
Reinforcement Learning algorithms.
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Chapter 1

Introduction

1.1 Learning in Layers – Solving Problems Hierarchically

A rather recent addition to the happy family of algorithms isthe concept ofHierarchical Reinforcement
Learning. In contrast with“flat” Reinforcement learning, this new class of algorithms is in some sense
layered.

As with many terms in the field of Artificial Intelligence – forinstance the buzz word “multi agent” –
the term “hierarchical” has a rather wide meaning. Several different approaches have been put forward,
each using Reinforcement Learning (learning bytrial-and-error) in some way or the other. They com-
bine different levels, scales or layers of actions (time) and/or states (space) in solving Reinforcement
Learning tasks.

An Example – Game playing

A small example may illustrate the notion of hierarchies. Suppose we are playing a complicated com-
puter game about building cities, armies and empires1. In this game, the ultimate goal is – of course,
what else? – to rule the world, but to achieve that (high level) goal, many smaller tasks (subtasks) have
to be accomplished or subgoals have to be reached.

Suppose we have already figured out that thesubtaskof building a large army will most certainly
help us in achieving our ultimate goal of world domination (see fig. 1.1). We might not yet knowhow
exactlywe are supposed to execute the behaviour‘build large army’ perfectly, but we did learn that
executing it would be the road to victory.

Figure 1.1: Hierarchical planning in a strategy game.

Or perhaps we think that we need large cities (a state orsubgoal) that generate a high revenue but we
don’t know yet how to build large cities. As we play the game, we will learn how to build a metropolis
and learn how to deal with all the problems of managing mayor cities. In effect we become better in
reaching the state or subgoal“have large cities”.

On the one hand we are learning (on a high level of abstraction) whether or nothaving large cities

1For instance a game likeCivilizationor one of its many incarnations, clones, imitations and successors.

5



or building an army is an important aspect of winning the game. But on the other hand, we are learning
just how exactlywe can accomplish those smaller subgoals or subtasks.

1.1.1 Why Use Hierarchies?

There are several reasons for using hierarchies in learningand control. Hierarchies are a sensible ap-
proach, which humans use every day: we often divide the worldin hierarchical structures to facilitate
learning. We are able to plan better when using a hierarchy oflarger and smaller subtasks (actions we
want to take) or subgoals (states we want to be in) than if we had to plan everything in terms of low level
actions only. Also, most of the time behaviours that are usedto accomplish one subtask, can be re-used
in another subtask.

Furthermore, hierarchies and behaviours facilitate exploration. A Reinforcement Learning agent
usually needs to explore, and it does soinitially by random walking (basically:acting like a drunk) and
trying actions randomly bytrial-and-error. After some time it will have acquired some knowledge about
the environment, and its exploration will obviously be moreefficient and less random. However if the
agent could learn behaviours (actions that are extended over multiple time steps) which do something
non-randomly, it could use these to explore faster. Insteadof making random decisions at every time
step, with behaviours the agent only has to make random decisions when it invokes a behaviour: the
burden of random walking is shifted from the low level to the high level.

1.1.2 Different Approaches

The learning on both2 layers can beintertwined: a behaviour that is not yet fully learned on the low level,
can already be used at a high level. And goals that are chosen on the high level, can force exploration
on the low level in certain directions.

There are lots of different ways in which to structure a hierarchical algorithm. Only the action-
part could be hierarchical, resulting in approaches following the Options-framework (see section 3.3.1),
but there could also be abstraction or hierarchy in the statespace, resulting in layered approaches (see
section 3.3.2).

The reasons for using hierarchies, and examples of several approaches that have appeared in the
literature, are presented in chapter 3. An introduction to (flat, non-hierarchical) Reinforcement Learning
is given in chapter 2.

1.2 HASSLE and HABS

Focus on Task Decomposition

Many (layered) approaches use the notion of task decomposition: the overall task is decomposed into
subtasks (andsubsubtasks,subsubsubtasks,. . . ) by the designer. This seems like a good approach, because
humans are good at abstractions and identifying structures. But for many problems designing decom-
positions is cumbersome and time consuming, and we are dependent on the designer’s intuition for the
task decomposition. This means we that the designer needs tounderstand the problem in order to give a
good decomposition into subtasks.

Focus on State Abstraction

Alternatively, we can focus on thestatesinstead of the actions: perhaps we have an abstraction of the
state space readily available, or it can be acquired easily3. If we have a state abstraction, why not select

2For now assuming there are two levels. However, there is nothing preventing us from extending this notion of ’layer’ to
more than two levels.

3If no high level abstraction of the state space is known in advance, algorithms are needed that divide the state space in
appropriate subsets. Hot spots in the state space need to be identified, clustering needs to be performed, etc.
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an algorithm that just uses this abstraction without bothering with designing task decompositions.
The HASSLE algorithm (Hierarchical Assignment of Subpolicies to Subgoals LEarning), which was

the starting point for the research in this thesis, deals with exactly that problem. For understanding the
new algorithm HABS, it is useful to understand HASSLE (it is therefore described rather extensively in
chapter 4). HASSLE uses clusters of low level states that resemble each other asabstract statesin a high
level Reinforcement Learning algorithm. In effect it has two Reinforcement Learning algorithms at the
same time: one for the high level, using the abstract states and one4 for the low level, using the normal
(“flat”) states.

What makes HASSLE different from other approaches, is that is also uses its abstract states as its
high level actions5 for the high level. This means that HASSLE works in terms of subgoals: the agent is
in a certain abstract state and wants to go to another high level state. Its high level action is this other
abstract state or subgoal. On the low level it just uses its primitive actions.

Starting with Uncommitted Subpolicies

It would be very inefficient to just assign a unique subpolicyto each of the transitions from one subgoal
to another. If we needed to learn all of these transitions separately, there is a fair chance that so many
small problems together are tougher – and take far more time –than the large problem we started with.6

HASSLE uses a limited number of a subpolicies, which start totallyuncommitted. It is not known at
the start, which subpolicy will be used for which subtask(s). This small set of subpolicies together needs
to cover all the required behaviours. A behaviour like moving through a corridor will probably be the
same in many corridors all over the place, so we would need only one (somewhat flexible) subpolicy for
many roughly similar corridors. HASSLE needs to learn the association between subpolicies and high
level actions.

The system in effect has to organize itself by incrementallyincreasing its performance. Each learning
part (high level policy, subpolicies, the associations) uses the still rough and unfinished other parts, to
make itself a little more effective, and in turn other parts use the results to make themselves a little
better. They bootstrap on each other, using still unfinishedvalues as estimates. This is not as impossible
as it might sound, for most of the basic Reinforcement Learning algorithms already use some form of
bootstrapping:using estimates of estimates.

1.2.1 The Problem with HASSLE: an Explosion of Actions

HASSLE has an inherent flaw that prevents it from being scaled up. This will be illustrated briefly here,
and it is analyzed in section 4.3. Suppose we have a state space – let’s say a‘house’– for our problem
and we increase the size of the problem to something more properly called a‘palace’ (see fig. 1.2).
The bigger the problem, the more high levelactionsare added to the problem (because HASSLE uses
transitions between high level states as its high level actions).

This is not the case for the low level actions, because no matter how large our palace is, there is
always the same (small) set of primitive actions, for instanceNorth, East, SouthandWest.

On the high level, not only the number of states is increased,but also the number of actions: the
problem size grows in two ways – which is quite unusual for Reinforcement Learning! Thisaction
explosionon the high level is a serious problem. It is hampering the learning process, because the more
high level actions there are to take, the more there are to be investigated. This makes the problem more
time consuming, up and above the usual effect of the increased number of (abstract) states. It also
prevents HASSLE from using neural networks as its high level policy or using more than two layers.
Furthermore, it highly increases memory usage.

4On the low level there are several subpolicies, but only one is active at each time step.
5Note that on the low level, the states are different from the actions (as usual).
6Because if we have∥S∥ high level states, we would have∥S∥×∥S∥ combinations of subgoals each with a different subpolicy

to learn!
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Figure 1.2: What happens when a house becomes a Palace: the problem size (and the number of high
level states) increases, so an action explosion occurs on the high level. The arrows represent transitions
from one high level state (in this case a room) to another.

In section 4.4 an attempt is described to fix thisaction explosionin HASSLE by introducing a filter.
This gives HASSLE the ability to rule out transitions, which improves learning because there is less to
explore. However, this ratherad hocfix only remedies part of the problem.

1.2.2 A Rigorous Solution - a Brand New Algorithm: HABS

The new algorithm presented in this thesis is called HABS (Hierarchical Assignment of Behaviours
by Self-organizing, described in chapter 5), and is derived mainly from HASSLE. It was developed to
overcome theaction explosionproblem in HASSLE, and to allow neural networks to be used as function
approximator for the high level policy. If this feature could be dropped and replaced by something
that always uses a fixed set of behaviours as high level actions, the number of high level actions would
remain constant when the problem size grows. That way we would retain the useful aspects of HASSLE,
like using the abstracted state space and starting witha priori uncommitted subpolicies.

The solution is toshort circuit the HASSLE algorithm by directly using the subpolicies as high level
actions. But because HASSLE uses the high level subgoals as the targets when training subpolicies
(i.e. reward a subpolicy if it reaches the desired subgoal), the short circuiting creates a new problem:
how are the subpolicies to be trained, if there is no goal to train them on, because we just kicked out the
notion of ‘goal’?

Self-Organizing Characteristic Behaviour

The problem of an absence of subgoals is solved by introducing the notion of a “characteristic be-
haviour” of a subpolicy, which is used to train the subpolicy:if it performs roughly as it normally
would, it is rewarded. When learning has just started, the subpolicies basicallyjust behave meaning-
less7, but because they are randomly initialized, some are slightly less bad in certain tasks than others.
The feedback between what the subpolicies do, and when they are used by the high level, allows a kind
of self organization.8 This way each of the subpolicies specializes in different behaviours.

1.2.3 Shifting the Design Burden

Many hierarchical approaches focus on (designing) task decompositions. This means that the design
burden lies with understanding and solving the task at a highlevel. The designer commits subpolicies to
certain subtasks which he or she has identified, and the agentneeds to fill in the blanks. In many cases
this is feasible, but sometimes not enough information is available about what a good solution would be.

HASSLE and HABS on the other hand, focus on defining or identifying suitable state space abstrac-
tions. In fact, like in the case of the ‘house’ example, theseabstractions may already be lying around
somewhere – begging to be used!

7As with HASSLE, they start uncommitted.
8This approach resembles the one that is used with evolutionary algorithms. Good behaviour that is present – though still

very poorly – is selected. It also has similarities with Self-Organizing Maps.
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Focusing on state abstractions instead of task decompositions, imply starting with uncommitted sub-
policies. Learning the commitments of subpolicies means that time is needed for learning these as-
sociations. But the trade off is that abstractions of the state space are sometimes far easier to get a
hold on, saving time on designing. It can be viewed as a complementary approach to designing task
decompositions.

1.3 Relevance to Artificial Intelligence

Artificial Intelligence may, as Luger and Stubblefield [9] state, be“defined as the branch of computer
science that is concerned with the automation of intelligent behaviour”. Even though we don’t really
have a concise definition of ‘intelligent behaviour’ or ‘intelligence’ – let philosophers worry about that!
– it is clear thatlearning is an important part of intelligence.

This thesis deals with the often occurring problem, that Reinforcement Learning does not scale well
when applied to large problems. Agents that are able to learnon different hierarchical levels, can be
of great use in various fields of Artificial Intelligence, because they are a promising (perhaps partial)
solution to the problem of scaling.

1.3.1 Neuroscience

The proposed algorithm HABShas some similarities – in a very basic way – to the human way ofproblem
solving. Both use abstractions and uncommitted behavioursto figure out how to solve problems. In
that context work from this thesis was also presented at the NIPS*2007 workshop titled“Hierarchical
Organization of Behavior: Computational, Psychological and Neural Perspectives”(hosted by prof.
Andrew Barto) where research from the Reinforcement Learning community was brought into contact
with neuroscience. Viewed from that perspective, work withself organizing behaviours could perhaps
give computational confirmation for theories on behaviour acquisition.

1.3.2 Computer Games

Learning is also of relevance to the area ofcomputer games. Research in computer games is a fast grow-
ing field and the game industry as a whole recently left Hollywood behind in terms of revenue (see [5]),
and better AI can provide better selling games. The demand for computer games that are as realistic as
possible (graphically) is high, but the disappointment is often even higher when opponents in a fantastic
looking game turn out to be the dumb cousins ofBlinky, Pinky InkyandClyde9: highly predictable and
often clearly scripted, unable to respond to situations notanticipated by the programmers.

Many computer games would benefit from robust Artificial Intelligence algorithms that can handle
complex situations and large amounts of data. Opponents that learnhow to play a game (and be interest-
ing, challenging opponents), might be preferable to laboriously scripted, tweaked and tuned, hard coded
non-human players. In order to reach this goal, building hierarchies and learning different strategies on
different levels is almost certainly needed. If we want computer players to put up a better fight against
human players, what better way to start than to imitate the human way of hierarchically dividing large
problems into smaller – and therefore simpler – ones?

9The four infamous ghosts in Pac-Man.
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Chapter 2

Reinforcement Learning

“Reinforcement Learning is learning what to do – how to map situations to actions – so as to maximize
a numerical reward signal”according to Sutton and Barto [6]1. It is the problem of finding out what
the best reaction will be, given the state you are in. In more popular – somewhat biological – terms, it
is “learning by trial and error” . In Reinforcement Learning it is common that the learning agent is not
told when to perform certain actions, but has to discover this mapping from states to actions (its policy)
by trial-and-error, by interacting with the environment.

2.1 Some Intuitions and Basic Notions

The Reinforcement Learning agent has to base its decisions on its current information. This information
is usually called a ’state’. The agent also has the ability toexecute actions at each time step. After
executing an action, it receives a reward signal (not necessarily non-zero) which is some measure of
how well the agent performs (see fig. 2.1).

Figure 2.1: The basis of reinforcement learning: the agent-environment interaction. The shaded areas
can be considered the ‘body’ of the agent (including sensorsand motor controls).

The Agent

The agent is a rather simple mechanism, and the term ‘agent’ might be confusing since it suggests
rational thought, planning, maybe even cognition or self-awareness. Nothing as fancy as this is the case
however. In effect thebrain of a Reinforcement Learning agent is nothing more than a hugetable in
which the“goodness” (expected return) of being in a certain state and executing acertain action is
stored. Every time the agent needs to execute an action, it will look up its currently observed state in the
table, and decide based on the values of each of the actions, which action it should choose.

The Environment

The environment is everything outside the agent, everything that the agent cannot changearbitrarily .
Things like motor controls (for a robot) or muscles (for an animal) are in this sense considered ‘outside’

1Their book, appropriately called“Reinforcement Learning: an Introduction”[6] is very good source on Reinforcement
Learning (although it has nothing on Hierarchical Reinforcement Learning).
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the agent and therefore part of the environment, even thoughthey are part of its (physical) body. The
agent needs to control its ‘body’ but this control is subjectto limitations (speed, tension, etc) from the
rest of the environment and the agent cannot change it without limit.

The State

The state the agent is in, is simply the vector or conjunctionof all the variables (features) describing the
environment (as observed by the agent with some sort of sensors). This does not mean that the agent
cannot have a memory and is doomed only to react to itscurrentenvironment. It is easy to incorporate
some form of memory into the state: memory – like a piece of paper with notes on it – is considered
‘external’ to the agent.

The agent has a ‘body’ (motor controls, sensors, etc) which it can control, but it can of course also
(in principle) monitor its own body. The state is therefore simply the collection of variables and their
values that are known to the agent, in terms of memory or ‘body’ (internal) and external environment.

If the task that the agent needs to accomplish is episodic, there are ‘terminal states’ in the environ-
ment. If an agent reaches one of those, the episode is terminated. This means that the trial is finished
and a new episode will begin (with the agent again in a starting position).

The Actions

The agent has the ability to manipulate its environment, which it does by executing actions (i.e. its motor
controls). These actions are often called“primitive actions”. The agent has a limited set of actions, and
at each time step it selects one action to execute. This action only lasts until the next time step and then
terminates, after which it has either succeeded or failed (e.g. when an action “move” fails because the
agent collides with a wall).

Sparse And Dense Rewards

After each action, the agent receives feedback from the environment. It might be that the agent always
receives 0 when taking an action, and only receives 1 if it completes its task or reaches its goal. This
would be a task with verysparserewards. On the other hand the task could havedenserewards, meaning
many non zero rewards. It might be that our agent isPac-Manrunning around in a maze, gatheringpills:
eachpill might be a small positive reward, but getting killed by theghostsis a large negative reward.
However, ifPac-Manwould only get a 1 at the end of the game if it had survived and taken all thepills
(and 0 on any other moment) the task would be much harder.

In many problems, it is unclear how and when exactly the rewards need to be given. Sometimes
the only certainty is whether the agent eventually succeedsor fails the task, but nothing of the internal
structure of the task is known so no intermediate rewards canbe given.

The Learning Process, the Policy

The agent stores its knowledge about the environment in a table – or it is approximated with a function
approximator. It can either save information about how goodit is to be in a certain state2, or save
information about how good it is to execute a certain action in a certain state. When values are stored
for pairs of a state and an action, it is often called aQ-value(or Q-value function), instead of avalue(or
value function).

If the term ‘value’ is used, it depends on the context whetherthe value of a state or the value of a
state-action-pair (a Q-value) is used. This thesis mainly deals with Q-values (unless explicitly stated
otherwise) so this small ambiguity should not pose a problem.

2In that case, when the agent needs to select an action to do next, it needs to look one step ahead, calculate which states it
can reach, and then use those values to base its selection on.This can be used if it is always known what the effect of an action
is.
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Interaction – Updating The Table

The agent learns by interaction with the environment. Only three things are important for the agent: the
stateit is in, theactionsit can take, and therewardsit gets (see fig 2.2). After an agent has executed
an action, it experiences a reward (given by the environment). This new information can be used by the
agent to update its knowledge.

state

1 2

reward tr

actionat

... ...state

Figure 2.2: Transition between states

Updating could in principle be done byreplacingthe relevant entry in the table by the newly received
reward, but this would lead to undesirable effects: if the rewards are statistical in nature, the table entries
will forever continue to fluctuate highly, never converging.

It would be better to update the entry a little bit in the new (reward) direction. That way if the rewards
keep fluctuating, the table entry will still converge to a stable value (only fluctuating a bit because it shifts
a bit in the direction of new rewards). The update is something of the form:

V(s) ← (1−α) ⋅V(s) + α ⋅ reward (2.1)

meaning that the valueV in states in the table is shifted slightly (a factorα) in the direction ofreward
and away from the old valueV(s). Equation 2.1 only considersstates, andV(s) would then just be an
indication of the ‘goodness of being instate’.

If we use Q-values, the value mentioned in equation 2.1 is thevalue for a state-action pair, and the
equation becomes:

Q(s,a) ← (1−α) ⋅Q(s,a) + α ⋅ reward (2.2)

where Q(s,a) of course represents the value (the ‘goodness’) of executing actiona in states.

The Future

The update scheme described above does not take thefuture effects of any taken action into account.
But what if the agent finds itself in a situation like in figure 2.3?

state

1

tr = 0

at

t+1r   =1

at+1

a’t
a’t+1

state

2

state

4

state

5

state

3

...

...

tr’ = 0.1 t+1r’  = −1

...

Figure 2.3: A ‘trap’ : the deceptive reward of 0.1 leads to punishment of -1 later on.

At first is seems that taking actiona′t is better than doingat because it has a higher immediate return
(0.1 versus 0). However,a′t leads to a subsequent reward of−1 which is undesirable, andat actually
would have been the better choice because it leads to a returnof 1.

So how could thesetrapsbe avoided? It is clear that only looking at the immediate reward will not
work, so thefuturemust be taken into account. Reinforcement Learning algorithms accomplish this by
the elegant concept ofdiscounting. The idea is, that if a certain actiona leads to a state from which a
next action could give a high reward, the valueQ(s,a) needs to reflect this knowledge. This means that
the value of an action should not only represent what it will return immediately, but also what can be
expected later on.
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Discounting is implemented by a simple constant 0≤ γ ≤ 1. The primitive update rule presented in
equation 2.1 then becomes:

Q(state1,a)← (1−α)Q(state1,a) + α ⋅ (reward + γ ⋅VALUE(state2)) (2.3)

where the term(reward + γ⋅VALUE(state2)) has replaced thereward term. VALUE(. . . ) is used for
now to indicate that we need some sort of measurement of how good the next state (state2) actually is,
but that we don’t know yet what measurement to use. Differentreinforcement learning algorithms use
different formulas for VALUE(state2), see the sections on SARSA, Q-learning and Advantage Learning
(sections 2.3.2∼ 2.3.4).

Using this new update rule, we can see that the agent is now able to learn not to fall for the temptation
of the quick reward of 0.1 (in fig. 2.3) because thediscounted rewardof the next state also plays a
role. The ‘goodness’ of the next state, represented in VALUE(state2), is used in updatingQ(state1,a).
When the agent executes actionat , it can update its knowledge about how goodat is, with the value
0+ γ⋅VALUE(state2). And since VALUE(state2) in some way depends3 on the received reward, part of
this ‘goodness’ propagates back toQ(state1,a). The ‘goodness’ propagates back like ink in a glass of
water.

Note that VALUE(state2) andQ(state1,a) are only estimates. Reinforcement Learning algorithms
use rough estimates in calculating new estimates: this is called bootstrapping.

Episodic Tasks

If the agent needs to solve a task that just goes on forever, itis called “continuous”. If it ends at some
time or in some situation, it is called “episodic”. In episodic tasks there are terminal states that stop
the episode when the agent enters them. These terminal states obviously have no successor states, so
discounting future rewards is not an issue there. These states are fixed points because they have no future
rewards that can influence them. We can just take VALUE(terminalState) to be zero.

Alternatively, we could add anabsorbing stateto the system, which can only be entered from the
terminal state and where the only transition is again to thisabsorbing state and always with a zero
reward. This way each episode ends up in the absorbing state.If we consider episodic tasks in this way,
they are in fact continuous and we don’t have to worry about upper boundaries (for summations etc) but
can just use ‘infinity’.

2.2 The Model

If our agent is going to solve a certain task, it had better retain all the relevant information from the
past. Suppose we have an agent that has to retrieve some object and bring it back to a certain point. If
it would forget on what part of the task it was working, it would be unable to perform its task. If the
agent would only have information about its surroundings (amap, or perhaps a radar identifying walls
and corridors) but not whether it has the object or not, then deciding whether to go one direction or the
complete opposite would be impossible.

However, if the agent had remembered whether it had already picked up the object, the decision
would be easy: if you don’t have the object yet, go find it, and if you do have it, bring it to its destination.
In this example the agent can easily distinguish between both cases, by looking at whether it has picked
up the object or not. The same result would in this example be achieved if the agent knows of itself
whether it is carrying the object or not. Both the internal state“am I carrying the object?” [yes/no] or
“did I pick up the object in the past?”[yes/no] would suffice4.

3If the ‘goodness’ VALUE(state2) did not in some way depend on the value of the rewards instate2 it would not be a really
good ‘goodness’ function because theonly information about the value or ‘goodness’ of a state (or state-action pair) that is
available to the agent, actually comes from the reward signals.

4Provided of course that the agent does not drop the object somewhere after it has picked it up. If it could do that, thedid I
pick up the object in the past?[ yes/no]-internal state would obviously not suffice.
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Markov Property

If the state of the agent holds all the relevant information needed to carry out its task, it is said that it has
theMarkov Property. More formally the probability distribution

Pr(st+1 = s′, rt+1 = r ∣ st , at , st−1, at−1, st−2, at−2, . . . , s0, a0) (2.4)

should for alls′, st , at andr equal

Pr(st+1 = s′, rt+1 = r ∣ st , at) (2.5)

This means that all the (relevant) information from the past, (i.e.st−1, at−1, st−2, at−2, . . . , s0, a0) is coded
into st andat and the agent can make the same decision based on only the current state and action as it
can make when knowing the entire pastst−1, at−1, st−2, at−2, . . . , s0, a0. In the earlier example of the
agent retrieving an object, the past actions and positions are not relevant, only the present position and
action and knowing whether you are in possession of the object are needed.

It is often the case that there is hidden information (unavailable to the agent) and the states are not
Markov. However, it is still good practice to regard the states as approximating the Markov property.
This is a good basis for predicting subsequent states and rewards and for selecting actions. The better
the approximation is, the better these results will be.

2.2.1 Markov Decision Processes

When a Reinforcement Learning task satisfies theMarkov Property, it is called aMarkov Decision
Process5 (MDP). An MDP describes an environment and consists of the following items:

• A finite set of statesS= {S1, ...,Sm}

• A finite set of actionsA= {A1, ...,An}

• A reward functionR ∶S×A×S→R. R(s,a,s′) gives the reward for the transition (action) between
statessands′.

• A transition functionP ∶ S×A×S→ [0,1]. P(s,a,s′) gives the probability of going from statess
to s′ given actiona.

In a Reinforcement Learning task, the agent tries to maximize the rewards in the long run. This
means it tries to maximizeRt , the expected discounted return:

Rt = rt+1+γ ⋅ rt+2+γ2 ⋅ rt+3+ . . . =
T

∑
k=0

γk ⋅ rt+k+1 (2.6)

whereγ is the discount parameter (0≤ γ ≤ 1) andT is the last time step. Alternately, if we use absorbing
states, we can drop the upper boundaryT and get:

Rt =
∞

∑
k=0

γk ⋅ rt+k+1 (2.7)

The discount is used to determine the present value offuture rewards. It might be that the agent is
only concerned in maximizing its immediate reward in the present, never caring what the future holds.
In that caseγ equals 0.Rt then reduces tort+1 which is the reward received for the action it has to select
at timet.

5MDP’s can be summarized graphically by transition graphs where the states are the nodes. The arrows are labelled with
actions and their accompanying probabilities.
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If γ has a value strictly smaller than 1, the expected rewardRt never grows to infinity6, but the agent
still takes the future rewards into consideration when selecting its actions. The closerγ is to 1, the more
the agent takes into account the far future.

If γ equals 1, every reward — now or in the distant future — is equally important. This means that
when the task is infinite (T →∞), the expected reward also grows to infinity, which is not desirable. So
the combination ofT →∞ andγ = 1 should be avoided.

2.2.2 Policies

Given a certain MDP, the agent now has to learn how to behave, whatpolicy to follow. A policy π is a
mapping from a state and an action to the probability of taking that action in the given state:

π ∶S×A→ [0,1] (2.8)

soπ(s,a) denotes the chance of selecting actiona in states. In every statest ∈Sat timet an actiona ∈A
is selected according to the distributionπ(st , ⋅).

If the agent did not have a clue about what actions would be rewarding or not, the policy might look
like π(s,a) = 1

∣∣A∣∣ , the uniform probability (where the agent in each state selects each action with the
same probability).

The valueVπ(s) of states is defined as

Vπ(s) = Eπ{Rt ∣st = s} =Eπ{ T

∑
k=0

γk ⋅ rt+k+1∣st = s} (2.9)

or more informally, as the expected return when the agent starts in s and follows policyπ thereafter.We
can define the value of taking actiona in statesas:

Qπ(s,a) =Eπ{Rt ∣st = s, at = a} = Eπ{ T

∑
k=0

γk ⋅ rt+k+1∣st = s, at = a} (2.10)

This quantity is often called theQ-valueor action valuefor policy π.

The Value Function

The valuesVπ andQπ can be estimated by the agent. During the interaction with the environment, the
return values that the agent receives could be averaged for every state (or for every state-action-pair if
we want to estimateQπ). These averages converge to the actual values ofVπ (or Qπ). This kind of
approach is calledMonte Carlo: taking averages over random samples of actual returns. Forlarger
problems however, or problems where the episode lengths arelong, this is not a suitable approach.

2.2.3 Properties of the Best Policy

For the agent to solve the task, it has to find a good policy. This policy has to achieve a lot of reward
over a long time. We can define a policyπ as better than or equal to another policyπ′ if for every states
π had a greater or equal expected return than policyπ′. So we can say that

π ≥ π′⇔Vπ(s) ≥Vπ′(s) for all statess (2.11)

There is always at least one best policy7, which we call theoptimal policyor simplyπ∗. The optimal
state-value function is denoted asV∗ and is defined as:

V(s)∗ =maxπVπ(s) for all statess (2.12)

6Provided that the rewards are finite.
7We can always construct a better (or equal to the current best) policy by taking for every states the argmaxπ∈Π π(s,a)

with Π the set of all policies we have available. If there is more than one optimal policy, they all share the same state-value
function.
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The same can be done for the optimal action-value function:

Q(s,a)∗ =maxπQπ(s,a) for all statessand actionsa (2.13)

There is a fundamental property of these (Q-)value functions that is used extensively in Reinforce-
ment Learning. This is the Bellman (optimality) equation:

Vπ(s) = max
a

Qπ∗(s,a)
= max

a
Eπ∗{Rt ∣ st = s, at = a}

= max
a

Eπ∗{ T

∑
k=0

γk ⋅ rt+k+1 ∣ st = s, at = a}
= max

a
Eπ∗{rt+1+γ

T

∑
k=0

γk ⋅ rt+k+2 ∣ st = s, at = a}
= max

a
E{rt+1+γ ⋅V∗(st+1) ∣ st = s, at = a}

= max
a
∑
s′

P(s,a,s′)(R(s,a,s′)+γ ⋅V∗(s′)) (2.14)

ForQ∗ the last two formulas in the above derivation would be:

Qπ(s,a) = E{rt+1+γ ⋅max
a

Q∗(st+1,a
′) ∣ st = s, at = a}

= ∑
s′

P(s,a,s′)(R(s,a,s′)+γ ⋅max
a

Q∗(s′,a′)) (2.15)

These results are called Bellman optimality equations and they describe the properties of the optimal
Q- or V-function.

2.3 Decent Behaviour: Finding the Best Policy

If the structure of the problem (the MDP) is known, techniques from the field of Dynamic Programming
(DP), like value iteration or policy iteration [6], could beused. On the other hand we could use Monte
Carlo methods [6] (estimating the values from the returns ofepisodes) for which no knowledge of the
underlying MDP is needed (model free). Temporal Difference Learning is the best alternative when the
model is unknown.

2.3.1 Temporal Difference Learning

Temporal Difference Learning is a combination of both MonteCarlo and Dynamic Programming ideas
and uses the bootstrapping from DP and the power of Monte Carlo methods to learn from experience
without the need to know the underlying dynamics of the environment.

The results of the Bellman equation are transformed into an update rule, by shifting the current
estimate ofV(st) towards the estimate for(R(s,a,s′)+γ ⋅V∗(s′)) (from equation 2.14). This estimate is
the actual experience(rt+1+γ ⋅V(st+1)) of the agent:

V(st)← (1−α)V(st) + α(rt+1+γ ⋅V(st+1)) (2.16)

whereα is the learning rate that indicates how much the estimate is shifted to the new value.
The idea is, to on the one hand making the policy greedy with respect to the current value function

(policy improvement) and on the other hand making the value function consistent with the current policy
(policy evaluation). Policy improvement is done by adjusting the policy such that it follows the current
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values greedily. Policy evaluation is done by using the current policy and update theV(s) for everys
based on the rewards.8

When the agent learnsV(s) for everys, it has to look ahead 1 step every time it needs to select an
action. The values ofV(st+1) for every possible actiona need to be evaluated, and this is only possible
if the agent knows which state is the result of taking which action. If this is not possible, the alternative
is to learn and storeQ(s,a) instead. The algorithms SARSA, Q-Learning and Advantage Learning are
all examples of the latter.

2.3.2 SARSA

Instead of updatingV(s) we can also choose to updateQ(s,a) resulting in the update rule:

Q(st ,at) ← (1−α)Q(st ,at) + α(rt+1+γ ⋅Q(st+1,at+1)) (2.17)

whereα is the learning rate.
This update rule is called SARSA9. It is anon policymethod, meaning that it improvesQπ for the

current policyπ and at the same time changesπ towards the greedy policy. The action selection is not
strictly greedy, but highly prefers the (current) best action. By sometimes selecting a lesser action, the
policy can explore its environment. SARSA is illustrated inalgorithm 1 in pseudo code.10

Algorithm 1 : SARSA
initialize Q(s,a) arbitrarily;
foreach (episode) do

t = 0;
initialize s0;

while (episode not f inished) do

agent is in statest ;
agent selects actionat ; // using policy derived from Q, e.g. ε-greedy

if (t > 0) then // update rule eq. 2.17
Q(st−1,at−1)← (1−α)Q(st−1,at−1)+α(rt +γ ⋅Q(st ,at)) ;

end
agent executes actionat resulting in new statest+1 and rewardrt+1;

t ← t +1;
end

end

2.3.3 Q-learning

SARSA usesQ(st+1,at+1)— the value of the specific action that was chosen — for its updates. Another
option is to use the maxaQ(st+1,a) instead. In that case the agent does not update its knowledgewith
the action that it has actually done, but according to what would have been the best action (given its
current knowledge). Equation 2.17 then becomes:

8This idea stems from Dynamic Programming and is called Generalized Policy Iteration. In policy iteration (DP) these two
processes alternate, but in value iteration (DP) they are intertwined and each step only one iteration

9SARSA is named after the 5-tuple of values that it uses in its update:st ,at , rt+1,st+1,at+1
10 Note that the time in the update in the pseudo code is shifted back one time step in comparison with the update equation

to indicate that you can obviously only updateQ(st ,at) when you knowst+1 andat+1, so while at time stept, the update
Q(st−1,at−1) is executed.
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Q(st ,at)← (1−α)Q(st ,at) + α(rt+1+γ ⋅max
a

Q(st+1,a)) (2.18)

whereα is the learning rate.
The pseudo code10 for Q-Learning (see algorithm 2) is nearly identical to thatof SARSA (see algo-

rithm 1): only the update rule has changed. However, to illustrate that knowledge of the new actionat+1

is not necessary at the moment of update (since the maximum isused instead of the actually selected
new action), the update and the selection of the new action are swapped.

Algorithm 2 : Q-Learning
initialize Q(s,a) arbitrarily;
foreach (episode) do

t = 0;
initialize s0;

while (episode not f inished) do

agent is in statest ;

if (t > 0) then // update rule eq. 2.18
Q(st−1,at−1)← (1−α)Q(st−1,at−1)+α(rt +γ ⋅maxaQ(st ,a)) ;

end
agent selects actionat ; // using policy derived from Q, e.g. ε-greedy
agent executes actionat resulting in new statest+1 and rewardrt+1;

t ← t +1;
end

end

Since Q-Learning is not dependent on thenewaction (at+1) that is selected, it is called anoff policy
method. The learning in statest is done independently of the actionat+1. It only depends on actionat

and the resulting statest+1.

2.3.4 Advantage Learning

Advantage Learning([14], [15]) was proposed by Baird III.11 Its update rule is:

A(st ,at) ← (1−α)A(st ,at) + α(max
a

A(st ,a)+ rt+1+γ ⋅maxa′A(st+1,a′)−maxaA(st ,a)
k

) (2.19)

whereα is the learning rate, andk the scaling factor (0< k ≤ 1). Whenk = 1 this equation reduces to
the Q-Learning update rule (equation 2.18). The pseudo code10 for the Advantage-Learning algorithm
is acquired by simply substituting the update rule (equation 2.19) for the Q-learning update in algorithm
2. Because of the scaling, Advantage-Learning often works better with function approximators than
Q-Learning.

2.4 “Here Be Dragons” – the Problem of Exploration

Reinforcement Learning does not use examples of good solutions12, so the only option for the agent is
to explore its world. It needs to figure out by itself what actions on average lead to high or low returns.

11AdvantageLearningis often – at least in internet tutorials on Reinforcement Learning like [8] – confused with Advantage
Updating[13]. Advantage Updating however uses both a value functionV and an advantageA. The confusion arises because
for Advantage Updating theA is 0 for the optimal action and< 0 for the other actions, but this is not the case for Advantage
Learning. However, this property is often erroneously claimed for Advantage Learning.

12Using examples of good (or bad) solutions for training is calledsupervisedlearning.
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If the agent never explores but always greedily selects the option it thinks best, it will probably
turn out to be sub-optimal. This is because the initial knowledge about what to do in what state, is
often incorrect13, and if the agent only followed this incorrect signal, it would just always do the same
sub-optimal action, i.e. repeating the same error for ever and ever.

If the agent would only (or mostly) explore, it would of course see lots and lots of interesting things,
and would learn a lot about the world which it is in. But in the end it would just be trying to investigate
the entire environment, resulting in very detailed knowledge about all the uninteresting and unrewarding
places.

It is evidently true that in the end – when the agent has explored everything in a static environment
– it could just greedily choose its actions. However, this isa highly inefficient approach, and the agent
would basically just have executed some dynamic programming algorithm: just iterate through every
state and action for a great many times, until the entire problem is solved. Exploring your (static)
environment by just wandering around nearly infinite amounts of timedoesget you a perfect model of
your environment, but it might takea whileand it only works in unchanging environments!

Balancing Exploration and Exploitation

Since we are only interested in an optimal (or nearly optimal) solution to the problem, thedetailsof
the uninteresting and unrewarding regions are of no real concern to the agent. It only has to have a
rudimentary knowledge of them, since it has to know that in those regions no good solutions are to be
found – and they need to be avoided – but that’s it. As far as theagent is concerned, it could just as well
say“here be Dragons”14. No more information is needed than that it is a area it does not want to go to,
and it would be highly inefficient to let the agent learn all the ins and outs of these uninteresting regions.
That time is better spent investigating more promising avenues.

