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abstract

Unsupervised learning provides a way to extract features from data which
can be used to pre-train Artificial Neural Networks (ANNs) improving on
the performance of such networks. Convolutional Neural Networks (CNNs)
are a kind of ANN designed for image processing. Existing unsupervised
learning techniques for CNNs are frequently based on reconstructions of
the input from the output of a network layer.
We seek to establish a new paradigm for unsupervised learning in CNNs.

Can CNNs extract helpful features by training based on the output of the
network rather than the input? We formulate an objective which is defined
by some basic properties we would like an ANN to have. Our objective
propels the outputs of a layer in a neural network to be spread out through
the output space, while keeping the weights low.
A first interpretation of spread maximization is dichotomization, which

leads to an approach which maximizes the determinant of the covariance
matrix of the layer outputs, while a second interpretation is uniformiza-
tion, which leads to an approach which minimizes the distance between the
current output distribution and the uniform distribution.
A third overarching approach is provided which can be used for either

kind of spread maximization. It is based on a generalization of Hebbian
learning, which reduces to the Generalized Hebbian Algorithm (GHA) for
a specific simple kind of ANN. Since GHA causes the weight vectors of the
network to converge to the first n principal loading vectors, which is the ob-
jective of Principal Component Analysis (PCA), we say that the application
of generalized Hebbian learning to CNNs performs Pooled Convolutional
Component Analysis.
Experimental results show that spread maximization techniques can out-

perform conventional techniques such as Pooling Convolutional Auto-Encoders.
One method for dichotomization achieves an error rate of 1.3% on the LeNet-
1 network structure, beating the 1.7% it has been reported to achieve with-
out unsupervised learning.
In order to maximize the potential of our unsupervised learning tech-

niques, we introduce a new kind of pooling function which reduces the error
of purely supervised learning on LeNet-1 to 1.44% and a supervised pre-
training stage which seems to be beneficial to any type of unsupervised
pre-training technique.
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1
I N T RO D U C T I O N

Artificial Neural Networks (ANNs)[22, 6, 19] are widely used in the fields
of machine learning and pattern recognition. When training a large neural
network, optimization might easily get stuck in local optima. Deep neural
networks[2] are therefore often pre-trained by applying some unsupervised
learning mechanism to the lower level layers.
Existing unsupervised learning techniques frequently make use of some

form of reconstruction of the input of a layer, based on its outputs. Ex-
amples are Restricted Boltzmann Machines (RBMs)[5] and Auto-Encoders
(AEs)[35]. These two techniques are widely used for unsupervised pre-training
of deep ANNs.
We wondered whether it is possible to define an unsupervised learning

criterion which is in no way based on a reconstruction of the input. Can we
define an unsupervised objective which is defined in terms of the outputs of
a layer and its weights? The objective we present is based on some qualities
we would like ANNs to exhibit. Can an objective which only maximizes some
desirable qualities of ANNs result in a well performing unsupervised learning
criterion? Would the features thus extracted be intuitively interpretable and
would they be helpful in classification? In order to answer these questions
we limit our scope to a specific kind of ANN used for image processing: the
Convolutional Neural Network (CNN)[21].
The desirable qualities are derived from undesired properties. We wouldn’t

like an ANN to contain duplicate features, because then we would perform
unnecessary computations, which entails inefficiency. We also wouldn’t like
an ANN to contain features with zero weights, since these features would
always output the same value, and thus never convey information about
the input. Indeed, we would like the features to capture quite different in-
formation and to respond quite differently to different input. We propose
new techniques which encourage just these properties. The goal of these new
techniques can be viewed as spreading out the output data points through-
out the output space. Spread is an ambiguous term—the two ways in which
it may be interpreted give rise to two different approaches to Spread Maxi-
mization (SM).
The first interpretation is what we call dichotomization. It propels the

output data toward the boundaries of the output space. The first technique
we propose to perform dichotomization is called Eigenvolume Expansion-
Dichotomization (EED). It maximizes the variance in each direction in its
eigenspace by maximizing the volume of a hyperrectangle aligned with the
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4 introduction

eigenspace of the output data. This is performed by maximizing the deter-
minant of the covariance matrix of the output data. At a global optimum
of this objective the output data is binarized, which seems to be a disad-
vantage.

The second interpretation of spread maximization is what we call uni-
formization. It causes the output data to be evenly spread out through the
output space. The first technique for uniformization we propose is called
Pre-Sigmoid Gaussian-Uniformization (PSGU). It models the pre-sigmoid
output distribution with a multivariate normal distribution and minimizes
the Kullback-Leibler (KL)-divergence between the fitted distribution and
the optimal pre-sigmoid distribution which leads to a uniform output dis-
tribution.
The two different variants of SM are both showed to be underdetermined

by themselves; they allow for a vast set of global optima of which only a small
subset is intuitively viewed as good. This problem is solved by restricting
ourselves to the global optima with small weights.
The objective of maximizing spread with the smallest weights can be

transmuted to the objective of maximizing the variance and decorrelation
of the output neurons under the constraint that the weight vectors have
unit length, called the constrained Hebbian Objective (HO). After training
the ANN with the constrained HO, we can apply a transformation to the
network in order to end up with an ANN which maximizes spread.
The constrained HO coincides with the objective of Principal Component

Analysis (PCA) when applied to a simple single layer Multilayer Percep-
tron (MLP)[32]. PCA is known to be achieved by the Generalized Hebbian
Algorithm, which is an iterative procedure which causes the weight vectors
of an ANN to converge to the loading vectors of the principal components.1
We derive a formula for the constrained HO applied to CNNs, called the
Convolutional Hebbian Algorithm (CHA), and use it to define a Hebbian
SM technique for CNNs. CHA in combination with the network transforma-
tion forms what is called CHA-based SM.
When applying the same technique to a simple MLP layer, it is equivalent

to determining the weights by PCA and whitening the activations of the
output neurons.
We compare our methods to Pooling Convolutional Auto-Encoders (PCAEs),

which are a form of auto-encoder for CNNs which incorporate the pooling
function much like our methods do.

1.1 overview

Chapter 2 covers ANNs. Section 2.1 covers ANNs in general, common net-
work structures and notational basics for describing them. The next section

1 Often the loading vectors are themselves called the principal components, leading to
confusing terminology.
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covers CNNs, common parameter settings and again notational basics for
describing common types of CNN. Here we also introduce new variants of
conventional CNNs, which use a new kind of pooling function. The last sec-
tion of the next chapter covers learning algorithms, the objective functions
they use, regularization terms, and network initialization.
Chapter 3 covers some common unsupervised learning techniques relevant

for this thesis. The first section covers PCA, and how it is related to ANNs.
The next section covers Hebbian learning; it can be viewed as a predecessor
to CHA-SM and is inherently related to PCA. The last section covers auto-
encoders, which can be viewed as an alternative to the methods we present;
it serves as a baseline in order to assess the performance of our methods.
Chapter 4 covers our methods for performing SM. Two introductory sec-

tions cover the concept of spread and how CNNs should be handled when
using SM. Section 4.3 covers one interpretation of SM, dichotomization and
presents a method to perform it: EED. The next section covers the other in-
terpretation, uniformization, and a method to perform it: PSGU. Finally we
present in the last section an overarching method which is able to perform
either kind of SM: CHA-SM.
Chapter 5 covers the experiments performed to assess the performance of

the unsupervised learning techniques we introduce. The first section gives
a detailed description of the experimental setup and the settings used in
the experiments The next section discussed the features extracted from a
very simple synthetic data set. The third section evaluates the features ex-
tracted from the MNIST dataset by themselves without adjusting them by a
supervised learning phase and the last section assesses how well the unsuper-
vised learning techniques work as pre-training techniques for a subsequent
supervised learning phase. Here we also introduce a combination of the
types of evaluation covered by these two sections, constituting supervised
pre-training.
Chapter 6 concludes this thesis. Section 6.1 summarizes the ideas and

findings of this thesis. Section 6.1.1 discusses the relevance and meaning of
the experimentation results. Section 6.2 covers what questions remain open
and available for future research.

