
Liquid State Machine Optimization

Stefan Kok

Utrecht University

December 17, 2007

Supervisors:
Dr. Marco A. Wiering
Drs. Leo Pape
Dr. Ignace T.C. Hooge

Abstract

In this thesis several possibilities are investigated for improving the perfor-
mance of Liquid State Machines. A Liquid State Machine is a relatively new
system that is a Machine Learning system, which is capable of coping with
temporal dependencies. Basic Recurrent Neural Networks often have prob-
lems with this. One reason for this is that it takes a long time to train the
Recurrent Neural Network. Liquid State Machines train much faster by us-
ing a temporal reservoir to map temporal input into a static output pattern.
These output patterns can be learned by a statistical learning method. In
this thesis, two different subjects are addressed. The first subject is about
reducing computation time on calculating the performance. Optimization
algorithms for neural networks are often computationally heavy. This is be-
cause the performance of the system, here the Liquid State Machine, needs to
be evaluated. The computation time can be decreased by using other meth-
ods to evaluate the performance. The other subject that is addressed here,
is in the optimization of the temporal reservoir in the Liquid State Machine.
Two different algorithms are used here, namely Reinforcement Learning and
a Genetic Algorithm. The goal is to find out if the algorithms can improve
the performance by improving the temporal reservoir and if so, if the per-
formance is increased that much so that it is computationally beneficial to
use. The experiments using a different performance measure showed that it
will probably not help in improving the performance on classification of the
Liquid State Machine. The other experiment using the two different algo-
rithms showed that Reinforcement Learning can not find a better setting for
the temporal reservoir to improve the performance given the settings of the
experiments. But the Genetic Algorithm is able to improve the temporal
reservoir and thus improve the performance, this was tested on two different
datasets. The first dataset used was a movement classification task. The
results showed an improvement, but comparing it to another system, namely
Evolino, the Liquid State Machine is outperformed on both classification
and computation time. The second dataset used is a music classification
task. The results here where more in favor of the Liquid State Machine,
although it is unclear if the parameter setting for Evolino is optimal.

Contents

1 Introduction 3
1.1 Introduction to Artificial Intelligence 3
1.2 Time Series and Time-dependencies 4
1.3 Research Question . 6
1.4 Relevance to Artificial Intelligence 7
1.5 Outline . 7

2 Reservoir Computing 9
2.1 Feed-Forward Neural Networks 10
2.2 Time-series and Recurrent Neural Networks 13
2.3 Long Short-Term Memory . 16
2.4 Liquid State Machines . 18

2.4.1 Theory . 18
2.4.2 Reservoir and Readout 19

3 Training Paradigms 23
3.1 Performance Measurements 24

3.1.1 Readout Performance 24
3.1.2 Separation . 24

3.2 Reinforcement Learning . 26
3.2.1 Introduction . 26
3.2.2 Using Reinforcement Learning for Optimizing Liquids . 28

3.3 Evolutionary Computation . 30
3.3.1 Introduction . 30
3.3.2 Using Genetic Algorithms for Optimizing Liquids . . . 33

3.4 Evolino . 37
3.4.1 Introduction to Evolino 37
3.4.2 Enforced SubPopulations 37

1

3.4.3 Evolino Implemented 39

4 Data 41
4.1 Movement Classification Task 41
4.2 Music Classification Task . 43

5 Experiments and Results 46
5.1 Setup . 47

5.1.1 Setup Datasets . 47
5.1.2 Setup Liquid State Machine 49
5.1.3 Setup Evolino . 51

5.2 Results . 52
5.2.1 Separation . 52
5.2.2 Training Paradigms . 54

6 Conclusion 69
6.1 Discussion . 69
6.2 Future Research . 73

A Solution for Calculating Initial Q-values 75

2

Chapter 1

Introduction

1.1 Introduction to Artificial Intelligence

Artificial Intelligence (AI) is a broad subject. One purpose for AI is related
to explain phenomena. In brain studies for example, neurons can be simu-
lated to explain certain types of brain patterns. But probably most of the
research in AI is done on finding solutions to solve problems. This can be
all sorts of problems like ordering some data or classifying objects. For most
problems there is not one single method to tackle it. Often there are different
approaches to solve problems in AI. For example some approaches use learn-
ing algorithms to find a solution, while others use a pre-programmed set of
rules to solve the problem. The learning algorithms fall under a section in AI
called Machine Learning [13]. A number of well known learning algorithms
that fall under Machine Learning are Genetic Algorithms [4], Reinforcement
learning [25] and Neural Networks [13]. These algorithms have an overlap in
the problems they solve, but solve these in a different way. A problem with
learning algorithms is that they are not always transparent. For example,
an artificial neural network basically can be seen as a vector of values. This
makes it difficult to explain why it behaves like it does and what these val-
ues actually mean. If the neural network does not learn like it should, it is
difficult to find the problem.

3

1.2 Time Series and Time-dependencies

One type of problem that gets a lot of attention in AI is a problem with a tem-
poral aspect. This means that in the input data there is a time-dependency.
In other words, an input at one timestep does not contain enough information
to get the correct output. The output is thus dependent on a number of input
patterns. An example of a temporal problem is speech-recognition. Here the
task is to classify spoken words. In this case classification means that the
output is a written version of the spoken word. The temporal aspect forms a
problem for Machine Learning algorithms because the temporal-dependency
is often difficult to learn with the learning algorithms that are often used.
The system thus needs some sort of method to store previous input patterns.
For example the words ‘bike’ and ‘like’ sound the same except for one letter.
If the algorithm only classifies using the input pattern at one timestep, when
the letter ‘i’ is spoken, the algorithm will not be able to differentiate between
the two words. Feed-Forward Neural Networks have trouble in dealing with
this time-dependency. Because of the different lengths of samples it is dif-
ficult for these Neural Networks to have a complete memory of the input.
But this is not the only problem, it is often not known in advance what the
length of a time-dependency in a sample is. This makes it hard to set the
number of inputs for the network to the right size.

Hidden-Markov models [19] are statistical methods that are used as an
application for problems that have a time-dependency. A Hidden-Markov
model consists of a set of states. The transitions of one state to the other are
decided by a probability distribution in that state. The probability distri-
butions for each state is calculated by using a large set of examples and cal-
culating the chance to go another state. Another application that is applied
to problems with a time-dependency is the Time-Delay Neural Network [11].
This can be seen as a normal Feed-Forward Neural Network (see 2.1), but
instead of having input from one timestep, the input is stored for a number
of timesteps and given to the network at once.

Another system based on Feed-Forward Neural Networks, is called a Re-
current Neural Network [5]. This system uses recurrent circuits in the net-
work to cope with the time-dependency. The activation is thus kept in the
network by sending the output of a neuron back into the network. Recurrent
Neural Networks can be found in many forms. One is the continuous Re-
current Neural Network, where neurons use a continuous function to process
the input. Another system is based on biological neurons, which is called a

4

Spiking Neural Network [26]. Here the neuron uses a threshold function over
the input, to decide what the output should be. Spiking neurons are differ-
ent from neurons with a continuous function, because they only send out two
types of signals, namely a zero for not spiking, or a one for spiking. Unlike
in continuous Recurrent Neural Networks, the information is just partially
in the signal itself. Most of the information comes from the timing of the
spike signals. If only one signal comes into a neuron, it will not fire, but if a
lot of signals come into a neuron together, the probability to spike increases.
Another difference with continuous Recurrent Neural Networks is that the
activation in the spiking neurons is partially kept for future timesteps, which
causes each neuron to have an internal memory.

A last example of a Recurrent Neural Network that is used for time-
dependencies, is called Long Short-Term Memory [8]. This network is based
on a continuous Recurrent Neural Network, which uses special kinds of neu-
rons called memory cells. These memory cells also have an internal activation
like spiking neurons. The memory cells are special, because they use gates.
One is to block incoming activation from coming into the cell, another is to
let activation within the cell leak away and the last one is to let activation
from within the cell out into the network. The continuous Recurrent Neural
Networks use some form of a Gradient Descent algorithm [13] to train the
weights. Spiking Neural Networks are different. Although there is a Gradi-
ent Descent algorithm, which is called Spike-Prop [3], there are other forms
of learning. One is called Hebbian Learning [6]. This is a learning algo-
rithm uses some simple rules to change the weight between two neurons. If
the two neurons spike at the same time, the weight will increase, if only one
spikes, the weight will decrease. All the neural networks described above have
problems to deal with time-dependencies, the Recurrent Neural Networks all
have trouble with learning the time-dependencies and all the neural networks
suffer from the problem that it takes long to optimize the weights.

Two relatively new systems that cope with time-dependencies in a differ-
ent way are Echo State Networks [10] and Liquid State Machines [14]. These
two systems are based on the same idea. The two systems use a Recurrent
Neural Network to create static patterns of the temporal data. These static
patterns are then learned by a statistical learning algorithm. The difference
between these two systems is that in Echo State Networks, continuous Re-
current Neural Networks are used, while in Liquid State Machines, Spiking
Neural Networks are used. The advantage is that both systems get round
the troubles of learning in the Recurrent Neural Network, instead learning is

5

done using a relatively simple algorithm which does not take that much time
to train.

1.3 Research Question

Liquid State Machines (LSM) can be computationally demanding. This
forms a problem when improving the LSM. For example to improve the liq-
uid of the LSM, the performance of the LSM is needed which costs time. To
decrease the computation time, other methods to evaluate the performance
of a liquid should be investigated. One idea that could be used is a measure
for the separation of a liquid. The separation defines how well a liquid can
divide output patterns of a liquid given the input patterns. Using the sep-
aration property may decrease the computation time as there is no readout
network that needs to be trained, but also it could be that to calculate the
separation, less samples need to be used. One research question is thus:

Is the separation of a liquid a good and fast performance measure
for liquid optimization?

One aspect of this question is how the separation should be represented.
The second research question in this thesis is about the different algo-

rithms to optimize the liquid. There are a number of methods to optimize
the performance of a liquid, it will give a view on which algorithms are
capable of optimizing the liquids and how much they will improve the per-
formance. This part of the research may show how complex the search-space
is in finding the optimal solutions. Another comparison to make is to see
whether these algorithms outperform already good performing systems that
can also handle time-series problems, like Evolino [23].

How well are several different algorithms performing in optimizing
a liquid in a Liquid State Machine?

For testing these research questions, it may be insightful to use a toy
problem where the environment can be better controlled. A toy problem
is a problem which is artificially created. A toy problem can give a fair
comparison between the different algorithms and performance measurements
that are used. In the experiments the implementation of this toy problem
is a movement classification task. But an algorithm should not only be
capable of handling simple toy problems, but also more complex real-world

6

problems. This could show how dynamic these systems are, as they show
their capabilities to handle noise and inconsistencies. Another part that is
important for AI algorithms is how well they perform compared to humans.
Real-world problems often already provide insight in how well humans can
cope with the problem. One of these is music classification. This task is
something that humans are capable of solving.

1.4 Relevance to Artificial Intelligence

Cognitive Artificial Intelligence (CAI) is about creating new systems that
have intelligent behavior and study human behavior mechanisms to find new
systems that are capable of performing new tasks. In this thesis the aim is at
the first part, creating new intelligent systems or at least improving on them.
All the systems that are inspected here, are learning systems. Learning is
an important part for humans as it gives us the experience to cope with the
uncertainties in life. Problems that humans have to solve are often problems
with a time-dependency. For example, we are able to communicate with
each other, by behavior (for example getting a red face if we feel ashamed),
or with sign language or by using sound (crying, but of course also speech).
In AI this is an aspect where there is a lot of research done. This is because
it is difficult to find a system that can easily and with low computation time,
cope with time-dependencies. Liquid State Machines are such a system that
are able to deal with time-dependencies using less computation time than
other known systems. The goal is to find out what improvements can be
made to improve the performance of Liquid State Machines.

1.5 Outline

This thesis concerns Machine Learning systems that can handle time-series
data. In chapter 2 an introduction will be given to the algorithms that will
be used in the experiments. The first algorithms are Feed-Forward Neural
Networks, which are used as readout networks in Liquid State Machines.
Next there is an introduction to Recurrent Neural Networks (RNN) and time-
series data. After this Long Short-Term Memory and Liquid State Machines
are described. These two systems are then used in chapter 3 for optimization.

In chapter 3 the training paradigms that are used to optimize RNNs

7

are further explained. These training paradigms are used to optimize the
recurrent network of the Liquid State Machine and the Long Short-Term
memory in Evolino. In the first section two different performance measures
are explained, namely the separation of the liquid and performance of the
readout network. These measures are used to evaluate the performance of
a RNN for the learning algorithms. There are two algorithms that are used
to optimize the RNN in the LSM. First a Reinforcement Learning algorithm
will be introduced and the second training paradigm for LSMs is a Genetic
Algorithm. The last section is about a system called Evolino, this combines
a Long Short-Term Memory network with a regression method to learn time-
series data.

In chapter 4 the datasets that are used in the experiments, are explained.
There are two types of sets used. First there is the movement classification
set, which is a toy problem. Here the algorithms need to classify in which
direction a target moves on a grid. The other set is about music classification.
Here the task is to classify which composer has written a certain musical
piece.

Chapter 5 is about the experiments. The first section will explain which
parameters are used. The second section is about the experiments that are
done on the different learning algorithms. These are about the performance
of the different training paradigms like Evolino and the Genetic Algorithm.
But there are also a number of experiments done on the performance mea-
surements.