The agent also needs to exploit what it already knows most of the time. If it sometimes explores,
it will follow paths it deems good (for now) but sometimes take a wrong turndeliberatelyto see if it
is actually better than the agent thought it was. To balance exploration and exploitation this way, some
selection scheme is needed.

2.4.1 ε-Greedy Selection

By far the most simple selection method isε-greedy exploration. It just selects the best action (greedy)
with a large probability, but given a small valueε ∈ ⟨0, 1⟩ it selects actions randomly. The agent selects
its actionaselectedaccording to:

aselected=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
argmax
a′∈actions

Q(s,a′) with probability (1−ε)

random with probabilityε
(2.20)

whererandomdenotes that an action is selected with uniform probabilityfrom the set of actions. It is
possible to decreaseε slowly to 0 in order to reach convergence.

2.4.2 Boltzmann Selection

Boltzmann selection is a form of soft max selection. It is designed to overcome the problem withε-
greedy methods, that the action that has the highest value isalways selected many more times than the
second (or third, . . . ) highest even if they don’t differ much. It might be desirable to investigate all the
actions in some way proportionate to their Q-values, to insure that values that are only slightly less than

13For instance because at the beginning all entries in the table are randomly initialized, or arbitrarily set to zero.
14The expression “Here be Dragons” was used by ancient cartographers to denote parts of the world, which one knew

nothing – or almost nothing – about. Instead of leaving unexplored areas of the map empty, cartographers were in the habitof
drawing monsters and dragons there. Hence the expression “Here be Dragons”
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the current maximum, are not ignored as withε-greedy methods, because in that case actions other than
the maximum only have probability ε

∣∣actions∣∣ to be selected.
The Boltzmann selection rule works as follows: each actiona is selected with a probability according

to the distributionPBoltz, wherePBoltz is defined as

PBoltz(s,ai) = eQ(s,ai)/τ

∑
a′∈actions

eQ(s,a′)/τ (2.21)

wheres is the current state,ai is the action under consideration,PBoltz(s,ai) gives the probability of
selectingai in sandτ is called temperature, which determines the selection strength. If necessary,τ can
be changed during learning.

Boltzmann selection results in nearly equal probabilitieswhen the Q-values are nearly equal, but
a large selection pressure for the maximum Q-value when the distance to the others is large. In fact,
the probability of selecting the maximum (i.e. acting greedy) comes arbitrarily close to 1 when the
difference becomes large enough.

2.5 Generalization – Neural Networks as Function Approximators

Reinforcement Learning was designed with look-up tables inmind, but when problems get larger, tables
may not always be a good idea. Tables have no generalization capacity: they either contain a certain
value, or they don’t — there is no middle ground.

When a Reinforcement Learning problem has many states, it can take vast amounts of time and
memory to learn a good policy, simply because every state hasto be visited a number of times to get a
good approximation of the value function. Each state is unique as far as the look-up table is concerned
and has to be learned all by itself, even though some states might be very similar to each other, and
closely resembling states might have closely resembling Q-values.

state

Q
−

v
a
lu

e

Figure 2.4: Table versus Function Approximator: An example where one parabola (a⋅x2+b⋅x+c) with
only three values (a,b andc) approximates nine values (the black dots).

Function approximators are often used when a problem grows too big to handle with discrete tables
(for the Q-values) or when generalization is desired. Theseapproximators use certain structures and
patterns in the problem space to compress the table to a smaller set of values that is easier to learn and
store in memory (see for example fig. 2.4) because the learnedfunction approximates the values between
the known data points15.

2.5.1 (Artificial) Neural Networks

Artificial neural networks are often used as function approximators. There are numerous different ar-
chitectures, but the most important feature common to all isthat they consist of – loosely biologically
inspired – neurons and connections with their associated weights.

Neural Networks come in many flavours, from the most simple Linear Neural Network (see fig. 2.5(a))
that only has an input and an output layer, to the most complicated Recurrent Networks (see fig. 2.5(d))
where every neuron can in principle be connected to any otherneuron. For the purpose of this thesis

15This is related to how flexible a function approximator is andwhat types of functions it can represent, but that is not the
topic of this thesis.
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however, only two of the simple types are relevant: the Linear Neural Network and the Multilayer Neural
Network (see fig. 2.5(b)).

(a) linear neural net (b) one hidden layer (c) two hidden layers (d) recurrent neural net

Figure 2.5: (a) linear neural net: the black circles represent inputs, the white circles are the outputs.(b)
and (c) multilayer neural nets with one and two hidden layers: the gray circles represent hidden units.
(d) recurrent neural net: the arrows represent the flow of information during computation.

2.5.2 The Linear Neural Network

The linear neural network can be considered as an unthresholded Perceptron [10]. Its structure is ex-
tremely simple (see fig. 2.5(a)). The network consists ofn input nodes andm output nodes, and each
input node is connected to all output nodes. Usually an extranode that always has the value 1 is added.
This node called the bias16.

Every connection has a scalar value (a weight) associated with it. The input is fed into the network
by giving the input nodes values. Then for each output node, the sum of the inputs multiplied with
their associated weights is calculated.17 The output of the network is simply the vector consisting of the
values of the output nodes. All this is called the propagation phase.

The network consists of an input vectorx⃗ and a matrixW of weights, and an output vectory⃗. The
weights matrixW has dimensions(∣x⃗∣+1)× ∣y⃗∣. The extra column contains the weights for the bias node.
The output of the network is calculated as follows:

y⃗= x⃗ ⋅W with weights matrixW and inputs⃗x (2.22)

Note that this matrix multiplication in effect calculates the beforementioned weighted sum.
By adjusting the weights, the network is able to act as a function approximator. The network can

be trained to give a certain output given a certain input. However since the network architecture is
extremely simple, the functions it can approximate are alsovery simple.

Delta-Rule (Backpropagation)

The training phase is also called thebackpropagation phase. For a given set of examplesD and desired
outputsT a training error is calculated. For convenience we only consider the case with 1 output node,
but a network with more than 1 node can simply be treated as a collection of networks with 1 output
node18 because the output nodes are independent of each other.

Usually the error is defined as:

E(w⃗) = 1
2
∑
d∈D
(td−yd)2 with td ∈ T (2.23)

16The bias gives the network more flexibility as it adds an inputindependent value to the weighted sum (since the value of
the bias is always 1, this added value is only dependent on theweight connecting the bias to each output).

17If the network is a Perceptron, the outputs are not simply theweighted sum, but a value of 1 or -1 (or 0) depending on
whether the weighted sum is above or below a certain threshold.

18with only one output node, the calculationy⃗= x⃗W reduces to⃗y= x⃗w⃗ with w⃗ being the vector with the weights
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The weights need to be adjusted in the direction that will minimize this (or any other) error. To get this
direction, the derivative ofE with respect to every component ofw⃗ needs to be taken. This derivative
(gradient)▽E(w⃗) gives us the steepest ascent along the error surfaceE:

▽E(w⃗) = [ ∂E

∂w0
,

∂E

∂w1
, . . . ,

∂E

∂wn
] (2.24)

The vector▽E(w⃗) specifies the direction of steepest increase ofE, so if we want to adjust the weights to
minimize the errorE, we need to adjust the weights vectorw⃗ with a factor−α▽E(w⃗) (whereα denotes
a learning rate).

Therefore the weights update for each individual weightwi is:

wi ← wi − α ⋅▽E(w⃗)i = wi − α ⋅
∂E

∂wi
(2.25)

The gradient▽E(w⃗) can easily be calculated:

∂E

∂wi
=

∂
∂wi

1
2
∑
d∈D
(td−yd)2 = ∑

d∈D
(td−yd)(−xid) ( xid is the inputi for exampled) (2.26)

And thus the weight updates become:

wi ← wi +α∑
d∈D

(td−yd) ⋅xid (2.27)

The procedure outlined above is called thebatchversion because first all the examples are propagated
and all the errors summed up, and only then all the weights areadjusted.

Incremental Gradient Descent

When the weights are adjusted after each individual example, it is called stochasticor incremental
gradient descent. We get incremental gradient decent if we replace the updatein equation 2.27 with:

wi ← wi +α ⋅(td−yd) ⋅xid (2.28)

and (obviously) use equation 2.29 instead of equation 2.23 as the error for training exampled:

Ed(w⃗) = 1
2
(td−yd)2 (whered is a training example) (2.29)

2.5.3 Neural Networks with Hidden Layers

Often the network architecture is expanded by introducing one or more layers of so calledhiddennodes
or units (see fig. 2.5(b) and (c)). The input layer is then connected to the first hidden layer, the first to
the second, and so on, and the last hidden layer is connected to the output layer. This allows the neural
network to represent highly non-linear decision surfaces,and in theory approximate any continuous
function, given enough hidden units.

The nodes in the hidden layer and output layer calculate the weighted sum of the inputs as usual, but
the hidden layer does not output these sums as in the linear case, but first applies a threshold function
to this sum, and then outputs the result. This threshold function can be anall-or-nothing threshold (see
fig. 2.6(a)), but usually a more smooth (and differentiable)roughly S-shaped function is used, such as
the sigmoid function (sometimes called a ‘logistic function’).

The sigmoid function (σ) is a function that goes asymptotically to 0 forz→ −∞ and to 1 forz→ +∞
and ascends fast in the region near 0 (see fig. 2.6(b)).σ is defined as:

σ(z) = 1
1+e−z

(2.30)

The sigmoid function is used very frequently because it behaves similar to theall-or-nothing threshold
function whenz≪ 0 orz≫ 0 but also has a very simple derivative which can be calculated very fast:

∂σ(z)
∂z
= σ(z) ⋅(1−σ(z)) (2.31)
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(a) all-or-nothingthreshold (b) sigmoid

Figure 2.6: (a) all-or-nothing threshold-function: in this case the threshold is atz= 0, at which point the
value jumps from 0 to 1.(b) sigmoid function: going asymptotically from−∞ to +∞.

Backpropagation

To train a multilayer network, an algorithm similar to that for the linear network can be used. First the
error needs to be defined. Because these networks are often used with multiple outputs, the error that
was earlier defined in eq. 2.29, needs to be extended. We now only look at thestochastic case, but the
batchversion is similar19.

Ed =
1
2
∑

k∈ out puts
(tk−ok)2 with td ∈ T (2.32)

Now to keep things ‘simple’, we’ll use the following conventions:

• x ji is theith input to nodej

• w ji is the weight associated with theith input to nodej

• netj = w⃗ ⋅ x⃗=∑i w ji x ji (i.e. the weighted sum of inputs for unitj)

• o j the output computed by nodej (i.e. σ(netj) if the layer uses a sigmoid)

• t j the targetoutput for nodej

• next( j) for the set of nodes whose immediate inputs include the output from unit j

As before with the linear case, we use errorEd (eq. 2.32) to calculate the weight updates:

∆w ji = −α ⋅
∂Ed

∂w ji
= −α ⋅

∂Ed

∂netj
⋅
∂netj
∂w ji

= −α ⋅
∂Ed

∂netj
⋅x ji (2.33)

The Output Nodes

Sincenetj only appears ino j , we can continue for the output unit weights (using the chainrule):

∆w ji = −α ⋅
∂Ed

∂o j
⋅

∂o j

∂netj
⋅x ji (2.34)

The third term on the right of this equation is the derivativeof the sigmoid (equation 2.31), so:

∂o j

∂netj
=

∂σ(netj)
∂netj

= o j ⋅(1−o j) (2.35)

Here we see the benefit of using the sigmoid function. It has a very simple (not to mention fast to
compute!) derivative. If the network uses linear functionsfor the outputs (as is often the case for

function approximation) then∂oj

∂netj
= 1. Note that other differentiable functions could also be used as

threshold functions.
19For the batch version we need the extra∑d∈D in eq. 2.32 to account for batching over all training examples d ∈D
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The second term in equation 2.34 is more complicated. We can substitute equation 2.32 forEd:

∂Ed

∂o j
=

∂
∂o j

1
2
∑

k∈out puts
(tk−ok)2 (2.36)

And since ∂
∂oj
(tk−ok)2 is zero if j ≠ k (becauseo j andok are different variables forj ≠ k) we can drop

the sum and rewrite to:

∂Ed

∂o j
=

∂
∂o j

1
2
(t j −o j)2 = 1

2
⋅2⋅(t j −o j) ⋅ ∂(t j −o j)

∂o j
= −(t j −o j) (2.37)

When we substitute equations 2.37 and 2.35 in 2.34 we get an equation for the value of the weight
update in the output units:

∆w ji = α ⋅(t j −o j) ⋅o j(1−o j) ⋅x ji (2.38)

or if we use linear functions for the outputs (∂oj

∂netj
= 1 in that case), instead of sigmoids:

∆w ji = α ⋅(t j −o j) ⋅x ji (2.39)

The Hidden Nodes

For the hidden units, we can use the above derivation up to andincluding equation 2.33. The weights
w ji can only influence the network outputs indirectly, because (in our case)i is in the input layer20 and
j is in the hidden layer.

∆w ji = −α ⋅
∂Ed

∂netj
⋅x ji

= −α ∑
k∈next( j)

∂Ed

∂netk
⋅
∂netk
∂netj

⋅x ji

= −α ∑
k∈next( j)

∂Ed

∂netk
⋅
∂netk
∂o j

⋅
∂o j

∂netj
⋅x ji

= −α ∑
k∈next( j)

∂Ed

∂netk
⋅wk j ⋅

∂o j

∂netj
⋅x ji

= −α ∑
k∈next( j)

∂Ed

∂netk
wk j ⋅o j ⋅(1−o j) ⋅x ji

= −α ⋅o j ⋅(1−o j) ∑
k∈next( j)

∂Ed

∂netk
⋅wk j ⋅x ji (2.40)

The quantity− ∂Ed
∂netk

is often called theδk or error term associated with unitk and is gotten from
neurons in the next layer (i.e. the layer closer to the end of the network, because the backpropagation
starts with theoutputsand propagates the error back to theinputs).

We know from equation 2.33 that∆w ji = −α ⋅ ∂Ed
∂netj

⋅x ji = α ⋅δ j ⋅x ji so if a neuron in the next layer is

an output, we useδk = (tk−ok) ⋅ok ⋅(1−ok) from equation 2.38. If it is not an output (e.g. if the network
consists of multiple layers of hidden neurons) we use equation 2.40 for hidden neurons.

The Backpropagation Algorithm

When we put all of the above together, the result is the (pseudo)code for theBACKPROPAGATION al-
gorithm, as displayed in algorithm 3. Usually the algorithmruns until some termination criterion is
reached, for instance that the overall error is below a certain threshold, or it is stopped after a fixed
number of iterations.

20This can also be generalized to more layers.
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Algorithm 3 : BACK PROPAGATION and FORWARDPROPAGATION : for a network with one
hidden layer with sigmoids. Outputs that can either be linear or sigmoids. The incremental gradient
descent version is given.

BACK PROPAGATION ::
Data: a set of training examples and their target outputs< x⃗, t⃗ >
Result: the network with updated weights

while (termination criterium not reached) do
foreach (< x⃗, t⃗ > in the set of training examples) do

calculate all outputsom using FORWARDPROPAGATION;

foreach (k ∈ out put nodes) do
if (out puts use sigmoids) then δk = (tk−ok)ok(1−ok) ;
elseδk = (tk−ok); // linear outputs

end
foreach (h ∈ hidden nodes) do

δh = o j(1−o j)∑k∈next( j) δkwk j ;
end

w ji ←w ji + αδ jx ji ; // update the weights

end
end

FORWARDPROPAGATION ::
Data: one training example and its target output< x⃗, t⃗ >
Result: the new values of the (hidden and) output nodes

foreach (h ∈ hidden nodes) do
oh = σ(∑i∈input nodesxiwhi);

end

foreach (m∈ out put nodes) do
if (out puts use sigmoids) then om= σ(∑h∈hidden nodesohwmh);
elseom =∑h∈hidden nodesohwmh; // linear outputs

end
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Chapter 3

Hierarchical Reinforcement Learning

The use of hierarchies in Reinforcement Learning is one of the strategies for dealing with large state
spaces (among others are the use of abstraction or function approximators or coarse tiling). The idea
is, to somehow improve on the normal ’flat’ Reinforcement Learning algorithm by giving the agent the
ability to execute actions that areextended in timeinstead of only taking actions that have a duration of
one time step.

Suppose we are training a robot to navigate through a house (see fig.3.1(a)). The house is just a grid,
using small squares (for instance the floor tiles) and the states are all the possible positions of the robot
on this grid. The robot could be at position(10,24) which would mean10 tiles to the north, and 24 to
the east, starting from the origin-tile.

(a) primitive actions (b) temporally extended actions

Figure 3.1: (a) primitive actions: circles and arrows denote visited states and primitive actions. (b)
temporally extended actions: the same situation as in (a), now divided into rooms (actingas high level
states). The large arrows are the temporally extended actions.

There is usually only a small number of primitive actions, whereas there are lots1 of states. The set
of primitive actions might consist of the four cardinal actions ofmoving to the next tile North, East,
South or Westor perhaps only the three actions ofstep forward one grid cell, turn left or turn right. The
problem of navigating from one place in the house to another place, is just a question of which (possibly
very long) sequence of primitive steps the robot has to take.

Temporally Extended Actions

It is possible to definetemporally extended actions, which are sequences of primitive (atomic) actions.
We can then treat these temporally extended actions as if they are one atomic action. As an illustration,
let’s suppose, that we are able to come up with a more abstractrepresentation of the navigation problem
because we can use some of the underlying structure. We mightbe able to group related tiles together,
for instance in akitchen, a living room, etc. (see fig.3.1(b)), or perhaps we can identifyhot spotslike
doors.

1In fact, when the problem gets bigger and “lots” becomes “lots and lots and lots”, we want hierarchies!
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Subgoals

We can use these newly foundroomsassubgoals2. The robot starts in theliving roomand has to reach
the kitchento achieve its goal, and it needs to go through thecorridor to reach thekitchen. Now the
sequence of steps is much smaller (when viewed on this more abstract level): first it needs to select the
subgoal“corridor” and then“kitchen" and after that the subgoal that consists of moving toward the
“goal” . Now we need one policy that learns on the level of subgoals, and several smaller policies that
learn how to reach the subgoals. In effect, we have introduced a higher layer.

Task Decompositions

On the other hand we could decompose the overall task of reaching the goal into several smaller subtasks
(creating a task decomposition). Now we have subtasks for reaching the corridor when starting in the
living room (or in the kitchen), for reaching the living roomfrom the corridor, and for reaching the
kitchen from the corridor. The agent now learns in what orderthese subtasks need to be executed and
how the subtasks are to be performed.

Options

Another alternative is, to define two macros (called“options” ): one option to go todoor1 and one for
door2, because we have identified both doors as “hot spots” in the problem. We could now just add these
options as new actions to the set of actions (augmenting the primitive actions). Now the agent could first
select the option todoor1, after that (or perhaps after some primitive steps) select thedoor2-option and
then use some primitive steps to reach the goal.

Since the options are added directly to the primitive actions, there are no new layers introduced.
Nevertheless the optionsare temporally extended, and are therefore hierarchical in action and time.
Note that we could also introduce options that do not have anygoal, but are simply (perhaps even
random) sequences of actions like“move North twice, and then East”.

3.1 Problems in “Flat” Reinforcement Learning

Before we embark on a search for solutions, it is best to find out why exactlyReinforcement Learning
becomes hard when the problem grows larger, andhowhierarchies could be of any benefit.

3.1.1 Curse of Dimensionality

The first obvious reason why Reinforcement Learning gets hard when the problem size grows is the
infamouscurse of dimensionality. This is the problem that the number of states in a problem grows
exponentially with each new dimension that is added.

For instance, if we have a grid-world3 consisting of a line divided in 10 pieces and an agent that can
walk along that line (each time choosing to go left or right) then the problem consists of 10 states (one
state for each piece the agent can be in). Suppose we introduce the second dimension, and make it a grid
measuring 10 by 10 squares. Now the agent can be in 10×10 different states4. But when we introduce
a third dimension, the agent suddenly has 103 states (cubes) to wander in (see fig. 3.2).

So basically the size of the problem grows exponentially when a new dimension (i.e. an extra sensor
or variable) is added. This is obviously undesirable, but itcannot really be avoided, because real-world
problems often have many dimensions (that is probably what makes themreal world instead oftoy
problems in the first place). The curse of dimensionality therefore makes it harder for the agent to

2The way the hierarchy is introduced here, resembles the way HASSLEuses subgoals.
3More correctly called aline-world.
4Under the assumption that the actions that the agent can takeare also extended, so it can actually go to these new parts of

its world.
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Figure 3.2: Curse of Dimensionality: each new dimension exponentially increases the state space.

learn about the mechanics of its environment, because the environment quickly becomes astronomical,
growing exponentially with every dimension that is added toa problem.

3.1.2 No Knowledge Transfer

There are regularities in many state spaces: parts of the state space resemble other parts, and good
actions in one part might also be good actions in other parts.But apart from function approximators, we
have no way of re-using this knowledge, or to transfer it fromone part of the policy to another part.

A function approximator (e.g. a neural network) painstakingly needs to figure out that it can gener-
alize over certain patterns, but it would be better to be ableto just state that a certain part of the policy
can be re-used somewhere else.

3.1.3 Slow Exploration Due to Random Walking

A third problem is that the agents in the beginning of its learning phase just randomly walks because it
has never even seen its goal yet. This obviously is a big problem in tasks with sparse rewards, where the
agent only acquires non-zero rewards when it achieves its goal (or perhaps some subgoals in the task).
In problems with a large state space, this random walk which the agent executes when it has not yet
reached its goal, grows increasingly large.

In one dimension, when we have a random walk over the integerswhich starts in 0≤ z≤ a, the
expected time before the random walk leaves the interval⟨0,a⟩ is z⋅(a−z). When we apply this to the
Reinforcement Learning case where the agent starts ’somewhere in the middle’ (i.e. not close to either
end of the interval⟨0,a⟩) and when we only reward the agent when it reaches the end (forinstance
with −1 and 1 for reaching 0 ora) then the expected time is quadratic in the size of the interval. Longer
intervals give quadratically longer times. For more dimensions a random walks were simulated5 showing
the same quadratic relation between expected distance and time.

So with increasing problem size, the estimated time before the agent reaches its target for the first
time increases disproportionately with relation to the distance in the state space. This means that for
larger problems, the time before the agent actually starts to learn, scales badly.

3.1.4 Signal Decay over Long Distances

A problem related to that of random walks is that of the propagation of the reward signal over long
distances. It needs to be propagated back because not only the final action before the goal, but also
actions before that probably contributed to acquiring the goal reward. But when a problem scales up
these past actions will become more and more distant. And themore distant these actions are, the
more iterations it will take to propagate the reward signal all the way back, because essentially the
reinforcement learning algorithm looks ahead one step whenselecting an action (choosing from the Q

5A square grid (sizen) was created and a ‘random walking’ agent was put in the grid.Then the random walk was simulated
until the agent arrived at a predefined coordinate (always near the lower right corner at(n−2,n−2)). The average time was
calculated just letting the agent walk his random walk a number of times. The results were - not surprisingly - that the same
roughly quadratic relation holds

28



values of all actions possible in a certain state) and it updates one step back (updating the Q value for
the past state and taken action with the new information available about the value of the resulting state).

So iterating back is linear in the distance between actions.It does not matter if subsequent episodes
– after an episode where the goal was reached – actually do reach the goal. It is enough for them to
reach some part of the problem space where the new information (from reaching the goal previously)
has already been propagated to. After reaching the goal for the first time this would only be in some
state(s) near to the goal, but as more and more episodes reachthese states with updated information, the
’front’ progresses further and further away from the goal.

Suppose we are in stateB (see fig. 3.3), having two actions to choose from, where action x will lead
us to stateC (which is the best move towards the eventual goal) and actiony will return us to stateA, the
state we just came from in the previous step andzwill bring us fromA to B again.

Figure 3.3: maze(-like) task after (Bellman)-equilibrium is reached.

Let us denote the maximum Q value in a stateS with VS, soVS =maxaQ(S,a) (this is assuming
some kind of Q-Learning algorithm is used and the only non-zero reward is given when the (sub)goal
is reached). Now when the equilibrium is reached (i.e. the Bellman-equations hold) then the value of
taking actionx in B is γ ⋅VC (or lower if the actions are non deterministic and the agent sometimes fails
to accurately execute what it has selected). But the value ofstateA isVA =maxaQ(A,a) = γ ⋅VB = γ2 ⋅VC.
This means that actiony in stateB hasQ(B,y) = γ3VC. Which in turn means that the difference between
x (best) andy (worst) action inB is (γ−γ3) ⋅QC and(γ−γ3) ≈ (1−γ2) whenγ→ 1.

A difference in the order of(1−γ2) between best and worst actions (γ near 1) might not be a problem
when a tabular representation is used for the Q-values, because a table stores the Q-values perfectly, but
it certainly poses a huge problem when function approximators are used. The smaller the difference, the
more fine grained the approximator needs to be. In terms of neural networks6, this means that more and
more hidden neurons are needed, and longer and longer training times are the result – and because the
networks are larger, each iteration of the forward- or backpropagation algorithm itself also takes more
time.

If the reward signal has to cover a lot of distance, the discount valueγ needs to be high (otherwise
the reward signal would decrease too rapidly to zero). In maze like problems (where the only reward
not equal to zero is given when a goal state is reached, as in the example above) the difference between
best and worst action is in the order of(γ−γ3)!

Using Advantage Learning might somewhat alleviate this problem because it does not use the Q-
values but scales their relative differences (see section 2.3.4) but in general the problem remains: long
chains of actions need a high discount, but a high discount makes discriminating between actions diffi-
cult.

No Middle Ground

We observe that for long distance propagation (i.e. in largeproblems) a highγ is needed because other-
wise the value would vanish too fast. But in maze-like tasksγ cannot be too high because then function
approximators cannot any longer discriminate between the best and worst actions.

6the most common approximators used
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So given a certain function approximator, these two conflicting demands result in an upper boundary
in the propagation length and therefore in the problem size.Places where (non zero) rewards are received
cannot be too far apart because either the function approximator can’t handle it (with highγ), or the
expected reward in distant states decreases to zero too fast(smallγ).

3.2 Advantages of Using Hierarchies

3.2.1 Exorcising the Dæmon of Dimensionality

Using task decompositions will usually reduce the state space on each level of the hierarchy, because at
each node in the task decomposition, only a subtask needs to be solved, which most of the times will
involve only a subset of the variables or a subset of the entire state space. So task decompositions are
helpful in reducing the size of the problem, and therefore inexorcising the Dæmon of Dimensionality,
as Dayan[41] eloquently put it.

3.2.2 Subpolicy Re-use

The use of extended (or high level) actions can be compared tothe reasoning that a programmer uses,
when she introduces functions and methods in her program. Introducing functions allows her to write
larger and more complex programs, no longer being constrained to putting together long strings of basic
operations. In the same way defining (or learning) sequencesof actions that can be grouped together,
and treated as if they were one atomic unit, improves Reinforcement Learning because it allows for
explicit use of similarity (see fig. 3.4).

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3
subsubtask

2
subsubtask

4...

Figure 3.4: Task decomposition: dividing a task into several smaller subtasks, allowing re-use.

If the designer knows that a certain subtask or subgoal occurs more than once, there is no need
to learn them separately. Knowledge gained from one instance can directly be used elsewhere in the
problem where this particular subtask also occurs.

3.2.3 Faster Exploration – Moving the Random Walk Burden Upwards

Hierarchies introduce behaviours (sequences of primitiveactions), and in principle these behaviours do
something non-randomly. The idea is, that behaviours move the agent in a non-random way through the
state space. So if the agent has a set of behaviours, but does yet not have the solution for the overall
problem, it can execute a behaviour, and move purposefully (i.e. not needing random walking) for the
duration of the behaviour. After the behaviour is terminated, another behaviour can then be selected (at
random because the problem was not yet solved). In effect therandom walk exploration is moved from
the low level of primitive actions to the high level of behaviours.

The high level actions (or behaviours) are now considered asatomic actions in a newhigh level
random walk, only this time the actions are temporally extended, and the agent walks with larger steps
(albeit still randomly selected). For this to work, the hierarchical actions need to be more effective
(i.e. travelling further, doing more, etc) than what the primitive actions can accomplish in the same time
with random walking. Since the estimated time needed to cover a distanced is O(d2) this means that
the distance covered in a certain timet is O(√t). The hierarchical behaviours need to be at least as
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good as this (on average) to be able to cover as much “ground” –or more general, to cover more of the
problem space – as the random walk using primitive actions.

When the hierarchical actions aremeaningful, that is, they are not completely random and they do
actually achieve something (on average they move the agent acertain non-zero amount through state
space), then their use has a benefit over selecting the same number of primitive actions. Instead of
selecting these primitive actions completely random, there is only one randomly selected (hierarchical)
behaviour, and the primitive actions that it executes form areasonably structured larger behaviour.

(a) random walks on average (b) one long random walk

Figure 3.5: Random walks on average: four random walks on the “primitive action level” versus four
random walk on the “high level”. All paths through the state space are of equal length, but the random
walks on the high level each have only one random decision point (the dots) whereas the random walks on
the primitive action level each have 6 decision points, therefore on average they reach further.One long
random walk: walks of equal length (35) through the state space, but the random walk on the high level
has far less random decision points (the dots) than that on the primitive action level.

This principle is most easily illustrated when we would try the following experiment a number of
times (see fig. 3.5(a)). An agent has a small number of time steps to explore (in fact just enough for one
behaviour, let’s say 6 time steps).

If the agent has no behaviours at its disposal, it needs to randomly walk on the level of primitive
actions. This will result in covering an expected distance that is the square root of the available time.
But if it can select its actions from a set of different behaviours it will only make one random choice
(i.e. which behaviour to execute), and after that, it will move purposefully. So on average, the area that
the behaviour level random walk will visit is larger than thearea that the primitive random walk will
visit.

On longer timescales, this means that the agent can make greater leaps through the state space and
cover more “ground” than a flat learner (see fig. 3.5(b)). Thisallows for faster (random walk) explo-
ration. This means that,if behaviours are available or can be learned early on in the learning process, the
agent can use these behaviours to cover more “ground” in the state space, which increases the probability
of solving the problem faster7. It is even possible to do some exploration when executing a behaviour,
as long as it does not completely destroy the non-random character of the behaviour.

3.2.4 Better Signal Propagation

Large steps of temporally extended actions allow the algorithm to propagate the rewards faster. A chain
of actions is faster traversed if you are allowed to regard several atomic actions together as one large
step, and that way a state from which that large step was takennow receives meaningful reward signals
faster than if it had taken several small steps (and reached the same goal).

3.2.5 Different Abstractions for Different Subpolicies

Using subpolicies for subtasks, allows for different statespaces (or abstractions) for each of the subpoli-
cies. This is in fact a spin off that we get for free when we use subpolicies. For certain subtasks, a certain

7Obviously under the condition that the problem can be solvedin terms of the available behaviours.
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variable might not be relevant at all8. It is then possible to use different state space representations for
different subtasks by leaving out variables (sensor readings) that are not relevant to the particular sub-
task. This is for instance used in MAXQ, and it comes quite naturally with task decompositions.

But hierarchies and subtasks allow another – more radical – possibility: to use completely different
state representations for different subpolicies that execute the same behaviour. That way the agent is
allowed to select the best representation for each part of the state space. That way it can switch its
representation (by switching subpolicies) but continue doing the same task. It now simply has two or
more subpolicies that are trained on the same task, but use different representations of the state space.

Of course all the different representations could be bundled into one large (and redundant) state rep-
resentation, but that would result in exponential growth insize, and again the Curse of Dimensionality.
Splitting representations to different subpolicies, and allowing the agent to learn when to switch, does
not have that problem. An example of this approach is described in [3] and was proposed at the same
workshop where work from this thesis was also presented.

3.3 An Overview of Hierarchical Techniques

3.3.1 Options – Hierarchy in Time and Action

As mentioned before, the most popular approaches areadding optionsandintroducing layers. An option
is basically just a sequence of primitive actions, that isaddedto the set of actions the agent can select
from. The primitive actions themselves can also be viewed asoptions, i.e. options that only invoke one
primitive action. They are sometimes calledone-step options. Options therefore have a hierarchical
structure in time, because the options are decomposed into smaller options, all the way down to the
primitive actions. There is no state abstraction or hierarchy or use of different abstractions of the state
space for different layers.

Options are known under many different names, some of them being macro-operators, macros, skills,
temporally extended actions, behaviours, modesor activities, but the basic idea remains the same. Some
Options approaches are described briefly section 3.4.

In principle, options should be able to execute not only primitive actions, but also to call other options
as ’subroutines’, although not every approach that uses options also uses this rather complex structure.

The Options Framework – Between MDPs and Semi-MDPs

Sutton et al. [17] proposed to use Semi-MDPs (SMDP)9 to extend the usual reinforcement learning
structure (the MDP, see section 2.2.1) to temporally extended actions.

Options require that we extend the definition of MDPs to SMDPswhich include actions taking more
than one time step, so that the waiting time in a state is equalto the duration of the invoked option. These
options can be completely fixed (i.e.optionX is "always go North twice, and then East") or they could
themselves be stochastic policies. Since options are just considered actions (although extended) and are
added to the action set, options are ideally suited for re-use. An option that is itself a stochastic policy
could be specialized in solving a certain sub-problem, but could also be successful in solving similar
sub-problems somewhere else in the problem space.

An option consists of three components: a policyπ ∶ S×A→ [0,1] (same as in equation 2.8) that
gives the probability of selecting an action fromA in a given state fromS, an initiation setI ⊆ S, and a
termination conditionβ ∶S→ [0,1]. An option⟨I ,π,β⟩ is available for execution in statest if and only if
st ∈ I . The termination criterionβ allows for stochastic termination of the option.

The primitive actions are considered special one-step options. They are always available when action
a is available: (I = S, assuming thata is always available, of course), and always last exactly onestep,
so always have a termination probability of 1 (∀s∈ S∶ β(s) = 1).

8because it never changes during execution of this subtask
9SMDPs are used to model multi-step and continuous time discrete-event systems.
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We can create policies with options, the same way that we normally formulate policies (see section
2.2.2). More formally, when we letO be the set of options, we can formulate the options-policyµ ∶
S×O→ [0,1] where optiono ∈ O is selected for execution in statest ∈ S at time t according to the
distributionµ(st , ⋅), and terminates afterk steps in statest+k ∈ S. In this way the policyµ over options,
just defines a “flat” policyπ. In fact flat policies are just a special case of the more general policies over
options.

Note that the policy that results after “flattening” might not have the Markov Property (see sec-
tion 2.2) because the selection of a primitive action at a certain time t does not only depend on the
current statest , but on information available when the option started several time steps ago. This is also
the case, when a timeout is introduced, which allows the agent to stop the policy after a certain number
of time steps has elapsed,even though the termination criterionβ is still not met.

Options Are Not Hierarchical In The State Space

Options extend the set of actions, and they are hierarchicalin the sense that an option calls other options
(or at least primitive actions – one-step options) when invoked. But the state space is not broken down
into hierarchical parts. In essence, an option augments theagent by giving it more (temporally extended)
actions to choose from. But the selection of a primitive action or an option are still based on the same
observed state, there is only abstraction in the actions, not in the states. This does not seem to be the
way humans do it though.

It would seem that much of the information that is available is completely irrelevant when you need
to make a decision about a destination that is far away and what option to choose to go there. On the
other hand this ‘local’ information would be extremely relevant when we are near or goal.

3.3.2 Multiple Layers – Hierarchies in State Space

The problem of ’fine tuning’ versus the ’wider perspective’ that was sketched informally above, lies
at the heart of the second approach. Instead of just augmenting the set of actions with larger actions
(i.e. ‘options’), the state space is hierarchically decomposed. The problem is viewed on two (or more)
levels with differing ’resolution’ or scope.

On a more global (higher) level, only globally relevant information is contained in the (abstract or
high level) state. On the lower level the more local, more detailed information is present. This ensures
that on a higher level the agent is not bothered with trivial small questions, but that on the lower level still
all the information is available with the same high resolution as in the corresponding flat Reinforcement
Learning problem.

To achieve these layers, the problem is decomposed into a setof hierarchical sub problems which are
(hopefully) smaller and easier to solve. This implies that ahierarchy of MDPs is created. Each MDP
has its own set of states, and the higher level usually has a smaller state set of more abstract states. Some
algorithms use a selection of states from the lower level (for instance bottlenecks in the state space)
while other algorithms construct entirely new ’higher level’ states which are abstractions of some lower
level features.

It should be noted, that abstracting on the higher level, will often result in suboptimal policies. It
is often the case that the optimal policy is no longer available in the set of policies that is still possible
within the constraints of the hierarchy. The policy can of course still be optimal with respect to this
restricted set. Often this is a trade-off between getting a good – though not optimal – solutionfast, and
finding the optimal solution aftera very long time. It is up to the designer to ensure that its hierarchy
still allows for nearly optimal – if not optimal – policies.

Generic Framework

Layered approaches differ far more than approaches using the Options-framework, because they not only
have temporal hierarchies (temporally extended actions),but also allow for abstractions and therefore
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hierarchies in the state space. Any structure trying to unify them, is therefore doomed to be only a very
coarse and general high level description10.