1.2 notes

A complete list of all acronyms used in this thesis can be found in ap-
pendix A. Appendix B contains an overview of all the notational standards
used in this thesis, so that one does not have to browse through all pages in
order to find the meaning of a symbol. At the back of this thesis an index
is provided, so that technical terms can easily be looked up.





2
N E U R A L N E T WO R K S

The brain is what causes an animal to perform complex behavior. It is
the cornerstone of mans greatest achievements. Therefore, it serves as a
great inspiration to creating artificial intelligence. Artificial Neural Networks
(ANNs) are models of structures which resemble a neural network such as
the brain. Computational neuroscientists create ANNs in order to model
the human brain, while computer scientists (a.o.) create ANNs in order to
analyze or convert data.
In this chapter we explain one of the most influential types of ANNs,

the Multilayer Perceptron (MLP) (section 2.1) and introduce Convolutional
Neural Networks (CNNs) (section 2.2), the type of ANN which is central in
this thesis. Section 2.1 and 2.2 introduce the framework of notation used in
further chapters. Also, some critical analysis of what is currently common
practice is performed, which might even be inspirational to someone familiar
with neural networks. Moreover, some new and/or uncommon techniques
are described.

2.1 simple artificial neural networks

Artificial Neural Networks (ANNs) abstract away from many of the specific
workings of biological neural networks. Instead of sending spike trains (se-
quences of binary signals), ANNs send graded signals. Also the function by
which an artificial neuron determines its output is chosen to be mathemati-
cally simple, while the physical processes in biological neurons are not that
easily characterized.

2.1.1 Multilayer Perceptron

The most simple form of ANNs is the Multilayer Perceptron (MLP). This
type of ANN puts heavy restrictions on the structure of the network. Neu-
rons are organized into layers which are fully connected, i.e. the neurons
in two consecutive layers are all connected. The layers are divided into the
input layer a.k.a. visible layer, hidden layers and the output layer. This
organization makes it an example of a feedforward neural network; the sig-
nals from the input layer are propagated forward toward the output layer,
without any recurrent connections feeding back information to lower layers.
This property is particularly suited for processing non-temporal data: the
output can be computed in a single pass over the network. It also makes

7
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Figure 2.1: A schematic of an example of an ANN

for simple formulas, since the output can be computed by applying a single
function to the input.
The strength of connectivity between two neurons is modeled by a real

number, called the weight of the connection. Abstracting away from synaptic
mechanisms such as inhibition and excitation, we allow for the weight to be
both positive and negative. Note that a weight equal to zero is equivalent
to having no connection at all.
The function by which the output of a neuron is determined in an MLP

is quite a simple one. For each neuron that is input to a given neuron, we
compute its contribution to the local activation by multiplying the weight
of the connection by its output. The weighted inputs are accumulated by a
sum to form the local activation of the neuron under consideration. In order
to determine its output, we apply a transfer function σ (a.k.a. activation
function) to the local activation. See figure 2.1 for visual support. Now we
can describe this process mathematically. For each hidden layer, the output
of a neuron yj is given by equation 2.1. The output signals of the input layer
are given by input data point presented to the network. The output layer
neurons are governed by a function which depends on the objective of the
network (see section 2.3).
We can write an equation equivalent to equation 2.1 using matrix nota-

tion.

y = σ (Wx + b) (2.2)

The use of linear algebra leads to simple formulas. However, it is not al-
ways insightful to reduce the formula of an ANN in such a way; the rela-
tion between the elements of the vectors (and matrices) and neurons (and
connections) is obscured by representing them in a structure which doesn’t
necessarily coincide with the structure of the network. This holds even more
so for Convolutional Neural Networks, which are covered by section 2.2.
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yj(x, W) = σ

 N∑
i=1
{wjixi}+ bj

 (2.1)

where

• x is the vector of input signals to this layer;

• N is the number of input neurons;

• W is the matrix of all connection weights w··, where each row wj

is a vector of weights from all input neurons to neuron j;

• σ is the transfer function used in this layer;

• b is a vector of bias terms, such that bj is the bias of neuron j.

It is because of the matrix notation that the weight on a connection from
i to j is wji instead of wij ; since the connections to j are given by the jth

row of the weight matrix, the indices need to be switched compared to what
is intuitive notation.

2.1.2 Artificial Neural Networks in General

Above we have described one of the most simple forms of ANNs, namely
the MLP. In order to characterize ANNs we describe a more general form
of ANNs and define concepts by which MLPs differ from other ANNs. The
kind of ANNs described below are not to be viewed as so general that they
can capture the workings of any ANN, but they are general enough such
that any neural network described in this thesis can be seen as an instance
of one. This section serves to introduce notation and nomenclature used in
further chapters of this thesis.

network structure The network structure of an ANN can be
viewed as a directed graph G = 〈N ,(〉, where N is the set of neurons
and ( is the connectivity relation of connections between neurons[15, Sec.
1.4]. If this graph is acyclic, we meet the requirements for a feedforward
neural network. On the other hand, when the graph may contain cycles we
are concerned with a recurrent neural network.
Another property of MLPs is that they have their neurons structured in

layers, where connections can only exist between two consecutive layers; in
it’s basic formMLPs don’t have skip-layer connections or lateral connections
within one layer. This is also the case for the kind of CNNs we consider in
this thesis.
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We can add further requirements to the graph in order to satisfy the
constraints of an MLP. MLPs have fully connected layers. Each neuron has
a connection to each neuron in the next layer. We call the set of input
neurons to a given neuron its local field.1 Whereas for an MLP the local
field of any neuron consists of the whole preceding layer, we show different
kinds of network structure below, when describing CNNs.

artificial neurons Now that we have described properties of the
network structure, we can move on to describe the mechanism by which
the output of a neuron is computed in general. For a (non-input) neuron
j ∈ N , the output is computed by mapping a transfer function over the
sum of all inputs connected to neuron j multiplied by the weights of those
connections, offsetted with a bias term. We associate a neuron with the
mathematical variable giving its output signal. The output of a neuron can
then be represented by the following mathematical formula:

y = σ

 ∑
i:i(j

{wi(ji}+ bj

 (2.3)

In this formula wi(j is the weight of the connection from neuron i to j,
which was represented by wji in the previous section. We divert from the
notation used there since the weights cannot in general be represented in a
matrix.
Multiple connections may be governed by the same weights, constituting

weight sharing. When connection k ( l shares weights with i ( j we say
that both wi(j and wk(l evaluate to the same underlying variable, e.g.,
wji . Here we introduce the new notation wyx so that we can refer to a weight
variable apart from the connections which use it.

Generally we view biases as weights as well. In what follows one may
assume the term ‘weights’ to refer to connection weights as well as biases; we
explicitly indicate otherwise. The weights are generally the only parameters
of the model: they are updated by the learning algorithm, in contrast to
hyperparameters, which are generally set by hand or changed during learning,
but not by the learning algorithm itself.

2.1.3 Choice of Transfer Function

Usually all hidden neurons in a network get assigned the same transfer
function σ, though we consider using different transfer functions for different
layers. It is important for the transfer function to contain non-linearities.
It is a well known fact that when using a linear function in consecutive
layers of an MLP, neurons become redundant. Instead of connections to

1 The local field should not be confused with the local field potential, a neurological term
signifying what can be interpreted as the activation of an artificial neuron.
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and from a neuron with a linear transfer function, we can introduce new
connections which bypass the neuron and directly supply input to further
neurons to which it is connected. By setting the weights on these connections
to the right value, we can eliminate the neuron and have an ANN which is
equivalent in functionality. See appendix C.1 for a full proof.
It is common to use a sigmoid function as transfer function. Often the

logistic sigmoid function is used as transfer function σ:

σl(x) =
1

1 + e−x
(2.4)

Figure 2.2: A plot of the tanh sigmoid function and/or the logistic sigmoid func-
tion.