In the last chapter (chapter 6), the results of the experiments in chapter
5 are discussed. Furthermore some work that can be done in the future will
be discussed.

8

Chapter 2

Reservoir Computing

Solving time-series problems is a major challenge in Machine Learning. Time-
series problems are problems that have a temporal aspect, which means that
information of previous timesteps needs to be stored to be able to recog-
nize a sample correctly. An example of this time-dependency is in speech-
recognition. This gives a problem when for example a spoken word needs to
be recognized. Here there should be a memory to remember the complete
word when making a decision about which word it is. If the input at timestep
t− 1 is not used for input at timestep t the network will probably never find
the correct word. The problem with time-series is that neural networks that
are used, not only need a long-term memory, as also used in non-temporal
problems, but also a short-term memory. This is because otherwise, input
at a timestep is independent from the other timesteps. The problem with
Feed-Forward Neural Networks is that time-series are not always of the same
size. For example with speech-recognition, words are not of the same size,
but a neural network has a static number of inputs, thus making it hard to
define the size of the input layer. Liquid State Machines are able to solve
this by using a fading memory which is then used as input for a readout
network. This fading memory is a mapping of temporal data into a static
representation, which should be easier to learn for the readout network.

In this chapter the systems that will be used in the chapter about the
training paradigms (see chapter 3) will be explained. First Feed-Forward
Neural Networks (FNN) are explained. FNNs are often used in solving prob-
lems in Artificial Intelligence. Also it gives more insight in Recurrent Neural
Networks (RNN) as a lot of these networks are based on FFNs. These RNNs
are explained in section 2.2. Not only will the system be discussed, but also

9

some of its problems. Furthermore this section discusses what time-series
data exactly is. After this a RNN called Long-Short Term Memory is dis-
cussed (LSTM; see section 2.3). LSTM will be further used in section 3.4.
Finally Liquid State Machines will be further explained (see section 2.4).

2.1 Feed-Forward Neural Networks

A Feed-Forward Neural Network (FNN; [13]) is a statistical learning method
based on some basic principles of biological neurons. Although FNN neurons
do not look like biological neurons at all, they share an important character-
istic that make FNNs powerful, namely parallel processing. As can be seen
in figure 2.1, an FNN has a number of layers. The earliest FNNs only had

Figure 2.1: Image of an FNN with three layers, from bottom to top an input layer, hidden
layer and output layer. The biases are on the right

two layers [21], the input layer and output layer. To add more computation
power, a hidden layer is used, which means that it can approximate a lot
more functions than without. Function approximation is used, because in
most datasets, the function that can output correctly given the input pat-
terns is not known. Function approximation does what the words say, it
approximates the function that can deal with the dataset correctly. In other
words, the approximation function tries to get as close as possible to the
real function that creates the output. The network is built up of nodes (also
called neurons), these nodes are connected through weights (real number val-
ues) and these connections are directional. In other words, the input layer
provides input for the hidden layer and the hidden layer provides input for
the output layer. Also both the input layer and the hidden layer have a

10

bias node, which is an input node with a constant value namely one. This
is, because otherwise every function has output zero if the inputs are zero,
which decreases the number of functions it can approximate. The input for
the hidden layer is calculated by multiplying the weight of the connection
between the two nodes with the output of the input node. After this, a
function is applied using the summed input for the node. This can be the
identity function (which means nothing will be changed), but this decreases
the solution space to only linear functions. A well known function that is
used in FNNs, is called the sigmoid function (σ(x), see equation 2.1). This
function squashes the input so that the outcome of the sigmoid function lies
between a minimum and maximum. The function can be seen in figure 2.2.
The sigmoid in figure 2.2 is called a logistic sigmoid function. Here the min-

Figure 2.2: Graph of a Sigmoid function

imum outcome is zero and the maximum outcome is one. There are other
sorts of sigmoids like the hyperbolic tangent function, which has its minimum
at minus one instead of zero. The logistic sigmoid function is calculated as
follows:

σ(x) =
1

1 + e−x
. (2.1)

The input x for σ(x) for neuron j is calculated as follows:

xj =
n∑
i=1

xiwji, (2.2)

11

where wji is the weight between node i and node j and xi is the output
of node i. This is done for both the hidden layer and output layer (and
other hidden layers if there are any). But often, the transfer function of the
output layer is the identity function instead of a sigmoid function. There are a
variety of problems that can be solved using FNNs. One type of problems are
regression problems, where the function needs to predict the output at that
moment. For example with the stock exchange, it would predict the value
of a certain stock. But there are also other problems that can be solved,
for example classification problems. Here the output layer has a number of
different output neurons, one for each class. The index of the output neuron
with the highest output value will then be the class that the FNN predicts.

To find the right outputs for the input patterns, given the target values,
the weights need to be adapted to find the closest approximation to the
target values. One possible method to search for the optimal weights is
using an algorithm called Gradient Descent [13]. Here the derivative of the
network with respect to the error is taken. After this, using the derivative,
a step to the steepest decline (or incline) in the search-space is taken to
search for a better solution. A well known implementation of the Gradient
Descent algorithm is called Back-Propagation ([27], [22]). First the error is
calculated. The error function used here is calculated as follows:

E(t, y) =
1

2

n∑
j=1

(tj − yj)2. (2.3)

Here tj is the target-value (the value that should be the output), yj is the
value that the network has outputted, j is the j-th output neuron and n is
the number of output neurons. After this, the partial derivative with respect
to output neuron j is calculated for each output neuron. The output layer
here is assumed to be using the identity function.

δj = tj − yj. (2.4)

Next, the derivatives of the hidden layer are calculated with respect to one
hidden neuron, for every neuron, using the derivative of the logistic sigmoid:

δi = yi(1− yi)
n∑
j=1

wjiδj. (2.5)

Here yi is the output of hidden neuron i. After this the weights are updated
by using δj for weights between the hidden layer and output layer and δi for
weights between the input layer and hidden layer:

wji = wji + αδjxi. (2.6)

12

Here α is the learning speed, this is needed because otherwise it will only
learn to map the input to the output of that certain learning moment. In
other words it will constantly overfit. To solve this, α is set to a small value
to make a small step into the steepest direction of the search space given
the input and target values. Also equation 2.6 is used for all connections,
only with a different δ. FNNs are often used in the form of supervised
learning. Supervised learning means that when a FNN predicts something,
the target value that is going to be learned, is given. This is in contrast with
Reinforcement Learning. Here the target value is not given, but based on
rewards the FNN gets for predicting the correct or incorrect action.

2.2 Time-series and Recurrent Neural Net-

works

Time-series data is data that is divided into discrete timesteps. This is
because a computer splits up time into discrete timesteps, the data thus has
to adapt to the system that is used. Furthermore the input is transferred into
a number format which is a representation of the real world data. For example
sound-waves can not be directly used as input, they are first transformed into
a format that computers can deal with. In this case it is the frequency of
the sound-wave. The time-series data thus consists of a matrix where each
column can be seen as an input pattern at one timestep.

Time-series data can form a problem for machine learning algorithms.
Normally an input pattern does not have important relations with other in-
put patterns. In other words, one input pattern is not dependent on other
patterns. In time-series data, temporal dependency of patterns can be impor-
tant. For example, in recognizing sounds, the algorithm should store previous
parts of sounds, otherwise it will only classify a sound based on the input
at that timestep. To solve this, the algorithm needs a short-term memory.
This forms a problem because, it is not clear which part of the information
should be stored and how long something should be remembered. In a simple
problem this might not be too hard to solve, but in most problems, where
there is a lot of noise and other information that needs to be filtered out,
this can reduce the transparency. Learning also forms a problem, because
it is not necessarily known what needs to be learned and when this should
happen. One solution to this problem is called a Liquid State Machine, here

13

instead of learning the patterns with the short-term memory reservoir, the
Liquid State Machine uses a readout network to learn to associate the states
of the reservoir with the desired outputs.

Feed-forward Neural Networks have problems with time-series, as they
are static and do not have any short-term memory. One solution is to buffer
the input for a number of timesteps and giving this set as one input to
the neural network. These networks are called Time-Delay Neural Networks
(TDNN; [11]). This shows exactly the problem of for example FNNs. First
the number of input neurons can be high (because of the long input patterns)
which increases the chances of overfitting and training will take much longer
than normal. Another problem is that for example with words, one word
might be long and the other short, this means that some input patterns do
not use the complete network, which makes learning more difficult. Also, the
time-dependencies are unknown and can differ in length. A better approach
are Recurrent Neural Networks (RNN). These come in a number of forms.
One is based on an FNN, where activation is calculated by a sigmoid function.
The difference between FNNs and RNNs is that RNNs have recurrent cir-
cuits. These circuits send output back into the network in the next timestep.
This means that activation from the last timestep can be taken into account
for calculating the next timestep, if there is a recurrent circuit in the network.
An advantage in comparison with TDNNs, is that the short-term memory
that TDNNs have, is only within a certain time-frame. It can be that some of
the input of earlier timesteps could influence the input of later timesteps, but
TDNNs do not take this into account, they just cut the time-series in pieces.
RNNs do not have this problem as an input can be theoretically remembered
forever, thus input from the beginning of the time-series, can be used for
input at the end of the time-series. However, a drawback to RNNs is learn-
ing. There are learning rules based on the Gradient Descent algorithm, two
well known Gradient Descent algorithms are: Real-Time Recurrent Learning
(RTRL; e.g. [20]) and Back-Propagation Through Time (BPTT; e.g. [28]).
In BPTT and RTRL the error is propagated back into the network over
a number of timesteps. However, using Back-Propagation has a drawback.
When propagating back further in the network, the contribution of lower
lying connections to the error is getting smaller. It makes it difficult to get
the importance of states that lie further back in time. This makes it hard to
learn and also learning will be a lot longer in comparison with Feed-Forward
Neural Networks. Mostly states that lie more than ten timesteps back in the
past, can not reliably be used. This is also known as the the problem of the

14

vanishing gradient ([7]; [1]; [17]; [28]; [12]).
Another implementation of RNNs are Spiking Neural Networks (SNN;

[26]). SNN neurons, in comparison with neurons using a continuous func-
tion, are more inspired by biological neurons than most RNN neurons, as
they share the property to spike. Although biological neurons are far more
complex, they have some similarities. This of course partially depends on the
implementation of the spiking neuron, as there are a lot of different types of
neurons, in both biology as in computer science.

Most neurons in our brain only pass through a signal when the activation
has passed a certain threshold, which causes an action potential. Because of
this action potential, a signal is sent to the connecting neurons. To translate
this to computational methods, it means that a neuron either sends a spike
in a timestep or does not send anything at all. This differs from continuous
networks, where there is almost always activation that is passed through.
Another similarity between biological neurons and spiking neurons is that
they both have an internal activation within the neuron that stays over time.
This activation comes from input signals that are received some timesteps
ago, and thus gives a short-term memory for each neuron. The activation also
‘leaks’ away, which influences the time-frame from which input should still
be used (with a higher decay, activation leaks out faster and thus the neuron
has a shorter memory). If the activation is low, one spike will probably not
get the neuron to fire. But if at the same moment there are a number of
different spikes that come into the neuron, it will increase the chances of the
neuron to fire.

The problem with SNNs is that it is even more difficult for a SNN to
find a good supervised learning method then it is for continuous RNNs.
Although algorithms exist like SpikeProp [3], it is a computational heavy
task to learn with Back-Propagation methods. Most learning methods in the
brain seem to be self-organizing. In self-organization there is no feedback
when a wrong value is outputted. The only data the self-organizing algorithm
has is the input. One well known self-organization method is called Hebbian
Learning [6]. This learning rule comes in many forms but they all are based
on the same idea. That is that when two neurons are connected, and both
neurons fire at the same time (or in the same time-frame), the connection
between the two neurons gets stronger. If the neurons do not fire at the same
time, the connection between the two neurons will be weakened.

15

2.3 Long Short-Term Memory

Long Short-Term memory networks (LSTM; [8]) are used in Evolino, which
is described in section 3.4. Evolino optimizes these networks. A Long Short-
Term Memory network is a Recurrent Neural Network that uses special neu-
rons to calculate the output. These neurons are called memory cells and
have gates to decide whether activation is flowing through the core and out
or not, or some of it. There are three different types of gates: input gates,
forget gates and output gates. The core has a recurrent circuit (in other
words, the activation of one time-step back is part of the input for the core
for the next time-step). This means that it can possibly remember an input
infinitely long. The forget gate can ‘leak’ the activation out of the cell thus
removing information that is not needed anymore. The input gate is there
to protect the cell from input that is not needed. In other words, if the gate
is closed, no input will come into the cell. The output gate decides when
information should be sent over to other memory cells. Figure 2.3 shows the
setup for the memory cell. The memory cells are connected in four ways, all
output connections of a memory cell are connected through the output gate.
The input connections (both from input neurons and other memory cells in
the network) are connected through the core and the three different gates.
The internal unit holds the state of the cell. The cell state is calculated as
follows:

si(t) = neti(t)g
in
i (t) + gforgeti (t)si(t− 1). (2.7)

Here si(t) is the state of cell i at time-step t, gini is the input gate of cell i,
gforgeti is the forget gate of cell i, si(t− 1) is the state of cell i one time-step
back and neti(t) is calculated as follows:

neti(t) =
n∑
j=1

wcellij cj(t− 1) +
o∑

k=1

wcellik uk(t). (2.8)

Here cj is the output of memory cell j, n the number of hidden cells, uk the
output of input cell k, o is the number of input cells and w is the weight
between two cells (where cell j and k are input for cell i). The output of cell
cj is calculated as follows:

cj(t) = tanh(goutj (t)sj(t)). (2.9)

16

Figure 2.3: Figure of a memory cell (from [23]), S is the internal state of the cell, GF is
the forget gate, GO is the output gate and GI is the input gate. The Σ is the input from
input cells and hidden cells. The blue nodes represent the multiplication functions

Here goutj is the output gate of cell j. The value of the gates at time t is
calculated as follows:

gtypei = σ(
n∑
j=1

wtypeij cj(t− 1) +
o∑

k=1

wtypeik uk(t)), (2.10)

where σ is the logistic sigmoid function and wtype is the weight for either the
input, hidden or output gate. The strength of this model is that it has both
long-term as well as short-term capabilities. Long-term storage is done by
learning the weights between the cells. The short-term memory is created
by the architecture of the memory cell and the wiring between the different
cells. First there is the recurrent circuit for the core, but also the different
gates add dynamics to the memory. Normally for learning a variant of Real-
Time Recurrent Learning is used, but this will not be used in Evolino (the
implementation can be found in [8]) to optimize the weights.