A learning problem (with given state spaceS for a “flat” learner) is decomposed in subtask layers{L1, . . . ,Ln} where each layer is defined as:Li = (Si ,Oi,Ti ,Mi,hi) with:

• Si is the (abstract) state space for layer i

• Oi , the set of actions

• Ti , the set of training examples

• Mi , the machine learning technique that is used

• hi ↦Oi, the ’hypothesis’ which is the result of runningMi on Ti

Given the diversity in layered approaches, it is hard to denote any more common features.

3.4 Relevant Work with Options

Some relevant algorithms are presented here that use the Options-framework. The order is not chrono-
logical order, but rather in (roughly) ascending complexity. Its purpose is to give a very brief (and by no
means complete) overview of the many different ways in whichOptionscan be used.

3.4.1 MSA-Q, Multi-step Actions

Schoknecht [19] together with Riedmiller [20] have proposed a very simple but useful kind of options.
The idea is to define ’multi-step’ actions of degreen asA(n) = {an∣a ∈ A(1)} (whereA(1) consists of the
primitive actions). Multi-step options are options that consist of just repeating the same primitive action
n times. The rationale behind adding these multi-step actions is that the agent can make greater steps
through the search space during its random walk exploration.

When a multi-step action is executed, the discounted rewardis not only applied to the multi-step
action that was taken, but also to all the states that were visited during execution, because executing the
multi-step action amounts to executing the primitive action in each of the visited states.

Comments

This way of distributing the (discounted) reward can be considered a form of offline learning which is
mixed with online learning. Because multi-step actions have a fixed lengthn only a fixed amount of
space is needed to store the states that the multi-step action visits. This principle does not seem to be
limited to this approach.

One could re-use one multi-step even further and see if it also contains other smaller options. Ob-
viously ann-step action not only containsn primitive steps but also twon−1-option steps, threen−2-
option steps, and all other intermediates between onen-step andn one-step actions.

This approach could probably be used in virtually any hierarchical approach thatadds options,
though for systems that use hierarchical layers and decompositions, it is often unsuitable. In those
systems the primitive actions (lowest level) are not mixed with higher level extended actions and often
subpolicies have their own goal conditions. So one cannot always extract ‘smaller’ options or primitive
actions from the extended action that was executed, and thereby re-use the experience. It is of course
still possible to mixoffline andonline learning in hierarchies because one can always store the entire
trace of the current extended action.

10The structure presented here is very similar to the approachthat Stone and Veloso [26] proposed, though they restricted
their (abstract) state spaces for the different layers to subsets of state features/variables from the original state space, so each
layer has an input vector (state) that is composed of selected features out of the original state space. Their layers are learned
independently and sequentially, the lowest layer first, andeach learned layer then provides the actions for the next layer.
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Multi-step actions are especially good for reducing the ’random walk exploration’ phase in the begin-
ning of learning. Since the options are available right fromthe start, the agent can use them immediately
to move purposefully through the state space, reducing the burden of random walking.

3.4.2 Macro Languages

David Andre [18] has proposed some sort of Macro Language to describe options. This language con-
sists of programming language-like statements like IF and DO . . . UNTIL. The idea is, to try and build
these deterministic macro’s for each percept (observational variable) that is perceived by the agent dur-
ing learning. These learned macro’s could then be used by theagent in another, similar, environment to
speed up learning.

Comments

The problem is that building macro’s needs lots of memory because the past needs to be stored. A
path needs to be distilled out of the track-record and translated into statements in the language. Much
searching through the past seems necessary. Also, using the(stored) past to mine for paths, restricts the
algorithm to problems which don’t have a continuous (or nearly continuous) state space.

3.4.3 Q-Cut

The Q-Cut algorithm [21] by Menache et al. is a graph-theoretic approach to automatic detection of
sub-goals. Using a max-flow/min-cut algorithm and a map of the process history (trace) it identifies
bottlenecks in the state space by looking for cuts that divide the problem space. When a bottleneck is
found, the algorithm uses replay of experience to learn a policy to reach this bottleneck. The resulting
policy is then added as an option.

Comments

Q-Cut extensively uses the discrete nature of the problem because the max-flow/min-cut algorithm
works on tree-like structures, so (nearly) continuous state spaces represent a huge problem.

3.4.4 Predecessor-Count

Goel and Huber [22] have proposed an approach11 similar to that of Q-Cut, but instead of using a graph-
theoretic approach, they use the difference in count of the number of predecessors as a measure of
whether a state is a bottleneck. A significant increase signifies a bottleneck. Policies are learned to the
bottlenecks, and added to the set of actions.

Comments

Unlike Q-Cut, the Predecessor Count seems able to handle large or continuous spaces. The only problem
might be that the ’predecessor’ function has spikes. This will for instance occur when large (fully)
connected areas are connected to each other by very small ’doorways’. The function approximator that
needs to estimate the predecessor count might have a hard time approximating the sharp spikes and
discontinuities, but this depends heavily on what kind of approximator is used.

3.4.5 Discovering Subgoals Using Diverse Density

McGovern and Barto [24] have proposed yet another method12 that is similar to Q-Cut and the ’prede-
cessor count’. Their rationale is that when an agent just randomly explores, it is likely to remain within

11Without giving it a name, so for clarity I have baptized it ’Predecessor-Count’.
12. . . yet anotherunnamedmethod. Hence for convenience I will call it ’Diverse Density’ after the criterion the use for

discovering bottlenecks.
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the more strongly connected regions of the state space. An option on the other hand should connect sep-
arate strongly connected regions, because that is what a bottleneck is in essence. By adding options to
these bottlenecks, these separated regions become more closely connected, allowing the agent to more
uniformly explore its environment. They reject using the frequency of visit as a measure of how much of
a bottleneck some state is, because they deem it too noisy andit is not at all clear how such an approach
could be generalized to very large state spaces (when approximators are most likely used)13.

As an alternative they propose to use diverse density learning. This is a learning approach to the
problem of multiple-instance learning. In multiple instance learning [23], we are faced with the problem
that we only know that the training example can be represented by oneof a set of given feature vectors
instead of the normal situation that you know that a given feature vectoris the representation of the
training example. The sets of possible features are called bags, and if a bag contains at least one positive
instance (i.e. a feature vector that works for the target concept) then it is considered a positive bag, oth-
erwise it is a negative bag. The goal is to learn the concept from the bags that are presented. McGovern
and Barto consider the mining of trajectories for bottlenecks an instance of the multiple-instance learn-
ing problem. A trajectory is viewed as a bag, and individual observation vectors are considered as the
feature vectors. A positive bag corresponds with a successful trajectory; negative bags are unsuccessful
trajectories.14 After some interaction with the environment (and a lot of storing of trajectories) the bags
are made, the concept (for that subgoal) is learned, and the option is added.

Comments

Since this ’diverse density’ method relies on many examplesof successful trajectories, it only kicks in
later in the learning process. It does not help in the initialstage of exploration, but is designed to increase
the rate of convergence, at least it is in the experiments conducted by McGovern and Barto. It might be
interesting to investigate instances of this ’diverse density’ approach which are tailored to boosting the
exploration phase. But this is like the ’chicken-and-the-egg’ problem, because a criterion for success
is needed to classify the bags, and what other measure of success can be used than the reaching of
the goal of the experiment? So it is clear that this approach can speedup the convergence by simply
adding options that leap to bottlenecks that are on the successful trajectories, but it would seem that this
approach is less suited to attack the exploration phase itself.

The use of memory (storing trajectories) might make it unsuitable for large state space, because the
’bags’ will greatly increase in size.

3.4.6 acQuire-macros

Amy McGovern [25] proposed ‘acQuire-macros’. This algorithm looks at peaks in the temporal history
of the rewards, and these peaks are then used to form trajectories in a continuing task. When acQuire-
macros finds a peak in the reward, it examines the saved clusters of visited states15 and sees if the cluster
that is visited with the peak in reward is a frequently visited region. When such a much-visited space is
found, an option is posited that has reaching this space as its goal, and learning continues.

The aQuire-macros algorithm is specially designed for problems with large or continuous state
spaces. The trajectories are stored, but they are greatly compressed by using a clustering algorithm.

3.5 Relevant Work with Layers

In this section, several layered approaches to Hierarchical Reinforcement Learning are described, be-
ginning with the most popular (MAXQ and variants, HAM and HEXQ) and after that some approaches

13this is a question one can ask for the ’predecessor count’ and’Q-Cut’ method, which both rely heavily on discrete states
14’successful’ is problem-specific. It might for instance be all the trajectories that eventually reach a subgoal, or perhaps

only those that reach it within a predefined time period, etc
15This approach is designed for real values continuous states, so it is not possible to register visits to discrete states.There-

fore clusters are formed (with k-means or similar algorithms), and visitations to these clusters are registered.
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that are more similar to HASSLE, or that are relevant for the design of the new algorithm.

3.5.1 MAXQ, MASH and Cooperative HRL

The first approach, called MAXQ Value Decomposition (MAXQ for short) is arguably the most popu-
lar approach to hierarchical reinforcement learning. It was first proposed by Dietterich in 2000 ([27]).
MAXQ uses a decomposition of the target MDP into a hierarchy of smaller MDPs and uses a decompo-
sition of the value function of the target MDP into an additive combination of the value functions of the
smaller MDPs. MAXQ provides no way oflearning these decompositions, so it is up to the designer to
identify a set of individual subtasks which are deemed relevant to solving the overall task. For each of
these subtasks (and of course for the overall task as well) itthen needs to be specified which subtasks
or primitive actions it can employ. Actions that are not relevant are simply not included in the action set
of a given (sub)task. This information can be summarized in a’task graph’ (a directed acyclic graph).
Each node is a (sub)task, the leaves are the primitive actions, and the edges denote which subtasks a task
may use.

More formally, the MAXQ decomposition takes a given MDPM and decomposes it in a finite set
of subtasksM0,M1, . . . ,Mn (whereM0 functions as the ’root’, i.e. solving MDPM0 solves the original
problemM) and each subtaskMi consists of a tuple< Ti,Ai,Ri >. HereTi denotes the set of termination
states, meaning that the execution of the subtask ends there. A subtask can only be executed in states∉ Ti.
Ai is the set of actions (i.e. a selection of primitive actions and/or other subtasks), andRi is apseudo-
reward function. This function assigns 0 to all non-terminal states, and typically also to the terminal
states that are considered (sub)goal states. The pseudo reward for entering a non-goal terminal state is
negative. This function is only used during the learning process.

Primitive actions are simply considered ’primitive subtasks’ that always terminate with reward 0,but
can also always be executed16.

The subtasks can have formal parameters17 and subtasks with different parameters are considered
different subtasks. These parameters can therefore also beviewed as being part of the name of a certain
task. For each parameter, a different subtask is learned. The subtasks are pushed on a stack (similar
to stacks in normal programming languages). Because of thisstack the hierarchical policy can be non-
Markov with respect to the original MDP, since the contents and order of the stack provide a means to
store some extra information that was not available in the flat MDP.

A hierarchical value functionVπ(< s,K >) is then defined which gives the expected reward for policy
π starting in states with stack-contentsK. Also Vπ(i,s), the projected value function of policyπ on
subtaskMi is defined. This is the expected reward of executingπ starting ins until Mi terminates. The
MAXQ value decomposition tries to decomposeV(0,s) in terms of the projected value functions of the
subtasks.

The learning happens using a Reinforcement Learning like update rule on a quantity called thecom-
pletion function Cπ(i,s,a) which is the expected discounted cumulative reward for completing subtask
Mi after invoking the subtaskMa in states. This completion function makes it possible to express the Q
function recursively asQπ(i,s,a) =Vπ(a,s)+Cπ(i,s,a).

At each time stept during learning the valueVt(i,s) needs to be calculated, and therefore a search
through the entire decomposition three. While this is not a problem for small trees, this is computation-
ally intensive for larger ones.

Only the global structure of MAXQ is described here, and muchof the detail is left out. But this
description gives a sense of the way MAXQ works. The programmer decomposes the problem into a
tree of subtasks (with their terminal states and pseudo-reward functions) which she deems useful. The
structure of the problem is therefore (roughly) given in terms of tasks and subtasks. The agent needs to
learn the value function for each of the subtasks (and thereby for the entire task).

16SoTi does not specify the complement of the states in which the primitive subtask can be selected.
17So the subtasks defined above are in factunparameterized subtasks.
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Multi Agent Approaches: MASH, Cooperative HRL

Several researchers have created multi agent extensions for MAXQ. Mehta and Tadepalli [28] have
proposed MASH (“Multi Agent Shared Hierarchy”) which is a multi agent extension to HARL (“Hier-
archical Average-reward Reinforcement Learning”), whichin turn is their extension of MAXQ.

Ghavamzadeh, Mahadevan and Makar [29] have also extended the MAXQ framework to a multi
agent situation, which they call “Cooperative-HRL”18. The idea is, to define certain levels as “cooper-
ative”. These “cooperation levels” are the levels on which the agents receive information about each
other. The benefit of only letting the other agents know what you are doing on a higher level, is that the
lower levels are independent. On the lower level it does not matter what the other agents are doing, the
agent only has to complete its own subtasks.

Comments

Moving communication towards higher levels is of course only practical when cooperation is only
needed at the higher level, and the task can be decomposed in subtasks that don’t depend on the other
agents. If, for instance, the agents are game characters which are to attack two enemies using magical
spells, it might be that their coordination is essential on the lowest level because their combined attacks
are more effective than when uncoordinated.

Suppose that two spells cast together (coordination at eachlow level time step) are stronger than
when each each agent is just attacking the enemy as if he was alone (only coordination at the level of
“ let’s get that enemy now” but not at each individual time step). This can be the case when a mighty
spell (“fire!”) is cast by one character, but at the same time the other casts the opposite (“water!”). This
will certainly result in lots of steam, but besides that the actions have effectively canceled each other
out.

So Cooperative-HRL can most effectively be used when cooperation can be pushed upward the task
graph, because each level that requires cooperation is a level that has an explosion in the number of
states (because the states now become the Cartesian productof the states of all the agents).

This approach is not restricted to MAXQ like frameworks. It can as easily be incorporated in for
instance the HASSLE or HABS framework or any other system where higher layers denote higher ab-
stractions and longer temporally extended actions.

3.5.2 HAM - Hierarchy of Machines

Parr and Russell [34] have presented an approach to Reinforcement learning which is based on con-
straining the learning policies by hierarchies of partially specified machines. HAMs are nondeterminis-
tic finite state machines, whose transitions may invoke lower-level machines. The machines can be fully
specified (in which case no learning takes place and all work needs to be done by the designer) but more
useful is the specification of the general organization of behaviour into a layered hierarchy.

The machines are specified by a set of states, a transition function and a start function (which de-
termines the initial state of the machine). There are several types of states:action states execute an
action in the environment,call states execute another machine (using it as a subroutine),stopstates stop
execution and return control to the previous call state, andchoicestates are places where the machine
non-deterministically selects a next state.

Learning this policy is achieved by (for instance) a variation on Q-Learning. The Q-table contains(state,machine)-pairs instead of just the states, and there is a cumulative discount for the gained re-
wards.

Comments

The hierarchy of machines in effect reduces the search space, because it constrains the policy to those
policies that are possible within the constraints of the machines. This reduction decreases the “random

18Prefixed with “COM” for their further extension which incorporates communication in the framework.
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walk exploration” phase leading to faster knowledge about the environment.
HAM can be considered the middle ground between reinforcement learning systems and teleo-

reactive approaches like RL-TOPs. It specifies plans (partial machines) like RL-TOPs does, but on
the other hand it incorporates these machines in a MAXQ-likehierarchical structure.

3.5.3 CQ, HEXQ and concurrent-HEXQ

In 2002 Hengst [31] proposed HEXQ, which tries to find (and exploit) repeating sub-structures in the
environment. HEXQ tries to automate the process of finding a task hierarchy instead of relying on the
programmer to define it, as MAXQ requires. His HEXQ approach is similar to his CQ algorithm [30]
that was proposed a few years earlier.

The idea is to sort the variables in the state vector according to the frequency of change. Faster
changing variables belong to a lower level and slower changing variables to a higher level. The algorithm
will then look for transitions that are not invariant with respect to the slower changing higher level
variables. Such transitions are considered ’exit points’ where a lower level subtask may enter a new
domain and is finished. As an example, the “pickup” action in Dietterich’s taxi-domain is given. In
the taxi-world, the fastest changing variable is the position, and the “has passenger”-variable changes
much more infrequently. The “pickup-action” may or may not succeed in picking up a passenger at the
pickup-location (because she may or may not be there) but if it succeeds, the slower changing variable
(“has passenger”) is changed. Therefore the ’pickup’-action at the ’pickup-location’-state is a state-
action pair that could lead to a new situation on the level of “has passenger”, so this state-action-pair is
considered an “exit”.

More precisely, anexit is a state-action pair where (1) the transition is non-Markovian with respect
to the state at this level (2) a higher state variable may change or (3) the current subtask or overall task
may terminate. Theexitsare viewed as the subgoals for the subtasks at the next level,so that in fact a
sub-MDP is defined for each exit where the corresponding exit-state and action lead to a single terminal
state. This MDP can then be solved by dynamic programming or reinforcement learning. This policy is
then added as a subtask to the next layer.

The original HEXQ-algorithm first completely finishes the decomposition and then goes on to learn
using Reinforcement Learning. However, it might not be desirable to wait with the learning process until
the decomposition is finished, but to intertwine learning and decomposing. This is what concurrent-
HEXQ ([32], [33]) does. It specifies a mechanism for fixing baddecompositions on the run, and allows
learning while the decomposition is not yet complete.

HEXQ and its concurrent modification both use multiple layers in their hierarchy. The layers consist
of the state variables and are ordered with respect to their frequency of change. From this ordering and
the application of some statistics (to identify non-Markovian ‘exits’) the algorithm builds a MAXQ-like
subtask graph.

3.5.4 HQ-Learning

Wiering and Schmidhuber [35] take a different approach to hierarchical reinforcement learning with
their HQ-Learning algorithm. Instead of adding options or introducing layers, they regard the problem
as a multi-agent problem.

A sequence of agents (each with their own policies) is defined, and each of these agents will be used
once in solving the problem. Each of the agents is allowed to select its own subgoal (the observation
it wants to see) and tries to reach this, starting with the first agent. After the agent finishes, control is
passed over to the next agent and the process repeats itself,until the overall goal is reached (or timeout
occurred). After this19, each agent adjusts its own policyand its HQ-table(the subgoal selection policy
which each agent has) using Q(λ)-learning20.

19Wiering et al use off-line learning, but they note that in principle on-line learning during the episodes could also be used
20Q(λ)-learning is Q-learning with a trace. Visited state get a small (decaying) trace which is used in the updating rule to

increase convergence. See for instance [6] for details.
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The strength of this architecture is that this HQ-structureis able to solve partially observable Markov
decision problems (POMDP), i.e. problems where the same state (input) occurs in different parts of the
environment, and different actions are required at these different places. This means that the agent would
need memory to differentiate between two states with the same input but with different history21.

So where exactly is this memory in the HQ-algorithm? It is implicit in the sequence of the agents.
Because the problem space is divided between the agents, it is possible that two agents learn to behave
differently on the same state (input) because these same inputs occur at different stages of the problem,
and each agent just specializes in solving its small part. Sothe memory is located in the pointer to the
active agent.

This implicit memory is formed when the agents learn what subgoal to select (i.e. learning their
HQ-tables). Better combinations of sequential subgoals will result in higher rewards and will tune
the HQ-tables to the sequence needed to solve the problem efficiently. This way the agents cooperate
without explicit communication.

Learning of the lower level Q-values is rather straightforward, only with the exception that agents can
also learn from the Q-values of the next agent: when control is handed over to the next agent (because
the previous agent has reached its subgoal) this action alsoneeds to be rewarded. This means that the
Q-values for each agent are global, they are expected rewards for the entire task, not for completing
the localized behaviour of the agent in question. The HQ-values are updated in the same way as the
Q-values for the lower level. The values in the HQ-table represent the discounted reward that the agent
can expect when choosing a certain subgoal.

The authors note a disadvantage of the sequential nature of HQ. This is a structure that will work
on achievement tasks where a goal needs to be reached (for example navigation tasks, search tasks, etc)
but not for maintenance tasks where a desirable state needs to be kept for a longer time. In the latter
case, HQ will eventually run out of agents. Other architectures than the sequential one might provide a
solution here.

Comments

It is interesting to note, that the hierarchy in HQ is not usedto speed up learning as such, but to facilitate
learning problems that require memory, i.e. that require the agent to keep track of certain events in the
past. This can be seen from the fact that HQ generates a policythat can solve POMDP tasks which need
memory. Approaches like MAXQ, HEXQ or RL-TOPs on the other hand, give policies for problems
that could also be solved (albeit much more slowly) using a flat reinforcement learning algorithm.

In effect HQ makes a MDP from the POMDP by introducing a sequence and therefore a memory.
The problem could probably also be made MDP by changing the states to include (some) history, but
when it is not clear what history to incorporate and what not,the risk of greatly enlarging the problem
space by adding many extra variables to the state is high. HQ does not add variables to the problem but
introduces a sequence of agents which then cuts the problem into pieces that are themselves MDPs and
an overall structure (sequence and HQ-table) which is also aMDP.

Because policies (agents) are sequential, HQ cannot get anygain in the exploration phase from re-use
of behaviours. It does not matter whether nearly all of the subtasks are identical, each agent has to learn
this task on its own. This hampers learning in tasks where hierarchy is usually employed, i.e. where
much ground needs to be covered in different parts of the search space that resemble each other.

3.5.5 Feudal-Learning

Dayan and Hinton [40, 41] proposed an algorithm that resembles the medieval feudal fiefdom. Managers
are given total control over their sub-managers, and can order them to do tasks and give punishments

21This is often explained using the traffic light problem: suppose someone gives directions saying:“go left after the second
traffic light” . Given the fact that both lights look exactly the same, only the use of memory (counting traffic lights) will bring
you to your destination.
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and rewards just as they desire, but on the other hand managers have to obey their superior manager, and
so it goes all the way to the top.

The development is guided by two principles. The first isreward hiding, which means that managers
have to reward (or punish) their sub-managers for doing whatthey are commandedwhether or notthat
satisfies the commands of super-managers or is according to the overall goal. Sub-managers just need
to do as they are told, and are therefore rewarded if they achieve what was commanded even if this does
not help the manager that commanded it in furthering its goals.

The second principle isinformation hiding. The manager does not need to know the details of what
its sub-managers are doing. It also does not need to know whatthe goals of its superior are. Only
the command that needs to be executed is known to a manager, and its superior needs to know how to
evaluate the results in order to be able to give the appropriate reward.

At each layer managers are assigned to separable parts of thestate space. Each layer of the hierarchy
views the state space at a coarser level, so higher levels have smaller numbers of managers22. Each
manager adds the commands from its superior to its state, so behaviours for different commands can be
learned. At each level there is only a limited set of predefined commands available (except at the lowest
level, where the primitive actions are used).

In their example task, these commands are just the instructions to move into one of the four cardinal
directions. This is because their task is navigation in a maze where the coarser view of the state space
is accomplished by taking blocks of two by two lower level states together as one higher level state, all
the way up to the top where there is only one abstract state left.

Comments

Feudal-Learning can speed up the exploration phase becausethe lower level managers will learn their
behaviours early in the exploration phase. These learned behaviours are then used by the higher levels
to make larger steps, thereby increasing the distance that can be covered by random walk exploration.

Feudal-Learning does – at least in the simple form presented– not re-use behaviours. This could of
course be fixed by implementing some sort of structure that associates behaviours with managers that
can use that behaviour. This would obviously mean extra structures to learn.

Because the structure of the states is known on all levels, the reward conditions for the actions
(“commands”) on each level are available. This is importantto note, because it means that for each
state (on a certain level) the states that can be reached directly, can be considered as its subgoals. So
each manager can be viewed as a collection of behaviours (reactions to commands from the superior)
for reaching the subgoals (the adjacent higher level states). Considered this way, Feudal-Learning is a
hierarchical structure where all the subgoals are identified before learning starts, due to the fact that the
problem space is known on different levels of detail.

When this information is freely available, there is no reason not to use it, but in cases where the state
space is not known, Feudal-Learning is of no use, because thehierarchical structure is not model free.
Unless of course (part of) the structure can be learned during execution.

3.5.6 RL-TOPs

Ryan, Pendrith and Reid [36, 37] have proposed a hybrid system which combines teleo-reactive planning
and reinforcement learning, called RL-TOPs. They observe that for many robotic tasks, the state space
is vast because there are so many (sensory) inputs. Task decompositions like the ones used in MAXQ
or HEXQ and similar approaches are based on geometric considerations, and seem, according to Pen-
drith and Reid, ill-equipped to deal with high-dimensionalsensory information without simple uniform
geometry. A better approach would be asubsumption-like architecture as proposed by Brooks[38]. A
subsumption architecturehas several separate (hierarchical) learning modules which learn their tasks
independently. The problem they identify with Brooks’ architecture is that it ishand coded.

22Only one manager on top.
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Ryan et al. propose a system that resembles a subsumption architecture but uses a planner instead
of hand coding on the upper level. They use a planner called Teleo-Reactive Planning System (TR)
which is based on the notion of ateleo-operator(TOP)a ∶ π→ λ. The TOPs are (temporally extended)
behavioursa that have a pre-imageπ and post-conditionλ (both conjunctions of predicates from the
planner’s state description language). This means that ifa is executed whileπ is true, eventuallyλ will
become true.

Teleo-reactive plans are represented asTR-trees. The nodes are state descriptions (the root is the
goal) and connections between the nodes are labelled with actions, denoting that if the action shown is
executed in the lower node, then the result is the upper node.TR-trees are continuously re-evaluated,
and the action corresponding to the shallowesttrue node is selected.

The TOPs have another important function besides planning.They can also be used as descriptions of
reinforcement learning problems for the lower level. The behaviours (i.e. subpolicies) that are specified
by the TOPs are learned using reinforcement learning, and the success or failure of a TOP is defined by
its post-conditions.

Comments

RL-TOPs depends on a planner for its upper layer, which meansthat knowledge from the domain is
needed, because suitable (pre- and post) conditions for thelower level behaviours need to be specified.
For this, the dynamics of the domain needs to be known. This isa disadvantage because in many
reinforcement learning domains the environment is not deterministic or even completely unknown.

3.5.7 Self-Organization

The work of Takahashi and Asada [39] needs to be mentioned here. Their algorithm does not have
a name, only the description “Behavior acquisition by multi-layered reinforcement learning”. They
propose a multi-layered system that organizes itself, to avoid all the work that needs to be done when
the designer needs to specify each and every subtask and subgoal.

They regard the neural networks23 that represent the subpolicies, as experts. The behavioursself-
organize as each one tries to become an expert on a different part of the problem space (the sensory
input).

The higher level state is defined as a vector consisting of maxaQ(s,a) for each behaviour (sof course
being the current state of the robot), so the higher level state vector actually is an indication of how close
each behaviour is to reaching its own subgoal, when the robotis in states. This is because the value
maxaQ(s,a) is a measure for how close states is to the subgoal of a policy (at least in navigation- and
search tasks etc).

The higher level uses these behaviours as its actions, but not in the usual way. The outputs of
the higher level are vectors, and each element of the vector specifies the desirability for one of the
behaviours. This vector could be seen as a vector of Q-valuesfor all behaviours available in a given
higher level state. So in each high level layer the input to a module is a vector consisting of a measure
of progress for all the behaviours one level below, and the output is a vector that denotes the expected
returns for the behaviours.

The behaviours needsubgoalsto be able to learn anything useful at all, but since no external goals
are given and no task decomposition is madea priori , the system needs to identify its own subgoals.
This self organization is done by trying to distribute the subgoals of the behaviours roughly uniformly.
This means that the subgoals need to be assigned and updated online.

The value function maxaQ(s,a) is used as a measure of distance of a certain behaviour to the goal.
Each behaviour then needs to shift its subgoal (a state in thestate space) to a region where the maximum
of the Q-values of other behaviours is low – and if needed, newbehaviours are added or behaviours too
close to each other deleted. So the subgoals move around and become separate from each other, each
covering another part of the state space.

23They use Recurrent Neural Networks, but the same holds if other function approximators are used.
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Comments

Because the behaviours each try to avoid subgoals close to each other, they will strive to cover the prob-
lem space uniformly. This means that no (or only little)a priori information needs to be incorporated.
If a priori information is available, it can be used to fix the goals of some of the behaviours, and these
behaviours can then be treated just as the others that don’t have a fixed goal.

The problem with this approach is, that there is no real feedback between the higher and lower level,
so there is no feedback to drive the subgoals in useful directions. Subgoals are forced apart (as if they
repel each other) because they seek areas where the other value functions have low values, but this
means that many of them could end up in utterly uninterestingparts of the problem space, because they
are driven outward instead of towards useful subgoals that are perhaps near to other subgoals.
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Chapter 4

HASSLE — Using States As Actions

The HASSLE algorithm was proposed by Bakker and Schmidhuber [1, 2]. It stands forHierarchical
Assignment of Subpolicies to Subgoals LEarning. HASSLE is the starting point for the new algorithm
proposed in this thesis.

4.1 HASSLE — Hierarchical Assignment of Subpolicies to Subgoals LEarn-
ing

HASSLE is a layered structure that uses higher level states (subgoals) that are abstractions of the lower
level state space. Furthermore it hasa priori uncommitted subpolicies that are dynamically assigned to
the task of reaching subgoals.

Figure 4.1: The hierarchical structure of HASSLE: the large gray circles are the high level states
(subgoals). The Q-values of the high level policy are indicated by the thickness of the black arrows between
the subgoals. The●→● represent the (unique) transitions between subgoals. The Capacities (Mapping2→1)
are represented by the thick gray lines (thicker means higher capacity). Notations correspond to those in
section 4.1.1.

On the higher level, these subgoals act both as the states forthe Reinforcement Learning policy, and
also as the actions. This means that every abstract higher level state is a subgoal, but not that there is
one unique policy for each subgoal. There is a fixed number of subpolicies available and the algorithm
learns which subpolicies are best assigned to reaching a certain subgoal (starting from another subgoal).
For each subpolicy, HASSLE keeps track of its ability or capacity to execute a transition between two
subgoals. This is done by a mechanism calledCapacities(see fig. 4.1).
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4.1.1 HASSLE Formalized

HASSLE for an agent using 2 layers1 (layer i ∈ {1,2}) is described by the following:

• sets of statesStatesi = {statei,1,statei,2, . . .}:
States1 is the set of primitive states andStates2 is a set of abstract (higher level) states (i.e. sub-
goals). Obviously∣States2∣ < ∣States1∣. States1 can in principle be continuous.States2 needs to be
discrete (see section 4.3.1).

• sets of actionsActionsi = {actioni,1,actioni,2, . . .}:
Actions1 is the set of primitive actions, andActions2 =States2 (because subgoals are used as high
level actions).

• sets of (sub)policiesPoliciesi ∶ ∀k(policyi,k ∈Policiesi ∶Statesi ×Actionsi →R):
Standard Reinforcement Learning (e.g. Q-learning or Advantage Learning) policies2 for each
layer. The top layer has only one policy (soPolicies2 = {policy2}), but the lower level hasm1

policies (Policies1 = {policy1,1, . . . , policy1,m1}), each specializing in different subtasks. Only one
(sub)policy is active at each level at each time step.

• AgentInternals: variables describing the observations and memory of the agent: currentState1 ∈
States1, currentState2 ∈States2, currentAction1 ∈Actions1, currentAction2 ∈Actions2 and indica-
tors for detecting timeouts on both levels:timeout1 andtimeout2 and which policies are active on
each layer.

• Mapping2↦1 ∶States2×Actions2→Policies1:
A mapping from pairs of higher level states and actions to lower level policies that are able to
execute the requested action in the given state. This is a wayto get an appropriate subpolicy when
a certain transition between subgoals (a high level action)is selected.

• stop conditionsStopi ∶AgentInternals→ {terminate, continue}:
Determine whether a (sub)policy has reached termination conditions.

Stop1 = { terminate If timeout1 ∨ (S⇛S′ ∧ S,S′ ∈States2 ∧ S≠S′)
continue otherwise

Stop2 = { terminate If timeout2 ∨ the agent reaches its goal
continue otherwise

• reward functionsRewardi ∶AgentInternals→R:
Reward1 is 1 if the agent reaches thestate∈States2 that was selected bypolicy2, and 0 otherwise
(during execution, after reaching the wrong subgoal or after timeout). Note that this is an internal
reward, i.e. is not received from the environment.

Reward1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 If Stop1 = continue
1 If Stop1 = terminate ∧ S⇛G ∧ S,G ∈States2

∧ G was selected bypolicy2

0 If Stop1 = terminate ∧ S⇛X ∧ S,G,X ∈States2
∧ G was selected bypolicy2 ∧ G≠X

0 otherwise

For Reward2 the accumulated rewards that the environment gives the agent during execution of a
subpolicy, can be used because they are related to solving the overall problem3.

A⇛B indicates a transition from stateA to B.
1The unmodified form of HASSLE is not extensible to more layers, see section 4.3.3. This somewhat mathematical formu-

lation is not in the original papers. Nevertheless I think itwill make the structure of HASSLEclearer.
2These policies also require that thepreviousstate and action on both levels is stored.
3in sparse reward tasks this will amount to 0 when the goal is not reached, andrewardgoal when it is reached.
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Control Flow

The high level policypolicy2 runs untilStop2 indicates termination. During execution,policy2 selects
actionsG to execute (i.e. a subgoal to goto) when in a subgoalS. UsingMapping2↦1(S,G), a subpolicy
policy1,active is selected which must accomplish the transitionS⇛G.

Control is passed topolicy1,active, which is executed untilStop1 indicates termination. At each time
step during execution the subpolicypolicy1,active is updated with a 0 reward according to reward function
Reward1.

After policy1,active terminates (Stop1 = 1) it is rewarded according toReward1. For reaching the
correct subgoal it is rewarded, for reaching a wrong subgoalor failing to reach anything at all (timeout)
it is punished.

The agent then substitutes the subgoalX that it has reached for subgoalG that it was trying to reach
(see section 4.2.3 for explanation).

The higher levelpolicy2 is updated according to theReward2 (the accumulative reward) for selecting
(and reaching) subgoalX in subgoalS and theMapping2↦1 is updated with the new information that
policy1,active was (not) able to reach subgoalG4.

The control flow is illustrated in algorithm 4 and the relation between all the components in fig. 4.1.

4.1.2 Capacities

HASSLE needs to learn the associations (Mapping2↦1) betweenlevel2 states and actions andlevel1 poli-
cies, when we want to be able to reuse policies and avoid needing a new policy for each new combination
of a level2 state and action.

HASSLE was originally proposed with a specific way to do the mappingMapping2↦1, called“Ca-
pacities” or “C-Values”. The idea is that for every policy its capacity to do a transition from one subgoal
to another, is learned. This is done by storing an average performance.

Every level1 policy (policy1, j ) has its own table of so-calledCapacities. The entries in these tables
are values that denote the capacity of the policy to perform the required behaviour, i.e. to reachlevel2
actionA when inlevel2 stateS.

When in alevel2 state, thelevel2 policy selects a newlevel2 action and then needs alevel1 subpolicy
to execute this action. It can select alevel1 subpolicy based on the Capacities of all thelevel1 subpolicies,
for instance with Boltzmann exploration. If this selectedlevel1 subpolicy indeed succeeds in reaching
the selectedlevel2 action, its Capacity is increased, otherwise it is decreased.

The Capacities are of the form:

C2↦1 ∶States2×Actions2→R
∥Policies1∥ (4.1)

whereC2↦1,k(hlState,hlAction) denotes the capacity ofsubpolicy1,k to accomplishhlAction in subgoal
hlState. A selection mechanismSelect∶RN→Policies1 (for instance Boltzmann selection) can be used
to select one of the policies, thereby insuring explorationand exploitation:Mapping2↦1 =Select○C2↦1.

The Capacities are updated after the subpolicy terminates.As a measure of performance, the expo-
nential functionγ∆t

C with 0≤ γC < 1 is used to ensure that the performance is betweenzeroandoneand
that a longer execution time (∆t) means a lower performance. The Capacities are updated according to
the following equations:

Ci,act(start,goal) ← Ci,act(start,goal) + ∆Ci,act(start,goal) (4.2)

with ∆Ci,act(start,goal) = { αr
C ⋅(γ∆t

C − Ci,act(start,goal)) success
α f

C ⋅(0 − Ci,act(start,goal)) failure

wherei is the level,act is the number of the active subpolicy,start andgoal are the current high level
(level2) state and selected action (subgoal), whereαr

C and α f
C denote the learning rates forreaching

4This could be extended to updatingMapping2↦1 with the fact thatpolicy1,active was able to accomplish the transition
S⇛ X, but this is not done in the original HASSLE algorithm.
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Algorithm 4 : HASSLE in pseudo code: updating the policies is done with standard Reinforce-
ment Learning. RL UPDATE (. . .) updates a policy with your favourite Reinforcement Learning
algorithm (see section 2.3). “NULL ” indicates that a value is unknown.