A characteristic of sigmoid functions is that their plots look like a slanted
‘S’, see figure 2.2. The logistic sigmoid’s output is limited to the interval
(0, 1): as x → −∞ or x → ∞ we see that σl(x) → 0 or σl(x) → 1 respec-
tively.
Another commonly used sigmoid function is the hyperbolic tangent . It is

a soft approximation of the signum function, which is given by:

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(2.5)

It can conveniently be defined in terms of the logistic sigmoid:

tanh(x) = 2σl(2x)− 1 (2.6)

The main difference is that the output of the hyperbolic tangent function is
limited to the interval (−1, 1). The fact that it is also stretched along the
x-axis is irrelevant, since multiplying all weights can lead to a new weight
configuration which compensates for the stretching.
Choosing between these two transfer functions is not an easy task. There

are quite some considerations to take into account. The choice might depend
on the input data, the objective of the network and on practical considera-
tions concerning signal processing.
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symmetry The hyperbolic tangent function is an odd function, mean-
ing that tanh(−x) = − tanh(x), which makes it rotationally symmetric
about the origin. This means that when the neuron’s local activation is
inversed, the effect of the output of this neuron on the next neurons is
inversed.
This is not the case for the logistic sigmoid function. For a negative lo-

cal activation, the logistic sigmoid function tends toward zero, effectively
negating any effect the neuron has on succeeding neurons.
For high-level neurons it makes more sense to employ the logistic sigmoid

function, since we expect high-level neurons to correspond to high-level
features, which are either present or not present in the input; an output
value below zero would then be less intuitively interpretable.

For lower-level visual concepts the use of an odd transfer function is
more reasonable. Suppose a neuron represents a horizontal line. It could
then fire positively when the line is white and the background black, and
negatively when the network is presented with a black horizontal line on a
white background. Visual input data seems a good candidate for which to
use the hyperbolic tangent as transfer function for low-level neurons.

2.2 convolutional neural networks

A Convolutional Neural Network (CNN)[21, 8, 23] is a special type of layered
feedforward ANN designed for image processing. It makes use of the fact
that the pixel inputs are ordered in a 2-dimensional grid a.k.a. a map. It also
makes use of the fact that the same objects may appear in different regions
of the image. A convolution layer evaluates features at regular intervals in
the image, recording in what respect each feature is present at each place
in the image in order to form the output of the convolution layer.
It is common practice in the use of CNNs to insert a pooling layer af-

ter/above each convolution layer. In a pooling layer the outputs of a convo-
lution layer are condensed into maps of lower resolution. Figure 2.3 depicts
a simplified CNN convolution and pooling layer. In section 2.2.1 we explain
and discuss convolution layers, while in section 2.2.2 we explain and discuss
pooling layers.

2.2.1 Convolution Layers

Before we formalize the notion of a convolution layer, we must introduce
some new notational functionality. In order to formalize the grid ordering of
pixels we assign the inputs their position in the grid; for neuron i at location
(x, y) we write i(x,y).

Each layer Ln is subdivided into different feature maps Zm; each neuron
i ∈ Ln belongs to some map, i.e. i ∈ Zm and the map only contains neurons
from that layer: Zm ⊂ Ln. The input layer generally consists of one image
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Figure 2.3: Schemata of a convolution and pooling layer containing two features.
Note that while the local input field of a neuron in the convolution
map is a region within each input map, the local input field of a neuron
in the pooling map consists only of a patch within one convolution
map. All weights and neurons are colored by feature.

which may be represented by a single feature map in case of a grayscale
image and three feature maps in the case of a colour image.2 For neuron i
at location (x, y) of feature map z we write iz(x,y).
We orient the grids in such a way that the position (0, 0) is the upper left

corner. We explain below how hidden neurons get assigned position indices
(and maps) as well.

In the context of convolution, a feature f is associated with the weight
configuration a neuron can have. 3 This configuration preserves the relative
positioning of the connection weights. The weight configuration of a neuron
n encodes for the relative ordering of the neurons which are input of the
connections to n. The weight of a connection wi(j is assigned the position
of i relative to the upper left input to j:

w
if
(x,y)(jz

(xo,yo)
= wz(x−xm,y−ym,f) (2.7)

where

• xm = min
{
xi|iz(xi,yi)

( jz(xo,yo)

}
and likewise ym

See figure 2.4 for visual aid to this notational convention.
Similarly, we index the biases with the feature to which they belong: bf .

2 For a colour image we can for example use the red, green and blue values or the hue,
saturation and brightness values.

3 Remember that this includes the bias.
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c3(1,1) c3(2,1)

i2(1,1) i2(2,1) i2(3,1) i2(4,1)

b3 b3

w3
(1,1,2) w3

(2,1,2) w3
(3,1,2) w3

(1,1,2) w3
(2,1,2) w3

(3,1,2)

Figure 2.4: Schemata showing notation in a convolution layer for the top row
of pixels in input map 2 and the corresponding weights of feature 3,
giving two pixels in convolution map 3. Note that for example the
connection from i2(1,1) to c

3
(1,1) has the same weight as the connection

from i2(2,1) to c
3
(2,1), i.e. wi2(1,1)(c3

(1,1)
= wi2

(2,1)(c3
(2,1)

= w3
(1,1,2) and that

the location indices of the neurons in the convolution map are equal
to their leftmost input, i.e (1, 1) and (2, 1). The colors indicate the
weight within the weight configuration depicted.

The weight configuration f thus encodes for the weights of a neuron in
abstraction of the specific neurons which connect with it. We can describe
it mathematically as a tuple:

f = 〈bf , wf 〉 (2.8)
where

• bf is the bias;

• wf is a vector of weights.

We also assign a position to the output neurons of a layer. The neuron
connected to the upper left neuron in the input maps gets assigned position
(0, 0), the output neuron to its right gets assigned position (1, 0), etcetera.

weight sharing Now that we have introduced the prerequisite no-
tational machinery we can describe a convolution layer more thoroughly.
Convolution consists of evaluating a feature f at regular intervals in the in-
put map(s). For each place where we evaluate f the layer contains a unique
neuron in map Zf with the same weight configuration. This can be seen
as an example of weight sharing; multiple neurons share the same weight
configuration and thus their connections share weights.
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common practices Since each neuron in a convolution layer also
gets assigned a position, we can order the output in maps as well. Each
feature f generates a feature map Zf containing neurons which evaluate f
at different places. A following convolution layer then gets multiple input
maps. It is common to have the same connectivity across multiple input
maps; if a neuron has a connection from a neuron with location l in a
feature map within the input layer, it also has connections from neurons
with location l in all the other feature maps in that layer.

We call the local fields of neurons in a convolution layer convolution fields.
It is common practice to have rectangular convolution fields. Each neuron
gets input from each neuron in a rectangular sub-frame of the input maps.
Quite often this rectangle is square. The size of this rectangle (wc × hc)
must be the same across all features in a given layer, so that the dimensions
of the output maps are consistent.
As defined above, convolution is the process by which a feature is evalu-

ated at regular intervals in the input to the layer. We can for example create
a neuron every 3 pixels horizontally and every 2 pixels vertically with a given
feature. However, it is common practice to set these two intervals to 1, so
that we evaluate a feature at every position in the input maps.
The size of the output maps of a convolution layer depend on the size

of the input maps (and the intervals at which we evaluate features). We
generally start an output map with a neuron whose left- and uppermost
input is the left- and uppermost neuron of an input map; the first neuron
is connected to a sub-frame at the upper-left corner of the input maps. We
then create new neurons at the given intervals, until we would create a
neuron whose input frame would fall outside of the input map. For intervals
of length 1, and an input map of dimensions (wi × hi), this would amount
to an output map of dimensions (wi −wc × hi − hc).
It is thus abnormal to consider out-of-map evaluation, which would be the

case when the output map would also contain neurons of which the input
frame would fall partly outside the input maps. In figure 2.5, out-of-map
evaluation is depicted in red. Convolution which makes use of out-of-map
evaluation is called full convolution, while the other kind is called valid
convolution.