17

2.4 Liquid State Machines

2.4.1 Theory

Liquid State Machines (LSM; [14]) are a new concept in machine learning.
They solve time-series problems in a completely different way in comparison
with most RNN systems and go around the problems that RNNs often have
with learning them. LSMs use a dynamic reservoir or liquid (LM) to handle
time-series data, as can be seen in figure 2.4. After a certain time-period, the

Figure 2.4: Figure of a liquid state machine (from [14]), where u(·) is the input for the
liquid, LM the liquid filter, xM (t) the liquid state at time t, fM the readout network and
y(t) the output at time t

state of the liquid xM(t) is read out to use as input for a readout network fM

(for example a FNN). This readout network learns to map the states of the
liquid to the target outputs. This means there is no need to train the weights
of the RNN, which decreases the computation time and more importantly,
the complexity of learning time-series data. A liquid can be represented in
different forms, it can be a real liquid, where the waves can be seen as a
short-term memory. For example, if someone would throw a rock into a lake,
the waves that this rock creates, are the memory of the liquid. In other
words, the waves tell that something has happened a short time ago. But a
Spiking Neural Network (SNN) can store much more information than a real
liquid. This is because in principle, a real liquid can have information in the
three spatial dimensions. But a SNN, can have far more neurons than three,

18

thus be able to store more information. SNNs consist of neurons that are
more biologically plausible in comparison with other RNNs. These neurons
have an internal activation and only communicate with each other by either
not sending anything (the output of a neuron is zero) or sending a spike (the
output of a neuron is one). The neuron has an internal activation which
leaks out over a time period, this is a short-term memory and the amount
of leakage is the time it takes to forget an input. An important property of
SNNs is that they also have information in the spike code. This spike code is
an array of spikes in a certain time-frame. Spike codes can be seen as a sort of
Morse-code, where there can be pauses (when no spikes are sent) or a ‘bleep’
(when a spike is sent). The use of this, is that the time when a spike arrives
is also a form of information. Another feature of the spike neuron is that
it keeps its internal activation, although it leaks away over time, this means
that due to recurrent circuits, the neuron itself also has a short-term memory
system. LSMs are a good tool for classification problems. In classification
problems, the LSM should separate different inputs from each other and
classify these. An example of this is classifying the composer of musical
pieces (this is also used in the experiment, see section 4.2 for further details).
The musical piece is input for the liquid and the readout network should then
classify which composer has composed the musical piece. Classification used
by the readout network is also described in section 2.1. For classification, the
readout network needs to separate the different states from the liquid. Given
that there are enough units in the liquid, it can create different patterns for
each time-series pattern (see [14] for further explanation).

Liquid State Machines have a Separation Property (SP) and Approxima-
tion Property (AP) [14]. SP addresses the ability to separate two different
input sequence from each other. This is important, because the readout
network needs to be able to separate two input patterns to have a good per-
formance. If two patterns look too much alike if they should not, the readout
network can not differentiate between the two patterns and thus is not able
to tell which pattern belongs to which class. AP addresses the ability of
the readout network to distinguish two different patterns and transform the
states of the liquid into the given target output.

2.4.2 Reservoir and Readout

For implementing the liquid an SNN is used. Here the neurons are set in a
grid, neurons are connected by a chance also used in [14]. The only exception

19

is that initialization for input neurons is different because they are initialized
using a static chance. The input layer is a two dimensional layer which
represents the spatial properties of the data. The dimensions of the input
layer when the input is for example a chess board, are the same as the
dimensions of that chess board. The spatial properties in the liquid itself are
kept because of this. In other words, the liquid is built up by layers where
the width and height are the same as the input layer. The depth defines
the number of layers there are in the liquid. The chances for connecting
two internal neurons with each other is calculated by first calculating the
Euclidian distance (D(i, j)):

D(i, j) =
√

(xcori − xcorj)2 + (ycori − ycorj)2 + (zcori − zcorj)2.(2.11)

In this equation i and j are two different neurons, with coordinates {xcor, ycor, zcor}.
After this, the chance to connect two neurons is calculated, using the follow-
ing equation:

pconnect(i, j) = e
−D(i,j)

λ . (2.12)

In equation 2.12 the λ parameter is used to control the probability distri-
bution. The chance to not connect it is then 1 − pconnect. To calculate the
chance of a neuron being inhibitory, the chance pinhibitory, is multiplied by
pconnect. The chance of being excitatory is then: 1 − pinhibitory. This imple-
mentation is also used by Maass et al [14]. In Maass [14], equation 2.12 is
multiplied by c, here c is set to one. In [14] Maass et al explains that the
distribution of connections is an important aspect of the liquid. Having too
much connections between neurons that lie far apart decreases the perfor-
mance. Having a lot of local connections and a few long connections seems
to be the best solution. With this randomly initialized network, there are no
direct recurrent circuits, which means that a neuron can not connect with
itself. For simplicity, weights are set to one single value.

A leaky integrate and fire model [26] is used for the spike neuron. The
neuron has a certain threshold (η). To get a spike, the activation (aj(t)) of a
neuron should become higher than this threshold. After a neuron fired, there
is a refraction period (rperiod). During this refraction period, the activation
is in its resting state (rrest), which is a constant. In this refraction period,
the neuron can not fire and when the refraction period is over, it starts its
activation at the resting state. The activation inside the neuron, is increased
or decreased by incoming activation from other neurons, but the activation

20

inside the neuron also ‘leaks’ away, this is done by multiplying the decay (d)
with the activation of the neuron one timestep ago. This decay has influence
on the capabilities for a neuron to have a short-term memory. Basically
setting the decay to zero, the neuron has no memory and it also makes it
harder to create spikes. Because with a higher decay, the activation is often
already closer to the threshold. Setting the decay to one, means that every
input (after the refraction period, or the startup of the liquid) is kept in the
activation of the neuron. The internal activation of the neuron is calculated
every timestep as follows:

aj(t) =
n∑
i=1

(xi(t) · wji) + (d · aj(t− 1)), (2.13)

where aj(t) is the activation of neuron j at timestep t, xi is the output of
neuron i (Here the neurons are both neurons inside the liquid and input
neurons) and wji is the weight between neuron i and neuron j, where j is the
receiving neuron. aj(t− 1) is the activation of neuron j one timestep back.

After the activation is calculated, depending on the threshold, the neuron
will either spike or not, which gives an output of respectively one or zero. The
spikes are summed up per neuron and at a certain time step over a period of
time (this is called a readout moment (xM(t)) and the readout period is called
xMperiod), these summed spikes are, together with the activation of the neurons
at that moment, passed through to the readout network. The number of
readout moments can vary. First because samples can be of different lengths
and thus can provide either more or less readout moments. Another reason is
that the number of readout moments is dependent on the number of timesteps
that spikes are summed, i.e. a shorter readout means there are probably more
readout moments per sample. The samples are the time-series data, that is
the input for the liquid. For example a musical piece is one sample. The
sample is broken up in discrete timesteps, and the sounds can for example
be broken up into frequencies. The frequencies at one timestep are then
an input pattern for the liquid. This input is passed through by the input
neurons. In the liquid, each input neuron passes either a zero or one through
to the spiking neurons in the liquid.

To get readout moments the liquid must be warmed up (warmup). Dur-
ing this warmup period no spikes are summed. This is done because there
is no activation at the beginning, which can influence the performance as it
is hard to separate two different samples without much activation. After the
warmup period there are, dependent on the settings, a number of readout

21

periods. Reading out the states of the liquid is repeated until the end of the
sample. After this, the readout moments are stored and labeled with a class.

If the liquid has encountered every sample, the readout network will be
trained. An FFN (see section 2.1) is used to classify the samples. This
FNN consists of an input layer, one hidden layer and an output layer. The
hidden layer uses a logistic sigmoid function, while the output layer is linear.
As the experiments are done on classification tasks, the number of output
neurons is equal to the number of different classes. The target is one for
the neuron with the index which equals the index of the class, otherwise
the target value is zero. Every time the FNN is initialized, the weights
are the same as with all the other initializations. This is done to keep the
experiments transparent. It is possible that with random initialization, the
network may find a good starting point. This increases the performance and
the next time it finds a bad starting point which decreases the performance.
To train the readout network, Back-Propagation is used and each sample
is run through the network and after that, it is immediately learned, which
is called online gradient descent [2]. This is done in epochs, which means
that the complete dataset is learned in one epoch and is repeated a number
of times. To increase the learning speed of the readout network, the input
patterns are scaled between zero and one. This means that the relationship
between all the readouts from the liquids stays the same, but the inputs now
lie between zero and one. This is beneficial to the FNN as it increases the
learning speed (smaller input means smaller changes in the weights when
learning).

22

Chapter 3

Training Paradigms

In the next sections, some algorithms that have been explained in the previ-
ous chapter, are used for optimizing RNNs. First the performance functions
that will be used in the experiments are described in section 3.1. In subsec-
tion 3.1.2 a new method to measure the performance of a liquid is described
(namely the separation). After this, a number of new methods are described
that will be used to optimize liquids in LSMs. The liquid optimization is
partly done on the wiring. The wiring are the connections between different
neurons, here there are three different types, namely an excitatory connec-
tion, an inhibitory connection and no connection. In liquids where the wiring
is initialized based on distances of neurons, the wiring is important, because
the weight is set to one default value for all connections. Thus finding a
better wiring could improve the performance. Reinforcement Learning (RL)
and Evolutionary Algorithms (EA) are described in respectively sections 3.2
and 3.3. These two algorithms could be compared, as they have an overlap
in problems they can solve. The EA will also be used to optimize the weights
in the liquid. This is because EA’s are able to deal with real values. In the
last section, a system that already exists will be further explained, namely
Evolino [23]. Evolino uses Long-Short Term Memory networks as the liquid
and Evolutionary SubPopulations (ESP) to optimize these.

23

3.1 Performance Measurements

3.1.1 Readout Performance

The most straightforward method to analyze the performance of a liquid, is
to use the performance measure of the readout network. Here this measure is
both used as a tool to analyze data learned by the LSM, but it is also used as
a performance measure in optimizing the liquid. The performance measure
implemented here, represents the percentage of correct classified samples.
First the index of the output neuron with the highest value is picked as
the classifier. If the index of the output neuron equals the target class, the
outcome is one, otherwise it will be zero. This outcome will be called oij,
where i is the i-th sample of class j. To calculate the performance P the
following equation is used:

P =

∑c
j=1

∑
s
i=1oij
s

c
(3.1)

Here c is the number of classes and s the number of samples in that class.
To calculate the performance, the performance is first calculated for each
class and then these are combined in the final performance measure. This is
because the readout network can be biased by the fact that there are more
samples from one class, which will make it look like the readout network
performs well, but it is just biased to choose the class with the most samples.

This measure seems to be a good measure for liquid optimization, as it is
stable and the outcome is transparent. However, the readout network needs
to be trained to get this performance. That means more computation time.