HASSLE ::
while (¬Stop2) do // Policy2 (high level) loop

accumReward2 = 0; // For high level reward
agent is in subgoalS∈ States2;
policy2 selects subgoalG ∈Actions2; // Select HL-action "goto G"
Mapping2↦1(S,G) selectspolicy1,active; // Select (sub)policy1,active

while (TRUE) do // (Sub)policy1,active:(low level) loop
agent is in statest ∈ States1;
policy1,active selects primitive actionat ∈Actions1;
agent executes actionat and receives rewardreceivedRewardt ;
accumReward2← accumReward2+ receivedRewardt ; // Accumulate

if (Stop1) then BREAK ; // Terminate subpolicy
else RL UPDATE (policy1,active,st−1,at−1,0,st ,at ); // Sparse rewards

end
// See whether subpolicy1,sel...

determine current subgoalS+ ∈States2; // ...needs to be...
if (S+ =G) then RL UPDATE (policy1,active,st−1,at−1,1,st , NULL ); // ...rewarded
else RL UPDATE (policy1,active,st−1,at−1,0,st , NULL ); // ...or punished

substituteS+ for G; // For explanation: section 4.2.3
updateMapping2↦1(S,S′); // Update mapping...
RL UPDATE (policy2,S−,S,oldAccumReward2,S,S+); // ...and policy2

S−←S; // Save vars for...
S←S+; // ...next iteration
oldAccumReward2← accumReward2;

end

RL UPDATE (POLICY p, STATE st−1, ACTION at−1, REWARD rt , STATE st , ACTION at ) ::
switch ( f avourite Rein f orcement Learning algorithm) do

case(Q-Learning) // See section 2.3.3
updateQ(st−1,at−1) ← (1−α)Q(st−1,at−1) + α(rt +γmaxaQ(st ,a));

end
case(Advantage-Learning) // See section 2.3.4

updateA(st−1,at−1) ←(1−α)A(st−1,at−1) +α(maxaA(st−1,a) + 1
k (rt +γmaxa′A(st ,a′)−maxaA(st−1,a)));

end

⋮

end

the selectedlevel2 goal (i.e.success), or not (i.e.failure) andγ∆t
C (with γC ≤ 1) is a measure of success.

Shorter∆t mean that the agent accomplishes the transition faster and this leads to a higher capacity.
Using two different learning rates (αr

C andα f
C) allows for more fine tuning. If the subpolicy terminates

because it reached its designated goal, it is updated towards γ∆t
C (equation 4.2–success), but if it reached

another subgoal (or if it failed to get out of the current subgoal) the average performance is moved
towards 0 (equation 4.2–failure)
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4.1.3 A Simple Example

To get an idea of how HASSLE works, we’ll examine a simple example (fig. 4.2). Suppose we have an
agent which inhabits agrid world and which can move in the four cardinal directions. The high level
consists of clusters of lower level states.

A

B F

E

D

C

states2 = {room A,room B, . . . ,room F}
actions2 = {(goto) room A,(goto) room B, . . . ,(goto) room F}
Actions1 = {North,East,South,West}

States1 = {all grid cells}
Figure 4.2: The Example Grid World

Simplification – No Reuse

We use as many policies onlevel1 as there are combinations oflevel2 states and actions (there is only
one high level policy, soPolicies2 = {policy2}). This means we won’t have any policies that are re-used
– ignoring one of the strengths of hierarchies, but it will make the structure clearer. So for each pair of
subgoals (room X,(goto) room Y) we have a unique policy:policy1,X⇛Y, so the subpolicies are:

Policies1 = {policy1,X⇛Y ∣X ∈States2 andY ∈Actions2}
Wherepolicy1,X⇛Y denotes the subpolicy that is used for executing the action “(goto)roomB” when in
the subgoalroomB. Each of thoselevel1-subpoliciespolicy1,X⇛Y usesStates1 andActions1 as its states
and actions.

Since we use a unique subpolicy for each combination of subgoals,Mapping2↦1 is defined as:

Mapping2↦1(room X,(goto) room Y) = policy1,X⇛Y

whereX ∈States2 andY ∈ Actions2 are the subgoals.

Learning

If the agent finds itself in room (subgoal) A, it can select oneof the actions5 (goto) room B, (goto) roomC,
. . .. Suppose it selects(goto) room F. It then usesMapping2↦1 to select a subpolicy that can execute
this desired transition. In our simplified case, there is oneunique subpolicy for each subtask, so the sub-
policy policy1,A⇛F is selected and the agent hands over execution to this subpolicy. The subpolicy will
execute some primitive actions (i.e. fromActions1) and after some time either reach a new high level
state, or it times out6. During execution, it will (perhaps) receive some rewards,which are summed up
(summedReward) and will be used for the high level after termination.

After the subpolicy terminates, the agent can observe in what high level state it is, and can actually
use this information to determine what high level action it has executed (as explained in section 4.2.3).
Suppose our agent actually wandered into room C instead of the – unreachable – room F. The agent can
now update the high level policypolicy2 with the transition from room A to room C, as if it had actually
selected "goto room C" (for example with equation 2.18, Q-learning):

Q(room A,room C)→ (1−α) ⋅Q(room A,room C) + γ ⋅summedReward

5For convenience, we don’t allow going to the subgoal the agent is already in. This slightly speeds up learning, and keeps
the structure more clear.

6If no timeout is used, a (bad) subpolicy could go on literallyforever by just staying inside the high level state (looping).
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The subpolicypolicy1,A⇛F always gets a zero rewardduring execution (when it is not terminated),
and since it failed in its task to reach room F, it also gets a zero reward (or possibly a negative reward)
for its final action. If it would have succeeded, it would havereceived a positive reward for its final
action.

Re-using Policies

Since we used a unique subpolicy for each transition betweentwo subgoals, there are∣States2∣× ∣States2∣
policies, each of which has to be learned separately. With this quadratic relationship, that the number of
subpolicies that need to be learned will soon become too large. But by assigning unique subpolicies to
each transition, we ignored the fact that many transitions look remarkably similar (for instanceA⇛ B,
C⇛ D andE ⇛ F — all entering a room to the north through a small passage) andcould probably be
executed by the same subpolicy, provided it has enough flexibility.

Some mechanism is needed to learn which combinations of subgoals are associated with which
policy, so Mapping2↦1 needs to be learned. This means that the agent needs to try several of the
available subpolicies to see which one(s) are best suited for which high level steps. The mechanism that
HASSLE uses, is the Capacities-mechanism (section 4.1.2).

subpolicy1 (to) A B C D E F
(from) A – 0.97 0.20 0.01 0.02 0.01

B 0.01 – 0.05 0.03 0.04 0.02

C 0.04 0.03 – 0.76 0.02 0.01

D 0.03 0.01 0.03 – 0.00 0.01

E 0.00 0.02 0.01 0.01 – 0.89
F 0.00 0.01 0.00 0.01 0.01 –

subpolicy2 A B C D E F
A – 0.27 0.17 0.01 0.02 0.00

B 0.00 – 0.01 0.03 0.00 0.02

C 0.20 0.01 – 0.33 0.22 0.01

D 0.03 0.01 0.00 – 0.00 0.01

E 0.00 0.02 0.15 0.01 – 0.99
F 0.03 0.01 0.03 0.01 0.00 –

⋮

subpolicy7 A B C D E F
A – 0.00 0.01 0.00 0.01 0.02

B 0.03 – 0.03 0.03 0.02 0.01

C 0.99 0.01 – 0.01 0.01 0.02

D 0.00 0.01 0.00 – 0.00 0.04

E 0.03 0.00 0.91 0.00 – 0.03

F 0.01 0.01 0.05 0.01 0.41 –

Table 4.1: Snapshot of a Capacities-table: note that impossible transitions likeA⇛ F can still have
non-zero values, because Capacities start at random values, so it takes time to learn that a subpolicy is
incapable of reaching a certain (unreachable) subgoal. Also note that a subpolicy can be good in one task,
but still perform on other tasks (although mediocre).

A limited number of subpolicies is created (7 in our example)and each of these gets a Capacities
table (randomly initialized) that indicates the capacity of the subpolicy to execute a transition from one
subgoal to another. After some time, it might look like table4.1.

Let’s look again at our example and suppose that the agent is in room E and selects high level action
“goto room C”. This time it needs to figure out which of the 7 subpolicies it will select for this transition.
For this it uses the mapping from pairs of high level subgoalsto subpolicies (Mapping2↦1) which is the

49



combination of a selection mechanism7 and the Capacities (Mapping2↦1 = Select○C2↦1).
The Capacities of the subpolicies for the transitionE ⇛C can be found in the table (4.1), and are

0.01,0.15, . . . ,0.91 (the underlinedvalues). Suppose thatsubpolicy7 is selected (perhaps because of its
high capacity): this subpolicy then takes control of the agent and after some time∆t it terminates because
the agent ends up in room E. The capacity ofsubpolicy7 for going to room E starting in C needs to be
updated. The current value (0.91) is moved towards the current performanceγ∆t

C . So if (for example) the
agent reached the new subgoal in 5 steps (∆t) andγC = 0.99, then the performance isγ∆t

C = 0.995 = 0.951
and the update is (equation 4.2 in section 4.1.2):

Ci,act(start,goal) ← Ci,act(start,goal) + αr
C(γ∆t

C − Ci,act(start,goal))
← 0.91 + 0.01⋅(0.995−0.91)

After all this, the high level policy can select a new subpolicy to execute.

4.2 A Closer Look at HASSLE

4.2.1 Properties of the HASSLE State Abstraction

Bakker and Schmidhuber don’t exactly specify the properties of the state abstractions8 that they use for
HASSLE, but it is clear that abstract states are generated according to the following:

(1) consistent mapping (to): states close together map to abstract states near each other (or the same
abstract state)

(2) consistent mapping (from): neighbouring abstract states correspond to nearby regions in the orig-
inal State Space

(3) a transition in abstract state space is a meaningful change in the original State Space

(4) abstract state space needs to be significantly smaller than the original state space

These properties specify that the mapping that is used to derive the abstract state space, preserves the
underlying “geometric” structure (not constrained to a mere “spatial” geometry) in the original state
space. This means that points close together in the state space should be near each other in abstract state
space, and vice versa (see fig. 4.3).

Figure 4.3: Abstract states as used inHASSLE: the mapping from state space to an abstract representa-
tion preserves (some of the) underlying structure of the state space.

This way the abstract state space and the state space have thesame internal structure (at least on
a coarse level). Note that it is up to the designer to recognize this structure and use it to create a
suitable abstraction of the state space. If no structure exists (or remains hidden) creating an abstraction

7For instance Boltzmann orε-greedy selection.
8They use a clustering algorithm to derive their abstract states. But using a clustering algorithm to create abstract states fits

with the properties specified here.
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of the state space is of little use, because transitions in the abstract state space will then most oftennot
correspond to something useful in the original state space,making the abstract state space in question
useless for planning or learning on a high level.

How To Get The Higher Level States?

Until now the higher level states are treated as given, but how could these states be acquired? This
question is not the subject of this thesis, but it cannot go unnoticed. One suggestion would be to usepre-
fabricatedstates, derived from some heuristic that the designer programmed. Other alternatives would
be to let the agent discover these higher level states by itself. This could be accomplished if the agent was
equipped with some clustering algorithm, for instance ARAVQ (Adaptive Resource Allocation Vector
Quantization, [11], [12]).

The higher level states could then be constructed eitherbeforelearning takes place (by just randomly
exploring the environment), or the clustering could occurduring the learning phase. This last option
would mean that during learning, new clusters (and therefore new high level subgoals) are discovered
and that these new discoveries should from that moment on also be used in the learning process.

4.2.2 Assumptions Behind the Capacities

The Capacities are the bookkeeping mechanism for mapping transitions between subgoals to subpoli-
cies. It is based on two (hidden) assumptions. The first is that there is only a limited amount of different
behaviours in the problem. The second that these behaviourscan be classified in terms of transitions
from subgoal to subgoal.

The first assumption makes sense because if there is (virtually) no similarity between any of the
transitions, then as many subpolicies would be needed, as there are transitions. If there is only a limited
amount of substantially different behaviours, there is only need of a small set of subpolicies that together
cover all the needed behaviours. This gives rise to another property for the HASSLE state abstraction:

(5) there is a limited amount of groups of similar transitions between abstract states

The second assumption is reasonable because we need some wayof identifying these behaviours. If
the behaviours would not be related to transitions from subgoal to subgoal, the whole idea of trying to
describe the problem on a higher, more abstract level, is futile. This second assumption is equal to the
third property (“a transition in abstract state space is a meaningful changein the original State Space”)
that was deducted above (section 4.6).

4.2.3 Error Correction: Replacing Desired with Actual Higher Level States

By replacing the selected high level actions with the actions it actually experienced, HASSLE can make
more efficient use of its experience. Suppose that a subpolicy (starting in statestartState) reachedlevel2
statereachedStatewhich is different from the selected subgoal (actiongoalState). HASSLE can simply
replacethe taken actiongoalState(which failed) with the actually executed action (which is of course
the reached subgoalreachedState). So the high level (level2) policy can lean as if nothing bad happened
and as if it had selectedreachedStateall along. This also works for the Capacities,but it won’t work for
the (level1) subpolicy that was selected to reachgoalState, since obviously this policy has to be trained
for what it had been selected to do, and not for what it accidentally did.

The use of subgoals as actions therefore has an interesting side effect: after an action is executed
and the new state is reached, it is known whichactionwas performed. This knowledge allows for error
correction by substitution of what was selected by what is actually experienced. This makes learning on
the higher level far more efficient.
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Primitive Actions and Motor Errors

When the agent has sensory information that is detailed enough, it can correct for motor errors. If it
happened to execute an action other than the one it intended (because of an error in the motor controls),
it could calculate what primitive action itactually did. This calculated action can then be used for the
Reinforcement Learning update, instead of the action it hadselected (but did not execute).

However, for theprimitive actionsthis would usually not be feasible. The primitive actions are
dictated by the structure of the environment and the limitations of the motor controls, but often the
information that the agent gets about the environment, is not detailed enough to allow calculation of
the action that was taken, and there is no way to correct for motor errors. Only in situations where the
sensor inputs contain enough information, this deduction can be made.9

Furthermore, most of the time error correction for the primitive actions is notneeded. If the motor
controls are not too error-prone, an occasional error will not greatly hamper learning. So using some
sort of error correction would introduce extra calculations which would only result in a very small gain
in learning speed. If the motor controls are (for instance) 95% accurate, at most a 5% gain would be
possible.

Inherent Error Correction in H ASSLE

HASSLE starts with uncommitted subpolicies and needs to learn the Capacities (matching high level ac-
tions with subpolicies). Therefore its subpolicies are very different from the primitive actions. HASSLE

will make mistakes very often during learning. This could happen when a policy with a high capacity
for the given state and subgoal failed to deliver on its promise, or when a policy with a low capacity for
the given task was selected because of exploration for the Capacities.

This means that unlike the primitive actions it does not have(at least at the start of learning) a
high accuracy for its high level actions. Subpolicies need time to specialize for certain subtasks. This
means that the probability that a high level action goes wrong is far greater than the probability that it
actually works out alright. HASSLE thereforeneedserror correction to compensate for the many errors
its uncommitted subpolicies and its untrained mapping (Capacities) will make in the beginning.

This more efficient use of the available information is made possible because the subgoals are an
artificial construct created by the designer. That means that the structure is known to the agent, and it
is possible to calculate what kind of high level action it actually did in this artificial structure. Note that
this is often not possible in the “flat” state space because ithas anunknownexternal environment that
we have not created ourselves.

4.3 Problems with the HASSLE Architecture

HASSLEis taken as a starting point for the development of an algorithm that uses self-organizing.10 This
is done because HASSLE already starts with uncommitted subpolicies, has a focus onstate abstraction
instead of task decomposition and uses local reward functions (see section 4.6).

HASSLE uses subgoals (i.e. abstract states) as its actions on the higher level(s). This certainly seems
like a good choice, because having a goal is better than only having some behaviour. Goals can be used
in planning, but when we want to use behaviours in that way, the resulting state for each behaviour is
needed, so implicitly we would still be using goals.

This idea can be seen in many other approaches listed in sections 3.4 and 3.5. Subtasks or options
are defined in terms of reaching some goal state or set of states. So whichever way we look at it, the
notion of using (sets of) states as subgoals is a common feature. However, for HASSLE it is also the
feature that gives rise to the problems described in this section.

9For instance when the agent is a robot that uses a high resolution positioning system likeGPS.
10The self-organizing approach (section 3.5.7) was not knownto me at the start of this research. It only came up after I

had modified (read:completely mangled) HASSLE to create HABS. It turned out that the self-organizing approach has some
interesting similarities to HABS.
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4.3.1 No Generalization on the High Level

The structure of the Hassle algorithm makes it unsuitable for use of generalization (using function ap-
proximators) on the higher level. Function approximators (see section 2.5) are often used when a prob-
lem grows too large to handle with discrete tables (for the Q-values).

The ability to generalize depends on how the states are represented.11 If for instance the states the
agent can be in, only have an arbitrary unique number or labelas their description, there is no way to
compare two different states (see fig. 4.4(a)). That means that if an action works good in one state,
there is no pattern to generalize upon to determine whether it will also work in another state. There
is simply no common ground between the two states, because their only description contains too little
information. So there is little room for generalization in that case.

(a) no generalizing

generalizing

action a 

action a

...

at (15,20)
wall in front
near door

at (0,20)
wall in front
near door...

(b) possibility for generalizing

Figure 4.4: (a) No possibility for generalizing: The best action in state X is action a, and the best action
in state Y is also action a. But there is too little information in the state description.(b) Possibility for
generalizing: The best action in both states is action a, but since there ismuch information about the
environment incorporated in the state, a function approximator could for instance learn that being near a
door and a wall is relevant for selecting action a.

However, if the state description contains much information, there is a far greater possibility that a
function approximator can extract relevant features and patterns (see fig. 4.4(b)). On that basis a good
estimate of the usefulness of a certain action in a certain state can be given.

Generalization on the Lower Level

HASSLE can use a state representation with many variables for its lower level, so it does not have the
problem described above. This is just like normal reinforcement learning without any hierarchies. The
lower level can always use function approximators. More so,it actually needsfunction approximators
because tables have no generalizing capabilities, so usingapproximators provides a way of re-using
subpolicies in other parts of the state space.

Generalization on the Higher Level — The Q-Values

For the high level Q-values, a different state always12 means a different action, because the high level
states (subgoals) are used also asactions. A good subgoal in one part of the problem space, is obviously
completely useless in another part, because it is too far away – even though the actual behaviour that is
required, might be essentially the same.

The problem lies with the fact that the answer needs to beabsolute, because subgoals that were
useful in similar situationselsewhere, are in principle not applicable in the subgoal under consideration.
Subgoals areabsolutedesignations, they refer to fixed points in the high level state space, and are
therefore only applicable in the neighbourhood of those points. Two similar situations in different places

11Generalization obviously also depends on the type of approximator. An approximator with good generalizing Capacities
is assumed here.

12Actually: nearlyalways, because in two adjacent subgoals A and B, the best action can actually be the same subgoal C,
bordering on both A and B.
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goal

A

B

C

D

E
DB F

F

(a) different subgoals (b) no generalizing

Figure 4.5: Different subgoals, different actions: In high levels states (subgoals) A, C and E the best
high level actions (subgoals) are B, D and F.No generalizing: even though the best high level action
(“move North”) is the same in all cases, the high level actions (B, D and F) differ.

in the state space, that require similar behaviour, nevertheless require different subgoals (absolute points)
to go to. This means that, even though both high level actions(going to subgoals) can in fact use the
same subpolicy, a different high level action is taken. Thisis illustrated in fig. 4.5(a).

This situation (fig. 4.5(b)) is even one step worse than the case illustrated above (in fig. 4.4(a)).
There it was assumed that the actions would be the same in similar situations,but the state description
contained too little information. In the case of HASSLE, not only do the high level state descriptions
contain no information other than a nominal one, but also theactionsthat need to be taken in similar
situations, have different designations as well!

The problem of too little information and the absolute nature of each of the high level actions, makes
it extremely hard for a function approximator to do the job, because in essence it must emulate a table
without any repetitive features or structure, each entry isunique. Using an approximator to approximate
such a table would probably take much more time than just learning the table itself.

Generalization on the Higher Level — The Capacities

When HASSLEneeds to be applied on a large problem, not only the Q-values-table grows. The Capacities-
tables also grow quadratically with the number of subgoals (see fig. 4.6).
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Figure 4.6: HASSLE – scaling: both the Q-values table and Capacities tables grow quadratically.

It would appear at first glance that for the Capacities tablesthe same problem would hold as with the
Q-values and the uniqueness of subgoals. The Capacities maphigher level transitions (from subgoal to
subgoal) to subpolicies and because each higher level step is unique, it would seem that the Capacities
suffer the same problem.

But this is not entirely true – there is a small but significantdifference. When a high level action
is needed, the Q-values-table needs to return a subgoal, given a certain subgoal (state) as input, but the
Capacities table(s) only need to return a subpolicy. As noted before, thesubgoalsare only applicable in
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certain neighbourhoods, butsubpoliciesare applicable everywhere (though of course they can specialize
in certain regions). The Capacities only have to return one subpolicy out of a small set of subpolicies,
and these subpoliciescan bere-used everywhere in the problem space. Similar situations in different
parts of the problem space, can in fact yield the same subpolicy.

It will often be possible to identify patterns in the transitions between subgoals, that always require
a certain subpolicy. If for example the situation is as in fig.4.5(a), then even though subgoals A, C and
E are in completely different parts of the problem space, still the step from A to B, from C to D and
from E to F are essentially the same and can result in similar Capacities for each of the transitions. So
there is room for function approximation here, as long as thehigh level states are not represented with
arbitrary numbers, but with meaningful state representations (coordinates, proximity to walls or doors,
etc), in which case we have arrived at the situation depictedin fig. 4.4(b) again.

Even though the Capacities can probably be generalized whengood (higher level) state representa-
tions are used, the higher level Q-function cannot use generalization even in principle because of its goal
directed and absolute nature. Therefore HASSLE cannot use function approximators on its high level,
but is constrained to use tabular representations.

4.3.2 Action Explosion on the High Level

When a problem scales up, there is in general no upper limit for the number of lower level states, and
therefore also no upper limit for the number of abstract higher level states for HASSLE. At first one
might wonder what the difference is between this problem on the higher level and on the lower level,
since the problem size increases on both levels, so why wouldthis increase in problem size be a problem
specifically for the higher level, more than it is for the lower level? The difference lies in the fact that
on the higher level states and actions are the same.The abstract states, the subgoals, are used both as
states and as actions for the high level policy.

Figure 4.7: Action explosion: the problem size increases, and therefore the number of higher level states.
An action explosion occurs on the higher level ofHASSLE.

So on the higher level, not only the number of states is increased (as is normal when a Reinforcement
Learning problem scales up) but also the number of actions (quite unusual), so the problem size grows
in two ways (see fig. 4.7). This can also be seen in fig. 4.6 whereis illustrated that the Q-values table
and the Capacities tables will grow quadratically.

Since states are used as the actions (subgoals), the number of actions increases with the number of
states. This could greatly decrease performance for problems with larger numbers of states (> 103), since
there are more actions (subgoals) to explore (the Q-values-table needs to be filled in accurately), out of
which probably only a few are accessible from the current state.

This explosionof the number of actions on the higher level is a serious problem, it is hampering the
learning process, because the more high level actions thereare to take, the more have to be investigated,
making the problem more time consuming, up and above the effect of the increased number of states.
This means that the time needed for exploration increases vastly and as a second problem the memory
required to store the Q-values and Capacities tables, increases quadratically. Thisaction explosionis the
central reason for introducing a new algorithm that gets ridof this problem in a radical way.
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4.3.3 Three or More Layers Impossible

If the problem size scales up, it will result in significantlymore low level states. This means that either
the number of abstract states stays the same but they grow in size, or their number increases. Increasing
the size of the abstract states will make those subproblems harder, and we will get trouble usingsimple
and smallfunction approximators for our low level subpolicies, so that can only be done to a very limited
amount.

When the problem gets bigger it will results in more abstractstates. In general this would not be a
problem in itself, because we could introduce a new layer. That way all the subtasks on all the layers
remain at a reasonable size. But HASSLE is not suitable for use with more than two layers.

The idea behind introducing extra layers (see fig. 4.8) wouldbe to enable the re-use of partial solu-
tions (subtasks) elsewhere in the problem and to manage the growing number of (abstract) states when
the problem scales up.

(a) two layers

...

primitive actions

subpolicy 1

...

primitive actions

subpolicy 2

...

primitive actions

subpolicy n

middle level policy 1

...

...

middle level policy m

...

top level policy

...

(b) three layers

Figure 4.8: (a) Two layers: the number of layers is determined by the number of (sub)policies.(b) Three
layers: in the middle layer policies all share the underlying subpolicies. An alternative is, to give each
middle layer policy its own set of unique subpolicies, but this leads to large numbers of subpolicies and
prevents re-use.

Unfortunately, since HASSLE uses absolute actions on the middle level, there is no possibility for
re-use. The policies13 on the middle layer are using fixed subgoals as their actions,so a middle layer
policy that is a solution in one part of state space, is completely useless somewhere else, because it refers
to subgoals that are specific to other regions of the state space.

Note that three or more layerscanof course still be used, but there will then be no re-use of (middle
layer) subpolicies and all the layers above the lowest cannot use function approximators. This would
create a structure that is similar to Feudal-Learning (section 3.5.5). As noted there, Feudal-Learning
also does not re-use its policies and has all of its subgoals predefined. So HASSLE is unsuitable for three
or more layers.

4.4 An Attempt to Fix H ASSLE – Defining Filters

HASSLE uses subgoals both as states and as actions, the problem is viewed (on the high level) as a fully
connected graph where the subgoals are the nodes and the edges are the transitions from one subgoal to
another (see fig. 4.9(a)).

As a first solution to the problem of action explosion, we could simply eliminate certain subgoals
when in certain abstract states – at least if that information is available. We might concludea priori that
some subgoal X is just not reachable, so the agent is not even allowed to try it. A filter could be defined
to drastically reduce the number of edges available in a eachof the subgoals. To this effect, we could
add the following rule the formal description of HASSLE in section 4.1.1:

13When expanding to three layers, there will probably be sets of (sub)policies both on the lower and the middle layer, and
one policy on top.
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• Filter i ∶Statesi →℘(Actionsi), a filter that gives the available actions at a given state.

where i is the layer, andStatesi and Actionsi are the sets of states and actions for that level (same
notations as in section 4.1.1).
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(a) fully connected
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(b) restrictive filter
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(c) liberal filter

Figure 4.9: (a) Fully connected graph: on the high level, the subgoals and their accompanying high
level actions (“goto subgoal. . .”) form a fully connected graph. Note that all arrows are unique actions.
(b) Restrictive filter : Only subgoals that are connected (i.e. can actually be reached), are allowed by
Filter2 for the higher level.(c) Liberal filter : subgoals that are near to each other, are allowed byFilter2.
Both filters create a smaller model of the higher level problem. The black arrows depict which subgoals
are reachable from a given subgoal.

With this a priori filter we can specify sets of available subgoals (high level actions) such that
Filter2(someSubgoal) = availableActions⊆ ℘(Actionsi) (see fig. 4.9(b) and (c)). Note that this also
allows us (in principle) to specify restrictions on which primitive actions can be used in what states by
definingFilter1 in a suitable way (if all primitive actions are always available,∀s∈States1 ∶ Filter1(s) =
Actions1).

This approach is not very interesting, because bya priori excluding actions at certain subgoals, the
(high level) graph of the problem is simply preprocessed andreduced beforehand. In the reduced graph
learning is obviously faster, because there is less to learncompared to the original graph.

4.4.1 Automatically CreatingA Priori Filters

It is up to the designer to specify the entire filter – and sincefilters are proposed as a fix for the action
explosion when the problem size grows large, that would be a labourious task to do manually.

If we would settle for a less efficient filter, we could do it automatically (given a suitable state
representation on the higher level). When we are solving a navigation task, each subgoal can have
coordinates, and those can be used to determine automatically whether two subgoals are too far away to
be adjacent, for instance because they are further away thanthe agent can travel before timeout occurs,
etc. This would generally result in more liberal filters (like in fig. 4.9(c)) because the heuristics that are
used to prune the graph will most often be coarser (but faster) than manual pruning.

4.4.2 Learning Filters

Designing or automatically generatinga priori filters might be a possibility in simple cases, but this
would not be the case in general. If the problem is too large, constructing the entire filter is too much
work, and if we already know so much about the problem already, why try to solve it using Reinforce-
ment Learning, instead of just doing it ourselves, or maybe use a planning algorithm?

The point is, that if we don’t exactly know the underlying structure of the problem (and the problem
is large), then filtering out subgoals is no option for us, andfor the creation of a suitable filter we are
stuck with Reinforcement Learning-like solutions where agents have to determineby themselveswhat
the structure of the problem is, and that certain subgoals are just unreachable and that it is a waste of
time even trying them.

However when a problem is large, and no reward signal is present for a long time because no goal
is reached yet, the agent will consider each of the subgoals avalid option, even though most of these
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’options’ are in fact never reached at all. This is because the subgoals thathavebeen reached, don’t
yield any non-zero rewards (because the goal is too far away and the positive rewards are not yet prop-
agated back). These reached subgoals (with zero reward)cannotbe distinguished from the unreachable
subgoals (with zero reward) using only the rewards.

The normal Reinforcement Learning algorithms will be of no help here. We could try to punish the
agent for failing to reach a subgoal, but in the beginning theagent is probably not able to reach any
other subgoal at all, because its behaviours are not yet learned. So basically we would be decreasing
the expected rewardfor every subgoalincluding the good ones, which is not very useful at all. This
would just leave us in the same situation that we started in: no knowledge whatsoever about good or bad
actions.

Subsets of the Action Set

Some sort of filter is needed to create a bias towards successfully reached subgoals, even when they
haven’t yielded any non-zero rewards yet. HASSLE needs to be augmented with some sort of record
keeping device which keeps track of successful high level actions (i.e. reachable subgoals). Thissuc-
cess rateneeds to be used in our filter, so we can add a more specific rule to HASSLE (formalized in
section 4.1.1) instead ofFilter i :

• ActionFilteri ∶ Statesi × successRate→ ℘(Actionsi), a filter that gives the available actions at a
given state, as a probabilistic function of the success rates.

wherei is the layer, andStatesi andActionsi are the sets of states and actions for that level, so a subset
of Actions2 is given byActionFilter2(statet ,successRatest ).

Since the agent is not very successful in doing anything at all in the beginning, the learned filter
needs to be somewhat flexible and fuzzy. We cannot simply keeptrack of a list of subgoals that we
could reach in the past (and in that way just building up theFilter2 defined earlier). We need to bias
successful high level actions,but we cannot remove subgoals that were unsuccessful (so far) entirely.

Keeping track of the success rate for reaching a certain subgoal can be done in a table with the same
size as the Q-values table. Values in that table represent a running average14 of the success rate. The
frequency with which subgoals are selected, might look something like fig. 4.10 after some learning.
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B F

E

D

C

Figure 4.10: Learned Filter: The arrows depict the selection frequency (only shown for starting in
subgoal A or D). Darker represents higher frequency. Transitions like going from A to F will gradually get
a lower frequency.

One way to use these success rates as a filter, is to probabilistically determine a subset of the ac-
tions each time an action needs to be selected. The action is selected from this subset. Membership
is determined probabilistically as a function15 of the success rate. Using success rates boosts explo-
ration towards those subgoals that are apparently easier reached than other subgoals (that are perhaps
completely unreachable).

14A running average, because subpolicies change in behaviourand failure in a too distant past should not count negatively
on current performance.

15The probability cannot be equal to the success rate itself, because that would mean that a subgoal that is not reached yet
(success rate of 0) does never get into the subset. Hence somefunction of the success rate is needed.
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Boosting Boltzmann Selection

Alternately the success rate can be used to bias the selection mechanism, and we don’t need to make
subsets of available actions. By adding the success rate (suitably scaled or transformed) to the Q-values
when Boltzmann selection is executed, the selection can be biased towards those subgoals that were
successful in the past. Equation 4.3 in section 2.4.2 then changes into:

PBoltz(s,ai ,successRate) = e(Q(s,ai) + σ(s,a,successRate))/τ

∑
a′∈actions

e(Q(s,a
′) + σ(s,a,successRate))/τ (4.3)

wherePBoltz(s,ai ,successRate) gives the probability of selectingai in s, s is the current state,ai is the
action under consideration,successRateis the success rate andσ(s,a,successRate) is some function
transforming the success rate into a good “boost”.

Boosting selection does not work when usingε-greedy selection, because it only looks at the max-
imum Q-value. Incorporating success rates (in some way) into this selection does not have the desired
effect becauseε-greedy selection focuses on one (the best) action, whereaswe want to bias the ex-
ploitation toall the successful subgoals. Because Boltzmann selection (soft-max selection in general)
selects proportional to some function of the Q-values, it issuited for boosting successful subgoals during
selection.

When theActionFilter is used to produce a subset, there is no restriction on what selection mecha-
nisms can be used, because it does its workbeforeaction selection starts.

The various filters proposed here are needed for the initial stages of learning. When the agent has no
meaningful information yet about the goal (no non zero rewards yet) a filter can bias learning towards
thosefew subgoals that are reachable, instead of equally dividing its time – andwasting it – on all
subgoals. When information about the target becomes available, the filter is redundant, because the
Q-values then implicitly carry information about subgoalsthat can be reached successfully and will
eventually lead to the goal. The effects of the filter can be reduced after more information becomes
available, or it could be removed entirely.

4.4.3 Filters – What Remains Unfixed?

Thea priori filter proposed here requires that information about reachability is availablebeforelearning,
which means that the agent needs to have information about the results of each action (i.e. selecting a
subgoal) when determining if a state should be selected. This solution therefore imposes a restriction:
the entire environment needs to be known to the agent: it is not model free16.

The advantage of alearnedfilter is that it does not needa priori information about the entire environ-
ment, because reachability is learned during exploration.But still the agent needs knowledge about what
subgoals there are in its world. This is however not related to this fix, but to the structure of HASSLE in
general.

On the other hand there is a new problem: the agent now has one extra table that grows quadratically
(Q-values, Capacities andsuccess rates)! So even though the agent can now learn what is reachable, it
still needs to do this by exploring, so in the beginning therestill remain quadratically many subgoals to
explore. Only after some time the effect of using success rate kicks in and exploration will be biased to
more successful transitions. Therefore this fix is only a partial solution to the exploration produced by
the explosion of actions and it does not solve the accompanying memory problems but even increases
them slightly17.

16The reinforcement learning techniques described in chapter 2 are allmodel free. They can be used even when the only in-
formation available to an agent is its current state, its actions and possible rewards. So model free means that no (probabilistic)
model of all the transitions and states is needed.

17The main memory problem comes from the Capacities tables, because there is one for each subpolicy, whereas there is
only on (high level) Q-values table and only one success ratetable.
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Furthermore, filters are also no solution for the lack of generalization and the inability to use more
than two layers, because they are related to the absolute andunique nature of the subgoals, not to the
number of subgoals. For this reason only a few experiments are done (and only with boosting Boltzmann
selection) as a proof of concept.

4.5 Identifying the Underlying Problem in HASSLE

There is a recurring theme in all the problems identified in section 4.3. Generalization is not possible
because each of the actions is unique (because subgoals are used as actions). For the same reason it is
not possible to use three or more levels because each of the subpolicies of the second or higher layer has
subgoals as actions, so each of those subpolicies is only applicable exactly in that part of the state space
where those subgoals are. Furthermore using high level states as actions results in a quadratic growth
of the high level Q-values table (and specifically for HASSLE. also a quadratic growth in the Capacities
tables) because the number of actions grows with the number of high level states (anaction explosion).

These problems with generalization, more layers and actionexplosion are not specifical for HASSLE

only. They will occur in every algorithm that like HASSLE uses high level subgoals directly as actions.
Defining behaviours in terms of subgoals to be reached, is an absolute way of defining behaviours: the
behaviours are determined by a fixed point in the state space (either the flat state space, or a higher level
abstract state space).

4.5.1 Analyzing Primitive Actions

This absolute nature of the behaviours is in stark contrast with the way that the primitive actions are
defined. An agent does not usually have a thousand actions labelledaction1, . . . ,action1000 when it is in
a grid world consisting of a thousand cells (like in fig. 4.11(a)). Most of the time it only has a small set
of primitive actions.

(a) 1000 primitive actions (b) only neighbouring states

Figure 4.11: (a) 1000 primitive actions: primitive actions defined in an absolute way. There are 1000
actions if there are 1000 cells.(b) only neighbouring states: primitive actions defined in an absolute way,
but limited to neighbouring states. There are still as many actions as there are states, but in each states
only a few actions are available.

For a start, the largest part of these other cells are probably not even reachable from a certain cell, so
the set of actually useful actions in a given cell is very small (see fig. 4.11(b)). But still this is not the
most natural way to define primitive actions, because it would mean that for each cell the connectivity
needs to be stored explicitly, because each primitive action would still be unique, each pointing to one
specific cell.

Instead, an agent usually has (and the environment provides) only a very limited set of actions, for
instanceNorth, East, SouthandWestor the ability to rotate and move straight ahead. This would still
be of little use when the states themselves are not related tothose actions (but for instance labelled or
numbered arbitrarily, as in fig. 4.12(a)) because explicit storage would then still be needed. Even though

60



we seem to have only four primitive actions in this situation, we still would need to store that from cell
328, we would end up in cell 105 if we executed the actionNorth.
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(a) four primitive actions

(4,6)(2,6) (3,6)

(3,5) (4,5) (5,5)

(2,4) (3,4) (5,4)

N

E

S

W

N

E

S

W

(b) four primitive actions with ap-
propriate coordinate system

Figure 4.12: (a) four primitive actions: the actionsNorth, East, SouthandWest(N,E,S,W) are intro-
duced. For each cell the results of the actions need to be stored. (b) primitive actions with coordinate
system: actions are now related to a coordinate system which is partof the state features. Results of
actions are implicit in the coordinate system.