We would like a CNN to be as good in recognizing a face which is partly
in the image as it is in recognizing a face which is partly occluded by any
object. In out-of-map evaluation the difficulty lies in the fact that we cannot
apply the whole weight configuration to an out-of-map neuron, since some
input neurons don’t exist for the specified positions. We could disregard
these weights and the nonexistent input neurons, but that could lead to
biased conclusions. For example, a feature f which encodes for a contrast—
namely one half of the frame containing a feature g while the other half
doesn’t—would fire when the edge of the input map contains feature g,
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pooling

convolution

Figure 2.5: A schematic of a simplified CNN convolution and pooling layer, with
one input layer and one feature. The red connections and nodes signify
edge cases.

because disregarding neurons is equivalent to assuming their output is zero.
We therefore disregard these edge cases.

mathematical formalization When formalizing a common CNN
layer mathematically, we can make use of the fact that there is a one-to-one
correspondence between a weight configuration f and the output map Zf of
all neurons with that weight configuration in the layer at hand. We number
these such that the weight configuration is assigned the same number as
the corresponding output map. We then introduce mathematical variables
which are indexed by a natural number k instead of a weight configuration
or a feature map.
Since a CNN is a feedforward neural network, we can derive a mathemat-

ical formula to compute the value of an output neuron given the weights
and the inputs which is given by equation 2.9.

mathematical convolution It is the sum in the above formula
which gives convolution layers and a CNNs their name. It can be seen as an
instance of two dimensional discrete mathematical convolution.
One dimensional discrete convolution is defined by:

(f ∗ g)[n] =
∑
t∈D

f [n− t]g[t] (2.10)

where

• D is the domain; D = [−∞,∞] when functions f and g are defined
everywhere.

It can be viewed as the process of flipping either function and sliding the
resulting functions across each other; at each step t in this sliding process
the output of the convolution is a weighted sum of the values of f with
weights given by g (over all n where f and g are defined).

In our case the functions f and g are indexing functions, which are only
defined for positive (or zero) indices within the dimensions of the multidi-
mensional array of inputs and weights respectively. The two dimensional
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ck(xp,yp) = σ

 ∑
(x,y,z)<(wc,hc,N)

{
iz(xp+x,yp+y)w

k
(x,y,z)

}
+ bk

 (2.9)

where

• i and c are neuron outputs representing input and output of the
convolution layer;

• iz(x,y) is the input of feature z on location (x, y);

• ck(x,y) is the activation and output of neuron k on the location
(x, y) in the pooling map, i.e. the output map of the convolution
layer;

• N is the number of input maps, i.e. the number of input features;

• xp and yp are the coordinates of the output neuron in the pooling
map;

• wc and hc are the width and height of the weight configuration of
neuron k;

• (x1,x2, . . . ) < (w1,w2, . . . ) is short for 0 ≤ x1 < w1 ∧ 0 ≤ x2 <
w2 ∧ . . .

• wk(x,y,z) is the weight on the connection from feature z at location
(x, y) to neuron k.
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convolution employed by neuron k in a convolution layer is given by equa-
tion 2.11.

∑
z<N

fz ∗ gkz (2.11)

where(
fz ∗ gkz

)
[xp, yp] =

∑
(x,y)>(−wc,−hc)

fz[xp − x, yp − y]gkz [x, y]

fz[x, y] = iz(x,y)

gkz [x, y] = wk(−x,−y,z)

such that∑
z<N

(
fz ∗ gkz

)
[xp, yp] =

∑
(x,y,z)<(wc,hc,N)

iz(xp+x,yp+y)w
k
(x,y,z) (2.12)

Note that in the above equations, the domain D = ([−wc, 0], [−hc, 0]) is
flipped, so that the coordinates of the convoluted output correspond to
the coordinates of the left upper pixels in the convolution fields. Also the
weights function gkz is flipped, so that the weights are oriented the same as
the inputs. The eventual form fits exactly to equation 2.9.

convolution as multiple evaluation Another way to look
at convolution is to view the reiterated application of a feature as multiple
evaluations of the same neuron. Instead of having multiple neurons with
the same weight configuration, we have one neuron which is evaluated at
different positions. At every position where it is evaluated its output is
recorded in the corresponding position in the feature map.
This way we can see a standard convolution layer as a reiterated appli-

cation of an MLP layer. This MLP layer would contain as many features
as the convolution layer contains feature maps and as many inputs as the
weight configuration of a feature in the convolution layer has connection
weights. We would then present a sub-frame of the original input as input
of one iteration and set the outputs in the output feature map to what the
MLP layer outputted.
This way of handling convolution effectively multiplies the number of

input images and presents the MLP layer with smaller sub-images. The
outputs of the network are then ordered into new grids. This paves the way
for using objective functions which are defined on single MLP layer outputs
instead of whole feature maps.
It also paves the way for introducing partial translation invariance by

applying this mechanism to alternative learning methods and even to com-
putational models totally different from ANNs. We could just apply any
model to the sub-images and order the outputs of the model afterward.
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translation invariance Convolution contributes to translation
invariance. A model is called translation invariant when its output is invari-
ant under translations of its input. When we would shift the input image
in a certain direction along the 2-dimensional grid, the output of the model
would then still be the same. This means that such a model is blind for
where in the input image certain objects or features occur.

The property is appropriate for models that are used for classification,
since we generally want to apply a label to the whole image even though
the reason for applying the label might lie in a small area within the image.
Translation invariance is especially used in photos. The specific frame that
is chosen to capture visual reality is arbitrary; the photographer might have
just as well turned a bit to the right and then taken the photo, effectively
performing a horizontal translation (or something close to such a transfor-
mation). In contrast, images of characters extracted from computer fonts
are not so good a candidate for making use of translation invariance, since
the character is placed in the middle of the image and take up almost the
whole image.

A CNN is not translation invariant in itself; convolution only helps toward
achieving translation invariance. The output of a CNN needs to be processed
in a certain way to achieve it. Each output feature map Z still contains
position information. We need to apply functions s(z) to all outputs of
neurons within each map Z which in a way summarize the information
in the feature map without looking at the position information. The layer
in which we apply such a function to each feature map is called a total
pooling layer, in order to distinguish it from a normal pooling layer, which
is discussed in section 2.2.2. There we also discuss some basic functions
which we can use as pooling function.

Note that total translation invariance is infeasible, since we deal with
images of finite dimensions, while translation invariance deals with trans-
lations of unbounded length. The partial translation invariance at hand is
such that the output of a feature is invariant under translations of its input
within the two-dimensional plane limited by the dimensions of the input
map. Furthermore, in order for the pooled output of a translated image to
be the same as the pooled output of the original image the output of the
pooling function should not rely on the pixels which come to fall outside of
the image. In the next section we covers typical pooling functions, some of
which cannot be said to exhibit the above property.

2.2.2 Pooling

The above mentioned summarization functions are also commonly used in
intermediate pooling layers, a.k.a. sub- or down-sampling layers, which are
placed after/above convolution layers. See figure 2.3. In that context they
are known as pooling functions. In a pooling layer, we don’t summarize over
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the whole feature map, however. Instead, we summarize over small areas,
such that the output of the pooling layer is a condensed version of the
input map. Pooling is done by subdividing all neurons in a map into a grid
of small (usually 2× 2) non-overlapping rectangles, called pools. For each
pool, the pooling layer contains a neuron connected to the set of neurons
contained within that pool, which we call the pooling field. The output of a
neuron in the pooling layer is determined by applying the pooling function
to the outputs of the pooling field. The output map then has a considerably
smaller number of neurons, which is a substantial dimensionality reduction.
This dimensionality reduction makes computation in subsequent layers less
complex and therefore faster.
A pooling neuron is different from a ‘normal’ neuron, since it doesn’t

(necessarily) use the weighted sum of its inputs. We compute the output of
a pooling neuron using the following formula. For any neuron j in a pooling
layer, it holds that:

j = σj (aj) (2.13)
aj = sj(zj) (2.14)

where

• aj is the activation of the pooling neuron;

• zj is the vector of neuron outputs of neurons within the pool of neurons
which neuron j summarizes;

• sj(·) is the pooling function used by the pooling neuron.