3.1.2 Separation

The disadvantage of using the performance of the readout network for opti-
mization is that it is not really a fast method, as the readout network needs
to be trained and that takes up computation time. Also it is an indirect
method to calculate the performance of the liquid (It is indirect because the
performance of the readout network is measured and not the performance of
the liquid itself). It would be better to have a measure which calculates the
performance of the liquid, in a direct method. In other words, there is no
neural network or other kind of statistical learning method necessary to find
the performance of the liquid. The separation of a liquid should be able to

24

fill in this task. Maass et al [14] used the separation to get a good view on
how well a liquid can divide two different input patterns. To calculate this
separation S, the distance is calculated between two different samples. For
this the Euclidian distance is used, which calculates the distance between
different readout moments:

S(sk, sl) =

√√√√ n∑
i=1

(Nki −Nli)2. (3.2)

In equation 3.2 s is a readout sample from the liquid and Nki and Nli are the
readout moments from neuron i of samples k and l and n is the number of
neurons in the liquid. Here are a two different methods to use the distance
to calculate the separation:

• S(sij, . . . , snm) = Sdifferent(sij, . . . , snm)−Ssame(sij, . . . , snm)(3.3)

• S(sij, snm) =

∑v
h=1 S

h
different∑v

h=1 S
h
same

(3.4)

Here S is the separation, sij is the j-th sample in the i-th class, n is the
number of different classes, m is the number of chosen samples for each class,
which normally is two, h is the h-th time that the separation is calculated
(for total separation), v is the number of separations that are calculated and
Ssame and Sdifferent are calculated as follows:

• Ssame(sij, snm) =
n∑
i=1

S(sio, sip) (3.5)

• Sdifferent(sij, snm) =
n∑
i=1

m∑
j=1

n∑
k=i+1

m∑
l=1

S(sij, skl) (3.6)

In Ssame, o and p are different chosen samples from the dataset. For one
separation calculation, there are two samples chosen from each class. These
samples are both used in Ssame and Sdifferent. The idea behind equation
3.3 is that the distance between two samples from different classes should
be as large as possible, thus giving it a positive influence on the separation
value, and the distance between samples of the same class should be as
small as possible, so if the distance is larger, the separation should be lower.
Equation 3.3 however is not a good representation of the dataset. This is
because it uses only a few samples and not the complete set. Maass et al [14]

25

solve this by summing a number of separations. In equation 3.4 this is also
applied. Also, here the relation is given between the distance of samples
from different classes and samples from the same class. For example, if there
are two different classes and there is no relation at all, the outcome is two.
If the outcome is higher than two, there is a positive relation, which means
that the distance of samples from the same class lie closer than the distance
from samples of different classes. If the outcome is under two, then there is
a negative relation and thus the samples from different classes lie closer to
each other than samples from the same class. A nice feature of the separation
is that it can also calculate the separation of one neuron. This is done by
only calculating the distance between two neurons and not a whole network.
This may give some insight in how different neurons perform. Also it could
be used to filter out neurons that have a low separation. Some neurons may
have a low separation value which could indicate that these neurons give
the readout network a hard time at separating different samples from each
other.

3.2 Reinforcement Learning

3.2.1 Introduction

Reinforcement Learning (RL; [25]) is an important learning method in ma-
chine learning. It is less demanding than supervised learning, where exact
data is needed in advance. This may become a problem for certain implemen-
tations like in robotics, where data is complex and hard to get in advance.
RL solves this problem by using a reward system to provide as a method for
learning the optimal solution. This reward is given at certain moments and
can be negative to penalize or positive to reward. The RL algorithm has
an agent, which can for example be a robot that drives through an office.
An agent can make actions, these can be all sorts of actions, for example
in robotics an action can be to go forward. Each action an agent takes,
gets some kind of reward afterwards. For choosing a next action, the agent
chooses the most likely action by choosing the one which has the highest
expected reward. In other words the action, that gets on average the highest
reward, is chosen.

The agent learns in the same environment where it will be used in practice.
This environment depends on what problem is going to be solved. It can for

26

example be a maze, where optimal routes are learned to find the fastest route
out of the maze. But it can also be a real world environment for example an
office. Learning while also behaving in the environment is a big difference
with supervised learning and also other learning algorithms. Here learning
is more an act-react method instead of learning everything in advance. This
makes the system more dynamic, because if the environment changes, it
can use knowledge from the old environment to solve problems in the new
one. But it also gradually learns how to improve its behavior in this new
environment. While other methods have to learn the new environment before
the agent can again be put back into use again.

Basically there are two types of reinforcement learning algorithms, one
type is episodic, for example Monte Carlo sampling [25], where at the end
of an episode, the sum of rewards is returned to update the state-value, for
example in a game of chess, where it is hard to evaluate during the game if
the moves that are made are good or bad. After the agent finishes a game
it gets the reward and this can be seen as an episode. The other type of
learning is where a reward is directly given when an action is done, these
are mainly algorithms based on TD-learning [25]. This means that it can
cope with problems that do not have a clear ending, for example in robotics
where a robot is supposed to be running around doing jobs all day. Both
Monte-Carlo sampling and TD-learning are methods which can be applied
in problems where the environment is not completely known, these methods
will thus try to predict the best action.

Both Monte-Carlo sampling and TD-learning can be implemented in two
ways, using V-values or Q-values. The difference is that with V-values, ac-
tions are chosen based on a model of the environment, where the algorithm
investigates the states and chooses the action that leads to the best state
(in other words gives the highest average return). Q-values have state-action
pairs, here there is no model needed, it chooses the action that probably
returns the highest reward.

For choosing actions, a RL agent uses a policy. There are two types of
actions, namely exploitation actions and exploration actions. Exploration
means that the action that is chosen is not the most likely choice at that
moment, but they are needed to search in the search-space so the agent will
not get trapped in a sub-optimal local optimum. In other words, exploring
means trying to find new local optima. Exploitation is choosing the best
action and thus choosing the action which probably will return the highest
reward. It is important to have a good exploration policy, as this will balance

27

the time an agent invests in exploration and exploitation. A couple of well
known exploration policies are the ε-greedy policy and the soft-max policy.
With ε-greedy normally the action with the highest value is chosen, but there
is a chance to explore and thus to choose another action. This is done by
using the ε parameter, this parameter sets the chance to explore and exploit.
It is a straightforward policy and not the best, as it could be possible that
the policy needs to change over time, for example to explore less and exploit
more. The soft-max [25] policy is completely different, it uses the Boltzmann
equation [25] to calculate the chances for each action, which means that the
chance to be chosen depends on the value of the V or Q-value. In other words,
the bigger the difference between two V or Q-values, the higher the chance
the action with the highest value will be chosen. This is a more fair method
of choosing a new action, as the relation between values is better represented
in the distribution of the probabilities for the V or Q-values. Learning can be
done in two ways, either with on-policy learning or off-policy learning. The
difference between these two is that on-policy learning updates the action
it has chosen using the value of the next action, while off-policy learning
updates chosen action using the value of the best next action.

3.2.2 Using Reinforcement Learning for Optimizing Liq-
uids

The implementation used for optimizing the wiring of a liquid, is a multi-
agent system. This means that the learning process is more complicated than
normal, as agents should work together and certainly depend on each other.
In other words, if one agent changes its state, it may influence the whole
chain of connections that come after this connection, including itself.

The algorithm is an on-policy Monte-Carlo sampling. As described in
section 3.2.1 Monte-Carlo sampling is episodic. This seems to be suited for
liquid optimization, because one run through all the samples can be seen as
one episode. Furthermore an on-policy method is used. The RL algorithm
here, uses Q-values, the agent is in a certain state and given this state, the
agent chooses its action, these actions are explained later in this section. As
a policy, the soft-max algorithm is used. As already stated in the last section,
the soft-max algorithm uses the Boltzmann equation to calculate the chances

28

of an action to be chosen:

pa =
eQt((ni,nj),a)/τ∑n
b=1 e

Qt((ni,nj),b)/τ
(3.7)

Where τ is the temperature and Qt((ninj), a) and Qt((ninj), b) are different
Q-values for the agent in states a and b between neuron i and neuron j, with
neuron j receiving output from neuron i. An agent is a connection between
two neurons. In this case the agent has three different states, namely the
state to be on, to be inhibitory and the state to be off. As described in section
2.4.2, the wiring of an LSM with a random liquid, will be chosen using the
distance. The chances to initialize the wiring, are also used as initial chances
for the RL algorithm. This may give a boost to initial learning. To find the
right Q-values given the different chances, the following equation is used:

Qt((ni, nj), b) = ln
(
eQt((ni,nj),a)/τ

e−dista(x,y,z)/λ
− eQt((ni,nj),a)/τ

)
· τ (3.8)

Here Qt((ni, nj), a) is the default value which is predefined. The complete
explanation on how equation 3.8 is found and how to apply it to find the cor-
rect Q-values, can be found in appendix A. The soft-max algorithm also has
a disadvantage. It gives another parameter that needs to be tweaked. There
is also a trade-off that needs to be made on how to set the τ parameter and
also the default Q-value. If the Q-value is high, because of the exponent, it
will increase computation time (calculating the exponent of two takes longer
than calculating the exponent of one). If the temperature (τ) is increased,
the exponent will be smaller, thus less computation time. But the proba-
bilities for the different Q-values lie closer to each other. This increases the
time spend on exploration. The temperature needs to be tweaked according
to how much exploitation and exploration there should be. Too much explo-
ration and the system will not converge to an optimum, too little exploration
and the system converges to a sub-optmimum.

The agent can be in three different states, namely: {−1, 0, 1}. These
states stand for the type of connections that can be made, namely a positive
connection, no connection or a negative connection. To update the Q-value,
the following formula is used:

Qt((ni, nj), s) =

{
(1− β)Qt((ni, nj), s) + θ[R(t)] if s = 0
(1− β)Qt((ni, nj), s) + α[R(t)] otherwise.

29

Where β is the decay, α and θ are the learning speed, s is the state where
the agent is in, t is the time-step and R is the reward. This system is used
because otherwise if the number of connections is below fifty percent, it will
update the agents in state 0 too high. θ thus should always be set lower
than α. The reward given is the performance of LSM. The reward will only
be given if the performance of timestep t is higher than the performance of
timestep t− 1.

3.3 Evolutionary Computation

3.3.1 Introduction

Genetic Algorithms (GA; [4]) are based on evolution. GAs do not use one so-
lution and build further on that specific solution to improve the performance,
but they use a population of solutions and properties of the individuals in
the population to find the optimal solution. As with evolution, selection on
individuals takes place. The difference is that with GAs selection is done
under more strict rules. The population is always of the same size, and in
most cases the number of selected chromosomes for the next generation is
also the same. Next to that the method for selecting individuals is different.
Also GAs are directed to solving a goal, using a predefined fitness function,
while in biology this goal seems to be missing.

There are a number of different methods to select individuals from the
population. Two well known selection methods are truncation selection [4]
(also known as ranked-based selection) and tournament selection [4]. The
first is more straightforward. It selects a percentage of individuals with the
best fitness. Truncation selection is not only used in computational prob-
lems, but also in other problems, for example farmers use it to get as much
milk from cows as possible. They look at the milk production of a cow and
take the best cows to make offspring. Tournament selection is a bit differ-
ent. It uses tournaments to select individuals for the next generation. This
is done by randomly choosing a fixed number of individuals from the pop-
ulation and checks which individual has the highest fitness. This individual
will be selected for reproduction. A major difference between the two se-
lection methods is that tournament selection has a more diverse population.
Truncation selection only selects the best individuals at that moment, but
it is possible that parts of solutions that are not selected can still be used

30

to improve solutions in the future. In tournament selection this is partially
overcome because it is possible that a tournament is held between a number
of really bad solutions which means one of these bad solutions is selected and
thus creates more variety in the solution space. This has some relations with
reinforcement learning policies, where it is important to find a good method
to both explore and exploit. In GAs this problem also needs to be solved, so
that an optimal solution is found and not a sub-optimal. Another method
to increase the exploring capabilities of the GA is to increase the population
size, this also has a disadvantage, it increases the computation time per gen-
eration. This gives a bit of a trade-off to how large the population should
be, the computation time should be as short as possible, but it should be big
enough that it contains a wide variety of solutions.

For producing offspring, crossover and mutation are used. Crossover is a
method to combine the gene-strings of two or more parents into one to get a
child. Gene-strings are basically strings which contain the information of the
system that is optimized. Two well known crossover methods are one-point
crossover [4] and uniform crossover [4]. One-point crossover (see figure 3.1 for
illustration) slices the gene-string of the parents at the same point into two
parts, and uses the first part from the first parent and the second part of the
second parent to make a new gene-string (This can be extended to use the
second part of the first parent and the first part of the second parent to create
another child). One-point crossover can be extended to two-point crossover
(or three-point etc.), where more points are picked to slice up the gene-string
for recombination. An advantage of this type of crossover method is that it
keeps a certain ordering in the gene-string and sometimes this can be useful
to solve the problem. Uniform crossover does not use this ordering, it picks
either a gene from the first or second parent for each gene in the gene-string
(as is illustrated in figure 3.2). This means that the ordering is less important,
but this can also be an advantage as the spatial property of the gene-string
can also negatively influence the solutions. Mutation is a method to create
diversity. Mutation is done by randomly changing a value in the gene-string
to another value (within the search-space). These two methods are different
as mutation brings new diversity in the population, while crossover tries to
use the best properties of the solutions that are already created.

One of the difficulties in GAs is to find a good fitness function. This is
important, the fitness function will define in which direction of the search-
space the GA will search. If the fitness function is flawed, it will not optimize
to the wanted result. There are all sorts of problems for finding a good fitness

31

Figure 3.1: Illustration of 1-point crossover, the child inherits the first three genes from
parent one and the rest from parent two

Figure 3.2: Illustration of uniform crossover, here the child inherits genes one and four
from parent one and the rest from parent two

function. The function can be too complex, which results in difficulties to
find an optimal parameter setting for the fitness function. An example of this
is when an EA is used to design the skeleton of a car, it should be strong, but
also light. Both the sturdiness and weight should be taken into account for

32

the fitness function, but it is not clear how the combination should be made
between the properties, which properties should be made more important.
This increases the search-space and can result in a fitness-function that will
not give the expected results. Next to that a fitness function can be biased. It
can be that a fitness function is biased in a way that it ignores an important
part of the search-space and thus the optimal solution will not be found.