So what is commonly done, is using some sort of coordinate system. This need not consist of spatial
coordinates18, but could also be more abstract notions like “agent has object” or “ door is open”. So
what we usually do, is something like depicted in ’fig. 4.12(b), where the primitive actions (North, East,
SouthandWestin this case) are used together with states that have coordinates.

This way there is no need to explicitly store all effects of all primitive actions. These effects are
implicitly present in the coordinate system and the way the primitive actions are defined with respect to
the coordinates. If the primitive actionNorth is executed, the effect is something that is relative to the
state where the agent came from. Provided there is no wall, the new state of the agent is just one cell to
the north of the previous state.19 If we started in state (2,5) and executed the primitive action North (i.e.
add 1 to the y-coordinate), we would end up in state (2,6).

Primitive Actions Are Relative

The primitive actions are not defined in a goal-directed way or absolute way in terms of specificpoints
in the state space that they should go to. Instead they are defined in terms of what theydo, relative to
the state they are invoked in. This is possible becauseunder the hoodthe environment has a certain
geometry. The geometry is most obvious for grid-world like tasks, but it is not constrained to those
kind of tasks, as noted before. This geometry defines directions in the environment, and because of the
geometry it is possible to define meaningful difference vectors in the environment (or state space).

These difference vectors can then be used to define the primitive actions, and there is no need for
using explicit subgoals as absolute targets for the primitive actions. Actions are coupled with certain
difference vectors, and although the agent may not be flawless, and sometimes fails to execute the action
correctly and fails to achieve the usual difference, the coupling nevertheless works because there is at
least a statistical connection between an action and a vector.

In all four cases (fig. 4.11 and fig. 4.12) the environment isthe samebut our description of the
environment differs, with greatly varying results. Absolute ways of defining the primitive actions would
lead to an explosion of actions (as many primitive actions asthere are states) and enormous storage
needs. Defining actions relative to some (smart) coordinatesystem results in virtually no storage at all,
and incidentally also introduces the possibility for generalization (see section 4.3.1)! Both generalization

18However, because spatial tasks are intuitive, they are mostly used as examples here.
19Even when the environment is non-deterministic, and the agent does not know what the results of its actions will be, still

the actions in the environment are defined relative to the state in which they are executed, the only difference being thatthe
resulting states are defined by probabilities.
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and relative definition of primitive actions are made possible by using good, information rich state
descriptions.

4.5.2 Behaviours Should Be Like The Primitive Actions

Subpolicies (behaviours) in HASSLE are constructed similar to the primitive actions when they are de-
fined in a unique way. The high level subgoals that HASSLE uses, are defined in an absolute way (fixed
points in state space). In fig. 4.13(a) and (b), this situation is illustrated.

(a) absolute actions
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(b) fully connected (c) neighbouring states
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(d) a (restrictive) filter

Figure 4.13: absolute actions, fully connected: see fig. 4.11(a) and fig. 4.9(a) for more information.
neighbouring states, filters: see fig. 4.11(b) and fig. 4.9(b) for more information.

The results after applying (a priori or learned) filters, is comparable to what we get when we restrict
the (still unique) primitive actions to only neighbouring states (see fig. 4.13(c) and (d)).

A good situation was obtained for the primitive actions, when they were defined relative to some sort
of coordinate system in the state space. This is something HASSLE does not do, and it is the reason why
HASSLE needs a new action for each new subgoal (action explosion) and cannot use generalization on
the higher level (and related to this, why it cannot work withmore than two layers).

This is not something that is restricted to HASSLE, because it is related to the use of high level
abstractions of the state space. When such abstractions areused, the abstract statescannotbe used as
high level actions in an efficient way.

So if we want to design an algorithm that does not run into problems with generalization or exploding
numbers of high level actions, it seems that we need to define high level actions in a relative way, similar
to the way primitive actions are defined.

4.6 Comparing HASSLE To Other Approaches

HASSLE is compared (see table 4.2) to the other algorithms mentioned in the previous chapter. The
various Options-approaches are so similar in structure (and so different from the layered approaches),
that a comparison with the general options-framework suffices.

Abstract States

HASSLE focuses on giving a good abstract representation of the state space. It not only breaks up action
(and time) hierarchically, but also decomposes the state space in a hierarchical manner. This allows for
smaller state spaces at higher levels.

The state abstraction in HASSLE is not constrained to subsets of features from the state space. Arbi-
trary abstractions allow the designer to use his or her knowledge from the problem domain to define a
suitable abstract structure for the higher level states, for instance using a clustering algorithm, or perhaps
some entirely different heuristic (or just a selection of features from the lower level after all – if that is
most suitable).
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high level uses abstract states– + – + – + + ±20 +

abstract states composed of low
level state features only

+ + – + – –

high level policy can (in
principle) use neural network

± ±21 –22 – + + –23

focus on task decomposition
24 + + + +25 – – – –

subpolicies useddirectly as
actions by high level policy

+ + + + 25 – + + –

subpolicies start uncommitted±
26 – – – ±25 – – + +

subpolicy rewards independent of
reward for overall task

±26 – – – – + + + +

Table 4.2: Comparison of different Hierarchical Approaches: a “+” means that a feature is present,
and “–” that it is not. The approaches are listed in the same order as they were described above.

HASSLE stands out because it uses higher level abstract states which can be arbitrary instead of just
a clustering of lower level states or a selection of featuresout of the lower level states. In this aspect
it resembles Feudal Learning. Other approaches create higher level states out of selections of variables
(features) in the lower level state, as MAXQ, HEXQ, RL-TOPs and others do.

Like HQ-Learning it uses a Q-values table for the higher level to select high level states as subgoals
to go to. HASSLE and HQ both learn which subgoals to select, but HQ uses low level states as its
subgoals, while HASSLE uses its abstract higher level states for this.

Using Neural Networks On The High Level

In section 4.3.1 it was shown that HASSLE cannot function with function approximators (including
neural networks) on its high level. This is due to the fact that the subgoals are used as high level actions.
For generalization, some structure and predictability is needed, but the HASSLE high level actions will
always be different in different subgoals (even if theircontentis the same).

Many other hierarchical approaches also have trouble usingneural networks on their high level.27

They are (with the exception of Feudal Learning and the Self-Organizing approach) all dependent on
some elements that pose problems for function approximators because of their highly discrete nature.
The Self-organizing approach on the other hand is explicitly constructed with a neural network on both
layers.

20The high level uses a vector composed of low level values for its decisions, but each behaviour has a low level subgoal.
21HAM has a Q-values table that contains(state,machine)-pairs. It all depends on how the machines are constructed.
22The exit states are used as subgoals. These are fixed locations in the state space, making generalization hard (see sec-

tion 4.3.1).
23See section 4.3.1 for full discussion.
24There is no task decomposition (Options are added to the set of primitive actions).
25 HQ has a completely fixed execution order, so it has afixed task decomposition! Each of the subpolicies (viewed as

agents) is always executed in the same order. It is not specified though what each of the tasks should be, so it is fair to say that
the subpolicies are at least partly uncommitted.

26Depends on the specific options approach.
27At least, as far as can be deduced on the basis of the descriptions presented in the literature.
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MAXQ uses a hierarchical value functionVπ(< s,K >). This function gives the expected reward
for policy π starting in states with stack-contentsK. But this makes it dependent on the subtasks that
are still on the stack and these are (probably) discrete. Small variations in the stack contents will often
results in entirely different policies. This could make function approximation difficult.

The Q-values table that HAM uses, contains information on both the stateand machinebecause
it consists ofstate,machine-pairs. These machines act as the high level actions in HAM. Whether or
not HAM can use a neural network for its high level machine, rather depends on how these machines
are constructed. If they rely on information about positions in the state space (i.e. absolute) then there
will be problems similar to those HASSLE runs into. However, if these machines can be constructed in
terms ofdoing thingsinstead ofreaching subgoals, a function approximator like a neural network will
probably be able to cope with them.

HEXQ depends on identification of ’exit’ states, and these exits serve as subgoals for subtasks. This
makes HEXQ goal directed and a function approximator would probably run into the same problems as
with HASSLE.

HQ learns subgoals for each of its sequential agents. This means it will have problems similar to
HEXQ. Only if the problem is somehow repetitive, generalization is possible, because more than one
agent would in that case have a similar subgoal in a similar situation.

Feudal Learning has only a limited set of orders on each layer, and these orders need not be dependent
on specific (absolute) subgoals.28 This means that Feudal Learning could in principle use a neural
network on a higher layer.

RL-TOPs does not even use a Reinforcement Learning policy onits high level, but uses a planning
system instead. Planning and calculation are not the strongpoints of neural networks.

The ability to use function approximators (more specifically neural networks) for the Reinforcement
Learning policy on the high level, would be very useful. Neural networks are often used when a tabular
representation is infeasible because the problem is too large. If a Hierarchical Reinforcement Learning
algorithm (for its high level) depends on information that has an absolute nature, or that requires too
much precision (e.g. stack contents) however, it is hard to combine it with a neural network.

(No) Focus On Task Decomposition

The HASSLE algorithm does not define a task decomposition (like for instance MAXQ or HEXQ) but
only needs the definition of abstract states for use on the higher level. The focus in HASSLE is not on
decomposing the task into subtasks, but on defining suitableabstract states (and therefore on ordering
the state space hierarchically). In this reduced state space a learning algorithm can learn to solve the
problem, using standard Reinforcement Learning techniques.

This means that the focus is on designing good abstractions rather than task decompositions. A
decomposition of the task is useful when the designer knows roughly how the task needs to be solved
and what kind of subtasks are needed. The focus on state spaceabstraction on the other hand is useful
when a solution to the problem is not so clear but when some state abstraction is evident.

This is rather similar to the way RL-TOPs works. RL-TOPs defines teleo-operators (TOPs) with pre-
and post-conditions. A planning algorithm then searches for a solution (but the subpolicies are trained
with Reinforcement Learning). The decomposition is only implicitly present in the way the TOPs are
defined.

HASSLE can work in non-deterministic and unknown environments because of the use of reinforce-
ment learning on all levels, while those unknown environments pose a problem for RL-TOPs because
planning in is difficult in an environment with unknown rules. But aside from that, HASSLE could to a
large extent be reformulated in RL-TOPs terms, because behaviours in HASSLE can be viewed as TOPs
that have the high level state (or better: all the low level states falling under the same high level state)
that they start in as a pre-condition and likewise have the destination high level state as postcondition.

28In fact, Feudal Learning is rather similar to ana priori fixed version of HABS, see section 5.1.2.
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(Not) Directly Adding Subpolicies As Actions – Capacities

HASSLE uses the Capacities mechanism as a link or interface betweenthe subgoals and the subpolicies.
Most of the other approaches use their subpoliciesdirectly as behaviours and incorporate them directly
in task decompositions. Feudal Learning is the only other exception: it uses a system ofmanagers: they
receive orders and themselves give orders to lower submanagers.

These managers form an interface between the orders and the execution of behaviour. The managers
are free to decide how to execute the orders, and it could be that the manager has a selection of suitable
behaviours to choose from. The managers in Feudal-learningtherefore act in a similar fashion to the
HASSLE Capacities.

There is no specific reason why adding subpolicies directly is better or worse than using some sort
of interface mechanism (like the HASSLE Capacities or the managers in Feudal-learning). Using an
extra interface mechanism means that there is more to learn,but on the other hand it provides flexibility,
because the (learned) interface provides the ability to finetune. An interface could receive the same
order (the same high level behaviour) in two different situations, and in one case translate it to one
subpolicy in one case and to another subpolicy in another case, because the interface observes more fine
grained information and sees differences that are abstracted away on the higher level. This keeps the
higher level decision and learning simpler.

On the other hand this fine tuning could also happen inside thesubpolicy. If the subpolicies that are
used are flexible enough, they are able to provide the same differentiation of one high level action into
many similar (but not entirely equal) behaviours. In the same way as with an extra interface, this would
keep the higher level decision and learning simpler.

Uncommitted Subpolicies

HASSLE uses its Capacities-mechanism to organize itsa priori uncommitted subpolicies. Each sub-
policy starts out uncommitted, but using the Capacities, subpolicies can specialize and organize them-
selves. This is unlike most of the other approaches. MAXQ forinstance has a predetermined task
decomposition and certain subtasks are assigned to certainsubpolicies, so it is known before the learn-
ing phase which subpolicy should accomplish which subtask.

The self-organizing algorithm is the other exception: it tries to find low level states which cover the
state space and that way tries to organize its subpolicies. It is structured to self-organize the behaviours
over the state space, and each behaviour shifts to regions ofthe state space where the maximum of the
Q-values of other behaviours is low. HASSLE usesa priori information in the form of high level states,
unlike the self-organizing approach. The high level statesand Capacities restrict the organization of the
system.

If enough information is available to construct a suitable task decomposition, it makes sense to use
committed subpolicies. However, if it is not clear (for the designer) which kind of subtasks are needed,
subpolicies need to start uncommitted.

Local Reward Functions

HASSLE uses local reward functions: subpolicies have their own rewards which are completely inde-
pendent of the rewards the agent gets for solving the overallproblem. This means that the behaviours
are viewed independently from the overall taskunlike for instance in HQ, MAXQ and HEXQ and can
therefore be re-used fairly easy.

In this aspect HASSLE resembles RL-TOPs or Feudal-Learning or the way manyoptionsapproaches.
A behaviour is just rewarded for doing what it is ordered to do, not for contributing to the eventual
(global) rewards or for completing the overall task.

Consider the situation in fig. 4.14 where the state space nearthe goal is depicted. It is clear that
behaviours “A⇛ goal” and “B⇛ C” are very similar in this problem and could (evenshould!) be
executed by the same subpolicy. This means that in both situations the agent should be rewarded if it
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Figure 4.14: Subpolicies independent of global reward: a navigation domain where behaviour
“A ⇛ goal” and “B⇛ C” are essentially the same. Behaviour “goal⇚ B” is the opposite, but has a
similar high level Q-value as “A⇛ goal”.

executed the behaviour correctly, regardless of whether the behaviour actually brought the agent closer
towards its overall goal.

Now suppose that the local (subpolicy) reward is dependent on the global reward. In that case
the behaviours “A⇛ goal” and “goal⇚ B” would be rewarded with similar rewards (because in both
cases the agent receives a reward for reaching the goal) and “B⇛ C” would get a far lower (or zero or
negative) reward because it moves the agent away from the goal.

But when training a certain behaviour, we are mainly interested in that behaviour, irrespective of
whether it actually helps us in our overall task. The subpolicy only exists to execute transitions between
high level states, and if that is what it should do, that is what is will be rewarded for, no matter the high
level situation. So a dependence between the high level reward and the low level reward functions for
the subpolicies is not desirable. This way of rewarding is exactly what the reward functions in HASSLE

do (see section 4.1.1). A subpolicy will only be rewarded when it actually reaches the subgoal it was
meant to reach.

Comparison – Final Remarks

It is interesting to note that HASSLE shares many features with both the Feudal-learning and the self-
organizing approach, although HASSLEand Feudal-learning use look-up table, whereas the self-organizing
approach is designed specifically for the use neural networks. The structure of the self-organizing ap-
proach is completely different than that of HASSLE or Feudal-learning.
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Chapter 5

HABS — Self-Organizing Behaviours

From our analysis of HASSLE (section 4.2), we can conclude the following: the use ofstate space
abstractionsis useful. A focus on abstract states allows for a shift away from designing task decom-
positions by hand. Also, the use ofindependentreward functions for the subpolicies creates reusable
behaviours.

Furthermore from the section on problems with HASSLE (section 4.3) we know that using subgoals
explicitly as actions will not work, because it is the root ofall sorts of problems. Instead we should aim
for behaviours that are defined relative to the abstract state space, analogous to the primitive actions.

5.1 HABS — Hierarchical Assignment of Behaviours by Self-organizing

A new algorithm based on HASSLE cannot use absolute (high level) actions. Instead, when behaviours
are defined in a relative way, there is a mapping between the behaviours (transitions between high level
states) and the high level actions. It classifies each behaviour as belonging to one of the high level
actions. This can be compared to how all primitive actions that move an agent Northward all map to the
same primitive actionNorth.

5.1.1 Short Circuiting HASSLE

A classification algorithm is used to map the transitions between high level states to characteristic be-
haviours. These behaviours are then added directly to the high level policy as (high level) actions. By
this short circuitingof the HASSLE algorithm, both the Capacities and the use ofstates (subgoals) as
actionscan be avoided. The Q-values of the high level policy now directly determine which subpolicy
is suited for which transition, because the Q-values give the value for a high level action (behaviour) in
a high level state (see fig. 5.1).

The algorithm that results from short circuiting HASSLE is called HABS, which stands forHierarchi-
cal Assignment of Behaviours by Self-organizingbecause instead of HASSLE (Hierarchical Assignment
of Subpolicies to Subgoals LEarning) it does not use subgoals but organizes itself by dynamically as-
signing (classifying) behaviours to its uncommitted subpolicies.

Reverse Order

It is interesting to note that the relative nature of the HABS behaviours is accomplished by reversing the
chain that links transitions between subgoals to subpolicies (see fig. 5.1). HABS starts with classifying
many transitions to a small set of characteristic behaviours (many-to-one) and then associates each of
these with a specific subpolicy (one-to-one). This reverse order is possible, if high level behaviours can
be defined in a relative way (as is later explained). When thatis the case, many transitions can be treated
as roughly the same, and can be mapped to one group and one subpolicy.
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Figure 5.1: The hierarchical structure of HABS: the large gray circles are the high level states. The
black arrows represent the high level Q-values (the thickerthey are, the higher the Q-value). The actions
(behaviours) on the high level are classified to a small set ofcharacteristic behaviours (dashed arrows
leading towards the gray arrows). The classes are each associated with a particular subpolicy. Notations
correspond to those in section 5.1.3.

HASSLE on the other hand first treats each of the transitions as unique (one-to-one) and then relates
each transition to all the subpolicies (one-to-many) by means of the Capacities (see fig. 5.2). The prob-
lems with HASSLE were all related to the number of high level actions, and their unique nature. But
since HABS uses the characteristic behaviours, of which there are onlya few, it does not suffer from the
same problems.

Figure 5.2: The hierarchical structure of HASSLE: the large gray circles are the high level states
(subgoals). The Q-values of the high level policy are indicated by the thickness of the black arrows between
the subgoals. The●→● represent the (unique) transitions between subgoals. The Capacities (Mapping2→1)
are represented by the thick gray triangles (thicker means higher capacity). Notations correspond to those
in section 4.1.1. (Same as fig. 4.1, placed here for easy comparison with fig. 5.1).

No More Explicit Goals

There is oneslight problem with HABS as it is proposed here. By kicking out thesubgoals as actions-
idea, we have lost our easy way of training subpolicies. Without explicit (sub)goals we cannot train a
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subpolicy for a subtask with the trivial heuristic that HASSLE uses:the behaviour of the subpolicy is
good, if the subgoal is reached.1

Since there are no more goals, a new mechanism is needed for determining when a subpolicy should
be rewarded (at least, if the classification is not givena priori by the designer). Self organizing is
proposed as a solution, based on some extra restrictions on the state abstraction.

The idea is that a good representation of the abstract stateswill provide meaningful behaviours.
Given such a state abstraction, it then becomes possible to classify and organize the occurring behaviours
such that clusters of similar behaviours are identified. These clusters will represent behaviours that are
neededto solve the problem and because the behaviours within a cluster are similar, it is possible to
accomplish them with one (suitable) subpolicy which can be used directly as a high level.

HABS can start with uncommitted subpolicies because the classification is learned. The classification
will provide the reward conditions for the subpolicies, butthe classification is updated according to what
the subpolicies do.

5.1.2 Comparing HABS to Other Approaches

In the previous chapter, several approaches were compared.Table 4.2 is reprinted here, with an extra
column for HABS (table 5.1) to illustrate similarities between HABS and other approaches.

MAXQ and HEXQ focus on task decomposition (although they have some form of state abstraction)
and therefore try to accomplish a structure like HABS by defining suitable pre and post conditions for
their subtasks. They reduce the vast number of unique transitions to a manageable amount of subtasks
by a suitable choice of conditions on each subtask.
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high level uses abstract states– + – + – + + ± + +

abstract states composed of low
level state features only

+ + – + – – –

high level policy can (in
principle) use neural network

± ± – – + + – +

focus on task decomposition + + + + – – – – –

subpolicies useddirectly as
actions by high level policy

+ + + + – + + – +

subpolicies start uncommitted ± – – – ± – – + + +

subpolicy rewards independent of
reward for overall task

± – – – – + + + + +

Table 5.1: Comparison of different Hierarchical Approaches: a “+” means that a feature is present,
and “–” that it is not. The approaches are listed in the same order as they were described above. This is an
extension of table 4.2. See there for more information.

It is interesting to note, that this is somewhat similar to the structureimplicit in RL-TOPs (see

1Note that this is not a problem for the primitive actions, even though they are also relative. This is because the primitive
actions area priori given and not learned, so there is no need of training or goals. Therefore if behaviours were predefined,
this would not be a problem for the high level(s). This is somewhat similar to the way the Multi-Step actions (section 3.4.1)
work: those options were also predefined instead of learned.This is however not suitable when the environment is not known
well beforehand.
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section 3.5.6). The RL-TOPs algorithm is based on the notionof a teleo-operator(called a TOP) which
consists of a temporally extended behaviour (a Reinforcement Learning policy with a neural network as a
function approximator) and a set of pre and post conditions.Although RL-TOPs still defines behaviours
in terms of desired goals, it does so in a rather general way, by stating post conditions that the TOP
should reach, not by stating specific (high level) states.

Both the TOPs and the subtasks in MAXQ or HEXQ are an attempt todefine rather generic be-
haviours, that are not limited to certain specific sets of abstract states. Unlike the primitive actions,
they still are somewhat goal directed (because of the post conditions they need to achieve) but this goal
directed nature is what makes TOPs useful in planning2.

Another possible parallel is between relative behaviours and Options. Some Options approaches
allow for the inclusion of Options that do something “relative” like moving the agent through a small
passage, instead of moving the agent to a certain goal. The Options approaches however do not use
multiple layers or state space abstraction.

Feudal Learning as anA Priori Fixed Form of HABS

Feudal Learning is an interesting case because in its description Dayan et al. only note that each layer
has a limited set of commands. As already noted in the comments in section 3.5.5, for each command
the (sub)goal is already knowna priori so this makes it somewhat similar to RL-TOPs or MAXQ and
HEXQ with their pre and post conditions. However, the classification of the commands on each level is
(in their example task) derived directly from the underlying geometry. HABS is built around the same
principle, but unlike Feudal Learning it has noa priori defined behaviours. In a sense, Feudal Learning
can be considered as a version of HABS where the classification is fixed from the beginning.

5.1.3 HABS Formalized

In this section the formal structure of HABS is presented. The same format as in section 4.1.1 is used
to highlight the similarities and differences between HABS and HASSLE. The structure that is presented
here, is in fact a framework. The details need to be filled in with heuristics, in order to get an algorithm.

HABS for n layers consists of the following (withi ∈ {1, . . . ,n}):
• sets of statesStatesi = {statei,1,statei,2, . . .}:

States1 is the set of primitive states andStatesi≥2 are sets of higher level states. Each of theStatesi
can be continuous.3

• sets of actionsActionsi = {actioni,1,actioni,2, . . .}:
Actions1 is the set of primitive actions, butActionsi≥2 = Policiesi−1 (i.e. actions are lower level
subpolicies) soactioni,x = policyi−1,x for i ≥ 2.

• sets of (sub)policiesPoliciesi ∶ ∀k(policyi,k ∈Policiesi ∶Statesi ×Actionsi →R):
Standard Reinforcement Learning policies for each layer. The top layer has only one policy
(so Policiesn = {policyn}), but the other levels havemi policies (soPoliciesi = {policyi,1, . . . ,

policyi,mi }), each specializing in different subtasks. Only one (sub)policy is active at each level
at each time step.

• AgentInternals: variables describing the observations and memory of the agent: currentStatei ∈
Statesi , currentActioni ∈Actionsi , and indicators for the timeouts:timeouti and which policies are
active on each layer (policyi,active).

2RL-TOPs uses a planning tree on the high level, not Reinforcement Learning.
3For a hierarchy∣Statesi+1∣ < ∣Statesi ∣ is needed. But ifStatesi is continuous,∣Statesi+1∣ < ∣Statesi ∣ needs to be understood

in a different way. If two spaces are continuous, they both contain an infinite number of points, so comparing size that way
is impossible. Instead, the statement∣Statesi+1∣ < ∣Statesi ∣ should in that case be understood as indicating that the “flat” state
space is viewed on a coarser level by the abstract state space. This could for instance be the case when the abstract states
contain less variables or if it has the same number of variables, but averages values over a wide range.
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• n−1 functionsExeci≥2 ∶Actionsi−1×Actionsi−1× . . .×Actionsi−1→R
m

A means of getting from the actions that the agent executed with policyi,active to a suitable de-
scriptionexeci . (Instead of defining it in terms ofActionsi−1 it could also be defined in terms of
Actions1. This does not matter, as long as a good representation for the executed behaviour on
each leveli can be defined.)

• n−1 classifiersClassi f ieri≥2 ∶ execi →Policiesi−1

A behaviourexeci executed by alayeri policy is always classified as “belonging to” alayeri−1

(sub)policy. This means thatClassi f ieri(execi) = policyi−1,k for a certaink. Classi f ieri classifies
the actually executed behaviourexeci that results when the active policypolicyi,x executes one of
its actionsactioni,active ∈Actionsi . Since the actions for layersi ≥ 2 are entire (sub)policies on the
level below,policyi,x in fact executespolicyi−1,active. The classification defines sets of behaviours
that are similar. (obviously there is no classifier for the lowest layer)

• stop conditionsStopi ∶AgentInternals→ {terminate,continue}:
Determine whether a (sub)policy should terminate when it has moved fromSi to Si

′.

Stopi<n = { terminate If timeouti ∨ distance(Si ,Si
′) > δi

continue otherwise

Stopn = { terminate If timeoutn ∨ the agent reaches its goal
continue otherwise

• reward functionsRewardi ∶AgentInternals→R:
TheRewardi<n depend on how the higher levelClassi f ieri+1 classifies executed behaviourexec. If
Classi f ieri+1(exec) = policyi+1,active the agent needs to be rewarded. Other rewards/punishments
are given for a wrong match and for timeout. During executionthe policy receives 0 reward. Note
that this is an internal reward, i.e. it is not received from the environment.

Rewardi<n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 If Stopi = continue
1 If Stopi = terminate∧ Classi f ieri+1(exec) = policyi,active

ρ f ailed If Stopi = terminate
∧ Classi f ieri+1(exec) = policyi,closestMatch

∧ closestMatch≠ active
ρtimeout otherwise

For Rewardn (top layer) the accumulated rewards that the environment gives the agent during
execution of a subpolicy (possibly with nested subpolicies, etc), can be used because they are
related to solving the overall problem4.

Selecting Heuristics – Filling In The Details

In order to get a working algorithm, a Reinforcement Learning algorithm needs to be selected for all the
policies.5. Several of these are described in section 2.3.

Also, a suitable abstraction of the state space is needed. Some general properties can be formulated
(described in section 5.1.6) in general. But the selection of a certain abstract state space is related to
which types of classification or distance measurement is used. A state abstraction on the assumption
that high level actions can be approximated byvectorsis described in section 5.2.

Furthermore classifiers are needed and thedistance(Si ,Si
′) (i.e. the distance that the agent moved

through state space from the startS of the subpolicy until the current situationSi
′) needs a concrete

measurement. Examples of these will be described in section5.2.6.

4In sparse reward tasks this will amount to 0 when the goal is not reached, andrewardgoal when it is reached.
5Or even different Reinforcement Learning algorithms for different (sub)policies.
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Algorithm 5 : HABS in pseudo code: an example with two layers. RL UPDATE (. . .) (same
as in algorithm 4) updates a policy with a Reinforcement Learning algorithm (see section 2.3).
“ NULL ” indicates that a value is unknown.

HABS ::
while (TRUE) do // Policy2 (high level) loop

accumReward2 = 0; // For high level reward
agent is in abstract stateS∈States2;
policy2 selects (sub)policypolicy1,active; // HL-action = subpolicy1,active

while (TRUE) do // (Sub)policy1,active:(low level) loop
agent is in statest ∈ States1;
policy1,sel selects primitive actionat ∈Actions1;
agent executes actionat and receives rewardreceivedRewardt ;
accumReward2← accumReward2+ receivedRewardt ; // Accumulate
if (Stop1) then BREAK ; // Terminate subpolicy
else RL UPDATE (policy1,active,st−1,at−1,0,st ,at ); // Sparse rewards

end

determine current abstract stateS+ ∈States2;
if (timeout1) then RL UPDATE (policy1,active,st−1,at−1,ρtimeout,st , NULL ); // Timeout
else

determine behaviourexecthat was executed bypolicy1,active;
calculateClassi f ier2(exec) = policy1,closestMatch;

if (policy1,closestMatch= policy1,active) then // Match:...
RL UPDATE (policy1,active,st−1,at−1,1,st , NULL ); // ...reward

else RL UPDATE (policy1,active,st−1,at−1,ρ f ailed,st , NULL ); // No match

end

updateClassi f ier2 with new dataexec;
RL UPDATE (policy2,S−,oldSUB,oldAccumReward2,S, policyi,closestMatch);

S−←S; // Save vars for...
S←S+; // ...next iteration
oldAccumReward2← accumReward2;
oldSUB← policy1,closestMatch; // see section 5.1.4 for explanation

end

RL UPDATE (POLICY p, STATE st−1, ACTION at−1, REWARD rt , STATE st , ACTION at ) ::
switch ( f avourite Rein f orcement Learning algorithm) do

case(Q-Learning) // See section 2.3.3
updateQ(st−1,at−1) ← (1−α)Q(st−1,at−1) + α(rt +γmaxaQ(st ,a));

end
case(Advantage-Learning) // See section 2.3.4

updateA(st−1,at−1) ←(1−α)A(st−1,at−1) +α(maxaA(st−1,a) + 1
k (rt +γmaxa′A(st ,a′)−maxaA(st−1,a)));

end

⋮

end

Control Flow

An example is given for two layers: the high level policypolicy2 runs untilStop2 indicates termination.
policy2 selects a subpolicypolicy1,active (its high level action) that it wants to execute when the agent is
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in abstract stateS∈ States2.
Control is passed topolicy1,active, which is executed untilStop1 indicates termination. At each time

step during execution the subpolicypolicy1,active is updated with a 0 reward according to reward function
Reward1.

After policy1,active terminates its executed behaviourexecis determined with the functionExec2.
Then it is classified:Classi f ier2(exec) = policy1,closestMatch. If closestMatch= activethenpolicy1,active

is rewarded because it was the closest match. If it is not the closest match becausepolicy1,active executed
a behaviour that fits better with some otherpolicy1,otherPolicy then it would receive a punishmentρ f ailed.
If policy1,active terminated because of timeout it is also punished (ρtimeout).

The higher levelpolicy2 is then updated according toReward2 (the accumulative reward) for select-
ing policy1,active in abstract stateS. Classi f ier2 is also updated.

The control flow (with two layers) is illustrated in algorithm 5 and the relation between components
is depicted in fig. 5.1.

5.1.4 Replacing Desired with Actual Behaviour

HASSLE could use the actually reached subgoal instead of the desired subgoal. It just substitutes the
high level action that it selected to execute, by the action that it did actually execute (see section 4.2.3).
That way HASSLE can make more efficient use of its experience and correct errors due to not yet fully
learned subpolicies or exploration (see section 4.2.3). Ifit ends up in subgoalX it will always use the
knowledge that(goto) X was the actually executed action.

HABS is very similar to HASSLE in this respect. After the active subpolicy has executed a high level
action, the agent can observe which abstract action it has actually performed. Usually this will resemble
what this subpolicy actually should do, but sometimes due toexploration it might have done something
different. In fact, it will sometimes execute behaviour that “belongs” to another subpolicy (i.e. when
Classi f ier(exec) = policy1,actuallyExecutedand actuallyExecuted≠ selected). In that case we can use
this information to better train the high level policy. We actually know that the agent has performed
behaviourexecso we can update it forpolicy1,actuallyExecutedinstead of for selectingpolicy1,active.

This is possible because the designer created the state abstraction and knows its mechanics. In that
case an action can be deduced from the knowledge that the agent first was in abstract stateA but now in
B. HABS and HASSLE both use this principle to correct for errors (mainly in the beginning of learning).

5.1.5 Self Organization

If the classification is not given by the designer, it must be learned. HABS couples subpolicies to classi-
fications, so this learning involves self organization on the part of subpolicies and classifications. This
occurs because subpolicies are rewarded for executing behaviour that is classified as belonging to their
own class, and on the other hand updating the classification towards recently executed behaviours (if
they were successful, i.e. they matched).

During the learning phase, the agent can discover clusters of behaviours, and subpolicies are associ-
ated with these clusters. This is done by updating the classification with the behaviourexect→t+∆t that
the active subpolicypolicyi,active executed. If the recently executed behaviourexect→t+∆t is classified by
Classi f ieri+1(exect→t+∆t) as belonging to the class that is associated with the subpolicy that executed
exect→t+∆t or whether it is classified as belonging to the domain of another subpolicy. On the other hand
the classification is used to measure their performance and reward the subpolicies accordingly.

Subpolicies are punished when they don’t succeed in leavinga high level state (if they don’t cover
much distance if the state space is continuous) so they areforced outward. This prevents the subpolicies
from specializing instanding stilland becoming experts indoing nothing at all.
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Burden Of Random Walk Exploration

The subpolicies (by means of a good classification) need to cover the occurring behaviours as good
as possible, if they are to be useful as actions for the high level policy. But since there is noa priori
knowledge about what behaviours are needed, the subpolicies start without meaningful behaviour and
with randomly initialized characteristic behaviour. Thisis a crucial difference with other hierarchical
Reinforcement Learning approaches, where the structure ofdesired behaviours (macro-actions, options,
subtasks) is typically predefined.

This means that in the beginning (much) exploration is needed on both levels. The high level selects
actions (subpolicies) to execute and the subpolicy (while exploring) might stumble upon new high level
states. Since high level states are nearby they are reached early on in the learning phase by just randomly
exploring. The overall goal on the other hand can only be reached by a long chain of primitive actions,
so the expected duration before a random walk would reach thegoal, is very high (because the time is
quadratic in the distance).

This means that early during the learning phase, the agent isable to discover meaningful behaviours
that provide transitions between abstract states. These experiences are (provided the state abstraction
is good) clustered together, and the agent will be able to assign subpolicies to each of these newly
discovered clusters. These subpolicies will specialize themselves, and will in turn be very useful in
solving the overall problem because they execute useful behaviours (subtasks) that are purposeful. And
as illustrated in section 3.1.3 and section 3.2.3, large non-random sequences of primitive actions allow
the agent to explore further and faster by random walking.

In essence, the burden of random walking is during the learning phase shifted from the level of
primitive actions to the level of behaviours. This principle can easily be extended to more than two
layers. Once the agent has mastered (small) behaviours for the second layer, it will use these in random
walking and then reach third layer abstract states. The random walking burden will be shifted to higher
and higher layers.

5.1.6 State Abstraction Suitable for HABS

HASSLE uses abstract states in an absolute way, but as we illustrated in section 4.5 this is not an efficient
way to define states, because each action becomes unique and unsuitable for generalization. Abstract
states should be defined in a manner similar to the states in the original state space if we want abstract
high level actions to be relative.

HABS uses its classification mechanism to go from many (absolute)transitions between high level
states, to a few (relative) behaviours. If this classification were givena priori and if the designer just
specified which high level transitions mapped to which behaviours, there would be no need to learn
it, and neither would there be a reason to look for propertiesof suitable abstractions. However, if the
problem is large, the abstract state space will also be large, and specifying the entire mapping might
not be feasible.6 So, we need a way to automatically discover this classification, and for that we need a
suitable state abstraction.

The properties implicit behind the HASSLE abstract states, can also be used for HABS. HASSLE has
the following properties (section 4.6):

(1) consistent mapping (to): states close together map to abstract states near each other (or the same
abstract state)

(2) consistent mapping (from): neighbouring abstract states correspond to nearby regions in the orig-
inal State Space

(3) a transition in abstract state space is a meaningful change in the original State Space

(4) abstract state space needs to be significantly smaller than the original state space
6Similar to why defining ana priori Filter is not feasible when the problem is too large (see section 4.4).
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(5) there is a limited amount of groups of similar transitions between abstract states

All these properties still hold for HABS. The fifth HASSLE-property is related to the capacities and
subpolicies: it assumes that there are only a limited amountof (substantially) different transitions. The
Capacities map these transitions to different subpolicies, but the function of the Capacities is replaced
by the identification of clusters in the Behaviour Space. Thedetails of the fifth HABS-property will
therefore depend on the specific heuristics that are used forthe classification.

Circular?

It should be noted that the fifth property seem somewhat circular. We need some knowledge about the
solution of the problem to derive a good state abstraction inorder to solve the problem. We need to know
whether a state abstraction is good (in terms of how many groups there are) but we will only know this
for sure after we have mastered the problem and have actuallyexperienced the occurring behaviours,
and observed whether they are clustered appropriately.

This means that creating a good state abstraction is an iterative process where some intuition is
needed for the designer (just as in the case where the designer needs to specify a task decomposition for
an agent). The designer might try a state abstraction, observe the results, and perhaps tweak it a little
and try it again.