Here we introduce a seemingly superfluous transfer function σj over the acti-
vation aj . Although this function is generally linear, we introduce it to con-
form more to the abstract characterization of a neuron given by formula 2.3.
Below, in section 4.4.2, we consider restructuring a CNN by changing the
transfer function of a pooling neuron.
Since we generally have rectangular pools of size (wp×hp), we can declare

that the pool of a pooling neuron j consists of a particular set of neurons:

∃(u, v) : Zj =
{
ij(x,y)|(u, v) ≤ (x, y) < (u, v) + (wp, hp)

}
(2.15)

Again we distribute functions over the constituents of tuples in order to
make the formulas more readable. (u, v) < (x, y) is short for u < x∧ v < y

and (u, v) + (x, y) is short for (u+ x, v+ y).
By using the same notation for mathematical variables as defined above

we can specify the workings of a pooling neuron more concretely. Again
we assign the output neuron the same position as the position of the upper
leftmost neuron in the pool. We can then specify a mathematical formula for
determining the output of a neuron in a convolution layer; see formula 2.16.
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pk(xf,yf)
= σk

(
sk
(
Zk(xf,yf)

))
(2.16)

Zk(xf,yf)
=
{
ik(xf+x,yf+y)

| (x, y) < (wp, hp)
}

(2.17)
where

• i and p are neurons representing convoluted input and pooled
output;

• x and y are natural numbers in the sense that x ≥ 0∧ y ≥ 0

• iz(x,y) is the input of feature z on location (x, y), e.g., the output
of a convolution layer;

• pk(xf,yf)
is the pooled output on the location (xf, yf) in the output

map of feature k of the pooling layer;

• xf and yf are the coordinates of the final output neuron in the
output map;

• σk is the transfer function used in feature map k;

• sk is the pooling function used in feature map k;

• Zk(xf,yf)
is the pool of neurons connected to the final output neuron;

• wp and hp are the width and height of the pool;
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Deformation Invariance

Since the application of a pooling function to whole feature maps gave rise
to partial translation invariance, we can expect that pooling layers also give
rise to some form of invariance. It actually gives rise to a specific form of
deformation invariance. It allows for a flexibility in the relative positioning
of features with respect to each other. The input features for the subsequent
pooling layer have obtained partial translation invariance within the small
rectangular frames, but each input feature might have been translated in a
different direction. We can thus say that a pooling layer causes a consecutive
convolution layer to be invariant under deformations which consist of small
translations of constituent parts in the input.
These deformations can also consist of every input feature being trans-

lated in the same direction and so we also gain a small partial translation
invariance over the whole image. Furthermore, the deformation can consist
of input features being translated toward or away from some point, consti-
tuting a small scaling invariance.

Pooling functions

The invariances listed above remain valid irrespective of what pooling func-
tion is used—as long as that function doesn’t use the relative positioning
of its inputs. The choice of pooling function depends on a couple of fac-
tors; each of the following options has its pros and cons. Of the following
pooling functions the first is the most common, the second is quite common,
while the others or pooling functions not generally found in literature. These
pooling functions are introduced here as alternative to the typical pooling
function which is asymmetric and exhibits discontinuities.

maximum The most common pooling function is s(zj) = maxZj , where
Zj is the set of all elements in the pool. The maximum output of all neurons
in a pool is then propagated forward.
Though this may seem as the way to go, there are some serious pitfalls

to using this as the (only) pooling function. One likes to think of a neuron
in a way that when it fires, it tells you that a feature is present at a specific
location in the input and when it doesn’t fire it doesn’t tell you of the
presence of any feature. However, the hyperbolic tangent transfer function
is perfectly symmetric (see section 2.1.3) and so firing positively can provide
as much information as firing negatively. It is a mistake to think the max
function neatly captures the information from the pool. 4

Consider a pool with neurons which have outputted values {−1, 0, 0, 0}.
In that case the max function would output 0 instead of −1, while an output
of −1 is most informative of the input; indeed it is even equivalent to a case

4 The same should hold in case the logistic sigmoid function is used, since the two are
equivalent under different weights.
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with an output of 1 where the feature has all its weights negated. An output
of −1 can be interpreted as the presence of the inverted feature. We might
therefore just as well use min as the pooling function.
A solution to the problem might lie in the simple act of using both min

and max. From each feature map we might then abstract two feature maps
of reduced size, one obtained by pooling with the min pooling function and
the other by max. A small issue with this solution is that the resulting down-
sampling does half the work, since we have twice as many output neurons
for the same feature map.

average Another approach is to take the average over the pool as the
summarized feature output: s(zj) = Zj = 1

|Zj |
∑
z∈Zj

z. This could bypass

the problems above; in the above example, with pool outputs {−1, 0, 0, 0},
the summarized output would be −0.25, which is still toward the negative,
which thus captures the presence of the inverted feature.

However, Zj is unable to distinguish between situations of no information
and situations of equal opposite information. It is unable to distinguish
between pool outputs of {0, 0, 0, 0} and {−0.9, 0.3, 0.3, 0.3}, while the latter
contains a lot more information, which isn’t passed on by Zj .

absolute maximum The last approach discussed here is to use the
absolute maximum; the pooling function then outputs the value which was
greatest in absolute sense:

s(zj) = arg max
z∈Zj

(abs z) (2.18)

= arg max
z∈Zj

(
z2
)

(2.19)

where

• arg max
i∈S

(f(i)) returns the element i in set S, for which f(i) produces
the largest result.

When pool outputs are given by {−0.9, 0.3, 0.3, 0.3}, the summarized value
would be −0.9, which seems to convey the most important information from
the pool. Note that when the pool has two absolute maxima equidistant
from the origin, but differing in sign, the output of the pooling function is
underdetermined: it might output the negative absolute maximum just as
well as the positive one.

We can use the arg max function also in defining maximum pooling:
maxZj can be rewritten to arg max

z∈Zj
z.

soft approximations The use of the max or arg max function by
the above pooling functions might be seen as unsophisticated or improper
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when performing gradient ascent or similar learning mechanisms.5 When
calculating derivatives a ‘hard’ max function only propagates derivatives
back to its maximum; suppose that arg max

z∈Zj
f(z) = z1, it then holds that:

∂
∂z1

arg max
z∈Zj

f(z) = 1 (2.20)

∀x ∈ Zj ,x 6= z1 : ∂
∂x arg max

z∈Zj
f(z) = 0 (2.21)

Although this decreases computational complexity of the work to be done
in backpropagation, it introduces jump discontinuities in the function sur-
face. We could be at a point in the objective function surface where there
is a huge cliff right next to us, while the derivative doesn’t lead us toward
that high region; the derivative then wouldn’t be a good indicator of the
direction in which the function surface climbs most.
It is therefore a good idea to use a soft approximation to the hard arg max

function. We do this by making use of one-of-K coding and introducing a
formula related to the softmax activation function, which is given by:6

S({an|n ∈ LO}, am) =
cm
t

(2.22)

cn = ean (2.23)

t =
LO∑
j

cj (2.24)

where

• cn is the contribution of neuron n to the softmax function;

• t is the total of all contributions.

We can view maxZj as the dot product of the vector z of all elements of
Zj and a one-of-K coded vector m, where only the element corresponding
to the maximum is one:

maxZj = zT
j m (2.25)

In order to get the soft version of the max function we replace vector m
by a vector which is formed by performing the softmax activation function
on the input vector.

5 These learning mechanisms are explained in section 2.3.2.
6 Section 2.3.2 covers the softmax activation function more elaborately.
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soft maxZj = zT
j m (2.26)

mi = S(Zj , zji) (2.27)
where

• S is the softmax activation function as given by formula 2.22;

• m is a vector following the same ordering as zj .