3.3.2 Using Genetic Algorithms for Optimizing Liq-
uids

Evolutionary algorithms play an important role in machine learning and a
lot of the problems that are optimized using reinforcement learning are also
optimized with evolutionary algorithms. It seems a good idea, to compare
the performance of an evolutionary algorithm with that of a reinforcement
learning algorithm. Other than that, optimizing the wiring of a liquid is much
like the bit-string problems that are often optimized with genetic algorithms.
Although Evolutionary Algorithms are already used to optimize Liquid State
Machines and Echo State Networks, for example in [9], wiring optimization
is not very common. The genestring is represented by two layers (see figure
3.3 for illustration), an input layer and the liquid layer. The input layer
represents the connections from input neurons to liquid neurons and the
liquid layer represents connections between two liquid neurons. Also unlike
in random liquids, it is possible to have neurons that are connected to itself,
because if this has a negative influence on the fitness, the GA will remove
these recurrent circuits after a number of generations.

The algorithm that is implemented goes as follows:

1. The pool is initialized, wiring is randomly initialized as described in
section 2.4.2. After this the layout of the wiring is put into a genestring
as can be seen in figure 3.3.

2. Each chromosome is validated to calculate the fitness, by using the
liquid in a LSM.

3. Parents are selected from the chromosome pool.

4. Offspring is produced by using crossover with two parents.

5. All chromosomes in the new pool have a chance to be mutated.

33

6. steps two, three and four and five are repeated until the end condition
is met (here the end condition is the number of generations that is
pre-defined)

Figure 3.3: Illustration of how a liquid is converted to a genestring, the purple connec-
tions are inhibitory connections. Note that the representation of the liquid here is a two
dimensional liquid, normally this would be a three dimensional liquid

For selecting the parent, tournament selection is used. In tournament se-
lection a number of chromosomes are chosen to take part in a ‘tournament’,
which means that the chromosome with the highest fitness wins and is se-
lected for producing offspring. As already stated in 3.3.1, population size is
important as is the number of individuals per tournament. More individu-
als in a tournament means that the chances are less likely that chromosomes
with a lower fitness will be selected, thus there is a trade-off between choosing
the best chromosomes and keeping the population diverse.

Selection takes place by shuffling the chromosome pool, and picking out
the first number of chromosomes in the pool for a tournament. After the
tournament, the best individual is put in the parent pool. This is repeated
until the parent pool is filled. The chromosomes selected for a tournament are

34

not put back into the pool. This way every chromosome gets a chance to be
selected as a parent and be in the next generation pool (on the condition that
it wins the tournament of course). A small change to this implementation
can be made, by selecting a small number of the best chromosomes without
using tournament selection. This way, the best chromosomes are kept in the
gene-pool.

After that, the parent pool is shuffled and the first two parents are selected
to make a child, this is repeated until the chromosome pool is full again.
These parents will not be put back into the old parent pool, thus every
chromosome has an equal chance to make offspring and most likely will (if
the number of parents selected for the new pool is low enough every parent
will have an offspring). Of course if the parent pool is empty, but there are
still not enough children in the pool, the whole process is repeated again
until the pool is full.

Children are made by using crossover. For the implementation that is
used here, uniform crossover is used. This is because the ordering of the
genestring is different of that of the liquid (the liquid is 3d and genestring is
2d), this should not affect the solutions that are generated. Also to make a
one-point crossover (or multi-point crossover) that cuts a 3d slice in the gene-
string to combine with another parent, would be complex, thus the choice is
to not use the spatial property at all. After this, all chromosomes, including
the parents chromosomes have a chance to mutate, this is done by going
through the genestring and with the chance pmutate, a gene will be mutated.
If the gene is mutated, there is a fifty percent chance to mutate in one value
and 50 percent to mutate in the other. For example, if the gene has the
value of one, it will either with a chance of a half, mutate in minus one, or
zero. The parent pool is also mutated, because this reduces the chances of
elitism. Elitism means that only genes from the best chromosomes are kept
in the population, but it is possible that chromosomes with a lower fitness
still have some good properties that could be used in next generations. Mu-
tation already solves this by keeping the population diverse, but if it is not
done on the parents, there is a chance that the diversity in the gene-pool is
low and thus increases the chances of getting elitism. A disadvantage of this
implementation however, is that the mutated parents get a different fitness
value and this increases the computation time. An exception however are
the parents that are selected without the use of tournament selection, as is
explained above. These chromosomes will not be mutated as this would re-
move its purpose of at least keeping a small number of the best chromosomes

35

in the gene-pool.
After mutation, the fitness is calculated for every chromosome in the pool

(including mutated parents). Fitness is calculated by training the readout
network on the training dataset. After this a control set is used to determine
the performance of the LSM and this value is used as fitness.

As an extension another layer is added to the chromosome. This layer
consists of the weights between the neurons. The weights and wiring are
optimized together. It is faster to optimize weights parallel to optimizing the
wiring, because the computation time is dependent on how many connections
there are, and the wiring thus reduces computation time (given that there
are connections missing between neurons). The representation is kept as in
figure 3.3, but now there are four layers, namely two input layers and two
hidden layers (one for weights and one for the connections).

The whole process of optimizing weights is the same as with the wiring,
with one exception and that is mutation. To mutate a weight, a random
value between -0.025 and 0.025 is picked and added to the original weight.
Also a weight can not be below zero or above one. Because the wiring
already has a negative value, a negative weight would make this positive
and can interfere with the learning process. In other words, if a weight is
negative and a connection is negative and the fitness is better because it
is a positive number, when crossover is used this negative weight can be
chosen in combination with a positive connection, which can have a negative
influence on the fitness. A weight can not be higher than one, because a
weight could increase to infinity which can be a negative influence on learning.
Furthermore it could be more biologically plausible as a neuron only has a
certain amount of energy and can not make the signal any stronger than
that. The maximum of one is chosen, because this is also the threshold value
and firing value of a neuron, so a signal can not become higher than its spike
value. Using wiring in combination with weights has some disadvantages.
Weights are selected while the connection at that gene could be in the off-
state, so a weight that has no influence on the outcome, is still chosen in the
next gene-pool. This can be negative but it can also be positive, as there is
more diversity in the gene-pool.

36

3.4 Evolino

3.4.1 Introduction to Evolino

Evolino stands for EVolution of recurrent systems with Optimal LINear Out-
put. Evolino has the same architecture as LSMs and ESNs, it uses a liquid
and readout network. The liquid is a LSTM (as described in 2.3), which
is then optimized using evolution as described in the next section (section
3.4.2). The readout network that is used is a linear regression model as
the name Evolino (LINear Output) already implies. In section 3.4.3, the
implementation is described that is used in the experiments.

3.4.2 Enforced SubPopulations

Enforced SubPopulations (ESP) is an evolutionary approach that is an ex-
tension to Symbiotic, Adaptive NeuroEvolution (SANE; [15]). It is a co-
evolutionary approach to solving Neuro-Evolutionary problems. In most EA
approaches, a chromosome represents the complete neural network, but in
SANE individual neurons are optimized. These neurons in most implemen-
tations are basically a set of weights (real numbers) for that neuron. This is
done by making a genepool of neuron chromosomes and combining a num-
ber of these to make a network. After this, the fitness of the network is
calculated and each chromosome that took part in the network, gets that
fitness. The difference between SANE and ESP is that in ESP there are sub-
populations, which means that for each point in the neural network there is a
sub-population that is evolved (see figure 3.4 for an illustration). SANE does
not have different sub-populations, there is only one chromosome pool with
neurons in it and each neuron can be chosen for each place in the network.
This means that ESP has more specialized functions, which may increase the
variety in the genepool. The algorithm runs as follows:

1. First the populations are initialized. Each sub-population is of the same
size. Each chromosome consists of weights between that neuron and
both the input and hidden layer. These weight are randomly initialized
real values. In Evolino, this is extended for the memory cells, which
consist of four different types of weights, namely the three gate weights
and the normal cell weight. The total number of weights is then 4 ×
(I + H). This is four times (for each gate and the cell weight) the
weights between the input neurons and the memory cell and four times

37

Figure 3.4: Illustration from [23] shows how ESP works. From each sub-population in
the gene pool (on the left), a chromosome is taken, in the middle there is the LSTM
network and the four chromosomes chosen from the sub-populations, are implemented in
the network

the weights between hidden memory cells and the memory cell that is
initialized here.

2. The neurons are evaluated. In each sub-population one neuron is chosen
to combine into a network. Then the network is evaluated and gets a
fitness score. This score is added to the cumulative fitness, which is
the actual fitness that is used to rate the chromosome. This process is
done for each neuron in each sub-population and repeated until each
neuron has participated in a predefined number of evaluations.

3. Children are made to make a new generation. Dependent on the
implementation, there can be crossover and mutation within a sub-
population and selection methods can also differ. Most selection meth-
ods that are used in GAs can also be used in ESP.

4. Step two and three are repeated until the stop conditions are met. The

38

condition in Evolino is the number of generations it will train.

3.4.3 Evolino Implemented

As stated in the introduction, Evolino also uses a recurrent network to han-
dle the time-series, but uses a linear readout network to map the states of
the recurrent network to the output layer. The readout network is a linear
regression model, which basically is the output layer of Evolino. It is trained
with the Moore-Penrose pseudo-inverse method [18]. This method is chosen
because it is known to be a fast and powerful method to learn the linear
outputs. The weights in the LSTM are optimized by evolution, in this case,
ESP is used to evolve the network. To evaluate the network (for the fitness),
first all the samples are presented to the LSTM, after this, the output that
is produced by the LSTM, is stored in a matrix to be learned by the linear
regression model. To get the readout moments from the LSTM, first the
LSTM is warmed up, which means that the output of the LSTM is not used.
After that for a number of time-steps, the output is summed and used as
input for the linear regression model. For all vectors in the matrix, there
is a target vector, for training the regression model. After all samples are
passed through the LSTM, the output weights are trained. After this, the
training-set is presented again to the LSTM and now with the optimal re-
gression model, the error that is calculated for the output units, is added to
the fitness of the chromosomes in the network.

The memory cells that need to be optimized with the ESP which can
be seen in figure 3.5, are represented by a string which contains all weight
connections in the memory cell. These are the weights for both input neurons
as hidden memory cells. The representation consists of the weights for the
input, output and hidden gates and the cell weights that connect two units
(either input units or memory cells) with each other. First the best twenty
five percent of each subpopulation is selected. After this, to create offspring,
both mutation and crossover are used. The crossover method that is used
here is one-point crossover. The explanation about how this crossover works
can be found in section 3.3.1. Mutation is done by adding some noise, created
by using the Cauchy distribution [23]. The Cauchy distribution is calculated
as follows:

f(x) =
$

π($2 + x2)
. (3.9)

39

Figure 3.5: Illustration from [23] shows how a memory cell is represented in a chromosome.

Here $ is the interval of the distribution. After offspring is created, the fifty
percent worst chromosomes in the sub-populations are replaced by offspring.
If the performance of the ESP will not improve, burst mutation is used.
This is used when for a number of generations, there is no performance
improvement. Burst mutation keeps the best neurons in the population and
the rest of the populations are filled with mutations of those best neurons.
After this the algorithm resumes, but in a different point in the search space.
This method can be repeated a number of times when there are no increases
in performance. After ESP finishes training, the best memory cells of each
sub-population are used to build a network, that is used for new data.

40

Chapter 4

Data

4.1 Movement Classification Task

It is difficult to find a good classification task to solve. First of all, most
datasets do not contain a lot of data, because it often is hard to get a good
representation in the data, if the data comes from a real world problem. This
means that algorithms will not always perform the way they should do. If
the set is too small, any algorithm will have a hard time finding the common
patterns to divide the data into classes. This may give a bad view on how
good an algorithm can solve the problem. The solution is to use a dummy
dataset. The advantage is that there is more control over what is happening.
The training set can be as large or small as required and it is easy to adjust
a few parameters to make the problem to classify correctly, harder or a bit
easier. Furthermore it is easier to have multiple datasets (like a test set and
evaluation set). Because most real world datasets do not have that much
samples, it will be even worse when it has to be divided into a training set
and test set and maybe even an evaluation set for training a GA.

A problem however is finding a good problem-set to optimize. It should
not be too hard or complex because then it does not give the transparency
that is needed, but it also should not be too simple because then there are
more simple methods to find an answer to the problem. A nice implemen-
tation is a movement classification task, a temporal dependency is needed
to solve the problem and it is simple to add some noise to make solving the
problem more difficult.

The set-up is as follows: there is a round-world grid (see figure 4.1). In

41

Figure 4.1: An example of a sample of three steps with the patch moving east, including
grid noise.

other words, the left border is connected with the right border and the top
border is connected with the bottom border, thus when a target moves of the
grid, it will appear on the other side. This grid is built up of white squares
and the size can be preset. Furthermore, there is a patch (or target) that
can be of any size (as long as it is smaller than the grid). The patch is a
black square and the patch either moves north, east, south or west. The task
for time-series algorithm is to classify which direction the patch is moving.
The input pattern is simple, every point in the grid is an input and if the
patch is not on a point, it will give a zero as input, if the patch is at a
point it will have a one as input. To use this as input, it is transposed to
a one dimensional string as in figure 4.2. This is what is used as input for
the RNN. Furthermore to make this problem more challenging, noise can be
added. If the patch is not on a point, that point has a probability that it is
a noisy input. A square that is noise will give an input of one in the input
string. Another method to increase the complexity is changing the number
of samples in a dataset, decreasing the number of samples will make it harder
to solve the problem, but it gives more insight on how much the RNN will
generalize to solve the problem.