Humans are experts in abstraction, and a state abstraction that seems reasonable to a human designer
will often be according to the properties stated above. And besides that, subpolicies can use function
approximators and are therefore flexible enough to handle some irregularity. After all,quick and dirty
learning is desirable above painstakingly slow learning orno learning at all. So even if a hierarchy is
not perfect, it will at least increase learning times and yield a good (though not perfect) solution in a
reasonable time.

5.2 Heuristics For HABS — Filling in the Details

HABS is (as presented here) a framework. Depending on what choices are made, different algorithms
are created. A choice needs to be made for a suitable state abstraction (and a means of classification)
and for the termination criteria.

5.2.1 Action Space and Behaviour Space

For convenience, let’s define anAction Spaceto bethe set of all possible difference vectors in that state
space(see fig. 5.3). Thedifference vectorsare the vectors that result when the difference between the
vector representations of arbitrary states is calculated.This means that theAction Spaceconsists of all
possible vectors that are confined within the dimensions of the state space (fig. 5.3).

Figure 5.3: Behaviour Space: the space of all possible difference vectors in a state space (with dimensions
b1,b2,b3). The arrows are examples of difference vectors between states.

It is important to note that the primitive actions are also just vectors in anAction Space, they form a
subset of the entire space. Moreover, the difference vectors that correspond to the primitive actions are
theonly vectors in the Action Space that arereal in the sense that they do actually occur when solving
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the problem. A transition between two states that are not connected by a primitive action, will not occur
in the problem, and is only a theoretical possibility.

There is something else that can be said about the Action Space and the primitive actions.If the
primitive actions are defined in a relative way (see section 4.5.1), then the primitive actions will all be
cluttered together. All the instances of one type of primitive action (e.g.“pickup” or “North” ) will map
to the same (or nearly the same) difference vector in the Action Space because of their definition that
was relative to the structure in the underlying state space.

We can also construct an Action Space for the Abstract State Space (like those that HASSLE and
HABS use). The result is anAbstract Action Spaceor Behaviour Space. The actions in the Behaviour
Space are entire behaviours consisting of sequences of primitive actions.

5.2.2 Assumption on Difference Vectors

The high level (abstract) actions are treated here as differencevectorsbetween two abstract states. This
is obviously a simplification.It is not hard to find a counter example against this assumption: suppose
we have an obstacle and the agent needs to go around it (see fig.5.4(a)). It can either go left (through a
corridor) or right (open space). The difference vector is the same for both behaviours, because they end
up in the same location. But the behaviour itself is very complex (moving through a corridor, avoiding
obstacles, etc) and a subpolicy would have a hard time specializing on these widely different behaviours,
even though the state abstraction suggests that they are in fact very similar.

(a) counter example (b) solution

Figure 5.4: Counter example: the abstract state (indicated by dashed lines) are so largethat two com-
pletely different behaviours (black arrows: left or right around the obstacle (gray area)) result in the same
difference vector (dashed arrow).Solution: the abstract states are smaller, resulting in more – but less
complex – behaviours.

This counter example is the result of making the state abstraction too coarse. This is not what we
want when we introduce hierarchies. One of the leading ideaswas to obtain small reusable subtasks, but
the task that the agent is confronted with here is itself a very large task.

Increasing the number of abstract states (i.e. making it more fine grained), could solve this problem
(see fig. 5.4(b)). It results in more abstract states and behaviours, but these are less complex and more
similar to each other. When abstract (high level) actions are roughly similar, this opens up possibilities
for approximation. It now becomes possible for one subpolicy to specialize in moving through the
corridor, and for another to do something else. Each of thesebehaviours is now different according to
the abstraction.

5.2.3 HASSLE Behaviour Space

The Behaviour space that HASSLE uses, is very simple. Since the abstract state space has no structure
and the abstract states are onlynominal: they only have a “name” (or a number) as designation. In this

case each difference
ÐÐ→
A−B of two subgoals forms its own dimension, or in the case of

ÐÐ→
A−B and

ÐÐ→
B−A

they share the same dimension, but are complete opposites!
For n subgoals there would just ben× (n− 1) arrows (no transitions from A to A) pointing in

1
2 ×n×(n−1) different dimensions (because of the opposites). There areas many dimensions as there
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(a) abstract state space (b) abstract action space

Figure 5.5: Abstract State Space forHASSLE: a very simple abstract state space. Only A and B, B and
C and C and D are connected.Abstract Action Space: becauseHASSLEsubgoals are only nominal, there
are4×(4−1) different vectors for 4 subgoals, so there are1

2 ×4×(4−1) = 6 different dimensions, so each
line depicts another dimension! The black arrows denote actually occurring transitions, the gray arrows
are transitions that will not occur while solving the problem, because they are impossible transitions.

are pairs of abstract states. Some of these arrows are actually occurring (high level) actions because they
represent transitions between subgoals that are adjacent (see fig. 5.5).

5.2.4 Demands on the HABS Behaviour Space

The abstract state space that HASSLE uses, will not do for HABS. A space where each occurring tran-
sition has its own dimension leaves no room for defining the high level actions in a relative way and
classifying them automatically – which was what HABS needs.

However, we are not restricted to nominal descriptions of the abstract states. These abstractions
where derived from the underlying (original, flat) state space, and that state space has its own structure
or geometry. In fact this structure is the reason that the primitive actions do not behave badly but can be
defined in a way relative to this underlying structure (see section 4.5.1). Note that this is all under the
assumption that the original state space is sufficiently structured, but this is not unreasonable, because
many real-world problems have highly structured state spaces: usually Reinforcement Learning problem
state spaces do not consist of states that are only nominallydescribed.

(a) abstract state space (b) abstract action space

Figure 5.6: Abstract State Space: the same simple abstract state space as in fig. 5.5(a), but this time the
abstract states have an internal structure that is reflectedin their state description.Abstract Action Space:
due to the internal structure of the abstract state space, the behaviour space is only one-dimensional. The
black arrows denote actually occurring transitions, the grey arrows are transitions that will not occur while
solving the problem (because they are impossible transitions). Many transitions (high level actions) map
to the same difference vectors.

If we make good use of the underlying structure when we createour abstract states, we can prevent
the situation where each transition needs a new dimension because the states are all nominal. This
is illustrated in fig. 5.6 where a very simple abstract state space and its accompanying abstract action
space are depicted. The abstract states use the underlying geometry of the original state space in their
descriptions and therefore many of the high level actions now map to the same difference vector.

This concept is not limited to abstractions that are perfectly regular and where the difference vectors
are identical between many of the abstract states (as often is the case for the primitive actions between
states). If high level actions are roughly the same (as in fig.5.7) these difference vectors will still be
close to each other even though they are not exactly the same.There are in fact several distinct groups
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(a) abstract state space (b) abstract action space

Figure 5.7: Less regular Abstract State Space: the same simple abstract state space as in fig. 5.5(a) and
fig. 5.6(a), but now the state descriptions of the abstract states are less regular.Abstract Action Space
for the less regular abstract state space: the abstract action space still has only one dimension. Many
transitions (high level actions) are represented by roughly the same difference vectors.

or clusters of difference vectors. This means that there is agood probability that one subpolicy would
be able to execute all the behaviours in a cluster. We would only need as many subpolicies as there are
clusters and that is also the number of actions that our high level policy would have.

Many Different Abstractions Are Possible

While it is true that HASSLE and HABS can work with the situation in fig. 5.8(a), it would cost a lot.
There are so many different behaviours, that HASSLE and HABS would need many subpolicies (in fact,
both would need the same number of subpolicies) and many of these subpolicies would only be good
for executing a few transitionsor even only one, because there are so many different transitions between
high level states.

(a) state abstraction 1 (b) behaviour space 1 (c) state abstraction 2 (d) behaviour space 2

Figure 5.8: state abstraction 1 and behaviour space 1: the behaviour space has two dimensions, but the
actually occurring transitions between abstract states are scattered (black arrows) all over the behaviour
space. state abstraction 2 and behaviour space 2: the behaviour space has two dimensions and the
actually occurring transitions are clustered together around four vectors.

Both algorithms can in principle deal with situations like fig. 5.8(a) as long as the dimension of the
behaviour space is not too high, but it would need many subpolicies to cover all the needed behaviours.
This is only a two dimensional example, but it is clear that many behaviours scattered all over a high
dimensional behaviour space require way too many subpolicies to be practical.

The problem with the situation in fig. 5.8(a) is that all the (actually occurring) high level actions are
scattered all over the behaviour space (fig. 5.8(b)). In thiscase it will be hard to use any generalization
(or more layers), because each of the high level actions is different from the other, and if many of the
high actions are still unique, we would still have an action explosion. HABS and HASSLE both need
many similar transitions (property (5) in section 5.1.6). In fact, any hierarchical approach that wants to
re-use subtasks, needs something like this fifth property.

But there are many ways to do state abstraction for a given state space. Suppose we would do it
like in fig. 5.8(c), then we would obtain the behaviour space as seen in fig. 5.8(d). This does result in
a desirable situation, because many high level actions are mapped to vectors that are near to each other
and into four rather distinct groups.
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Filling In The Fifth Property

In conclusion,we demand from our abstract state space that it gives us these useful clusters of high level
actions, instead of behaviours scattered all over the place. This is illustrated in fig. 5.9.

Figure 5.9: Abstract states as used inHABS: the mapping from state space to an abstract representation
preserves (some of the) underlying structure of the state space and ensures that the actually occurring high
level actions are highly clustered (the black arrows). See fig. 4.3 (theHASSLE mapping) for comparison.

In light of the analysis above about the need of an underlyingstructure in the abstract state space
(in order to derive a good heuristic), we can now fill in the fifth property that we gave for HABS (see
section 5.1.6). The fifth property can be made more precise interms of the Behaviour Space and the
assumption related to difference vectors (section 5.2.2) can be included:

(5’a) actually occurring transitions between abstract states need to be distributednon-uniformlyin the
Behaviour Space. They need to form a limited amount of distinct groups

(5’b) difference vectors that are similar should correspond to similar behaviours

In fact, the more non-uniformly the behaviours are distributed, the less distinct groups or clusters
there are and the fewer subpolicies (i.e. high level actions) HABS needs. This means that a state abstrac-
tion is better if it has fewer clusters of behaviours.

5.2.5 Classification and Clustering

For the experiments described in this thesis, a very simple mechanism is used to do the classification.
Since behaviours are treated as vectors (which is a simplification) it is reasonable to use a method that
is suited to vectors, therefore an adaptive clustering algorithm was selected.

A cluster is assigned to eachsubpolicyi . The cluster centerchari can be considered thecharacter-
istic behaviourof that subpolicy. During learning, the cluster center is moved towards newly executed
behaviourif this recent behaviour was already classified as belonging tothis cluster. The update is done
according to:

ÐÐ→
chari, t+∆t ←(1−ω) ⋅ÐÐ→chari, t +ω ⋅ÐÐ→execi,t→t+∆t (5.1)

where
ÐÐ→
execi,t→t+∆t is the behaviour that the subpolicy executed starting at time t and ending att +∆t

(calculated withExeci) and
ÐÐ→
chari t is the characteristic behaviour vector (i.e. cluster center) that was as-

signed to the subpolicy that just executed
ÐÐ→
execi,t→t+∆t . The factorω (0≤ω≤1) is learning rate determines

how much the characteristic behaviour is moved towards the newly executed behaviour.
The definition ofExeci is related to the clustering. This function needs to calculate the executed

behaviour
ÐÐ→
execi and represent it in a suitable way. When the behaviours are treated as vectors, it is

defined as the difference vector between the abstract states:

ÐÐ→
execi =Exec(S,S′) =ÐÐÐ→S′i −Si (5.2)

Each subpolicy is assigned a cluster center and will specialize in that cluster, but these clusters will in
turn provide the goal conditions for the subpolicy. If a subpolicy does something that is similar to “its”
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cluster, then it will be rewarded, but at the same time the clustering is updated with this recently executed
behaviour (equation 5.1). This way the subpolicies will tune in on clusters of behaviours that are actually
occurring in the problem, they will self organize to cover the needed behaviours. If the clustering and the
state abstraction are suitable, each characteristic behaviour (classification) will gravitate towards actual
clusters (illustrated graphically in fig. 5.10).

b1

b2

b1

b2

b1

b2
time time

Figure 5.10: Changing characteristic behaviour vectors. The gray areas depict pockets of behaviours
that actually occur in the abstract state space. The arrows are thecharacteristic behavioursorganizing
themselves to cover the needed behaviours.

Not All Features Are Related To Behaviour

In principle all elements of the behaviour vectors could be used. However, this is often not a good idea
because many of the elements in the so-calledbehaviourvector, have nothing to do whatsoever with
the behaviour of the agent. An object that moves by itself could create the illusion that its movement is
actually part of the behaviour of the agent.

This can be illustrated by a simple example where an agent hasonly the two actionsUp andDown
and is situated in a grid world where objects move by themselves or appear and disappear autonomously
(see fig. 5.11). The state (observation) of the agent consists of the following: ⟨position, ob ject(+1),
ob ject(+2), ob ject(+3), ob ject(−1), ob ject(−2), ob ject(−3)⟩. The termob ject(d) indicates whether
or not there is an object present at distanced from the agent. So at the first time step, the observation is
< 2, 0,0,0, 1,0,0> because the agent is at position 2, and there are no objects upwards (nothing at +1,
+2 and +3), but there is one object (object A) one step downwards, soob ject(−1) = 1.

ÐÐÐ→state1 = ⟨2, 0,0,0, 1,0,0⟩
ÐÐÐ→state2 = ⟨3, 1,0,0, 0,1,0⟩
ÐÐÐ→state3 = ⟨4, 1,0,0, 1,0,0⟩
ÐÐÐ→state4 = ⟨5, 0,0,0, 0,0,1⟩

Figure 5.11: Autonomous objects: this illustration shows four progressive time frames withan agent
moving and some objects moving and (dis)appearing without involvement of the agent. The stars denote
(spontaneous) creation or deletion of an object. The line are the “world lines” of the objects and the arrows
depict the actions of the agent. To the right, the observations at different time steps are given. The state of
the agent consists of the following:⟨position, ob ject+1,ob ject+2,ob ject+3, ob ject−1,ob ject−2,ob ject−3⟩,
whereob jectd indicates whether or not there is an object present at distanced from the agent.

If we would calculate the executed behaviour from time stept to t +1, using the difference between
the vectors, we would arrive at:

ÐÐÐÐÐÐ→
behaviour1 =

ÐÐÐ→state2−
ÐÐÐ→state1 = ⟨+1, +1,0,0, −1,+1,0⟩

ÐÐÐÐÐÐ→
behaviour2 =

ÐÐÐ→state3−
ÐÐÐ→state2 = ⟨+1, +1,0,0, +1,−1,0⟩

ÐÐÐÐÐÐ→
behaviour3 =

ÐÐÐ→state4−
ÐÐÐ→state3 = ⟨+1, −1,0,0, −1,0,+1⟩

80



It is obvious that the first element of these vectors (+1) corresponds with the move upwards. How-
ever, some of the other elements are rather confusing. If theagent would try to discover clusters of

similar behaviours in this action space, it would discover that
ÐÐÐÐÐÐ→
behaviour1 and

ÐÐÐÐÐÐ→
behaviour2 are similar for

five out of seven elements, but that theob ject−1 andob ject−2 differ radically. On the other hand, for
ÐÐÐÐÐÐ→
behaviour2 and

ÐÐÐÐÐÐ→
behaviour3 the element denotingob ject+1 is opposite, and so on.7

It would seem that elements in the environment that act on their own, are rather disruptive for the
notion of an action space, because many of the features display contradictory values at different time
steps. On the other hand, these disruptive elements can be identified easily. They are the features of the
state (or state abstraction) that are not related to what theagent does, but to what is happening in the
environment. These can be filtered out by the designera priori (as is done for the experiments reported
in this thesis, see section 6.4.2) or possibly even by the agent itself (see section 7.2.2 on future work
with automatic detection of features).

5.2.6 Termination and Moving Significant Distances

The specific way in which the termination criteria are handled, depend on what kind of state abstraction
is used. The definition forStopi<n for HABS:

Stopi<n = { terminate If timeouti ∨ distance(Si ,Si
′) > δi

continue otherwise

does not resemble that for HASSLE:

Stop1 = { terminate If timeout∨ (S⇛S′ ∧ S,S′ ∈States2 ∧ S≠ S′)
continue otherwise

Instead, the definition for the termination criteria for HABS is stated in terms of the (rather vague)
distance(Si ,Si

′). This term indicates that the agent has moved asignificant distance through state space.
This leaves open how exactly we would determine the significance of a certain movement.8

This open formulation allows freedom on the part of the designer. A criterion similar to that of
HASSLE could be used, but separation of the termination criteria from the abstract states, also allows the
use of continuous high level states for determining subpolicy termination, or even a mixture of discrete
conditions for terminationanda continuous high level state for the high level policy.

Stopping Like HASSLE

If the state space abstractionStatesi+1 is discrete, then the significant movement through state spacecan
simply be equivalent to moving from one abstract state to another. The termination criterion for the
subpolicies in the layer below (discreteStopi ) can then simply be:

discreteStopi = { terminate If timeout∨ (Si ⇛Si
′ ∧ Si ,S′i ∈Statesi+1 ∧ Si ≠ S′i)

continue otherwise

This means that the active subpolicy terminates as soon as a new high level state is reached. This
is exactly the same as in HASSLE. In effect thesignificant distanceis implicit in the state abstraction:
reaching a new high level state by definition means that the agent has moved a significant distance
through the underlying “flat” state space.

Note that this way of defining significant movement, results in situations where the agent just steps
from one side of the border to the other with one primitive action. This will always happen when state
abstractions are discrete.

7The problem remains if we would use absolute coordinates forthe positions of the objects instead of coordinates that are
relative to the position of the agent. The fact remains, thatthe objects move with respect to each other, in whatever reference
frame we take.

8The termination criteria could even be defined in a probabilistic manner, though not in with the definition presented here.
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How To Stop In A Continuous (Abstract) State Space

The abstract state space can also have a continuous nature. In a continuous (abstract) state space the
distance could be measured measured in terms of a differencevector between start and current location:

continuousStopi<n = { terminate If timeout∨ (distance(S,S′) > δ ∧ S,S′ ∈Statesn+1)
continue otherwise

This distancecould be the standard Euclidean distancedistance(S,S′) = ∣ÐÐ→S′−S∣. However, some
other measure of distance, more appropriate for that particular abstract state space, is also possible.

Hybrid Approach

The abstract state space could also be continuous, while thetermination criterion is still discrete (or
vice versa). The high level policy uses the continuous abstract state (for instance because it has a neural
network as function approximator) and at the same time the active subpolicies are terminated when a
new (discrete) area, similar to that used by HASSLE, is reached.

5.3 A Simple Example

To get an idea of how HABS works, a simple example (fig. 5.12) will be presented. This isthe same
setup as in the HASSLE example, section 4.1.3. Only now the states have a better (more informative)
description: coordinates derived from the structure of thestate space.

states2 = {room A(0.25;0.3),room B(0.2;0.7), . . . ,room F(0.8;0.75)}
actions2 = {subpolicy1, subpolicy2, . . . , subpolicy7 } = Policies1
Actions1 = {North,East,South,West}

States1 = {all grid cells}
Figure 5.12: The Example Grid World

Heuristics — State Abstraction, Classification and Termination

The coordinates provide the the first heuristic (see section5.2). With the coordinates of the underlying
state space, the high level abstract states can be given coordinates (for instance with a clustering algo-
rithm). These coordinates will become the descriptions of the abstract states. The abstract states can
now be used to define behaviours and termination criteria. A subpolicy always terminates if it reaches a
new abstract state (and of course when it reaches its timeout).

The behaviour space is just a two-dimensional space (see fig.5.13(a)). The executed behaviour is
defined as

ÐÐ→
exec=Exec(S,S′) =ÐÐ→S′−S= (x2−x1; y2−y1)

and the actually occurring behaviours are just the vectors belonging to the differences between adjacent
high level states.

There are seven subpolicies, and each of them gets assigned a(initially completely random) vector
ÐÐ→
chari. These vectors are the characteristic behaviour vectors ofthe subpolicies. These vectors will be
updated according to equation 5.1:

ÐÐ→
chart+∆t ← (1−ω) ⋅ÐÐ→chart +ω ⋅ÐÐ→exect→t+∆t
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The characteristic vectors, together with a means of determining distance constituteClassi f ier2. The
distance between vectors in the behaviour space are measured with the Euclidean distance function:

∣∣Ð→w −
Ð→
v ∣∣ =√∑

i
(wi −vi)2

Learning

If the agent finds itself in room (abstract state) A, it can select one of the high level actionssubpolicy1,
subpolicy2, . . . , subpolicy6. Suppose it selectssubpolicy6. Perhaps the agent is going to explore (se-
lecting a random high level action) or perhapsQ(room A,subpolicy6) has a higher value than any other
high level action in that state.

The agent hands over execution tosubpolicy6. The subpolicy will execute some primitive actions
(i.e. from Actions1) and after some time either reach a new high level state, or ittimes out9. During
execution, it will (perhaps) receive some rewards, which are summed up (summedReward) and will be
used for the high level after termination.

(a) behaviour space

cluster center distance toexec(0.25;−0.05)

subpolicy1 (-0.039 ;-0.321) 0.396

subpolicy2 ( 0.109 ;-0.549) 0.519

subpolicy3 ( 0.057 ; 0.727) 0.801

subpolicy4 (-0.454 ;-0.117) 0.707

subpolicy5 (-0.007 ; 0.001) 0.262

subpolicy6 ( 0.361 ; 0.051) 0.150

subpolicy7 ( 0.013 ;-0.002) 0.242

(b) characteristic behaviour vectors

Figure 5.13: Example Behaviour spacefor fig. 5.12characteristic behaviour vectors: a snapshot of
the cluster centers, and the Euclidean distance to the executed behaviourexec= (0.25;−0.05).

Rewarding the Subpolicy and Policy

After the subpolicy terminates, the agent can observe what high level state it is in, and can determine
what high level action it has executed (as explained in section 5.1.4). Suppose our agent actually wan-
dered into room C, then its actually executed behaviour

ÐÐ→
execcan be calculated:

ÐÐ→
exec=

Ð→
C −
Ð→
A = (0.5;0.25)−(0.25;0.3) = (0.25;−0.05)

The next step is to classify
ÐÐ→
execwith Classi f ier2. The classifier checks the distance between

ÐÐ→
exec

and all the cluster vectors (see table 5.13(b)). The winningclusteris the cluster belonging to subpolicy 6,

soClassi f ier2(ÐÐ→exec) = subpolicy6. This means thatsubpolicy6 has executed a behaviour that “belongs”
to it, and needs to be rewarded for that. It receives a reward of 1 for its last (low level) action. During
execution of the subpolicy, all the primitive actions get a zero reward.

Suppose that it was notsubpolicy6 that the agent had selected, butsubpolicy7, but the agent still
ended up in room C. In that case the winning cluster was not thecluster that executed the behaviour. In
that case it receivesρ f ailed as a punishment. The other alternative is, that the active subpolicy failed to
get out of the high level state it started in, and times out. Ifa timeout occurs it is punished withρtimeout.
In these cases the clustering is not adjusted.10

9If no timeout is used, a (bad) subpolicy could go on literallyforever by just staying inside the high level state (looping).
10A more complicated classifier could movechari away from the behaviour executed bysubpolicyi (exec) if it was not the

winner.
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On the high level, the agent will updatepolicy2 (equation 2.18, Q-learning):

Q(room A,subpolicy6)← (1−α) ⋅Q(room A,subpolicy6) + γ ⋅summedReward

Adjusting the Clustering

Finally, the clusteringClassi f ier2 needs to be adjusted (assuming thatClassi f ier2(ÐÐ→exec) = subpolicy6):

ÐÐ→
char6 ← (1−ω) ⋅ÐÐ→char6 + ω ⋅ÐÐ→exec

= (1−0.03) ⋅(0.361;0.051) + 0.03⋅(0.25;−0.05) = (0.358;0.048)
After all this, the high level policy can select a new subpolicy to execute.
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Chapter 6

Experiments

Several experiments were done to test both the fix for HASSLE (the filter proposed in section 4.4) and
the new algorithm HABS. The first part of the experiments deals with HASSLE-filters. The second
with experiments where HABS uses a tabular Q-values function on its high level (and is compared to
unaugmented HASSLE). The third (and most extensive) part consists of experiments where HABS uses
a neural network on its high level and is compared to a flat learner.

The experiments are partly spatial, but also contain non-spatial elements. This is done in order to
show that HABS and HASSLE can handle problems whose state space has elements which arenot spatial
(but still have some inherent geometry or structure) like objects which can be picked up and dropped
and which can either be or not be in the agent’s possession.

6.1 The Environment

6.1.1 Grid Worlds

All experiments were done in grid worlds (like the one in fig. 6.1) where the agent needed to retrieve
one or several (similar) objects and drop them at a designated location. Some of the cells were marked
aswalls (i.e. impenetrable) and other cells asdrop zones.

Figure 6.1: Grid World : an example of a grid world. The small squares are the (grid) cells, the large
(gray scaled) areas are the (high level) regions and the shaded cells represent “drop zones”. Black cells are
walls (i.e. inaccessible). Black dots represent objects.

High Level Regions

The cells in the grid worlds are clustered into areas or regions. These regions are used for the high level
states (see below). They represent a spatial abstraction onthe grid world. The regions form natural
divisions of the state space, for example rooms or corridors(see fig. 6.1).

Objects

There were one or more objects present in the environment (see fig. 6.1). These objects were distributed
randomly over the free cells (i.e. not on walls and not on dropzones). There could only be one object
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in each grid cell, but the agent could carry many objects at the same time (up to its cargo capacity). The
objects carried by the agent were not considered as being in agrid cell.

The agent in all experimentsalwaysreceived a reward of 1 when it dropped an object at adrop zone.1

In some of the experiments additional “pickup rewards” werealso applied in order to help the learners
in solving the task: the agent received a small “pickup reward” (0.1) for picking up the object, and a
corresponding small punishment (-0.1) for dropping it (regardless of the location).

6.1.2 The Agent

For the experiments with HASSLEand HABS, the agent was given two layers (therefore the subscripts are

ll andHL instead of the less descriptive1 and2). On the top layer there is always only one policy and the
low level always consisted of several (sub)policies. This number varied depending on the complexity
of the task. Both the policy and the subpolicies useAdvantage Learning, (see section 2.3.4) in these
experiments. The “flat” learners that were used for comparison, also used this Reinforcement Learning
algorithm. Advantage Learning was selected instead of the more common Q-learning, because it works
better with neural networks due to its scaling factorK.

Low Level Motor Controls

The agent was given the primitive actionsNorth, East, South, West2, PickupandDrop (similar to Di-
etterich’s well-known taxi task [27]). These actions were executed perfectly: when the agent selected
one of the actions, it executed exactly that action. Actions(and sensors) without noise are used because
we are (for now) not interested in how well a Hierarchical Reinforcement Learning agent performs with
noisy motor controls or sensors. Given the fact that all layers in the hierarchy use standard Reinforce-
ment Learning techniques, the tolerance for noise in motor controls or sensors will probably be similar
to that of flat learners with the same techniques.

Low Level Sensors

The low level sensors (the low level states) are (in principle) the same in all experiments for HASSLE

and HABS. The lower level
ÐÐ→
statell results from observation. It is a vector composed of the following:

ÐÐ→
statell =

ÐÐÐÐ→
radarll ob jects ++

ÐÐÐÐ→
radarll dropZones++

ÐÐÐÐ→
radarll walls ++

ÐÐÐÐ→
position++

ÐÐÐ→
cargo (6.1)

where
Ð→
a ++

Ð→
b denotes concatenation of vectors

Ð→
a and

Ð→
b .

Part of this observation vector (
ÐÐÐÐ→
radarll ob jects,

ÐÐÐÐ→
radarll dropZonesand

ÐÐÐÐ→
radarll walls) was generated by a

sensor grid. The area around the agent was divided into concentric circles – although perhaps “concen-
tric squares” would be a better term because the grid world uses squares as cells (see fig. 6.2(a) and (b)).
The sensor grid was also divided into eight arcs.

Areas between circles that are further away from the agent are larger because the space between the
circles increases. This allows for a fine grained observation near the agent but at the same time prevents
an overflow of information. Areas that are further away are not observed in detail but less fine grained.
For the grid world, this sensor grid was implemented by replacing the circles with squares, as can be
seen in fig. 6.2(b).

The division in rings and arcs creates areas (in multiples ofeight) and each of the areas corresponds
with an element in the observation vector. Theaveragedensity of the observed entity in the area is the
value that is used in the observation vector (i.e. the grayscales in fig. 6.2). Each of the observable entities

1Simpler experiments were done where the agent only needed toreach a certain location. These experiments served only
to develop and debug the algorithms and are not shown here, except for one example in the section on HASSLE filters.

2Some experiments were also done with the actionsMove, Rotate-left, Rotate-right, Pickup, Dropbut these didn’t provide
different results, other than that all times were somewhat longer, because each turn costs the agent another time step with these
motor controls.
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(a) circular sensors (b) square sensors

Figure 6.2: Circular Sensors: concentric circles around the agent (black dot) and a division in eight arcs.
The further away from the agent, the larger the space betweenthe circles.square sensors: an adaptation
of the circular sensors to a rectangular grid. Each area yields one value for the observation vector. The
colours represent the values of each area.Zooming in on the sensor grid: the average density of the
observed quantity in each of the 24 areas (8 per ring) is a value in the observation vector (a gray area in
fig. 6.2(b)). In this example the vector resulting from this observation would be:⟨ 1

28,
2
24,

3
28,

4
24, . . . ,

3
8,0,

0,

1
6, . . . ,1,

2
3,0,

1
3,1,

2
3,0, 0,0, 1,1, 0,1, 0,0, 0,0⟩.

Figure 6.3: Zooming in on the sensor grid: the average density of the observed quantity in each of the
24 areas (8 per ring) is a value in the observation vector (a gray area in fig. 6.2(b)). In this example the
vector resulting from this observation would be:⟨ 1

28,
2
24,

3
28,

4
24, . . . ,

3
8,0, 0,

1
6, . . . ,1,

2
3,0,

1
3,1,

2
3,0, 0,0,

1,1, 0,1, 0,0, 0,0⟩.

(i.e. walls, objectsanddrop zoneshas its own sensor grid. An example of a calculation of part ofthe
observation vector is illustrated in fig. 6.3. For experiments involving only one object, the area that the
object was in simply yielded 1 instead of the average. For experiments with more objects, the average

was also used for
ÐÐÐÐ→
radarll ob jects.

The position3 of the agent was added as two scaled values between 0 and 1 (scaled to the width and
height of the grid world) to

ÐÐ→
statell , resulting in the vector

ÐÐÐÐ→
position= (xscaled, yscaled).

The cargo part
ÐÐÐ→
cargo equals 1 if the agent is carrying the object, and

ÐÐÐ→
cargo= (0) otherwise.

The Subpolicies

HABS and HASSLE both use the same kind of subpolicies. Each of these subpolicies consists of a set
of neural networks. Each of the primitive actions has its ownneural network, so for the low level each
subpolicy has six networks, and each of the networks calculates Q(s,ai) for action ai for one of the
subpolicies.4

The low level structure is the same for all HASSLE and HABS experiments (although details like the

3Initial experiments without the position were also carriedout but the results did not differ much from those with informa-
tion about the position, so they are not described here.

4The alternative is to give each subpolicy only one large network with as many outputs as there are primitive actions. If
there is no hidden layer, these two alternatives amount to exactly the same structure. If there is a hidden layer, there isa
difference: the hidden layer is used by each of the actions inthe latter case, but not in the former. Initial experiments showed
that separate networks results in significantly higher performance, probably because the actions cannot interfere: they don’t
share the hidden layer.
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number of hidden neurons or learning rates differ).

6.1.3 Some Remarks on Boxplots

Many of the graphs presented in this chapter use box plots, which are an easy way of indicating the
spread of a data set. The box indicates the middle 50 percent of the data (all data between the first (x

.25)
and third (x

.75) quartile). The thick line indicates the median.
For a normal box plot, all values that are lower thanx

.25− 1.5 ⋅ (x
.75− x

.25) or higher thanx
.75+

1.5 ⋅(x
.75−x

.25) are considered “outliers”. The “whiskers” (i.e. the lines) would indicate the data point
closest to (but inside) these boundaries. The outliers themselves would be represented by dots. However,
since the graphs in this thesis often compare multiple plots, a full blown box plot would become to
complicated, obfuscating the graph. Therefore in this thesis the bars above and below the box indicate
the maximum and minimum value in the data set.5

Some of the box plots in this thesis are not using a data set from one experiment run several times
with the same settings.Instead, several experiments with different settings wererun several times, each
yielding an average performance for that particular setting. These averages are then used as the data
set for a box plot, resulting in a plot that shows the spread ofaverages over different settings.

This way of showing the data was selected because it gives a better idea of how robust the algorithms
are and how they perform for various different settings. A wide spread means that different settings
yield very different performances and indicates that the algorithm in question needs much fine tuning.
Even if in the best case it can perform very good, it could still be outperformed on average by another
algorithm that has far better performance over a wider rangeof settings. It is also easier to tune the latter
algorithm because it performs good on a wider range of settings.

6.2 Augmenting HASSLE — Filtering

As explained in section 4.4, HASSLE can be augmented by some sort of filtering mechanism to improve
learning times. A very simple learning6 filter was implemented to illustrate this principle (section 4.4.2).

The learning filter consists of a filter table (similar to the high level Q-values table) that registers the
amount of success that the agent has had in executing a certain action in a certain state. The success rate
obviously changes during the learning process, so some sortof moving average or window is needed.
This is implemented by updating thesuccessRatevalue in the direction of 1 when a certain action
resulted in reaching a new state, and to 0 when the agent didn’t leave its current high level state:

successRate(state,action) ← 0.9⋅successRate(state,action)+0.1 ⋅newSuccess(state,action) (6.2)

where 0.1 functions as a learning rate andnewSuccess(state,action) = 1 when a new high level state is
reached and 0 otherwise. This is similar to a Reinforcement Learning update, but without discount.7

When thesuccessRateis above a threshold for a certain action, a constant8 valueσ is added to the
Q-value of that action:

σ(state,action,successRate) = { σ If successRate(state,action) > 0.05
0 If otherwise

(6.3)

The combined valueQ(state,action)+σ is used for action selection instead ofQ(state,action), using

5Experiments with the same settings were repeated at least eight times, for some experiments more.
6Creating ana priori filter is not interesting enough to investigate further, since it would only involve selecting by hand

which high level actions are available at which time
7It might be interesting though to expand this filtering mechanism to include discounting.
8Usingσ(state,action,successRate) = successRate(state,action) or some other (monotonously) increasing function would

favour the actions that are easiest. Using a constant gives equal boost to each action that the filter allows.
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the Boltzmann selection mechanism (described in section 2.4.2):

PBoltzFilter(s,ai) = e(Q(s,ai)+σ(s,ai ,successRate))/τ

∑
a′∈actions

e(Q(s,a
′)+σ(s,a′ ,successRate))/τ (6.4)

wherePBoltzFilter(s,ai ,successRate) gives the probability of selectingai in susing the filter mechanism,
s is the current state,ai is the action under consideration andτ is the temperature.

6.2.1 Tabular Representation of the High Level Q-Values

The high level states for tasks where the high level has a tabular representation of the Q-function, are
rather straightforward. As explained above, the cells in the grid world are clustered. These regions are
used for the high level state.

The tabular representation was used for the experiments with only one object, so it suffices to use one
boolean that indicates whether the agent is carrying the object or not. The high level state (i.e. sensor)
is the tuple of the high level region the agent is in, the high level region the object is in, and a boolean
for possession of the object:

ÐÐ→
stateHL,HASSLE = (regionagent, regionob ject,

ÐÐÐ→
cargo) (6.5)

Obviouslyregionob ject = regionagent if the agent is carrying the object. This means that nearly half9

of the possible combinations, like(regionA,regionB,1) will not occur in reality. It is impossible for the
object to be inregionB and the agent to be inregionA and possess the object at the same time.

This does not pose a huge problem for HASSLE, although it means it has nearly twice as many high
level actions as would be possible if the illegal possibilities were filtered out. Furthermore it is not a
large factor. Leaving the illegal possibilities availableas high level actions, illustrates that HASSLE can
cope with them.

Capacities

HASSLE has its Capacities mechanism to match high level actions to subpolicies. For this, some param-
eters need to be assigned values. This was done during initial testing. The Capacities mechanism was
of the following form (eq. 4.2):

Ci,act(start,goal) ← Ci,act(start,goal) + ∆Ci,act(start,goal)
with ∆Ci,act(start,goal) = { αr

C ⋅(γ∆t
C − Ci,act(start,goal)) success

α f
C ⋅(0 − Ci,act(start,goal)) failure

whereαr
C andα f

C are learning rates, andγC is a discount, measuring performance. HASSLE worked well

with αr
C = ⟨0.03, 0.003⟩, α f

C = ⟨1, 0.1⟩ ⋅αr
C andγC = 0.99 (all yielding the same performance) so these

values were used for all HASSLE experiments. The Capacities also need a selection mechanism. As in
[1] and [2], Boltzmann selection was used, withτ = 0.03 (but other values yielded similar results).