We can expand this function and modify it in order to give a soft approx-
imation to the arg max function:

soft arg max
z∈Zj

f(z) = zT
j m

mk =
epf(zk)∑

zl∈Zj
epf(zl)

(2.28)

where

• p is a hyperparameter controlling the hardness of the approximation

The derivative of this function, and its derivation, are given in appendix C.5.
This function can actually be used as an approximation to a couple of

functions, depending on the value of the hyperparameter p. In the context of
an ANN, where the hyperbolic tangent transfer function is used, outputs are
scattered across the interval (−1, 1) and pools consist of about 101 neurons,
a setting of p > 101 is close to the arg max function. For p < −101, it is
close to the arg min function. For p = 0, the formula is equal to the average
Zj :

1∑
zk∈Zj

epf(zk)

∑
zk∈Zj

zke
pf(zk) =

1∑
zk∈Zj

e0
∑
zk∈Zj

zke
0

=
1∑

zk∈Zj
1
∑
zk∈Zj

zk1 =
1
|Zj |

∑
zk∈Z

zk

(2.29)

2.3 training Artificial Neural Networks

Above we have described the general form common to several types of ANN.
We have not yet described ways to determine the parameters. In what way
do we determine what the values of the weights and biases should be?
In order to assess the desirability of a given parameter setting, we should

estimate its effectiveness toward some given goal. We might supply different
goals, depending on circumstances. Two important types of goal are given
by supervised and unsupervised learning.
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Supervised learning tries to minimize the difference between the actual
output of an ANN and what is known to be the correct output for a given
data point. Each point in the data set is labeled with the values of some
variables which the network should reproduce. These labels, called teacher
signals, are then used by the learning method to modify the network pa-
rameters in order to make the network better in reproducing the labels.

Unsupervised learning merely tries to extract useful features from the in-
put, without knowing their eventual purpose. The features extracted should
represent essential properties of the input. An unsupervised learning method
might for example try to extract features which best disambiguate between
the different images, or it might try to extract features which work best in
reproducing the input itself. Another example would be a learning method
which tries to find aberrant or anomalous features.

2.3.1 Objective Functions

Most learning algorithms try to optimize a goal of the network which can
be described in terms of a function E(LO) over all outputs m ∈ LO. 7 In
supervised learning we typically want to minimize an error function, which
is defined in terms of the actual output of the network in response to a
data point and the desired output, over all data points. In unsupervised or
semi-supervised learning we may want to maximize some objective function
over the outputs. From here on we suppose the function is defined in pos-
itive terms, e.g., we negate the error function and maximize the resulting
objective function, so that a higher function value can always be interpreted
as better. 8

Such optimization is not an easy task. The function surface of a feedfor-
ward ANN is typically highly irregular and so the function surface of the
objective function is as well. It is often not feasible to try and find the global
optimum, because an ANN typically has too many parameters to efficiently
explore the whole landscape of its objective surface. We therefore stop ex-
ploring when we have found a local optimum. After a couple of random
restarts of the whole network (with different parameter initializations) and
finding local optima, we choose the network with the best local optimum as
the end-result of the learning algorithm.

7 The ‘O’ in LO is the letter ‘O’ of ‘output’, not the digit ‘0’.
8 In order to conform to existing literature [8, p. 233], we have chosen to refer to the
function as E(·), which was chosen as abbreviation of ‘error function’. Furthermore, the
letter ‘O’ is already in use as abbreviation for ‘output’.
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2.3.2 Weight Updates

Exploration of the objective surface is done in an iterative manner. Most
learning algorithms take steps in an appropriate direction and see what the
objective surface looks like there in order to assess what further step to take.
The direction and size of the step is determined by what we call the update
rule.

Gradient Ascent

One of the simplest learning algorithms for feedforward neural networks is
gradient ascent. Each iteration it takes a step in the direction of steepest
ascent over the function surface. That is to say: it follows the derivative of
the objective function; more specifically, for each parameter we take a step
proportional to the partial derivative of the objective function with respect
to that parameter.
In the deduction of the partial derivative w.r.t. lower layer parameters we

make extensive use of the chain rule for differentiation:
∂f(g1(x),g2(x),...,gk(x))

∂x =
∂f(p)
∂g1(x)

∂g1(x)
∂x +

∂f(p)
∂g2(x)

∂g2(x)
∂x +

· · ·+ ∂f(p)
∂gk(x)

∂gk(x)
∂x (2.30)

For the top layer, computing the partial derivatives w.r.t. the parameters
is quite straightforward. The partial derivatives are given by:

∂E(LO)
∂bn

=
LO∑
m

∂E(LO)
∂m

(
∂m
∂an

∂an
∂bn

)
=
∂E(LO)
∂an

=δn (2.31)

∂E(LO)
∂wk(n

=
LO∑
m

∂E(LO)
∂m

(
∂m
∂an

∂an
∂wk(n

)
=
∂E(LO)
∂an

k=δnk (2.32)

where

• δx =
∂E(LO)
∂ax

denotes something we call the local objective at neuron
x, or local error in the case of a negatively defined objective function.

In order to compute the local objective of a hidden neuron it suffices to
look only at the local objectives of the neurons it connects with:

for k /∈ LO : δk =
∂E(LO)
∂ak

=
∑

n:k(n

∂E(LO)
∂n

∂n
∂ak

=
∑

n:k(n

δnwk(n

(2.33)

From the local objective values which we now can compute at each neuron,
we can compute the partial derivative of the objective function with respect
to the biases and weight using formulas 2.31 and 2.32.
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One might think that weight sharing would be problematic in calculating
the derivatives, because the derivative ∂E(LO)

∂bn
depends not only on n.

However, we can just sum them up by making use of the chain rule of
multivariate calculus. For example, when neuron n andm share bias bn = bm

(and that bias is only used by those two neurons) we get ∂E(LO)∂bn
= δn+ δm.

Note that before we can compute the local objective at a certain hidden
neuron we need to have computed all local objective values at neurons with
which it is connected. We therefore need to start computing local objectives
at the output and from there move back toward the input while computing
local objectives from previous local objectives and the weights in between.
This is why the technique of calculating the partial derivatives in such a way
is known as backpropagation—the local objectives are propagated backward
and accumulated in the local objectives of the lower neuron. 9

Now that we know how to compute the partial derivatives of the objective
w.r.t. the parameters, the update rule is fairly simple:

p 7→ p+ ∆p (2.34)

∆p = ηδp = η
∂E(LO)
∂p (2.35)

where

• p is either a weight parameter from w· or a bias parameter from b·;

• η is a hyperparameter for the size of the step taken in the given direc-
tion.

This concludes the simple gradient ascent learning algorithm. Many other
learning algorithms also depend on the partial derivatives in the parame-
ters. An example of a learning algorithm similar to gradient ascent is called
‘momentum’. In this algorithm each parameter is assigned a velocity, which
decreases every step due to friction, but is increased by the current partial
derivative of the objective w.r.t. that parameter:

∆p = vτ+1 = αvτ + ηδp (2.36)
where

• v is the velocity built up;

• 0 ≤ α ≤ 1 is a hyperparameter that governs the momentum and so
the friction.

9 Sometimes the term ‘backpropagation’ is used to denote gradient ascent itself, though
this confuses terminology.
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At every weight update a fraction of the velocity from the previous up-
date time step remains, constituting momentum. When we formulate the
objective negatively, the function surface is inverted and so we are looking
for a minimum instead of a maximum. In such a context the momentum
method can be viewed as modelling a ball rolling around on the function
surface. It can then surpass a shallow local minimum due to the velocity it
had built up and end up in a lower local minimum.