42

1. 0 0 1 0 1 0 0 0 0
2. 1 0 0 0 0 1 0 0 0
3. 0 0 0 1 0 0 0 1 0

Figure 4.2: representation of figure 4.1 as input for the liquid

4.2 Music Classification Task

Music classification can be a nice tool to assist an user in recognizing musical
pieces. For example, there are databases containing music that needs to be
ordered. Because these databases are so big, it may be difficult to only
let human users recognize the music. A machine can do this faster. In
the experiments, the task is to classify the correct composer for a musical
piece. The dataset is taken from the experiments done in [16]. The dataset
contains pieces of Johann Sebastian Bach namely the Well Tempered Clavier
and Ludwig van Beethoven with the Piano Sonatas. Although Bach is from
an earlier time than Beethoven, there are similarities. Beethoven has played
and studied the music of Bach and is also certainly inspired by Bach’s music.

There are two methods of storing music in a digital form. The first is
in waves, this is a digital recording of real (analog) instruments. The other
method is to store information about the musical piece instead of storing
the wave data generated by musical instruments. This contains information
about notes, about volume, pitch, onset and length. The sound of the instru-
ment is not stored. A well known digital format that uses this is called MIDI.
An advantage for the learning algorithm is that it contains less noise in com-
parison with recordings, for example striking a string on a guitar is always
different which results in a different soundwave and thus makes it harder to
recognize as the same. As with the wave format, the learning algorithm first
has to transform the sounds into something useful. Notes in MIDI files do
not need that kind of computation as it contains the information needed.
Thus in the experiments the musical pieces will be presented in MIDI form.

There is however some filtering, because MIDI files may contain subjective
data. The only thing that needs to be recognized is which composer made the
musical piece, but a musician can give his or her own feeling to it, with respect
to the volume of notes, the timing, velocity. This needs to be filtered out.
A solution is to remove the information about volume and about the exact
onset and duration of the note. The length of a note is divided into timesteps
of intervals 1/32 note. Smaller notes will not be used. Every piece will be

43

transformed into the same key. This makes it impossible for the algorithms
to classify only using the key of the piece. For pieces in a major key this is
C-major and for pieces in a minor key, this will be A-minor. Normally MIDI
files can contain 128 different pitches, but because everything is played on
a keyboard, a number of notes are removed (as keyboards normally do not
have 128 keys). After pre-processing, the musical piece is transformed into
a time-series data set. The notes are transformed into discrete timesteps of
the length of a 1/32 note. For example an 1/16 note is two 1/32 notes in two
following timesteps. Each timestep consists of 72 numbers that will be used
as input for the RNN. These notes correspond with 72 keys on the keyboard
starting with f2. Every key can either be on (input will be one) or off (input
will be zero). In figure 4.3, the representation can be seen.

44

Figure 4.3: On the top the representation of a MIDI file in staff and under it, the repre-
sentation for the RNN. The numbers in the dashed box represent one input pattern for
the RNN in one timestep. The figure is taken from [16].

45

Chapter 5

Experiments and Results

In this chapter, the setup and experiments that have been done will be dis-
cussed. In section 5.1, the parameter settings that are used for the different
systems are explained. These parameters can be found in a number of ta-
bles. The experiments that are discussed will give some insight in the thesis
questions. The first experiments that are done, are about the separation
function. The separation is an important part to investigate. This is because
the separation function can decrease computation time quite a bit in com-
parison with the use of a readout network. But the most important aspect
of the separation function is that the results should correlate with the per-
formance of a trained readout network. If this is not the case, it is useless to
use the separation property as a fitness function, or reward function in the
optimization algorithms. Because it is the readout network that gives the
final performance. In other words, suppose with a sample, the separation
is high, but the performance of the readout network is low, the separation
will not tell how well the complete Liquid State Machine performs. A side
experiment that can be done using the separation is using individual neuron
separations. Some neurons may increase the performance of the liquid, but
the readout states of those neurons can be of a negative influence as an input
for the readout network. Removing some neurons from the input pattern for
the readout network could increase the performance of the LSM. Although
if the first experiment does not have positive results it will be unlikely that
this experiment will perform any better.

The second part of the experiments is about training the liquid. These
experiments will show how well the training algorithms will improve the
liquid, in comparison with a randomly initialized liquid. This is done on the

46

movement classification dataset. Furthermore the Genetic Algorithm is also
used on the music classification data. Another experiment that is done here
is using the datasets with Evolino. This is important, because it will give a
good view on what the potential is of the LSM, given the type of liquid.

In the experiments the outcomes are shown graphically. There are a
number of different graphs. There a number of bardiagrams. These make it
easy to compare a number of parameter settings to each other. Furthermore
some graphs show a spread of the data. This shows the relation between the
separation function and performance function of the readout network. Some
data is shown in a line graph which is used for example for Genetic Algorithms
to show the learning curve. For comparing the systems with each other, the
rest of the data is shown in boxplots. This shows the distances between the
quartiles and also the average is plotted in the boxplots. Some graphs show
the outcome of the training set, test set and evaluation set. The training
set is the set where the readout network is trained on. The evaluation set is
the set which is used as an performance measure in the training paradigms
(except for Evolino, which uses the training set for this). The test set is
used to measure the overall performance of the system. All performances
are averages over a number of experiments and with the training paradigms,
only the best solution for each experiment is used. The results are shown
in percentage of correctly predicted readout samples. Note that with the
music classification task there can be several different readout moments, thus
having several predictions on one musical piece. A final remark to make is
that there is a horizontal red line in the different graphs. This line shows the
performance of a random generator.

5.1 Setup

5.1.1 Setup Datasets

The parameters for the movement task can be found in table 5.1. The size
of the grid is nine. This size is chosen because the task is to find out which
algorithm performs best, having a larger grid only makes training take longer.
Also because of the small grid, the patch size is also small. In the training,
test and evaluation set there are 150 samples. This is because a sufficient
number of samples is needed to be able to compare the different algorithms.
The length of a sample should be short, as it is easy to classify the direction

47

of a target with a long sample (humans often need only a short amount of
time to classify a direction).

Parameter description Value
Number of samples 150
Height 3
Width 3
Patch size 1
Sample length 15

Table 5.1: Parameter setting for movement input

The parameter settings for the music classification task can be found in
table 5.2. The total number of samples of the Bach-Beethoven dataset is 99
with 49 for Bach and 40 for Beethoven. Note that this is not the number of
samples for the readout network, because each sample consists of multiple
readout moments. The average number of timesteps in the Bach set is 2112
and with Beethoven this is 3822. The training set consists of 19 samples from
Bach and 20 samples from Beethoven. In both the test set and evaluation
set there are 17 samples from Bach and 15 from Beethoven. These numbers
are chosen because the training set needs a bit more samples, this is due to
the small sample size, the readout network that is trained needs enough data
to train on to find all the specific patterns to differentiate between the two
composers. The average length of a sample is 2976, the minimum length is
672 and maximum length is 9580. Furthermore as already stated in the last
chapter, each timestep, that is input for the recurrent reservoir, consists of 72
points (12× 6). In other words, six octaves. Although an octave consists of
only eight notes (octave is derived from the Greek okto which means eight),
in western musical theory, including the base note of the octave there are
twelve notes between the first note of the first and next octave.

Composer # samples Average # timesteps
Bach 49 2112
Beethoven 40 3822

Table 5.2: Parameter setting for movement input

48

5.1.2 Setup Liquid State Machine

Each experiment with LSMs is repeated a number of times. For a random
initialized liquid all the experiments are done ten times. For a trained liquid
each experiment is repeated ten times on the movement classification task
and five times on the music classification task. By repeating the experiments,
the results will give a more reliable view of the performance in comparison
when using the performance of only one experiment. This is because if for
example a liquid is randomly initialized, the performance can be high, but
this does not mean that every randomly initialized liquid will perform that
high. It thus removes the bias or at least lowers the bias when repeating an
experiment a number of times.

The parameter settings of the LSM for the movement classification task
can be found in table 5.3. As can be seen in table 5.3, the liquid consists of
twelve layers of nine neurons. From a small experiment it showed that twelve
layers should be sufficient, the results can be found in figure 5.1. Furthermore
because of the short sample length, the decay (d) is high, because every
neuron should take as much of the earlier time-steps into account. The resting
state (rrest) is calculated as follows: −(decay ∗ rperiod)/10. Here rperiod is the
refraction period, which is here set to one as the sample is short and it would
lead to little activity if this was set high. The warmup period (warmup)
is chosen to be set half of the length of the readout period (xMperiod), this is
respectively five and ten, which sums up to the length of one sample and
thus gives one readout moment per sample. λ, which is used for the chance
to connect two neurons is set to 1.058, this parameter is found by using
a Genetic Algorithm. The parameter for the chance of a connection to be
inhibitory is also found by a GA. The threshold (η) for a neuron to fire is
set to one, which is equal to the value of an output signal of a firing neuron.
For random initialized liquids and for the Reinforcement Learning algorithm
the weight is set to 0.4. The reason is that it is difficult to find a good
heuristic that can set the initial weights in such a way that it improves the
performance.

The parameter settings for the music classification task can be found in
table 5.4. Most of the parameters that are used in the experiments for music
classification are taken from [16]. One difference is the number of neurons
in the liquid, this is decreased to 144, because it takes up less computation
time.

The settings for the readout network for the two datasets are partially

49

Parameter description Symbol Value
Number of input neurons 9
Number of liquid neurons 108
Width 3
Height 3
Depth 12
Decay d 0.95
Threshold η 1
Refraction period rperiod 1
Resting state rrest -0.095
Warmup period warmup 5
Readout period xMperiod 10

Connectivity parameter λ 1.058
Weight 0.4
Chance of inhibitory pinhibitory 0.486

Chance to connect input pinputconnect 1

Table 5.3: Parameter setting for liquid in movement task

the same, the parameters can be found in tables 5.5 and 5.6. The learning
speed (α) is set to 0.025 for both sets, this showed to be a sufficient learning
speed. The number of epochs for the movement task is set to 1500, because
the readout network is converged at that moment. This is also the case for
the music classification task, which is converged at 750 epochs. The weights
between the nodes are randomly initialized between -0.25 and 0.25.

The parameter settings for the Genetic Algorithm can be found in table
5.7. The number of generations differs between the two datasets. For the
music classification task this is set to fifteen, because it showed that after
fifteen generations there is no improvement in performance. For the move-
ment classification task, there are two settings, for a noise rate of 0.01 and
0.05 the number of generations is set to 50 and for a noise of 0.1 it is set
to 30. A reason for this is that the results showed that the population was
almost converged and the other reason is to decrease computation time. As a
selection method, tournament selection is used, which has tournament sizes
of five. This number seems to give a reasonable selection pressure, while still
holding enough diversity in the population. Furthermore both the wiring
and the weights are optimized during training.

50

Parameter description Symbol Value
Number of input neurons 72
Number of liquid neurons 144
Width 12
Height 6
Depth 2
Decay d 0.8409
Threshold η 1
Refraction period rperiod 4
Resting state rrest -0.336
Warmup period warmup 64
Readout period xMperiod 128

Connectivity parameter λ 2
Weight 0.4
Chance of inhibitory pinhibitory 0.35

Chance to connect input pinputconnect 1

Table 5.4: Parameter setting for liquid in music task

5.1.3 Setup Evolino

Both the movement classification and music classification datasets are used
with Evolino. The parameter settings for both datasets are a bit different
and can be found in tables 5.8 and 5.9. The LSTM network uses twenty
memory cells for the movement classification task. This is significantly lower
than with the Liquid State Machine setting used above. But enough to get a
good performance on the set. The subpopulation size for the ESP algorithm
is set to thirty. The populations do not have to be as large as with Genetic
Algorithms, because of the large diversity in the subpopulations. One remark
to make is that using the dataset with noise of 0.01, no crossover is used.
Because of the high computation time on the music classification set, it is
hard to find optimal parameter settings. Because of this, the parameters are
set to get a reasonable performance, but with a limited computation time.

51

Parameter description Symbol Value
Number of input neurons 108
Number of hidden neurons 8
Number of output neurons 4
Learning rate α 0.025
Epochs 1500

Table 5.5: Parameter setting for readout network for movement task

Parameter description Symbol Value
Number of input neurons 288
Number of hidden neurons 8
Number of output neurons 2
Learning rate α 0.025
Epochs 750

Table 5.6: Parameter setting for readout network for music task

5.2 Results

5.2.1 Separation

The separation function that is used in these experiments can be found in
equation 3.4. The first experiment done is investigate how many times the
separation should be summed to get a stable result (v). This experiment
is done on the movement classification set with a noise rate of 0.01 and is
repeated ten times. There are a number of different sums for the separation
plotted in figure 5.2. The outcome that is plotted, is the outcome on the
testset. To get an idea what should be a stable number, the variation in
respect to the separation should be low. For example with v = 10, there is
a high variation in the spread. The variation already decreases quite a lot
with v = 50. But to be sure of a really stable function, the choice is to use
v = 1000 in the following experiments.