Subpolicies

HASSLE uses subpolicies with linear neural networks. The learningrateαll for each of the low level
networks was set to 0.01 and for the high level to 0.05. The high level uses a tabular representation.
Both layers use a simpleε-greedy selection.

9Nearly half of the possible combinations will not occur, because if the agent is not carrying the object, all combinations
are possible (half of the total number). But if the agent is carrying the object, only(regionagent, regionagent,1) is possible, but
this is only a very small part of all the possible combinations of regions.
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6.2.2 Experiment 1 – Moving to a Fixed Location

Two tasks were created to investigate the performance of thesimple learning filter. The first consists
of an environment with several rooms (fig. 6.4, with same dimensions as the environment used to test
HASSLE in [1] and [2], but with slightly different layout). Each of the rooms was considered a high
level state, and the corridors were divided into areas of similar size. If the agent reaches the target, it
receives a non-zero reward and the episode ends. If the agentfails to reach the target in the allotted time
of 1000 (low level) steps, the episode is also terminated.10 At the beginning of each episode, the agent
is placed randomly on one of the cells (target excluded) of the grid world. The calculated optimum is an
average of 54 steps. This is calculated by selecting 106 random starting locations for the agent and for
each calculate the shortest path to the target.

Figure 6.4: environment for experiment 1: a grid world similar to that presented in [1] and [2], consisting
of 68×48cells and 15 high level states. The shaded area represents the target.
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(b) γHL = 0.99

Figure 6.5: performance of filters in experiment 1: HASSLEwithout filtering is compared withHASSLE

augmented with filters (for various settings of the filter constantσ). (a) γHL = 0.95 and (b) γHL = 0.99.
The graphs show boxplots over different settings ({10, 15} subpolicies,τll = {0.0167, 0.04} andτHL =
{0.0167, 0.033}. αll = 0.003, αHL = 0.03, γll = 0.95, γHL = 0.99, Kll = 0.3 andKHL = 0.3. Higher values
for the temperatures (τll = 0.10or τHL = 0.10) for either of the levels resulted in bad performance for both
filtered and unfilteredHASSLE) The averages of the different settings are the data for the boxplot, resulting
in plots that show the robustness of the algorithms.

The graphs shown in fig. 6.5(a) and fig. 6.5(b) illustrate the performance of HASSLE11 with and

10In fact, the agent was allowed to finish the current high levelaction (i.e. until timeout or success), meaning that at most
1000 +timeoutll steps were taken.

11HABS is also able to solve this problem in roughly the same time as HASSLE, i.e. in 2.5⋅105 time steps, reaching conver-
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without filter. For this experiment, two different high and low level Boltzmann temperatures and two
different numbers of subpolicies were tried (resulting in 8different combinations of settings). Sev-
eral runs were done for each of these settings and averages were calculated. These averages are then
displayed in the form of a box plot.

When a discount of 0.95 is used for this task, the unaugmentedHASSLE is unable to even reach
the optimum value. The filtered version has no problems at allfor this low discount. In fact, given a
good value of the constantσ the filtered version can solve this task in under half a million low level
steps very consistently for all settings (which is the same as unaugmented HASSLE with γHL = 0.99).
Higher σ values (not shown here) will deteriorate the learning process, whereas lower values signify
less influence of the filter. A value ofσ = 0.01 for this experiment amounts to the same as not using
a filter at all. HASSLE can also reach nearly the same performance without filtering(indicated by the
bottom of the boxplots) but only for some of the settings. Other settings result in average performances
that are far from optimal. Filtering (σ = 0.1) can reach values near 57 steps and on average reaches
61 steps. HASSLE without filtering can still reach performance below 70 for some settings, but other
settings perform as bad as 180 steps on average.

The graph depicting the results for a high level discountγHL = 0.99 shows that HASSLE is able to
catch up better for higher discounts. On average it performsnearly as well,but its spread is wider than
when using a strong filter (σ = 0.1). Unfiltered HASSLE is able to reach a similar highest performance
as the filter, around 57 or 58 steps, and the average performance is also similar, around 60 or 61 steps.

6.2.3 Experiment 2 – Retrieving an Object

A second experiment was done to see how the simple filter wouldperform on a task with more high level
states, because that is where the filtering should benefit themost. An object is introduced at a random
location in the environment shown in fig. 6.6(a), and the agent needs to retrieve this object and drop it
at one of the cells marked as a ‘drop location’ (“G”). As explained in section 6.2.1, the high level state
of the agent consists of the area the agent is in, together with the area the object is in and a boolean
indicating whether the agent is carrying the object. This means that there are 7×7×2 = 98 high level
states and therefore 98 high level actions,most of whichare not reachable from many of the other high
level states, because the agent cannot for example go from< 1,5, f alse> to < 1,3,true> in one high
level step.

(a) s-curve
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Figure 6.6: experiment 2: an object needs to be retrieved in an s-curved grid world.performance of
filters in experiment 2: HASSLE without filtering is compared withHASSLE augmented with filters (for
two settings of the filtering constantσ). The graphs show boxplots over several different settings(in order
to show robustness). The graphs show boxplots over different settings:{10, 15} subpolicies,γll = 0.95,
γHL = {0.95, 0.99}, τll = {0.02, 0.04}, τHL = {0.02, 0.04}, αll =0.003, αHL =0.03, Kll =0.3 andKHL =0.3.

gence just below 60.
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The same effects as in experiment 1 can be observed in experiment 2 (see fig. 6.6(b). Unaugmented
HASSLE is able to reach a near optimal value, but clearly not for all tested settings. Using the filter (with
σ = 0.1 makes the algorithm twice as fast (on average) and reaches anear optimal performance of 34
(optimal≈ 33.7) for some settings, and an average of 55 for the worst case settings. HASSLE without
filtering reaches similar values for its best case settings,but does far worse for other settings (100 or even
200 steps on average) and takes far longer time. Setting the filter constantσ too high (σ = 0.2) results in
failure for some of the runs, that is why on average it performs worse than unaugmented HASSLE and
HASSLE with more moderate filtering.

6.2.4 On the Usefulness of Filtering

Experiment 1 and 2 show that (some kind of) filtering can be useful. A filter biases exploration (and
thereby learning) towards high level actions that can actually be executed by the agent. HASSLE aug-
mented with a filter can reach the same (or better) performance in a shorter time – if the filter is properly
tuned. With a good filter HASSLE is able to perform good under a wider range of parameters.

The filtering proposed here can only work in conjunction withBoltzmann selection however, which
means that it is also dependent on the weakness of Boltzmann selection: it will be slow when there are
many actions because the computationally heavy function ez needs to be calculated for all actions.12

It is not hard to give a good guess for the value ofσ because the effectiveness of this constant is
related to the size of the problem and the Q-values that are expected. Ifσ is far greater than the Q-
values, the value e(Q(s,ai)+σ)/τ will be nearly the same (i.e. e(σ)/τ) for each of the actionsai . This would
result in a uniform probability distributionover all reachable actionsfor the Boltzmann selection. Ifσ
is too low then the difference between e(0+σ)/τ (a reachable state, but no Q-value) and e0/τ (no reachable
state) will be too small to make a difference, again resulting in a nearly uniform probability distribution,
this time over all actions, both reachable and unreachable,which is simply the situation that HASSLE

also runs into without the filtering and before learning meaningful Q-values.

6.3 Comparing HASSLE, HABS and the Flat Learner

HASSLE (in its unaugmented form, without any filters) is compared toHABS on two large tasks to
demonstrate the limits of the HASSLE architecture. A “maze” and a “big maze” environment were
created and the task was to collect the object (placed at a random location at the start of every new
episode of 1000 time steps) and drop it at the drop area.

When the agent dropped the object at one of the correct locations it received a reward of 1. Two
alternatives were tried for the maze: one where this is the only reward that the agent ever gets, and
another where the agent also receives the small “pickup rewards” for picking up an object.

6.3.1 The Learners

HABS and HASSLE both use subpolicies with linear neural networks. HABS uses the same
ÐÐ→
statell as

HASSLE (equation 6.1). Both layers of both algorithms use a simpleε-greedy selection.13. HABS and
HASSLE use a tabular representation for their high level policies.

12When the Q-values are approximated with – for instance – a neural network, calculating them becomes more time con-
suming than the Boltzmann selection. But HASSLEworks with a tabular high level policy, so its Q-values are simply stored in
a look-up table (which is many times faster than a neural network) and in that case the computation ez is relatively heavy.

13It is difficult to solve this task with HASSLE using Boltzmann selection (the experiments used for tuningHASSLE with
Boltzmann selection are not reported here). This is probably due to the fact that there are so many high level actions. Boltzmann
selection (see equation 2.21) has random selection (uniform distribution) as one of its limits (for highτ, the other isε-greedy
selection for lowτ). With many actions, a lower selection temperatureτ is needed, creating a higher selection pressure. This

has its own problems however, which are mainly computational: Iff τ is low, then the value of eQ(s,a
′)/τ near the target (where

Q(s,a′) ≈ 1) will sky-rocket and easily become larger than what the programming language can compute with the standard
data types.
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A few heuristics need to be selected for HASSLE and HABS. They both need a suitable state space
abstraction. Furthermore, HABS needs criteria for classification (section 5.2.5) and for termination
(section 5.2.6). Despite the fact that all these heuristicsdepend on each other, they will be described
separately. It should be noted however, that a choice for a particular state abstraction is partly driven by
considerations about what kind of classification it could yield, and vice versa (see section 5.1.6).

HABS Heuristics — Abstract State Space

HASSLE can use the vector
ÐÐ→
stateHL,HASSLE defined earlier (equation 6.5) in section 6.2.1. HABS needs a

suitable representation of the state abstraction, becauseit needs structure to be able to discover behaviour
vectorsA nominal description of the high level state in terms of regions contains not enough information.
Therefore the position of the regions is used.14 This results in the vector:

ÐÐ→
stateHL,HABS = (Xagent, YagentXob ject, Yob ject, β ⋅ÐÐÐ→cargo) (6.6)

whereβ is a scaling factor, which is needed to give the vector element for the cargo roughly the same
size as the elements for the position to ensure that a change in cargo (picking up or dropping the object)
creates a difference between vectors that is of the same order as the difference created by moving from
one region to another.15 A value ofβ = 0.1 worked well, but this obviously depends on the size of the
grid world and on the distances between abstract states16.

HABS Heuristics — Classification

The vector
ÐÐ→
stateHL,HABS was used as a measure for the executed behaviour when the agent moved from

one high level state to another. The behaviour space therefore consists of the dimensions contained in
ÐÐ→
stateHL,HABS . The characteristic behaviour vectors are allowed to self organize in this space. A simple
vector clustering algorithm (eq. 5.1, as described in section 5.2.5) was used, that moves a cluster center

(
ÐÐ→
char) towards the recently executed (and observed) behaviour

ÐÐ→
exect→t+∆t :

ÐÐ→
chart+∆t ← (1−ω) ⋅ÐÐ→chart + ω ⋅ÐÐ→exect→t+∆t (6.7)

The characteristic behaviour vectors were always initialized with small random values.17

HABS Heuristics — Termination Criteria

The termination criteria for HABS were very simple. Entering a new high level region or increasing or
decreasing the amount of objects in cargo by one, indicated the termination of a subpolicy. This amounts
to stopping criteria equal to those of HASSLE (see section 5.2.6).

Flat Learner

For comparison, the tasks were also solved using a standard Reinforcement Learning agent . This “flat”
agent used a tabular representation of the Q-function. The location (x- and y-coordinates) were used as
state (because they are unique). The tabular representation allows a rather high learning rate. The flat
learner used advantage learning (k = 0.3, same as for HASSLE and HABS) and uses Boltzmann selection.

14This position is the average (scaled) position of all cells contained in the region and is denoted(X,Y) whereX andY are
scaled to a value∈ [0, 1] according to the dimensions of the grid world.

15Some sort of scaling will always be needed when different types of dimensions are compared. If comparing dimensions
is impossible, the classification by vectors cannot be done in the simple way it is done here. In that case, a behaviour might
for instance consist of multiple vectors, each representing differences in parts of the behaviour space thatare comparable. See
section 7.2.1 (Future Work)

16When a continuous high level state space is used, the scalingcould depend on the distance used in the termination criteria,
see section 5.2.6.

17Some tests were done with initializing each vector with the first behaviour that the accompanying subpolicy actually
executed. This made no difference however, because none of the subpolicies is actually capable of performing reasonable
behaviours in the beginning.
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6.3.2 The Maze

The Maze (fig. 6.7(a)) has 29 areas, resulting in 29×29×2 ≈ 1.7×103 different high level states (area
that the agent is in× area that the object is in× whether or not the agent carries the object). The flat
learner is able to solve the task in somewhere over 1⋅108 time steps and reaches a best result of around
50 steps (see fig. 6.7(b)). The calculated optimum for this problem is 40.2.

(a) maze
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Figure 6.7: (a) maze: The maze is31×28cells, has 29 areas, resulting in29×29×2≈ 1.7×103 abstract
states.(b) flat learner results: with and without the “pickup reward” and forα f lat = {0.25, 0.10}. K f lat =
0.3, τ f lat = 0.02 (same results forτ f lat = 0.01andτ f lat = 0.04) andγ f lat = 0.99
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HASSLE, γHL = 0.99
HASSLE, γHL = 0.95

HABS, γHL = 0.99
HABS, γHL = 0.95

(a) pickup reward
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HASSLE, γHL = 0.99
HASSLE, γHL = 0.95

HABS, γHL = 0.99
HABS, γHL = 0.95

(b) no pickup reward

Figure 6.8: maze experiment: box plots over averages of runs forHASSLE and HABS. (a) pickup
reward: The agent receives an additional reward of 0.1 when it picksup the object, and a reward of -
0.1 when it drops the object.(b) no pickup reward: there is no additional reward.settings: HASSLE

and HASSLE have 10 subpolicies,ell = {0.15, 0.1}, eHL = {0.1, 0.05}, αll = 0.01, αHL = 0.05, γll = 0.95,
γHL = 0.99, Kll = 0.3 andKHL = 0.3, αr

C = {0.03, 0.003} andα f
C = {1, 0.1}×αr

C (αr
C andα f

C are learning
rates for the Capacities mechanism, see section 4.1.2).HABS usesell = {0.15, 0.1}, eHL = {0.1, 0.05},
andω = {0.001, 0.01, 0.1} (ω is the learning rate for the clustering). The agent receivesa reward of 1 for
dropping the object at the correct location.

HABS and HASSLE can both solve this task. HASSLE is however much more sensitive to the high
level discountγHL than HABS, which makes is harder to fine tune (see fig. 6.8(a) and 6.8(b)). Fur-
thermore, HABS is able to reach a slightly better performance, especially when the task gets more
complicated (i.e. without the “pickup reward” that splits the large task into two smaller tasks).

The most striking difference is that HABS has no real problems when the task increases in size
(no more “pickup rewards”), whereas the number of steps thatHASSLE needs to reach convergence,
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increases much more. The time that HABS needs until convergence roughly doubles but HASSLE need
three times as much low level steps at its best performance (for γHL = 0.99).

6.3.3 The Big Maze

A second maze was created with more high level states and a more complicated layout. This “big maze”
(fig. 6.9(a)) has 50 areas, resulting in 50×50×2 ≈ 5.0 ⋅103 high level abstract states. The agent only
received a non-zero reward when the object was correctly dropped.

All experiments done with HASSLE on this large environment, simplyfail due to lack of memory
(on a computer with 500 Megabyte of RAM). The “big maze” clearly marks the limits of HASSLE. The
smaller maze, with some 1.7⋅103 high level states, was still manageable, but an environmentwith three
times as many abstract states pushes the envelope too far.

(a) big maze
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(b) results

Figure 6.9: (a) big maze: 36× 39 cells, 50 regions. (b) results: performances forHABS and the
flat learner for a range of parameters.HABS: 25 subpolicies,γll = 0.95 γHL = {0.95,0.99}, εll = 0.85,
εHL = {0.01,0.05}, , αll = 0.01, αHL = 0.03, Kll = 0.3, KHL = 0.3, ρ f ailed = {1,0.3,0,−0.3} Flat: ε f lat =
{0.7,0.85,0.95}, α f lat = 0.2, γ f lat = {0.9,0.95,0.99} and advantageK f lat = 0.3. (Higher discountγ f lat

results in slower learning.)

Performance

HABS can solve the “big maze” task consistently in under well 5⋅107 time steps, whereas the flat learner
takes 4∼ 6 ⋅108 time steps. The flat learner is able to reach a higher performance of around 70 but
HABS only reaches 90. The optimum for this task is 59.6. If accuracy is of the essence and there is
enough time, the “flat learner” is preferable. HABS is however able to solve this problem in aquick-
and-dirtyway an order of magnitude faster and with far lower memory requirements.

Memory Requirements

The failure of HASSLE, due to lack of memory, is not surprising, because five thousand high level states
amount to(5.0 ⋅103)2 ≈ 2.5 ⋅107 Q-values that need to be stored (i.e. for each of the state-action-pairs),
and on top of that, the same amountfor each subpolicybecause of the Capacities tables.18 This means
that HASSLE would need to store some 2.5 to 5.0⋅108 values if 10 or 20 subpolicies are used. Coded in
(standardJava) doublesof 32 bits, this would mean some 2 to 4 Gigabyte of memory. Obviously some
memory can be saved by only storing high level states that areactually possible within the environment.
This roughly halves the amount of memory needed.19

18The few kilobytes needed for storing the neural networks, can safely be ignored.
19A hash table was used to accomplish this: only storing a high level state and all accompanying high level actions when

the agent was in that particular high level state.
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Furthermore, memory can be saved by using 4byteinstead of 8byte(Java-double) values, or even a
2 bytecoding (resulting in coarser representation, but since theQ-values are limited to a relatively small
range, this does not pose a problem: it only needs to approximate [−10, 10] (to be on the safe side),
not all of R.). With all these approaches combined, the amount of memorywas still too much for the
available computer.

Obviously the precise boundary is dependent on the amount ofRAM memory that a computer has
(and also partly on how efficient the algorithm is programmedand the memory is used) but the square
Q-values tables (as many high level actions as there are states) and the accompanying Capacities-tables
(with the same dimensions) are an integral part of HASSLE, and will therefore always cause this kind
of trouble20. Large amounts of abstract states clearly present problemsfor HASSLE because of their
enormous memory requirements.

The memory requirements of the “flat” learner are less extreme. It doesn’t have the high level
subgoals and neither does it have the Capacities and subpolicies, so it can describe the problem in
2× (39×36)2 ≈ 4 ⋅106 states (positionagent× positionob ject×hasOb ject), and therefore some 2⋅107 Q-
values (one for each of the six primitive actions in each state). This requires something just under 2⋅102

Megabytes (when 8 byte Java-doublesare used).

HABS needs to store far fewer Q-values than either HASSLE or the “flat” learner. It has the same
number of high level states, but does not use these states as high level actions, but uses its subpolicies.
And since there are only a few subpolicies, HABS does not have a square Q-values table but only needs
to storen×5.0⋅103 Q-values (wheren is the number of subpolicies, for eachQ(state,subpolicyi )-pair),
together with the few Kilobytes for the subpolicy neural networks. This amounts to some 102 ∼ 103

Kilobytes, orders of magnitude less than HASSLE or the flat learner.

6.4 The Cleaner Task — Description

One of the reasons that HABS was designed, was that the structure of HASSLE is unsuitable for use of
neural networks on the high level. The following task was designed to illustrate the ability to use neural
networks for the high level policy.

An environment is created (see fig. 6.10(a)) that contains randomly scattered objects that need to be
picked up and dropped at the drop zone. The agent is allowed tocarry as many as 10 objects in its cargo
bay. The agent has 1000 time steps to return as many as the objects as possible to the drop area, after
which the episode was terminated and a new one was started with the agent and the objects at random
locations. All the graphs depict the average number of objects that was dropped at the drop zone per
episode.

(a) cleaning environment
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Figure 6.10: snapshot of the cleaner environment: the black-and-white dotted line denotes the boundary
for the objects. No object was placed randomly above this boundary at the beginning of the episode.
distribution of objects: objects are placed at random at the beginning of each episode, with an average of
89 objects and a standard deviation of 11 (normal distribution). A histogram over 486 runs is shown.

20If a filter were used, yetanotherhuge table would be added to this!
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6.4.1 Object Placement

The number of objects is determined by the (normal) distribution shown in fig. 6.10(b) with an average
of 89 and a standard deviation of 11. At the beginning of each episode the objects are scattered in
20 patches or clusters (5×5 cells, the centers of which are selected randomly), but these patches may
overlap and not all the cells in a patch are filled with an object (see fig. 6.10(a) for a snapshot). No
objects were placed above the dotted line in fig. 6.10(a) to make the task harder.

Objects In The Cargo Bay

The agent uses neural networks as function approximators both on the lower level and on the higher
level and its cargo can be up to 10 objects (itscapacity). Simply giving the number of objects in cargo
∈ (0,1, . . . ,10) or scaled (∈ ( 0

10,
1
10, . . . ,

10
10)) would give the neural network not enough information.

Differentiating between 6 or 7, or even between or somethingor nothing in cargo, is very hard for a
function approximator.

The current cargo of the agent was therefore represented in amore complicated manner to give the
neural networks a better opportunity to discriminate between values. The cargo part (

ÐÐÐÐÐ→
cargoBay) of the

observation vector consists of the following elements:

ÐÐÐÐÐ→
cargoBay= ( cargo

capacity
, 1−

cargo

capacity
, cargo≥? 2, cargo≥? 4, cargo≥? 6, cargo≥? 8) (6.8)

wherecargo≥? n is defined as:

cargo≥? n = { +1 If cargo≥ n
−1 If cargo< n

The vector
ÐÐÐÐÐ→
cargoBayis substituted for the simpler

ÐÐÐ→
cargo used in equation 6.1, resulting in:

ÐÐ→
state′ll ,HABS =

ÐÐÐÐ→
radarll ob jects ++

ÐÐÐÐ→
radarll dropZones++

ÐÐÐÐ→
radarll walls ++

ÐÐÐÐ→
position++

ÐÐÐÐÐ→
cargoBay (6.9)

6.4.2 High Level States Used with Function Approximation ofthe Q-Values

For experiments where multiple objects need to be collected, a tabular representation of the Q-Values is
not suitable.21 This also means that another representation for the high level states is needed, because
ÐÐ→
stateHL,HABS as presented above (in section 6.2.1), gives too little information for a neural network.
The problem is complicated further because there is ana priori unknown (but high) number of objects
present in the environment, and the state representation needs to be able to represent all these varying
numbers of objects and locations accurately.

Figure 6.11: High Level Sensor Grid: The grid world is viewed on a coarser level by the high level
sensor gridradarHL. Blocks of many grid cells (in this case5×5 cells) are averaged and with the resulting
values the same calculation as in fig. 6.3 (the low level sensor grid, radarll ) is done.

21In fact, that is exactly the reason why such an experiment wasselected: to demonstrate that HABS can use function
approximators for its high level, unlike HASSLE, and therefore solve tasks that HASSLE can’t because of its tabular nature.
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This is a problem that is very similar to how the low level needs to represent the locations of all the

walls, objects and drop zones. In fact, the high level sensors
ÐÐÐÐÐ→
radarHL,

can be created similar to those
of the low level. But now each square in fig. 6.3 represents many grid cells (for instance blocks of 5×5

cells), instead of only one grid cell. This process is depicted in fig. 6.11. The resulting
ÐÐÐÐÐ→
radarHL, ob jects,

ÐÐÐÐÐ→
radarHL, dropZonesand

ÐÐÐÐÐ→
radarHL, walls are then used to create

ÐÐ→
state′HL,HABS (similar to

ÐÐ→
statell ):

ÐÐ→
state′HL,HABS =

ÐÐÐÐÐ→
radarHL, ob jects++

ÐÐÐÐÐ→
radarHL, dropZones++

ÐÐÐÐÐ→
radarHL, walls ++

ÐÐÐÐ→
position++

ÐÐÐÐÐ→
cargoBay (6.10)

Preprocessing the grid world in this manner means that the smallest areas in the high levelsensor
grid (i.e. those consisting of only one square in the sensor grid in fig. 6.11) now represent an average
over a block of many grid cells in the grid world.

Reduced Radar Range

In most experiments, the high level sensor grid consisted ofonly two or three rings. This was done
because the fourth ring is so far away from the agent, that most of the time it actually observed cells
outsidethe grid world! In those cases the radar detecting the presence/absence of walls by default
registered walls (i.e. “outside” is inaccessible) and no objects or drop zones.22

HABS Heuristics — Classification and Filtering Out Irrelevant Features

For classification, the vector described in equation 6.6 andclustering described in equation 6.7 are used:

ÐÐ→
stateHL,HABS = (Xagent, YagentXob ject, Yob ject, 0.1⋅cargo)

and
ÐÐ→
chart+∆t ← (1−ω) ⋅ÐÐ→chart + ω ⋅ÐÐ→exect→t+∆t

This vector worked well for the experiments with the tabularhigh level policy as well as the Cleaner
task with the function approximator as high level policy.

For the experiments reported in this thesis, the relevant features are determineda priori by the de-
signer. The features for the high level abstraction are the cargo and position of the agent and of the
object. For determiningbehaviours, the position of the object is actually irrelevant. This position is only
relevant for the agent when it needs toselectwhat kind of behaviour it will execute, but the area the
object is in, is not related at all to what kind of behaviour the agentexecutes. It is needed in the abstract
state, but is it not needed at all for classification of behaviour.

This irrelevant feature could have been excludeda priori in the classification phase23 but this was not
done. Leaving the irrelevant feature(s) in the vector, and using them in the classification (even though
their influence can only be disruptive or neutral at best) shows that HABS can deal with some irrelevant
features.

HABS Heuristics — Termination Criteria

The termination criteria for HABS for the function approximator tasks, are the same as for the tabular
case. Entering a new high level region or increasing or decreasing the amount of objects in cargo by
one, indicated the termination of a subpolicy.

22If the preprocessing takes blocks of 5× 5 cells, the fourth ring ranges from 22 cells from the agent, up to 42
cells away (22cells= 2 ( f rom the center area to the f irst ring)+5 ( f irst ring)+5 (second ring)+10(third ring) and 42=
22(until third ring)+20( f ourth ring), whereas the grid worlds were between 20 and 40 cells wide.
During initial experiments with the range of the high level radar, it was discovered that adding or removing the fourth ring
did not make any difference (apart from saving a lot of running time due to smaller observation vectors and therefore smaller
neural networks!). Even removing the third ring (only usingtwo rings with a range of only 12 cells), resulted in rather good
results, although somewhat lower than with three rings.

23Excluding irrelevant features can be done by assigningzeroas a scaling factor for the irrelevant elements of the vector.
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This is an example of the hybrid case mentioned in section 5.2.6. The abstract state space is treated
as continuous by the function approximator (the neural network), although technically the low and high
level radar observations are only discrete (thoughastronomicalin size: each of the roughly 100 (for the
low level) or 80 (for the high level) values in the observation vector delivered by the radar, can have
many values ranging between 0 and 1).24

6.4.3 Forcing HABS to Explore

Since HABS works with neural networks on both levels in the Cleaner task, there were some concerns
about whether Boltzmann selection would do the trick. Neural networks are sometimes unstable with
Reinforcement Learning (leading to early suboptimal convergence or even to all weights fading to zero
exploding to infinity) and on top of that HABS uses subpolicies that are untrained at the start.

The high level uses subpolicies as its actions, so if a subpolicy is not yet fully trained, it might be that
it fails too often on a certain task, making the Q-values for that subpolicy rather low. Another subpolicy
that does something different, but with higher Q-values, would then be preferred by the high level policy.

Suppose that it is optimal for the agent to completely fill itscargo bay, but that it is still not that
good in locating and picking up objects, meaning that it wastes a lot of time searching and eventually
the 1000 time steps are over and the episode stops. Even though it did collect some objects in its cargo
bay, it didn’t return them to the drop zone and therefore didn’t receive any rewards. On the other hand,
if it just picked up one object, and then raced for the drop zone and repeated this process over and over
it definitely wouldreceive some rewards, albeit only small ones.

This (in fact inferior) course of action gets the highest Q-values because one subpolicy (locating and
picking up objects) often fails initially. There is a risk that after a while – once the pickup-subpolicy
is fully learned – the Q-value of selecting this subpolicyagainonce the agent has one object in cargo,
is so small compared to the Q-value for subpolicies that willbring the agent to the drop zone, that the
agent will never (or only after a very long time) discover that it is more beneficial to go on collecting
objects until its cargo bay is nearly full, and onlythenreturn to the drop zone. Instead it would get stuck
in suboptimal behaviour.

Combining Boltzmann andε-Greedy Selection

To avoid the situation described above, it seemed prudent toselect a random action withε probability
and use Boltzmann selection only with(1− ε) probability (ε = 0.01 in all experiments). This leads to
what could be called Boltzmann-ε-selection:

aselected=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
from the distribution PBoltz with probability(1−ε)
random with probabilityε

(6.11)

wherePBoltz indicates the Boltzmann selection that was defined in equation 2.21 andrandomdenotes that
an action is selected with uniform probability from the set of actions. So just as inε-greedy selection,
sometimes actions are selected completely at random, but with (large) probability(1− ε), the normal
Boltzmann selection is applied. This means that the probability of selectingai is:

PBoltz−ε(s,ai) = (1−ε) eQ(s,ai)/τ

∑
a′∈actions

eQ(s,a′)/τ +
ε∣∣actions∣∣ (6.12)

wheres is the current state,ai is the action under consideration,PBoltz(s,ai) gives the probability of
selectingai in s, ∣∣actions∣∣ stands for the number of actions andτ is the temperature.

This is a safeguard against premature convergence to a clearly suboptimal behaviour. Even if the
probability of selecting a subpolicy according to the Boltzmann selection mechanism is (very close to)

24Some initial trials were conducted with using a continuous measure for the distance as a stopping criterion. However,
there was no time to investigate this option any further. It will be described in more detail in “Future Work” (section 7.2).
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zero, it will still be selected once in a while by the random selection (on average about 1 in a 1000 times,
because the cleaner uses 10 subpolicies andε = 0.01).

6.4.4 Expected Performance on the Cleaner Task

This task is too difficult to solve optimally with a simple calculation. Unlike the previous experiments,
no exact value can therefore be given for the optimum value. Ahuman is able to collect all objects within
the allotted time25, but a human probably uses visual cues and planning unavailable to the learners. For
comparison, a flat learner was created that also needed to solve the task.

HABS uses two sensors (“radars”), one for its low level and one forits high level, and the flat learner
needs the same information as HABS, in order to make it a fair trial. But the flat learner by definition
only has one layer, so all this information is combined into one vector which is used as its observation.
Its state

ÐÐ→
statef lat is therefore defined as:

ÐÐ→
statef lat =

ÐÐ→
state′ll ,HABS ++

ÐÐÐ→
state′HL,HABS (6.13)

Tuning the Flat Learner

The “pickup reward” divides the task into several smaller tasks (find and pickup objects, find target and
drop objects, find and pickup objects, find target and drop objects,. . .). This helps the flat learner to
solve the task in a reasonable time and yields a good measure of what performance to expect.

The flat Reinforcement Learner that needs to solve this task,was tuned in order to find out what kind
of performance is typical for this task. Extensive testing (see fig. A.2 in Appendix A.1) shows that the
performance of the flat learner depends highly on several variables. Most striking are the influence of
theε andγ parameters.

The discountγ f lat needs to be around 0.95∼ 0.97, otherwise the agent cannot learn the task. Theε f lat

parameter (determining the amount of “greediness” of the selection) has a large influence on how long
the agent takes to learn the task. A low value ofε f lat vastly increases the learning time, but the policy
that is eventually learned is better, because random – suboptimal – actions are selected with smaller
frequency.26

The flat learner can solve the task reasonably well27 in some 5⋅106 steps, returning an average of
around 60∼ 65 objects. The best performance (around 70) is only reachedafter 4⋅107 steps, but the
agent can not do this consistently: some runs fail while others reach this high performance. On average
there are 89 objects in the environment so the flat learner is able to collect and return just over three
quarters of the objects in the allotted time on an average run.28.

6.4.5 Running Time

HABS and the flat learner both make extensive calculations (a large part of which are the forward- and
backpropagation parts of all the neural networks). Table 6.1 gives an impression of the time that the flat
learner and HABS need with various configurations.

25Episodes with a longer duration of 3000 steps, show that boththe flat learner and HABS can increase there performance
to around 70∼ 80 on the task without “pickup rewards”.

26It is of course possible to adjust the value ofε f lat during learning, starting with a high (quick-and-dirty) value, and
gradually increasing the accuracy by decreasingε f lat . The result in terms of time needed to convergence would be somewhere
in between that of the quick and the accurate values forε f lat . The performance would be roughly equal to that of the accurate
ε f lat value. This would require another parameter and additionaltuning.

27The flat leaner could solve the task a little faster with Boltzmann selection and “pickup rewards”, but was slower with
Boltzmann selection when no “pickup rewards” were used. Seesection A.1.3 in the Appendix for a short discussion.

28HABS was also tested on this simple task. It is able to achieve nearly the same (suboptimal) performance that most of the
flat learners reach (just under 60, not shown here) but in only2∼ 3 ⋅106 so it is slightly faster. No extensive tuning was done
for HABS in this simple cleanup task. In fact, the parameters were selected based on the results of the harder task without the
pickup rewards.
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actions/ms
flat learner (5 hidden neurons) 12.5
flat learner (15 hidden neurons) 5.7
flat learner (25 hidden neurons) 3.8

HABS (2 hidden neurons (ll), 5 hidden neurons (HL), 10 subpolicies) 13.4
HABS (2 hidden neurons (ll), 15 hidden neurons (HL), 10 subpolicies) 11.6
HABS (5 hidden neurons (ll), 5 hidden neurons (HL), 10 subpolicies) 10.3
HABS (5 hidden neurons (ll), 15 hidden neurons (HL), 10 subpolicies) 9.7

Table 6.1: Running times: the average speeds (in primitive actions per second) for various configurations.
Calculated on a Pentium IV with 2.4 GHz and 500 MB RAM.

The important factor for HABS is the number of low level neurons. The subpolicy neural networks
are used at every time step, so at every time step there is a forward propagation for all six primitive
actions, and a back propagation for one of these six actions.The high level policy only uses its neural
network once every few (possibly only once everytimeoutll steps in the beginning)

Since the flat learner uses its neural networks every time step, but it also needs it for the kind of
large scale learning that HABS does with itshigh level policy, it has a large disadvantage. Even more
so, because it has only one state vector as input, which is theconjunction of both the low level state
and high level state of HABS (otherwise HABS would receive information that the flat learner does not,
and the trial would not be fair). It therefore has a larger input vector to process at every time step, than
HABS does, if HABS has the same number of hidden neurons for its subpolicies as the flat learner has for
its policy. HABS on the other hand has an extra overhead because of the clustering and other calculations
related to its layered structure, and of course the high level policy with its neural network.

The difference is most notable with many hidden neurons. If the flat learner uses 15 neurons, and
HABS uses the same amount for its high level (even though it only needs 5 to solve the problem), it
can still be twice as fast because it only needs a few (2 already proved enough) hidden units for its
subpolicies.

6.5 The Cleaner Task

For the real Cleaner task the agent received no no extra help in the form of “pickup rewards”. As can be
seen in fig. A.4, this task is rather tough for the flat learner.

6.5.1 The Flat Learner

Without the extra help of the “pickup rewards”, the best flat learners need some 2⋅107 steps (compared
to only 3∼ 5 ⋅106 steps with the “pickup rewards”!). Furthermore, the variance in convergence time
is larger, so some learners take far longer to reach good performance (or don’t reach any significant
performance at all). Results of these experiments can be found in Appendix A.1.4.

Two settings are interesting: 15 hidden neurons,γ f lat = 0.97,ε f lat = 0.1 andα f lat = {0.01, 0.02} (see
fig. 6.12). The first (α f lat = 0.01) provides a high performance (just above 60) about half the time29. The
other alternative is to go for a “quick and dirty” solution with a higher learning rate (α f lat = 0.02). This
allows the flat learner to reach values between 50 and 55 fairly consistently.

29The boxplot visualisation is somewhat misleading here, because roughly half of the runs reach performance around 60
and the other half stay near 0. The boxplot “box” therefore only contains one or two runs. Nearly all other runs are either in
the top or at the bottom. That is why the lines denoting the lowest and highest quarter of the data are so small.
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Figure 6.12: flat learner: no “pickup rewards”. 15 hidden neurons,α f lat = 0.02, ε f lat = 0.1 andγ f lat =
0.97. Forα f lat = 0.005there was zero performance.

6.5.2 HABS does Some Cleaning Up

Even though it is also interesting to see how HASSLE and HABS relate to each other on tabular prob-
lems, the focus of HABS is on the use of neural networks on the high level. HABS was therefore most
extensively tested on the Cleaner task. The most interesting results are presented here.

The High Level Policy

The performance of the high level is virtually independent of the number of hidden neurons (fig. 6.13(a)).
A lower number of neurons does degrade performance slightly, but even with only one neuron in the
hidden layer, HABS is still able to solve the task (although about half the time it only reaches a lower
performance of 30 or 40 objects retrieved). This indicates that the structure of the problem as viewed on
the high level, is fairly uncomplicated. One or two hidden neurons are sufficient30.

Just as with the flat learner, a learning rateαHL of around 0.01 proved best (see fig. 6.13(b)). The
flat learner uses its neural network both for large scale and small scale learning, but for HABS these
functions are done by the subpolicies and the high level policy respectively.