2.3.3 Classification

Let us consider a typical type of supervised learning scenario. Suppose the
teacher signals of the data set consist of a class; each data point is labelled
with one of K classes to which it is known to belong. Classification is the
goal for an ANN to correctly classify the data points.

softmax activation function In order to abstract away from
the specific classes assigned to the data, we can represent a specific class
label using one-of-K coding. In such a coding scheme each class is first
assigned a number 1 ≤ k ≤ K. The coding scheme converts a class label
which is assigned number k to a vector d of length K for which dk = 1 and
zero elsewhere. For classification, we assign each output neuron a variable
in the desired vector d.
The output neurons of the ANN can reflect the structure of such a one-

of-K label type. We do this by supplying an output function which respects
certain properties one-of-K coding has: just like a one-of-K vector, the out-
put neurons outputs must add up to 1[14, Sec. 11.3]. The output function
typically used to ensure this property is called the softmax activation func-
tion S and is given by:

S({an|n ∈ LO}, am) =
cm
t

(2.37)

cn = ean (2.38)

t =
LO∑
j

cj (2.39)

where

• cn is the contribution of neuron n to the softmax function;

• t is the total of all contributions.

cross entropy The error function which is minimized in such a case
is the cross entropy between the one-of-K coding of the true class label, t,
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and the actual outputs of the network which are used to predict the class:
p. Cross entropy is defined by:

H(t, p) = −
K∑
k=1

tk log pk (2.40)

We use the negation of the cross entropy as objective function to be
maximized. Combined with a softmax activation function, this leads to a
local error given by δn = tk− pk. 10 In appendix C.3 we derive the derivative
of the softmax activation function w.r.t. its inputs; the resulting derivative
is then used to prove the formula for the local error of cross entropy when
using a softmax activation function in appendix C.4.

2.3.4 Weights

This section covers weight initialization and regularization. First we discuss
how to initialize the weights of an ANN, next we discuss why large weights
form a problem and finally how that problem might be solved by augmenting
the objective function with regularization terms.

initialization Before we start training an ANN, we need to initial-
ize the parameters of the model. It is customary to initialize the weights
randomly around zero. We might take each starting value from a Gaussian
distribution with zero mean and appropriate standard deviation. We should
be careful not to take initial parameters from a Gaussian distribution with
too large standard deviation, since large weights are problematic, as is dis-
cussed below.
Another possibility is to take the initial values from a uniform distribution

within some appropriate bounds. That way we ensure that no weight is
initialized with a value which is too large.
The appropriate bounds are generally chosen to coincide with how we ex-

pect the parameters to be distributed for a maximum in the objective func-
tion surface. From this starting point the learning mechanism then typically
converges to the closest local maximum. Because the objective function sur-
face may contain many local maxima, we may rerun the initialization and
training phase in order to find multiple local maxima, from which we then
pick the best. These reruns are commonly referred to as random restarts.
However, in chapter 4 we consider an objective function for which we

know the maximum closest to the origin to be the preferred maximum. We
therefore consider initializing weights very close to the origin.
Note that biases serve a different role than connection weights. While

biases cause the output to be shifted toward one of the extremities of the
output space, the contribution of weights to the output depends on the

10 Note that when we would minimize the objective, the local derivative would be given by
δn = pk − tk.
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input. We can therefore choose to initialize the biases differently from the
weights. We consider initializing the biases to zero in chapter 4.

The problem of large weights

In some cases a learning method might produce very large weights, which
can be viewed as an undesirable characteristic. Therefore we take measures
to prevent large weights.
There are several reasons why large weights might be a bad thing. One

reason is that learning too large weights amounts to overfitting. With large
weights, a small difference in the input might result in a big difference in
the output of the network. While under the given objective the network
might have performed optimally for the training data set, its generalization
power might actually be lower than a similar neural network with smaller
weights. The network would then be tuned too much to the specificities of
the training data.
Another reason is that large weights cause rigidity in the learning phase.

When the weights on a connection toward a neuron are large, chances are
that the activation of that neuron is also (absolutely) large. The derivative
of both the logistic sigmoid function and the hyperbolic transfer function
is very small in such a case. This means that in learning methods similar
to gradient ascent, it would take quite a while to move away from the area
in which the function surface is very shallow. Large weights can therefore
make the network too rigid.

Regularization

In order to solve the problem of large weights we can add a regularization
term R to the objective function E(LO). The objective function then be-
comes Ẽ(LO) = E(LO)+R, where R is a function not just over the outputs
of the network. We can still use the technique of backpropagation to deter-
mine the partial derivatives of the first part of the evaluation function. The
partial derivatives for the regularization term can then just be added to the
partial derivatives computed in order to form the partial derivatives of the
whole evaluation function.

One method to regulate the weights using a regularization term is called
‘weight decay’. It is given by the following simple formula:



32 neural networks

R = −λ1
2
∑
v∈W

v2 (2.41)

where

• W is the set of all weight variables;

• λ is a hyperparameter governing the force by which to keep the weights
low.

The partial derivative of this function with respect to a weight w is then
given by ∂R

∂w = −λw Generally λ takes on small values such that generally
R < E(LO).
The addition of the weight decay regularization term can be seen as over-

laying the function surface of the objective function with a mountain with
its top at the origin. This causes gradient ascent not to wander too far from
the origin. The λ hyperparameter then governs the height of the mountain
and as such the impact of the regularization term on the function surface of
Ẽ(LO). For large λ we would get a function surface which is dominated by
the mountain, which would cause a local optimum at the origin. This would
mean that learning causes the network to converge to all zero weights. It is
important to finely tune the λ hyperparameter.
The change in the function surface is an important observation. No longer

would we find local optima of our objective function. Instead we generally
find local optima which are only slightly shifted toward the origin compared
to local optima of the objective function.
However, the problem of ever climbing ridges may persist and we might

be drawn too much toward the origin. These two problems come down to
the problem that λ is either too high, or too low. When it is too high we get
the problem described above that the only parameter setting we get is one
with all zero weights—the origin. The objective function surface might be
such that there is a ridge which climbs with a rate higher than ∑ v2; when
λ < 2, the function surface then still contains ever climbing ridges.
Another problematic case is when the objective function surface contains

a large shallow valley in the area where the weights can be initialized. In
order not to converge to the origin, we then have to make λ very small, but
then weight decay ceases to have its positive effects.
Weight decay can be generalized to regularization terms following the

following form:

R = −λ1
2

∑
v∈im(w)

|v|q (2.42)

The q hyperparameter gives control of how we valuate certain weight com-
binations. See figure 2.6 for visualizations of different settings of q. The
contours in the plot give all points which get the same regularization value.
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(a) q = 0.5 (b) q = 1 (c) q = 2 (d) q = 4

Figure 2.6: Contour plots for generalized weight decay as given by formula 2.42
for different settings of hyperparameter q. The axes are weight param-
eters.

For q = 2 we value all weight settings equidistant from the origin the same,
while for q < 2 we promote smaller weights for a given weight setting. For
q > 2 we promote weight settings under which all weights are large, com-
pared to setting where some are smaller. [8, Ch. 3.1.4]
Often a value 0 < q < 2 is chosen, so that small weights are promoted.

Weights belonging to connections, as opposed to biases, which are very small
can be neglected without much loss of functionality of the neural network.
We can then remove these connections, so that there is less computation in
evaluating the network.

Weight Restrictions

Another way to handle the problem of large weights is to introduce weight
restrictions. A simple way to restrict the weights is to restrict each weight to
an interval, e.g., [−2, 2]. Whenever a weight falls outside the interval after a
weight update, we just put it back at the closest value which does lie inside
the interval.
In certain situations, depending on the specifics of the function surface,

we might end up with a lot of weights being either −2 or 2. The inter-
vals constitute a hypercube in the parameter space to which we limit all
parameter settings. The corners of this cube have the largest distance to
the middle which in this example is the origin. The vector of all weights
in this setting is thus longer than it would be to any of the sides of the
hypercube. It can therefore cause higher activations in the neuron given the
right configuration of input.
It might be a better idea to limit all weights to a hypersphere instead of a

hypercube. When the distance of the vector of all weights becomes greater
than a certain limit, we rescale the vector, and thus all weights, such that
the distance is equal to the limit. We can describe this restriction in formula
form as such:
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∑
v∈W

v2 < l (2.43)

where

• l is the hyperparameter for the limit.

We can then use the same transformation as the one from formula 2.41 to
formula 2.42 in order to generalize the weight restriction. We can actually
view the plots in figure 2.6 as plots of the limit.

Other variations of this kind of weight restriction apply the principles
above to all weights concerned with each neuron j. We then limit all weights
wi(j and the bias bj within a hypersphere (or other n-dimensional figure)
of a given radius l, for each neuron j.