If the separation function is used as an evaluation function for the opti-
mization algorithms instead of the performance of the readout network, the
outputs of the separation function should correlate with the performance of
the readout network. This is because, if the separation is high, but the per-
formance of the readout network is low, the liquid with the good separation

52

Parameter description Value
Percentage parents selected 40%
Tournament size 5
Mutation factor 0.001

Table 5.7: Genetic Algorithm

Parameter description Symbol Value
Memory cells 20
Generations 75
Subpopulation 30
Cauchy distribution parameter $ 0.005
Number of times fitness calculation 1

Table 5.8: Parameters Evolino movement dataset

will be chosen. The total Liquid State Machine will not increase its perfor-
mance, but may even decrease its performance. Although figure 5.2 already
showed some results, figure 5.3 gives a better overview on the performance of
the separation. The experiments are done on ten different randomly initial-
ized liquids, using the movement classification set with a noise of 0.01. In the
results there seems to be little correlation between the separation and the
performance of the readout network. Taking the test for example, two low
separations have the highest scores in performance on that set. This graph
should have shown an almost linear line, where higher performance also gives
a higher separation. The only positive point to make is on the training set,
because here a higher performance also gives a higher separation, although
there is variation. Also, the training set is not the important set to com-
pare with, as this is where the readout network is trained on and is thus
a bit biased to it. A reason for this disappointing result could be that the
readout network is non-linear function and is thus able to separate data in a
different method than the separation function does. The conclusion of this
result is that the evaluation function of the training paradigms, for example
the fitness function of the Genetic Algorithm, will be the performance of the
readout network and not the separation function.

The last experiment done using the separation function, is investigating
at what the performances are when filtering the neurons readout for the input
of the readout network. As already described in section 3.1.2, the idea is that

53

Parameter description Symbol Value
Memory cells 21
Generations 40
Subpopulation 30
Cauchy distribution parameter $ 0.005
Number of times fitness calculation 1

Table 5.9: Parameters Evolino music dataset

neurons with a low separation can have a bad influence on the performance
of the readout network. To solve this, only a percentage of neurons with
the highest separations are used in the readout network. Experiments are
done on the movement classification task with 0.01 noise, with LSMs using
ten percent of the neurons for the readout network up to using a hundred
percent, with steps of ten percent. For each percentage, the experiment is
repeated ten times. The results are shown in figure 5.4. It is clear that
if neurons are filtered in any percentage, it will not perform better than
when using the complete network. One reason is probably the fact that the
separation and performance of the readout network do not correlate that
well. Another reason is that although neurons may have a low separation,
all the neurons together carry more information than with some filtered out.

5.2.2 Training Paradigms

The first experiments to investigate, are the experiments using the movement
classification task. This is a toy problem and thus gives more control over
the set, which makes it easier to compare the different systems.

The results of Reinforcement Learning are not included, a number of
different parameters are tried, but the results did not show any improvements
to the initial performance. Thus, the experiments for optimization of the
liquid in an LSM, are done using a GA.

On the movement classification task, the different algorithms are all
trained using three different noise rates on the movement patterns, namely:
{0.01, 0.05, 0.1}. The average performances of the best chromosome for the
GA are plotted in three different line graphs and can be found in figures 5.5,
5.6 and 5.7. These plots show the curve of a chromosome trained using the

54

evaluation set and also shows the performance on the training set and test
set.

In figures 5.8, 5.9 and 5.10 all the average results are plotted for the test
set, which are marked with a red +. This is done for a trained liquid using
a GA, a randomly initialized liquid, Evolino and also for an FNN that does
not use a recurrent network. Using only an FNN works in the same way as
with a LSM, only instead of running the data through a recurrent network,
it is directly fed to the FNN. There is a warmup period, where no input
is used, after that input is summed until a readout moment. The summed
values are than the input for the FNN. Using only an FNN, gives a good view
on how well a recurrent network can change the representation of the data
for the readout network to improve its performance. In figures 5.8, 5.9 and
5.10 the boxplots plot the quartiles of the experiments. Figures 5.5, 5.6 and
5.7, show that the GA is able to improve the initial performance. The lines
show the GA could have improved the performance if there would be more
generations used, but probably not that much. The reason for a low initial
performance in comparison with the randomly initialized liquid, is that the
weights are randomly initialized in a GA. The results for the a noise rate of
0.01 are good, compared to a Liquid State Machine with random initialized
liquid. The trained liquid is clearly an improvement in comparison with the
randomly initialized liquid. The liquid is improved by almost twenty one
percent. Also only summing the inputs clearly shows a lower performance
than using a randomly initialized network, which shows that the liquid is at
least capable of mapping the data in such a way that it is better represented
then it initially has been. Evolino even does a better job than the trained
liquid.

The learning curves with noises of 0.05 and 0.1, show that the LSM
implemented here has its shortcomings. This is because in comparison with
a noise of 0.01, the performances drop with quite a lot. Although with a noise
of 0.05 the performance is well over the performance of a random initialized
liquid, the performance decrease is high. Also, in comparison with Evolino,
the performance drop is quite large. The decrease between 0.05 and 0.1 is not
that high, but as with a noise of 0.05, comparing Evolino with the trained
liquid, the difference is large. The performance of Evolino itself shows that
Evolino can cope with higher noise. One reason that Evolino outperforms
the LSM is that the memory cells are better able to make a pattern, which
are than better able to map the time-series pattern in such a way that the
performance of the readout network is increased.

55

The last experiment done using the training algorithms is on the music
classification task. The average performances are shown in figure 5.12 marked
with a red +. The training curve of the GA can be found in figure 5.11. The
quartiles can be found in figure 5.12. The first note to make is that using
no recurrent network, works better than Evolino. Also in contrary to the
results on the movement set, the results in 5.12 show that the trained LSM
can outperform Evolino. The learning curve of the GA trained liquid in
figure 5.11 however, shows there is not much to improve from. A reason
for this may be that in the music classification set using random initialized
weights already boosts the performance without learning. What the GA does
here is not really find a better solution for the liquid by using a heuristic,
but initialize a large number of liquids and pick the one with the highest
performance. A reason for the low performance using a recurrent neural
network compared with the summed input, may be the fact that the samples
that are used, have little activation. There are 72 inputs each timestep and
only a few give an input of one. This means there is not much activation in
the network, which makes it difficult for the readout network the separate
different patterns. Also a reason that Evolino is performing worse than the
other systems, can be found by looking at figure 5.12. The distances between
the quartiles is large in comparison with the other systems. Also Evolino is
able to get a performance of over 90 percent, but only once. A reason for this
may be the settings for Evolino. For example it might be that the number
of generations that Evolino is trained is too low. But it could also be that
the populationsize is too low, which causes the algorithm to optimize in a
bad local optimum. One last reason may be the size of the network. The
size is almost the same as with the movement task, but the number of input
neurons for the music task is far higher. This is something for future research,
because there was no time to further experiment with the parameters.

56

Figure 5.1: Comparison of average performance on movement set with noise of 0.01 with
different number of layers.

57

Figure 5.2: Plot of spread, where the separation is compared with the performance of the
readout network with different number of sums for the separation function. Note that the
x-axis does not start at zero.

58

Figure 5.3: Plot of spread, where the separation is compared with the performance of the
readout network. Note that the x-axis does not start at zero.

59

Figure 5.4: Bardiagram which plots the performances with different percentages of neurons
used

60

Figure 5.5: Best liquid each generation on the movement classification task with 0.01
chance noise. The random line is the line where the performance is as good as a random
generator.

61

Figure 5.6: Best liquid each generation on the movement classification task with 0.05
chance noise. The random line is the line where the performance is as good as a random
generator.

62

Figure 5.7: Best liquid each generation on the movement classification task with 0.1 chance
noise. The random line is the line where the performance is as good as a random generator.

63

Figure 5.8: Quartiles and average for the movement classification set with a noise of 0.01.
Average is the red + in the boxplot. Statistics are from a randomly initialized liquid,
a readout network using summed input, a trained liquid with a Genetic Algorithm and
Evolino.

64

Figure 5.9: Quartiles and average for the movement classification set with a noise of 0.05.
Average is the red + in the boxplot. Statistics are from a randomly initialized liquid,
a readout network using summed input, a trained liquid with a Genetic Algorithm and
Evolino.

65

Figure 5.10: Quartiles and average for the movement classification set with a noise of 0.1.
Average is the red + in the boxplot. Statistics are from a randomly initialized liquid,
a readout network using summed input, a trained liquid with a Genetic Algorithm and
Evolino.

66

Figure 5.11: Best liquid each generation on the music classification task. The random line
is the line where the performance is as good as a random generator.

67

Figure 5.12: Quartiles and average for the music classification set. Average is the red +
in the boxplot. Statistics are from a randomly initialized liquid, a readout network using
summed input, a trained liquid with a Genetic Algorithm and Evolino.

68

Chapter 6

Conclusion

6.1 Discussion

One of the research goals was to find a better solution in calculating the
performance of a Liquid State Machine. The separation function as used in
the experiments, is probably not a good method to use for optimization in the
setting that is used here. It could be that this function could have worked for
linear systems, but Feed-Forward Neural Networks are capable of solving the
problem in a different way. This may thus reduce the correlation between the
separation function and the performance of the readout network. Another
point to make is that the increase in speed in comparison with calculating
the performance using a neural network, is not that significant. Although it
is faster than using a neural network, most of the computation time goes to
running the liquid. However the separation function only needs one dataset,
while in the experiments for example with using the Genetic Algorithm, there
are two datasets to be used (one for training the neural network and one for
evaluating it, although this is not necessary), thus increasing computation
time. But the decrease in computation time only helps if it actually does its
job and this does not seem to be true in these settings.

The results of the training paradigms for the Liquid State Machine are
not good. First of all the Reinforcement Learning algorithm showed that
there is little improvement that can be made on optimizing only the wiring.
The Genetic Algorithm performs better, but this is due to the use of different
weights. One part of the randomly initialized liquid that is not used in these
experiments is the diversity in weights. This is mostly due to the fact that it

69

is difficult to find a good heuristic to initialize the weights and just random
initializing weights does not improve the performance (see figures 5.5, 5.6 and
5.7 initial performance). This is thus a part that could be improved using
an optimization algorithm. In comparison with Reinforcement Learning, it
is easy to implement a Genetic Algorithm that can cope with the real valued
weights. This is one disadvantage of using a RL algorithm, because it is diffi-
cult to find a method to learn real valued numbers. GA’s solve this by using
mutation which can possibly change the weights into any other real number.
Searching for better weights, makes the search space bigger and possibly
increases the computation time, but there are already enough examples of
Genetic Algorithms that optimize problems that use real numbers [24].

The results also showed that Evolino can handle the movement task well.
With the movement classification set, Evolino simply outperforms the LSM.
Although with a noise of 0.01 the difference is not that high, with higher
noise rates, Evolino shows that it simply is a better system than the im-
plementation of the LSM that is used in the experiments. Although the
results showed that the LSM at least outperforms an FNN that does not
use a recurrent network for its input. The main reason for the bad perfor-
mance in comparison with Evolino is that the Spiking Neural Network that
is implemented here, is not sufficiently capable of mapping the time-series
data in a way that can be used for the readout network. The Long Short-
Term Memory network does this job far better. Also the readout moments
of the Spiking Neural Network consisted mostly of spikes (summed ones),
while the Long Short-Term Memory network uses real numbers as output.
Although spikes can give a sufficient amount of information, for a readout
network it may be too little. The LSTM has more different output signals
in comparison with the two of the Spiking Neural Network (namely spiking
or not spiking). One other thing to note is that a part of the information of
Spiking Networks comes from the spike timings. By adding spikes up, this
timing is thrown away. Also another advantage of the memory cell is that
there is more control over the signal in the memory cell. The memory cell
can control what part of an incoming signal should be used in the core of
the cell and which part does not. Also it can decide if there should be any
output and how much of the signal should be outputted. This makes a big
difference with the spiking neuron, although another form of this system is
implemented in the spiking neuron, by being able to let activation leak away
or stopping signals to be outputted by having a theshold. The difference is
that the memory cell has far more control and is more precise, by having

70

weights between the output gate of the sending cell and all the gates of the
receiving cell. Another disadvantage of the Spiking Neural Network that is
used here, is that the computation time it takes for the Liquid State Machine
to be trained is higher than that of Evolino. One reason may be the way the
systems are programmed. But the main reason is probably that the Long
Short-Term Memory network needs far less units to get a good performance
in comparison with the Spiking Neural Network that is used. While on the
movement classification set, the Spiking Neural Network uses 108 neurons,
the Long Short-Term Memory only uses 20 memory cells. Although the
memory cells are connected with each other by four different connections,
it still needs less computation time for the network to map input pattern
in a good way for the readout network. Taking the movement task, for the
Spiking Network, there are possibly 9×108+108×108 = 12636 connections.
With LSTM this is 9 × 20 × 4 + 20 × 20 × 4 = 2320 connections. This is
also about the number of computations that should be made each timestep,
thus making the computation time of the Spiking Network, more than five
times larger than with LSTM. Next to that, Evolutionary Algorithms are
computational heavy algorithms, each generation, a high number of fitnesses
need to be calculated. This leads to an increae in computation time when
comparing the Spiking Network with LSTM.

One other reason that Evolino performs better than the LSM, could be
the type of training algorithm. Although this is probably not that influential
as the structure of the recurrent networks, it may have some influence. GA’s
are a more straightforward method in solving the problem and do the job well.
ESP could be a bit less stable, as it is a co-evolutionary system, which means
that fitnesses of individual chromosomes are dependent on each other. But
it learns to specialize each memory cell in the network, which may improve
the performance. This specialization does not necessarily take place with
a normal GA. Here, the optimization is not done for single neurons but on
complete networks. It could thus be that by optimizing single neurons, better
solutions can be found than when using a normal GA.