Interdependencies

Fig. 6.13(d)) gives an overview of behaviour of learners with different γHL (for τHL = 0.025). It is
plausible the range of good values forγHL is dependent on the selection mechanism. The discount
determines the Q-values, and the selection mechanism is highly dependent ondifferences betweenthese
values.31. For this reason the discount was investigated for other values of the Boltzmann temperatureτ
(see fig. 6.14). It turns out that lower values ofτHL are more stable and give better performance for all
testedγHL values. ForγHL = 0.99 all tested values ofτHL give good performance, but ifγHL is lowered,
then the learner with the highestτHL is the first to drop. IfγHL is lowered further toγHL = 0.95 then the
performance of the learners with lowerτHL values also start to degrade.

As can be seen in fig. 6.14, the performance of HABS for otherτHL is roughly the same. The discount
is of great influence on the performance of the learner. A value that is too high or too low leads to low
performance. Values aroundγHL = 0.97∼ 0.99 yield good results.

The same kind of dependency was suspected of the discount andthe Advantage scaling factorKHL

because this factor scales the Q-values and therefore may also have an impact on the action selection.

30One or two neurons for each of the networks: there are as many networks as there are high level actionsai , because each
network only calculatesQ(s,ai) for one action.

31Parameters like the learning rateαHL and the number of hidden neurons are presumably not related to the discount: the
speed of adjustment of the weights of the neural network is independent of thedifferencesbetween the different Q-values.
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(a) hidden neurons (high level)
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(b) learning rateαHL
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KHL = 0.15
KHL = 0.2
KHL = 0.3
KHL = 0.5

(c) AdvantageKHL
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γHL = 0.995
γHL =  0.99
γHL =  0.97
γHL =  0.95
γHL =  0.90

(d) discountγHL

Figure 6.13: HABS – Settings related to the high level policy: No “pickup rewards”. Defaults: τll =
0.05, τHL =0.025, Kll = 0.3, KHL = 0.3, γll = 0.95, γHL =0.99, αll =0.01, αHL = 0.01, 2 hidden neurons (low
level), 5 hidden neurons (high level), 10 subpolicies, subpolicy-timeout= 20, ρ f ailed = 0, ρtimeout= −1, ω =
0.03. (a) hidden neurons (high level): 5 hidden neurons (low level).(b) learning rate αHL: KHL = 0.2, 7
subpolicies.(c) AdvantageKHL: (defaults).(d) discount γHL: ρ f ailed = 0.3, KHL = 0.2.

The results of several tests with different values for theseparameters are depicted in fig. 6.15. There
seems to be no significant dependency between theτHL and the AdvantageKHL because the learner
behaves roughly the same for varyingKHL with each of the tested temperatures.

The effects of differentKHL values atτHL = 0.025 is depicted in fig. 6.13(c). SmallerKHL values
give a boost in convergence time, but are less stable. Highervalues ofKHL give worse and/or slower
performance.32

The Subpolicies

The low level subpolicies are able to do their subtasks with as few as two neurons in the hidden layer
(see fig. 6.16(a)). There is no significant difference in performance between two or five neurons. This
was to be expected: the subtasks are designed to besimplebehaviours. A value ofαll = 0.01 for the
subpolicy learning rates was found adequate in initial testing. This learning rate was used consistently in
all HABS Cleaner experiments. No results regarding performance with varying low level learning rates
αll are presented here.

The selection temperature for the low level policies (fig. 6.16(b)) show a smaller window of good
parameters:τ ∈ [0.025,0.05] yields a good performance. But since the behaviour of the subpolicies is

32Initial tests confirmed thatK = 0.2∼ 0.3 was also suitable for the low level subpolicies (Kll ) and for the flat learner (K f lat ).
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(a) BoltzmannτHL at γHL = 0.995
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(b) BoltzmannτHL at γHL = 0.99
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(c) BoltzmannτHL at γHL = 0.97
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(d) BoltzmannτHL at γHL = 0.95

Figure 6.14: (a – d)HABS – Varying Boltzmann temperature τHL for γHL = {0.995, 0.99, 0.97, 0.95}:
No “pickup rewards”. τll = 0.05, τHL = 0.025, γll = 0.95, γHL = 0.99, αll = 0.01, αHL = 0.01, 2 hidden
neurons (low level), 5 hidden neurons (high level), 10 subpolicies, subpolicy-timeout= 20, ρ f ailed = 0,
ρtimeout= −1, ω = 0.03.

rather similar in the different tasks, good values in one task (like one of the maze tasks) turn out to be
good values in another task, and little real tuning is needed.

The number of subpolicies that HABS uses to solve a task fig. 6.16(c)), does not influence the per-
formance it reaches, unless of course there are so few subpolicies that not all behaviours can adequately
be covered. This is the case when only five subpolicies are used. It is easy to imagine that there are six
distinct behaviours in the cleanup task: four behaviours for moving (roughly) in the cardinal directions,
one for locating and picking up objects, and one for droppingthem.

Tests with five subpolicies show that the agent manages to retrieve as many objects as with seven or
more subpoliciesfor some runs, but not for others. This is remarkable. Apparently HABS is sometimes
able to use one subpolicy to execute two kinds of behaviours.One of the runs with 5 subpolicies
was investigated, and the following characteristic vectors were observed after 3⋅106 steps (i.e. near
convergence):

char1 = (−0.0795,+0.0022,−0.0362) char2 = (+0.1265,−0.0036,−0.0000)
char3 = (−0.0141,−0.1696, 0.0000) char4 = (−0.0000,+0.0000,+0.1000)

The agent usedchar1 for dropping the objects at the drop zone, but also for movingto the left.
Tests with four subpolicies the agent is unable collect any significant amount of objects. The per-

formance does occasionally reach 1 or 2 because the agent by accident drops an object correctly, but
nothing more.
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τHL = 0.017
τHL = 0.025

τHL = 0.05
τHL = 0.1
τHL = 0.2

(a) BoltzmannτHL for KHL = 0.15
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τHL = 0.017
τHL = 0.025
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τHL = 0.1
τHL = 0.2

(b) BoltzmannτHL for KHL = 0.2
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τHL = 0.017
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τHL = 0.05
τHL = 0.1
τHL = 0.2

(c) BoltzmannτHL for KHL = 0.3
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τHL = 0.017
τHL = 0.025
τHL = 0.05
τHL = 0.1
τHL = 0.2

(d) BoltzmannτHL for KHL = 0.5

Figure 6.15: (a – d)HABS – Varying Boltzmann temperature τHL for KHL = {0.2, 0.3, 0.5}: No
“pickup rewards”.τll = 0.05, τHL = 0.025, KHL = 0.3, γll = 0.95, γHL = 0.99, αll = 0.01, αHL = 0.01, 2 hid-
den neurons (low level), 5 hidden neurons (high level), 10 subpolicies, subpolicy-timeout= 20, ρ f ailed = 0,
ρtimeout= −1, ω = 0.03.

Clustering and Self Organizing

The parameters related to the clustering and self organizing show some surprises. These parameters are
the clustering learning rateω and the rewards (or punishments) for timeout (ρtimeout) and for executing
a behaviour that is not clustered as belonging to the currentsubpolicy (ρ f ailed).

It was suspected that punishing (ρ f ailed < 0) slightly would work best, but instead HABS reaches
better performance if failure (but not timeout) is rewardedslightly (ρ f ailed =0.3), as shown in fig. 6.16(e).
Even if the subpolicy did something that actually needs to beclustered in another cluster (i.e. belongs to
another subpolicy), it still interferes more to punish this(wrong) behaviour than to reward it a little bit.
Doing something wrong is apparently (in this environment) more similar to doing it right than to doing
nothing at all (timeout).

Punishing a subpolicy for doing nothing at all (ρtimeout<0) proved useful (see fig. 6.16(f)). A negative
return ofρtimeout= −1 or ρtimeout= −2 results in faster convergence and slightly higher performance.

The clustering learning rateω behaved rather good (fig. 6.16(d)) for a very wide range of values,
only ω = 0.001 proved too low, though not on all runs. Apparently even with this very smallω value,
the learner is still able to cluster the data most of the time.This is probably because it executes so many
iterations. If HABS takes 3⋅106 steps to reach convergence and if a subpolicy on average terminates
every 10 steps and there are 10 subpolicies, then each of the clusters has had some 104 adjustments of
its cluster center.
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1 hidden neurons

(a) hidden neurons (low level)
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= 0.1

= 0.2

(b) Boltzmannτll
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(c) number of subpolicies
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(d) clustering learning rateω
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(e) fail-rewardρ f ailed
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(f) timeout-rewardρtimeout

Figure 6.16: HABS – Settings related to subpolicies and clustering: No “pickup rewards”. Defaults:
τll = 0.05, τHL = 0.025, Kll = 0.3, KHL = 0.2, γll = 0.95, γHL = 0.99, αll = 0.01, αHL = 0.01, 2 hidden
neurons (low level), 5 hidden neurons (high level), 10 subpolicies, subpolicy-timeout= 20, ρ f ailed =
0, ρtimeout = −2, ω = 0.03. (a) hidden neurons (low level):(defaults),(b) Boltzmann τll : τHL = 0.05,
ρtimeout=−1. (c) number of subpolicies:τll =0.10, ρtimeout=−1. (d) clustering learning rate ω: ρ f ailed=
0.3. (e) fail-reward ρ f ailed: (defaults).(f) timeout-reward ρtimeout: (defaults).

Robustness

As can be seen from the data presented here, HABS is fairly easy to tune for this hard problem.33

HABS is able to reach convergence in just over 2⋅106 time steps, and it can reach average performances
33That is, using Boltzmann-selection. Usingε-greedy selection proved harder: withε-greedy the performance was inferior

with same settings ofKHL, γHL, αHL numbers of hidden neurons, subpolicies and settings for HABS clustering!
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of between 55 and 60 objects returned per episode. This is as good a performance as the flat learner is
able to reach, but HABS does it far more consistently and for a wide range of parameters. The flat learner
needs an order of magnitude more time (over 2⋅107 steps) to reach convergence, and the variance in the
moment of convergence is far greater. This is related to the random walking distance for both algorithms:
the flat learner has a very long chain of actions, but HABS a far shorter one because once its subpolicies
start acting non-randomly, it only needs to random walk on the high level. Shorter distances result in
less variance in the time when convergence is reached.

6.5.3 Forcing HABS to Explore, Some Tests

As explained in section 6.4.3, HABS was forced to explore with probabilityεHL = 0.01. Initial tests
suggested this value, so it was used as a precaution in all above experiments.

Using Boltzmann-ε selection on the high level seems to make no real difference for convergence
time and reached performance for most of the runs. Significantly higher εHL obviously lead to lower
performance, because ifεHL = 0.05, in 5% of the time, some subpolicy is selected at random. For a
lower Boltzmannτ this led to increasingly worse performance: forτ = 0.1 andε = 0.1 the performance
is still above 50 (fig. 6.17(b)), but forτHL = 0.025 andε = 0.1 it has dropped to an average of about 30
(fig. 6.17(b)) with only some of the runs reaching 50.
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(a) VaryingεHL at BoltzmannτHL = 0.025
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(b) VaryingεHL at BoltzmannτHL = 0.10
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εll = 0.1
εll = 0.05
εll = 0.01

εll = 0.001
εll = 0 (i.e. Boltzmann Sel.)

(c) Varyingεll

Figure 6.17: Boltzmann-ε selection:no “pickup rewards”.defaults:Kll =0.3, KHL =0.2, γll =0.95, γHL =
0.99, αll = 0.01, αHL = 0.01, 2 hidden neurons (low level), 5 hidden neurons (high level), 10 subpolicies,
subpolicy-timeout= 20, ρ f ailed = 0.3, ρtimeout= −1, ω = 0.03. (a) Varying εHL at Boltzmann τHL = 0.025:
τll = 0.05. (b) Varying εHL at Boltzmann τHL = 0.0.10:τll = 0.05. (c) Varying εll : τHL = 0.025.

However, whenεll was varied (fig. 6.17(c)), the agent was observed to take a lotmore time for some
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runs with very lowεll (if εll = 0 this amounts to regular Boltzmann selection, not shown here but same
results as withεll = 0.001), but otherwise performed the same as withεll = 0.01. Increasingεll had the
same effect as with increasingεHL: lower performance because more random actions are selected.

It seems that a little precaution was good, especially for the low level. Boltzmann-ε selection with
εll = 0.01 performs nearly the same as Boltzmann selection (Boltzmann-ε selection withεll = 0) but is
less variance in the time when convergence is reached.

Combining the best of Boltzmann selection (selection proportionate to Q-values) andε-greedy se-
lection (forcing exploration with probabilityε) is – at least for HABS – slightly more stable than either
of the two selection mechanisms (see Appendix A.2 for tests with HABS andε-greedy selection).
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis some of the problems were analyzed that arise when Reinforcement Learning is used in
combination with hierarchies. This knowledge was used in designing a new Hierarchical Reinforce-
ment Learning algorithm called HABS. The existing algorithm HASSLE by Bram Bakker and Jürgen
Schmidhuber [1, 2] was used as a starting point for this new algorithm.

State Space Abstraction and Task Decompositions

It is clear that Hierarchical Reinforcement Learning can benefit from using state space abstraction, where
each higher layer has a coarser view of the state space. Statespace abstraction allows the designer to
use his (perhaps only intuitive) grasp of a problem, to create coarser representations of the problem.
Furthermore, the designer is not forced to solve the problemhimself: there is no need to create atask
decomposition. The agent can learn which behaviours it should execute in what abstract state.

Behaviours Should Be “Relative”, Not “Absolute”

HASSLE uses high level states as its high level actions. In section 4.5 it was shown that one of the mayor
problems with high level actions is that they are (often) defined in an absolute sense (unlike primitive
actions), referring to fixed locations in the (abstract) state space.

First of all, no (or virtually no) generalization is possible when high level actions are defined in an
absolute way (see section 4.3.1). A high level action that isgood in one particular abstract state, is
useless in nearly all other abstract states, because it is defined in terms of specific abstract states. This is
unlike the primitive actions or for instance theteleo-operator(TOP) in RL-TOPs. Primitive actions and
the TOPs in RL-TOPs are only defined in terms “relative” to thestarting point, formulated in terms of
doingsomething, not inreaching states.

When generalization is impossible, it is not useful to use more than two layers (see section 4.3.3).
When a third layer is introduced, we run into the problem thatthe middle layer should consist of sub-
policies that are applicable everywhere.

The third problem is specific to HASSLE (or structures like it), because it stems from the use of
high level statesas high level actions, so other algorithms that use similar constructions will also be
hampered by this effect. If such a construction is used, there occurs anaction explosion: the amount
of high level actions grows with the number of high level states (see section 4.3.2). This is something
unusual and certainly something undesired in Reinforcement Learning. A larger problem has more
states and therefore more high level abstract states, and therefore requires more time to learn. But in
HASSLE the extra burden is that a larger problem also implies a larger number of high level actions to
be explored, increasing the learning time and the memory requirements even more.
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A Solution - Do it in Reverse

In this thesis a solution was proposed that can most easily and intuitively be illustrated by two pictures
(fig. 7.1), showing the structure of HASSLE and HABS. Compared to HASSLE, HABS does its mapping
from high to low level in reverse order. Instead of treating all the transitions between abstract states as
unique high level actions and then mapping each of these to a limited set of subpolicies, it first maps
many transitions to more generic high level actions or behaviours and then associates each of these
generic classes of behaviours to one subpolicy.

(a) HASSLE (b) HABS

Figure 7.1: HASSLE: same as fig. 4.1HABS: same as fig. 5.1

Obviously this is not the only way in which a structure like HABS could be created: other types
of mapping and/or classification could be used instead, or the classification could be fixeda priori
(resulting in an algorithm somewhat like Feudal Learning) or the mapping between classes of behaviour
and subpolicies could be flexible. In this thesis a simple version of HABS was presented. The high
level behaviours were represented as vectors and the classification was done using a simple clustering
algorithm on these vectors.

7.1.1 Results

Augmenting HASSLE with Filters

HASSLEwas tested with and without filters on two experiments. It turns out that, given the right filtering,
the augmented form of HASSLE is more robust for a range of parameters.

Comparing HABS with H ASSLE

HABS was compared to HASSLE, to see whether HABS is a good solution to the problems that were
identified with HASSLE. In order to see the destructive effect of the action explosion, experiments were
done in larger environments to see whether HASSLE would indeed be hampered by its many high level
actions, and to see whether HABS would be any good as an alternative. In one experiment HASSLE

slowed down, in the other it needed orders of magnitude more memory than was actually available
(resulting in a crash on every run). The experiments also showed that HABS was able to perform this
difficult task without any problems.

Comparing HABS with “Flat” Learners - Tabular Case

HABS also outperforms “flat” Reinforcement Learning in speed an order of magnitude in the same maze
problem. This is not surprising since Hierarchical Reinforcement Learning algorithms are designed
especially with that goal in mind. These experiments only confirm that the time that HABS needs for its
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self organizing and classification, is insignificant in comparison with the time saved by using a hierarchy.
This means that behaviours need not be fixeda priori but can be identified during execution.

It should be noted that it is difficult to compare “flat” tabular learners with HABS because HABS al-
ways has function approximators as its subpolicies, even when it uses a tabular representation for its
high level. This is unavoidable, because HABS treats its subpolicies directly as high level actions, and
if these subpolicies would be tabular, they would not be ableto generalize, which would in effect result
in a situation where HABS needs to learneachof the individual high level behaviours that would nor-
mally be generalized over by a function approximator. Comparison between HABS or HASSLE and a
flat learner is therefore always unfair.

Comparing HABS with “Flat” Learners - Function Approximator Case

HABS was created to be suitable for the use of function approximators, such as neural networks, to
approximate the value functions at all levels in its hierarchy. This means that it can boldly go where
HASSLE cannot. To illustrate this, an experiment (with an abstractstate space too large for tabular
representation of the Q-values) was designed where the agent was rewarded for collecting (and correctly
returning) objects scattered all over the world.

The “flat” learner was now equipped with a comparable neural network (with hidden layer). HABS was
both faster and more reliable. It was faster – both in time perprimitive action (because of the smaller net-
works) and in steps until convergence – and also had a wide range of settings that allowed it to perform
very good.

In contrast, the “flat” learner was very hard to tune, and evenafter much tuning and searching through
many parameters, it still often performed very badly. This is probably due to the fact that the distance that
needs to be travelled through state space to accomplish the goal, is very large. This means that random
walking takes an enormous time which allows the neural network to fade out before the agent has had
time to discover something meaningful. HABS on the other hand doesn’t run into this problem because
its random walking distances are smaller, both on the high and the low level, due to the hierarchical
structure.

Suboptimality

The suboptimality of HABS and HASSLE when compared to the “flat” learner was to be expected. It is
probably because the characteristic behaviours are too simple (see future work for more on this), or the
abstract state space does not allow optimal policies.

In fact, this is a common characteristic of hierarchical approaches: optimal behaviour given the
constraints of the hierarchy may be near optimal, but slightly suboptimal given the space of all policies.
However, often this is a price worth paying for far more efficient learning in general, and the ability to
learn in cases where Reinforcement Learning without hierarchies is completely infeasible because of
the distances involved and the random walking it implies.

7.2 Future Work

Several approaches for future work on HABS are given. They could be classified in several ways. Some
of the suggestions deal directly with better representations for the characteristic behaviours (curves in-
stead of vectors or decomposing the behaviour space into smaller subspaces (7.2.1) and automatically
detecting features (7.2.2)) whereas the other two (continuous termination criteria (7.2.3) and extending
the hierarchy to more layers (7.2.4)) do not. On the other hand, the first topic (curves and decomposi-
tion) could be considered heuristics that help the designer, whereas the remaining three are solutions to
problems that arise when the tasks become larger (and more continuous).
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7.2.1 Representation of Behaviours: Curves and Decomposition

It should be expected that practical problems arise when HABS is extended to larger problems. Intro-
ducing a the third layer (see below) will necessarily imply avery coarse abstraction, which means that
a simple vector representation for the behaviours might notbe suitable any more. Even for only two
layers, this situation already could occur.

This issue was already dealt with briefly in section 5.2.2. Itwas noted there, that high level actions
that result in the same difference vector, should in fact be comparable. But the more abstract the problem
is represented, the greater the risk that this assumption will not hold whenvectorsare used.

Vectors, Adieu!

The first option is to look at other representations for the path between two locations in the abstract state
space. Another function could be used to represent the path that the agent must take from one location
to another. Instead of a characteristic behaviourvector, something like a characteristic behaviourcurve
(see fig. 7.2) orsplineor something else entirely, could be tried.

Figure 7.2: Bezier curve: the executed behaviour between start (dot) and end (star) is represented by a
simple bezier curve (dashed arrow), instead of a vector. Thecurve is a better high level description of the
behaviour, than a vector from start to end.

Decomposing the Characteristic Behaviour

But suppose we have a problem where weknow that some of the abstract high level dimensions are
completely unrelated to some of the other dimensions. In this case it would be difficult to use one vector
as a representation for the characteristic behaviour. In fact, we know that some of the dimensions are
incomparable. In fact, it would be counter intuitive to try to squeeze all these values into one vector
using many different scaling factors for all the values and to try to use this many-dimensional space to
self-organize these vectors in.1

As an example, suppose that we have three (abstract) dimensions,x,y andz. The usual approach
would be, to compare the executed behaviourexecwith all the characteristic behaviours (associated with
the subpolicies) in this three-dimensional behaviour space. As illustrated in fig. 7.3(a) this could result
in strange classifications. Theexecvector is closer tov2 thanv1 (d2 < d1) but the executed behaviour
with regard to thex andy dimensions was almost opposite to whatv2 does in those dimensions. In fact,
v1 is much more similar if onlyx andy were considered. Unfortunately it is simply not the closestvector
when all dimensions are considered.

The alternative would be to decompose the behaviour space and create smaller spaces consisting of
comparable dimensions. This approach would make sense whenthe dimensions in the (abstract) state
space are very different from each other and cannot easily becompared by introducing a scaling factor
(as is done in section 6.2.1). In our example the dimensionsx andy are related and can be compared2 but
one dimension (z) is incomparable to the other two. In this case it would be useful to split the behaviour
space into two smaller subspaces (behaviour subspaces).

The first subspace is generated dimensionsx andy, and the second space is formed by dimensionz.
This means that a characteristic behaviour now consists oftwo vectors, one in thexy-space, the other in

1In fact, this “counter intuitive” but simpler approach was taken in the experiments conducted here. This illustrates that
(useful)a priori knowledge is not in principle needed in simple situations.

2The dimensionsx andy might for instance both be spatial, or both related to (different kinds of) objects in possession.
Dimensionzmeasures something completely different, e.g. fuel-consumption or energy.

112



(a) simple behaviour space (b) separating dimensions

Figure 7.3: (a) Simple behaviour space: all dimensions in the behaviour space are taken together and
used for one behaviour vector (exec). The characteristic behaviour vectors (black arrows) can assume
any value.(b) behaviour space with separated dimensions: the behaviour space is separated into two
parts (xy andz). Each characteristic behaviour consists of two vectors: one in thexy-space and one in the
z-space (the first characteristic behaviour consists of the two solid black arrows, the second has dashed
arrows). The executed behaviourexec(gray arrow) is decomposed and projected onto the two spaces, and
its projectionsexecxy andexecz are used for classification.

the space generated byz. When the agent has executed a certain behaviour (exec), this behaviour needs
to be decomposed into its projections on all the spaces (as illustrated in fig. 7.3(b)). The resultingexecxy

andexecz can then be used for classification.
This classification needs to combine the distance fromexecxy to chari ,xy and execz to chari ,z.

One alternative is, to use something quadratic:distance2(chari ,exec) = distance2xy(chari,xy,execxy)+
distance2z(chari,z,execz). This would lead to the normal Euclidean distance, but the difference with
regarding all dimensions as one space, is that with separatevectors,there are separate processes of self-
organization: each of the vectors is independent of the others. If all the values are taken together in one
vector, the different (but in principle incomparable) dimensions influence each other, because they are
used in determining which subpolicy is the best match for an executed behaviour. If the behaviour space
is separated into several subspaces, and if the characteristic vectors are constrained to those subspaces
then unwanted influence can be avoided. The downside is that we would need as many subpolicies as
there are combinations of vectors from all Behaviour subspaces.

7.2.2 Automatic Detection of Relevant Features

In many cases where it is nota priori clear which of the features of a state space abstraction are relevant
for behaviourbut on the other hand it is known that there could be features thatare less relevant then
others. When this happens it is not possible to exclude irrelevant featuresa priori (as was done in the
experiments presented here, see section 5.2.5 and 6.4.2).

Some kind of automatic detection of the relevant features issuggested here. Features that are cor-
related to behaviour also have a statistical property that can be exploited for automatic detection:3 the
prediction error betweenexecand the characteristic behaviour that is the closest match,will be small.

If these features cannot be appropriately described by a fewclusters, the average error between
the features and the corresponding values in the characteristic behaviours will always by high. This
suggests some kind of error minimalization algorithm. The expected difference (scaled to for instance
its standard deviation) for featurei between the nearest clusterclusterk and the executed actionexec
will be large for irrelevant features but small for featuresrelated to behaviour. Each of these features
contributes to the overall errorEexec,clusterk . Each featurei is assigned a weight (similar to how each input
in a neural network is assigned a weight). This weight increases whenever its contribution to the error
Eexec,clusterk is low, and decreases when its contribution is high.4 This relation can for instance be ensured

3Perhaps this property is even used implicitly by the designer when relevant features are identifieda priori .
4This error probably needs to be related somehow to the standard deviation in the feature in question, to avoid problems
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by demanding that the sum of all weights remains constant (∑weighti = 1). Perhaps each characteristic
behaviour will have a separate set of weights or one set couldbe shared between all subpolicies.

Using weights to automatically scale each feature will result in a process whereon averagethe
features that are related to the behaviour will end up with high weights. This is because on average
they are more properly clustered then the irrelevant ones, and therefore on average have a lower error.
Maximizing the weights of relevant features and minimizingthose of the irrelevant ones, will ensure
the lowest average error between executed behaviour and thecharacteristic behaviour vectors. This
should happen intertwined with the self organization of thecharacteristic behaviour vectors. In the
beginning some exploration in the weight-space is unavoidable, because it will take some time before
the subpolicies will start to behave non-randomly. From that moment on, a better set of weights will lead
to better classification, and better classification will lead to more consistent training of the subpolicies,
and so on, presumably.

7.2.3 Continuous Termination Criteria

In section 5.2.6 it was stated that HABS can in principle use continuous termination criteria:

continuousStopi<n = { terminate If timeout∨ (distance(S,S′) > δ ∧ S,S′ ∈Statesn+1)
continue otherwise

However, in the experiments presented in this thesis, only discrete criteria were investigated due to a
lack of time. Using a continuous termination criterion would imply that the agent agent after each lower
level step needs to compare its higher level state and measure the difference between its current state
and the state it was in when it started its current (sub)policy.

As a distance measure for two vectors in the behaviour space,the Euclidean distancecould be used.
But in situations where it is not known what the relevant features are, using this metric would mean
that some completely irrelevant feature could change a large amount and bring the distance over the
thresholdδ even though nosignificantchange would have been achieved by the agent.

When automatic detection of features – as proposed above – isused, it makes sense to also use the
feature weights in the definition of the distance. The lengthof theweighteddifference vector

distance(S,S′) =√∑weighti ⋅(S′i −Si)
would presumably be a better metric than just the length of the difference vector.

It would make sense to use automatic feature detection and a weighted (continuous) termination cri-
terion. If the relevant features are not clear, and cannot bea priori be excluded, they need to be detected.
But if the relevant features are not clear, they cannot be used for simple (possibly discrete) termination

criteria and not even for something as convenient asdistance(S,S′) = ∣ÐÐ→S′−S∣. This would mean an ex-
tra complication because good sets of feature weights wouldresult in good termination criteria and the
other way around. But bad weights would result in wrong (premature or late) termination of subpolicies
and therefore probably degrade the capacity of the agent to identify and classify meaningful behaviours.

7.2.4 Three or More Layers

It would also be useful to study performance of HABS on larger problems, where three or more layers
(together with function approximators) are needed. The groundwork for HABS has already been done
because HABS is shown to behave well when neural networks are used for the second level. This means
that there is – in principle – no problem with extending the structure and adding new layers with more
abstraction on top of it. Because of the fact that the policies on the second layer can be regarded as
relative actions, applicable anywhere in the problem, means that HABS can also use these second layer
policies as subpolicies in a third layer, and so on.

with features that always remain zero.
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Appendix A

Cleaner Task

A.1 The Flat Learner (with “Pickup Rewards”)
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εflat = 0.15
εflat = 0.10
εflat = 0.05
εflat = 0.01

Figure A.1: flat learner – ε-greedy selection: results for the flat learner when the “pickup rewards” are
used. The total reward accumulated per episode (1000 time steps) is displayed.α f lat = 0.01, γ f lat = 0.97
and 15 hidden neurons.

The flat Reinforcement Learning agent was tuned on the simpler Cleaner task with the “pickup
rewards”. This gives good indication of what performance toexpect in the harder task without the small
rewards.

Parameters – withε-Greedy Selection

If ε is low (ε f lat = 0.01, fig. A.1) the flat learner is able to reach a very high result(over 70 objects
returned on average). However, it takes over 3⋅107 time steps to do this on average, and some runs don’t
show any progress even after 5⋅107 time steps! Higher values (ε f lat = 0.1) yield lower results (around
65 objects returned)but are able to learn this 10 times as fast.

The discount parameterγ f lat is also of significant influence. Whenγ f lat is too high (γ f lat = 0.99,
fig. A.2(c)) the learner is unable to reach a good performance. This is probably because a (too) high value
of γ f lat makes discriminating between actions with nearly equal Q-values too hard (see section 3.1.4).
A low value ofγ f lat = 0.9 also leads to bad performance (because the reward signal vanishes too fast).

The flat learner was able to solve the task with 5 (good) or 15 hidden neurons (best) per neural
network (a network for each of the 6 primitive actions). Increasing the number of neurons to 25 leads
to a lower performance, probably due to overfitting. This is shown in fig. A.2(b). More hidden neurons
mean more calculations, so smaller networks are desirable from a computational viewpoint.
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(a) learning rateα f lat

 0

 10

 20

 30

 40

 50

 60

 70

0 1 ⋅ 107  

ob
je

ct
s 

re
tu

rn
ed

steps

 
 
 

   

   

   

   

   

   

   

   

    

 

 

 
 

   

   

   

   

   

   

   

   

    

 

 

 
   

   

   

   

   

   

   

   

    

 

 

5 hidden neurons
15 hidden neurons
25 hidden neurons

(b) hidden neurons
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γflat = 0.90
γflat = 0.95
γflat = 0.97
γflat = 0.99

(c) discountγ f lat

Figure A.2: flat learner – “pickup rewards” – ε-greedy selection: results for the flat learner when the
“pickup rewards” are used. The total reward accumulated perepisode (1000 time steps) is displayed. (The
graphs have the same scale for easy comparison.)Defaults: ε f lat = 0.1, α f lat = 0.01, γ f lat = 0.97 and 15
hidden neurons.(a) learning rate α f lat : (defaults).(b) hidden neurons: (defaults).(c) discount γ f lat :
ε f lat = 0.05.

The learning rateα f lat (fig. A.2(a)) cannot be pushed too high, because a high value lowers perfor-
mance. This is probably due to the fact that the adaptions that the network makes in its weights, are too
large: the network steps over the optimal value. A low value is possible, but increases the time until
convergence (which is undesirable).

A.1.1 Parameters – with Boltzmann Selection

fig. A.3 The flat learner in combination with Boltzmann selection was also briefly investigated. The
behaviour with respect to the discountγ f lat is the same as with theε selection (a peak at aroundγ f lat =
0.97, see fig. A.3(b)).

The relation between the selection and the performance is different from whenε-greedy selection is
used. Forε-greedy selection a sharper selection (lowerε f lat ) meant higher performancebut far longer
time until that performance was reached. With the Boltzmannselection this does not seem the case
(see fig. A.3(a)). Different temperatures do yield different performances (higherτ f lat result in lower
performance) but there does not seem to be a real difference in the time until that convergence is reached
(at least for the values that were investigated).

The learning rateα f lat behaves stranger (fig. A.3(c)). The higher valueα f lat = 0.02 that doesnot
work for theε-greedy case, does perform good here. However there seems tobe a dependence between
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τflat = 0.02
τflat = 0.05
τflat = 0.10

(a) Boltzmannτ f lat
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(b) discountγ f lat
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αflat = 0.01, τflat = 0.02
αflat = 0.02, τflat = 0.02
αflat = 0.01, τflat = 0.05
αflat = 0.02, τflat = 0.05

(c) learning rateα

Figure A.3: flat learner – “pickup rewards” – Boltzmann selection: results for the flat learner when
the “pickup rewards” are used. The total reward accumulatedper episode (1000 time steps) is displayed.
(The graphs have the same scale for easy comparison.)Defaults: τ f lat = 0.02, α f lat = 0.01, γ f lat = 0.97and
5 hidden neurons.(a) Boltzmann τ f lat : (defaults).(b) discount γ f lat : (defaults).(c) learning rate α f lat

for various Boltzmann τ f lat values: (defaults)

temperatureτ f lat and learning rateα f lat . When the learning rate is lowered fromα f lat = 0.02 to 0.01,
the time until convergence for the learner with a low value ofτ = 0.02 increases, but not for the higher
value ofτ.

A.1.2 Performance

The performance of the flat learner is highly dependent on theselection parameterε f lat and the discount
γ f lat if ε-greedy selection is used. Values aroundε f lat = 0.1 andγ f lat = {0.95, 0.97} yield good perfor-
mance. Lowerε f lat values result in the best performance (around 70 objects retrieved), but also in far
longer times to convergence (up to an order of magnitude longer!).

If the flat learner is used in conjunction with Boltzmann-selection, it is able to reach the same per-
formance, but is does so faster (convergence in 2∼ 3⋅106 steps).

A.1.3 Boltzmann Versusε-Greedy Selection

It is observed that the flat learner on average seems to learn slightly faster (but no better performance)
with Boltzmann selection than withε-greedy selection in the Cleaner taskwith the “pickup rewards”.
However, for the Cleaner taskwithout these extra rewards, it tooklonger to reach convergence for
Boltzmann selection (not shown here), but it reached slightly higher performance of around 60∼ 65.
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A.1.4 Cleaner Task (without “Pickup Rewards”)

In fig. A.4 the results for the flat learner without pickup rewards are displayed. The flat learner needs
2∼ 4⋅107 steps to arrive at a performance of around 50∼ 60.
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(a) ε f lat
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(b) discountγ f lat
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(c) hidden neurons
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(d) learning rateα f lat

Figure A.4: flat learner: no “pickup rewards”.Defaults: 15 hidden neurons,α f lat = 0.02, ε f lat = 0.1 and
γ f lat = 0.97 (a) ε-greedy: (defaults).(b) discount γ f lat : (defaults).(c) hidden neurons: α f lat = 0.01. (d)
learning rate α f lat : for α f lat = 0.005there was zero performance.

A.2 HABS

A.2.1 Asymmetries

The flat learner learned better with Boltzmann selection when “pickup rewards” but better withε-greedy
selection without the extra help (Appendix A.1.3). Something similar was observed for HABS, but
the other way around(see fig. A.5)! Using Boltzmann selection yielded slightly less variance in the
time that convergence was reached (when no “pickup rewards”were used). Forε-greedy selection, it
sometimes happened that HABS did not learn anything at all in a reasonable time (in comparison with
HABS together with Boltzmann selection), even though all settings other than the selection mechanism
were the same. Boltzmann selection proved better for HABS, and was therefore used to solve the Cleaner
task (without the “pickup rewards”) in section 6.5.
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(a) ε-greedy

Figure A.5: HABS — ε-greedy versus Boltzmann selection: (no “pickup rewards”) forεll =
{0.90, 0.95, 0.99} and εHL = 0.99 (for ε-greedy selection),τll = 0.05 and τHL = 0.025 (for Boltzmann
selection),Kll = 0.3, KHL = 0.2, γll = 0.95, γHL = 0.99, αll = 0.01, αHL = 0.01, 2 hidden neurons (low level),
5 hidden neurons (high level), 10 subpolicies, subpolicy-timeout= 20, ρ f ailed = 0.3, ρtimeout=−2, ω = 0.03.

For Reasons Unknown. . .

The reason for these asymmetries is unknown, but they might be related to the number of actions that
both algorithms have. The flat learner has only six primtive actions, but HABS uses 10 (or even 20)
subpolicies. With so many (high level) actions, it will happen more often that two Q-values have nearly
the same value. In that caseε-greedy selection will with probability(1−ε) select the maximum action,
but Boltzmann selection will assign roughly the same probability to the winner and the runner-up. This
might help thecomeback kidto really make a comeback: the action with the second highestQ-values
has a greater chance of being selected.

Boltzmann selection is therefore more helpful to actions that (eventually) are the best, but (currently)
have a slightly lower Q-value: they have a better chance of catching up and becoming the highest Q-
value. With fewer actions this effect becomes less and less of a problem because the probability that
these actions are selected at random, is higher.

HABS has (high level) actions that first need to be learned. This means that there is a good chance
that subpolicies will run into exactly this problem: they might still be inadequate for a certain behaviour,
but as their performance improves, the Q-value of selectingthis subpolicy as high level action, becomes
better. The flat learner does not have this extra complication, because the primitive actions don’t change.
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