With the music classification task, both LSM and Evolino do not perform
that well compared to a simple summation over the input for a Feed-Forward
Neural Network. There are some reasons for this, one is the lack of time,
which made it difficult to find good parameters and also forced to use lower
population sizes, less generations to optimize and smaller network sizes. One
reason for this is that optimizing the music task is far more computationally
intensive than with the movement task, because there are much longer sam-

71

ples in the dataset. This caused difficulties in finding optimal settings and
with the time-constraints taken into account, the settings should take up as
little computation time as possible. With Evolino there is a high variation
in the different runs. The reason for this may be that the ESP algorithm
is not yet converged to a optimal solution. But it could also be that the
subpopulations are too small. If in an Evolutionary Algorithm, the popula-
tion size is too small, the population will likely get stuck in a local optimum,
which does not give a good performance, this is due to the low diversity in
the gene-pool. Although mutation may solve this problem, mutation is not
designed to change genestrings drastically and thus jump out of local max-
ima, because mutation is also a local search method. Having crossover and
a big population will give more diversity, but it will also take a lot longer
to optimize the population. There is thus a trade-off to be made in how
big the population should be, how long an Evolutionary Algorithm should
be trained and how much time it will take. Also it is important to see how
much of an increase in performance it will get, because it is not always worth
the time to increase the performance a couple of tenths of percents if it takes
up days or months to find these better solutions. Also notable is the lack of
increase in performance with the GA, when comparing the first generation
to the last. One reason may be that the randomly initialized weights already
are sufficient enough to separate the output patterns, instead of learning the
weights.

Another reason for the relatively bad performance, in comparison with
the other systems, is the lack of activity in the input pattern. This makes it
difficult certainly for a Spiking Neural Network to get enough activation for
the readout network to divide two readout patterns. An SNN should have
enough activation, otherwise neurons will not spike and thus cannot create
different patterns. Also a reason that Evolino has such a low performance is
that it uses quite a lot less data (it does not use the evaluation set). With the
dataset already limited, it could be hard for Evolino to find all the different
patterns in the input. This is also a problem for every system, the dataset
is already limited. The dataset is split up into three parts, with only a few
samples. This increases the chances of overfitting as it often does not find
all the properties that are in the dataset to learn. A point to make is that
although the same dataset is used in [16], the data used here is split up into
three parts, with a test, evaluation and training set, while in [16] the set was
split up in two parts, namely a training and test set.

72

6.2 Future Research

The results showed that the liquid used in the experiments has its limitations.
But also the training algorithms may have something to do with this. In this
section a number of different ideas are given to look further into the problem.

One part to look further into, is the implementation of the liquid. For
example a part to do further research on is the implementation of the neurons.
Maybe a different type of spike neuron may improve the performance. For
example the memory cell had more control over the signal, this is something
which could be implemented in the spiking neuron as well. But another part
to look at is how well readout networks can cope with the limited information
that spiking neurons send out. Because they only have two different signals,
the information is limited in comparison with continuous recurrent networks.
A comparison between different continuous and Spiking Neural Networks,
showing what the differences are between these two types of networks, gives
a better view on the abilities of the two different types of networks. Also
the methods of reading out the states is important certainly for Spiking
Networks. These networks carry a lot of information by the timing of spikes.
Other methods to keep the timing in the input for the readout network, could
increase the performance and it easier for the readout network to differentiate
the readout patterns.

The second part which could be further research, are the different opti-
mization algorithms. Although some of the more important and well known
optimization algorithms in Machine Learning are used, there may be other
algorithms that could be used. One is to compare different implementations
of an Evolutionary Algorithm. For example Evolino uses ESP, for a good
comparison the ESP should also be implemented using the LSM, this may
show how much the ESP is beneficial to learning. Also another part is to
use a Reinforcement Learning algorithm that can also optimize the weights.
Furthermore other types of learning methods could be used. For example
to combine an Evolutionary Algorithm with a Gradient Descent method.
Maybe if these two methods are combined, it can increase the performance
by using the Evolutionary Algorithm to find a ‘raw’ solution and optimize
it with a Gradient Descent method. This may decrease the time that the
Gradient Descent method needs to learn and can thus cope with some of its
problems with temporal dependencies a little better. Furthermore, there are
more ways to optimize an algorith. For example, optimizing the parameters,
like the λ, instead of a complete wiring, may already increase the perfor-

73

mance quite a bit, this has already been done in [9], but here Echo State
Networks [10] are used. The question is if the increase in performance of a
liquid that has an optimized wiring and weights setting performs that much
better than a liquid with only an optimized parameter setting. Also the
question is if the computation time that it takes to optimize the wiring and
weights is worth spending instead of having a little less performing liquid,
but which takes up less computation time to optimize.

The implementation of the program may be important for lowering the
computation time. Genetic Algorithms, certainly with optimization of LSMs,
are a computationally heavy task. To solve this, programs can be run on a
cluster, by distributing work over multiple processors. Genetic Algorithms
are ideal for this implementation, because a Genetic Algorithm consists of a
population where calculating the fitness of one chromosome is not dependent
on the fitness of another. Thus the fitness calculation for each chromosome
can be done parallel on multiple processors. This could possibly decrease
the time it takes for one run to finish. This will than make it more easy
to search for optimal parameter settings and do more experiments. Due to
time-constraints it was not possible to implement this for the experiments in
this thesis.

The separation function in the end gave disappointing results. But there
are more methods to implement the separation. Also, there may be other
methods to compute the performance, that do not take up as much as com-
putation time as it does now.

One goal of AI algorithms is to outperform humans in a task. Here to
outperform a human means that the algorithm should be able to classify more
samples correctly. This comparison is not made in this thesis but is certainly
possible. The movement classification task is a task that humans are capable
to do. Certainly with high noise rates, the performance of humans in doing
this job, can be compared with for example Evolino. It gives an insight in how
well Evolino performs, but also if there are implementations that are getting
close, or are better than humans for this task. Also other datasets could be
used to compare the performance of Evolino and LSMs with humans.

74

Appendix A

Solution for Calculating Initial
Q-values

To find the correct Q-values, it first has to be done for an agent with two
states Qt(a), the default state and Qt(b) the state that should be calculated:

e−
dist(ni,nj)

λ =
e
Qt(a)
τ

e
Qt(a)
τ + e

Qt(b)
τ

. (A.1)

Here dista(ni, nj) is the distance between neurons ni and nj. Equation A.1
is a bit counterintuitive as it would be more intuitive to calculate the chance

for Qt(b), but this would give problems further up in the solution. e−
dist(ni,nj)

λ

can also be found in section 2.4.2. In further equations, to decrease the

complexity of the equation, e−
dist(ni,nj)

λ will be swapped with pa and e
Qt(s)
τ

will be swapped for the constant c as this value is already known.

pa =
c

c+ e
Qt(b)
τ

. (A.2)

Next the fraction is cleared by multiplying by c+ e
Qt(b)
τ :

pa(c+ e
Qt(b)
τ) = c. (A.3)

After this, c+ e
Qt(b)
τ is multiplied by pa resulting in:

pac+ pae
Qt(b)
τ = c. (A.4)

75

Then pac is subtracted:

pae
Qt(b)
τ = c− pac. (A.5)

Then the equation is divided by pa:

e
Qt(b)
τ =

c

pa
− c, (A.6)

and then the natural logarithm is taken to remove the exponent e
Qt(b)
τ :

Qt(b)

τ
= ln(

c

pa
− c), (A.7)

and finally to remove the τ from the left side, the equation is multiplied by
τ :

Qt(b) = ln(
c

pa
− c) · τ. (A.8)

Replacing c and pa this will become:

Qt(b) = ln(
e
Qt(a)
τ

e−
dist(ni,nj)

λ

− e
Qt(a)
τ) · τ. (A.9)

The problem however is that sometimes an agent has more than two states.
To solve this problem, the probabilities are recalculated to only be in a
relation with the probability of the default Q-value:

pnewb =
pb

pb + pa
. (A.10)

To make it more clear here is an example. Suppose there are three states
{a, b, c}. The probabilities for these states are: pa is 0.2, pb is 0.5 and pc is
0.3. Furthermore Q0(a) is set to four. Also to keep it simple, both λ and τ
are set to one. First Q0(b) is calculated (here Q0(b) is the Q-value of state b
at time 0). To do this, first equation A.10 is used to get pnewa related to pb:

0.2

0.5 + 0.2
= 0.286. (A.11)

Now to find Qt(b), equation A.9 is filled in:

ln(
e4

0.286
− e4) = 4.915, (A.12)

76

and for Q0(c) this will be:

0.2

0.3 + 0.2
= 0.4. (A.13)

This is used in equation A.9:

ln(
e4

0.4
− e4) = 4.405. (A.14)

Now to check if this is true first calculate pa:

e4

e4 + e4.915 + e4.405
= 0.2, (A.15)

and for pb this is:

e4.915

e4 + e4.915 + e4.405
= 0.5, (A.16)

and finally for pc:

e4.405

e4 + e4.915 + e4.405
= 0.3. (A.17)

77

Bibliography

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, March 1994.

[2] M. Biehl and H. Schwarze. Learning by online gradient descent. Journal
of Physics A: Mathematical and General, 28(3):643–656, 1995.

[3] S.M. Bohte, J.N. Kok, and H. La Poutré. Spike-prop: error-
backprogation in multi-layer networks of spiking neurons. Neural Com-
putation, 48:17–37, 2002.

[4] D.A. Coley. An introduction to genetic algorithms for scientists and
engineers. World Scientific, 1999.

[5] J.L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
April-June 1990.

[6] D.O. Hebb. The organization of behavior: A Neuralpsychological Theory.
Wiley, 1949.

[7] S. Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl.-
Based Syst., 6(2):107–116, 1998.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[9] K. Ishii, T. van der Zant, V. Becanovic, and P. Plöger. Identification
of motion with echo state network. Conference: OCEANS/TECHNO-
OCEAN (OTO) ¡2004, Kobe¿, 2004.

78

[10] H. Jaeger. The “echo state” approach to analysing and training recurrent
neural networks. Gmd report 148, German National Research Center
for Information Technology, 2001.

[11] K. J. Lang, A. H. Waibel, and G. E. Hinton. A time-delay neural network
architecture for isolated word recognition. Neural Netw., 3(1):23–43,
1990.

[12] T. Lin, B. G. Horne, P. Tiño, and C. L. Giles. Learning long-term
dependencies is not as difficult with NARX networks. In Advances in
Neural Information Processing Systems, volume 8, pages 577–583. The
MIT Press, 1996.

[13] Mitchell T. M. Machine Learning. The McGraw-Hill Companies, 1997.

[14] W. Maass, T. Natschläger, and H. Markram. Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11):2531–2560, 2002.

[15] D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning
through symbiotic evolution. Machine Learning, 22(1-3):11–32, 1996.

[16] L. Pape, de Gruijl J., and M. Wiering. Democratic liquid state ma-
chines for music classification. Speech, Audio, Image and Biomedical
Signal Processing using Neural Networks, Bookseries: Studies in Com-
putational Intelligence, 83, 2008.

[17] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5):1212–
1228, September 1995.

[18] R. Penrose. A generalized inverse for matrices. Proceedings of the Cam-
bridge Philosophy Society, 51:406–413, 1955.

[19] L.R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[20] A. J. Robinson and F. Fallside. The utility driven dynamic error prop-
agation network. Technical report, Cambridge University Engineering
Department, 1987.

79

[21] F Rosenblatt. Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms. Spartan Books, 1962.

[22] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. pages 696–699,
1988.

[23] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training re-
current networks by evolino. Neural Computation, 19(3):757–779, 2007.

[24] R.S. Sexton, R.E. Dorsey, and J.D. Johnson. Optimization of neural
networks: A comparative analysis of the genetic algorithm and simulated
annealing. European Journal of Operational Research, 114(3):589–601,
May 1999.

[25] S. R. Sutton and A. G. Barto. Reinforcement Learning An Introduction.
MIT Press, 1998.

[26] J. Vreeken. Spiking neural networks, an introduction. Technical report,
Institute for Information and Computing Sciences, Utrecht University,
2003.

[27] P. J Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[28] R. J. Williams and D. Zipser. Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Y. Chauvin
and D. E. Rumelhart, editors, Back-propagation: Theory, Architectures
and Applications, pages 433–486. Lawrence Erlbaum Publishers, Hills-
dale, N.J., 1995.

80

	Introduction
	Introduction to Artificial Intelligence
	Time Series and Time-dependencies
	Research Question
	Relevance to Artificial Intelligence
	Outline

	Reservoir Computing
	Feed-Forward Neural Networks
	Time-series and Recurrent Neural Networks
	Long Short-Term Memory
	Liquid State Machines
	Theory
	Reservoir and Readout

	Training Paradigms
	Performance Measurements
	Readout Performance
	Separation

	Reinforcement Learning
	Introduction
	Using Reinforcement Learning for Optimizing Liquids

	Evolutionary Computation
	Introduction
	Using Genetic Algorithms for Optimizing Liquids

	Evolino
	Introduction to Evolino
	Enforced SubPopulations
	Evolino Implemented

	Data
	Movement Classification Task
	Music Classification Task

	Experiments and Results
	Setup
	Setup Datasets
	Setup Liquid State Machine
	Setup Evolino

	Results
	Separation
	Training Paradigms

	Conclusion
	Discussion
	Future Research

	Solution for Calculating Initial Q-values