2.3.5 Batch Learning

In the foregoing we’ve described how the signals of an ANN are determined
by feeding forward the signals from the input through the network. We
then went on to describe how to update the weights of the ANN in order to
accommodate some objective defined on the output layer.
A simple learning mechanism is given by online learning. We then update

the weights for every data point presented to the network. A single iteration
in the learning process consists of first setting the input layer neurons to
have the values of the data point, then feeding the signals forward through
the network and finally updating the weights according to some update rule.
As such we consider one data point at a time, which means we can use the
time index τ to indicate the sample as well as the iteration in the learning
process. 11

Another learning mechanism is given by batch learning. In such a learning
scheme the network is updated after having processed multiple data points.
We accumulate statistics and use them for a single weight update step.
For gradient ascent, for example, we compute the partial derivatives of the
objective function w.r.t. the weights on each data sample, and update the
weights proportional to the sum of these derivatives. In fact, we can easily
transform any online learning procedure to a batch learning procedure. We
simply sum the updates the online procedure would result in and use that
to update the weights in a single update per iteration in the batch learning
procedure.
We now have to introduce a parameter n in order to differentiate between

the different data points, other than τ . Using this parameter, we can redefine
the objective function such that its argument consists of the outputs of
the network for several data points. The argument of objective function E

11 In the above, the time parameter has largely been left implicit. Instead we relied on the
update operator ‘ 7→’, which implicitly has a time component.
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implicitly referred to the network output for a single data point n: E (LO)
was short for E (LnO). We can write the objective function for batches as:
E (Oτ ), where Oτ is a matrix where each row is the vector of outputs on
of the network in response to data point n at iteration τ .
We can convert any objective function for online learning to one for batch

learning:

E (Oτ ) =
∑
n∈Bτ

E (LnO) (2.44)

where

• Bτ is the set of data point indices for iteration τ .

Note that in the following we leave the time parameter τ implicit again, for
readability of the formulas.
However, some batch learning procedures cannot be converted to online

learning procedures. A batch learning procedure might compare the output
of the network for different data points. We might take the variance of each
output neuron as objective, which causes the derivatives of the objective
function w.r.t. each output data point to depend on the network output for
other data. In this example it might be a good idea to make the batch size
equal to the size of the whole data set, so that we process the whole data
set before updating the network parameters. Such objectives are considered
in chapter 4.





3
U N S U P E RV I S E D L E A R N I N G

In this chapter we consider some techniques which are strongly related to
the techniques we introduce in chapter 4. The first section covers Principal
Component Analysis (PCA), and analytical techniques for performing the
analysis. We show how the technique can be used to determine the weights
of an Artificial Neural Network (ANN).
The next section covers the Generalized Hebbian Algorithm (GHA), which

is an unsupervised learning technique which is shown to cause the weight
vectors of an Multilayer Perceptron (MLP) converge to the principal com-
ponents of the input data. It is therefore closely related to PCA. In the
next chapter we introduce a method for Spread Maximization (SM) which
makes use of a technique which can be seen as an extension of the GHA
and therefore can be seen as extending PCA.
The last section of this chapter covers Auto-Encoders (AEs). Similar to

the application of the extended GHA (which we introduce in the next chap-
ter) to Convolutional Neural Networks (CNNs), a technique has been pro-
posed which applies the AE principle to CNNs in much the same way. We
describe a model proposed by Bourlard and Kamp [9], which we call a
Pooling Convolutional Auto-Encoder (PCAE).

3.1 principal component analysis

Principal Component Analysis (PCA) a.k.a. the Karhunen-Loève transform
is the projection of data onto a space with a new coordinate system, called
the eigenspace, which might be of a lower dimensionality[30].1 The new
coordinate system forms the basis of what is called the principal subspace.
The axes of this coordinate system are called the principal axes. The posi-
tioning of the coordinate system of the eigenspace within the original space
is determined by an orthonormal set of vectors called the loadings or loading
vectors. The principal components, then, are the data points projected onto
the principal axes; the first principal component is the data projected on
the first principal axis.2
The new coordinate system is one that fits to the data in some way. The

data generally determine uniquely what space to project on.3 The principal

1 Here we mean an orthogonal Euclidean coordinate system.
2 Sometimes the principal axes are referred to in literature as ‘principal components’,
though other times the projected data is denoted by that term.

3 Rotational symmetries of the data are reflected by an underdetermination in the projec-
tion.

37
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Figure 3.1: A graph containing a
contour plot of a mul-
tivariate normal distri-
bution in gray (Σ =1 1

2
1
2 1

), its principal

axes in blue and purple,
points sampled from
the distribution in red
and the distance of
those points from their
projections (in yellow)
in the principal sub-
space given by the first
loading vector in or-
ange.

axes are ordered on how well they fit the data; the first principal compo-
nent is such that the corresponding principal axis fits the data best. The
coordinate system of the principal subspace can be viewed as fitting to the
data in two ways.
First, the transformation is such that the variance of the transformed

data is maximized; the variance of the first dimension of the transformed
data is maximal, and for every consecutive dimension, the variance is max-
imal within the subspace of dimension vectors orthogonal to all previous
dimension vectors. In figure 3.1 the variance along the blue line is maximal;
the direction of the blue line characterizes the direction of the first principal
component.[8, Sec. 12.1.1]
Second, when transforming to a space of lesser dimensionality, PCA can

be seen as a method to find the subspace such that a projection of the data
into that subspace minimizes the total squared distance between the data
and the projected data. In figure 3.1 mapping the data onto the blue line
minimizes the mapping distance.[8, Sec. 12.1.2]
There are many ways to perform PCA; some are analytical and some

are iterative. Here we focus on an analytical method. In section 3.2.3 we
consider an iterative procedure which turns out to perform PCA as well.
Although we can analytically derive formulas for the loadings, an iterative
procedure to find the first N principal components of M -dimensional data
can be less time-consuming when N �M .

3.1.1 PCA by Eigenanalysis

In this section we show how to perform PCA by doing an eigenanalysis on
the covariance matrix of the data. We show that the loadings are given by
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eigenvectors of the covariance matrix and that their variances are given by
the corresponding eigenvalues.
Let’s first formalize the concepts introduced in the above paragraphs. For

principal component λk corresponding to eigenvector W·k, the projected
data is given by:

Z·k = XW·k (3.1)
where

• Z·k is the kth principal component—the data projected on the kth

principal axis;

• W·k is the kth loading;

• X is the input data, where the rows corresponds to the data points.

The variance of the projected data is given by the projected variance:

Var [Z·k] = E
[
Z2
·k
]
−E [Z·k]

2

= WT
·kΣW·k (3.2)

This result is well known. See appendix C.7 for a full proof.
We want to optimize the variance in the direction given by a principal axis.

As we have already said, the principal axes are associated with loading vec-
tors which are defined as unit vectors. For the first principal component, we
therefore maximize Var [Z·1] under the constraint that ‖W·1‖ = ‖W·1‖2 =
1. 4 We do this by introducing a Lagrange multiplier λ1, and making an
unconstrained maximization of:

WT
·1ΣW·1 + λ1

(
1−WT

·1W·1
)

(3.3)

We see from appendix C.9 that this results in the fact that λ1 is an
eigenvalue of the covariance matrix with W·1 as eigenvector:

ΣW·1 = λ1W·1 (3.4)

Left-multiplying both sides by WT
·1, we get:

WT
·1ΣW·1 = WT

·1λ1W·1 = λ1 (3.5)

Here we have used the fact that ‖W·1‖ = 1. Thus the variance of the
projected data is maximized when the loading vector is equal to an eigen-
vector; the variance then has the size of the eigenvalue corresponding to
that loading vector.

4 Instead of constraining the length of the weight vector, we constrain the square length
of the weight vector, which is equivalent. That way we reduce the complexity of the
formulas to come, since we eliminate the square root in the formula for vector length.
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For further loading vectors, we need to constrain the loading vectors to be
orthogonal to all previous principal axes; it is a necessary condition of the
axes of a coordinate system to be orthogonal. We apply the same techniques
as before and maximize:

WT
·kΣW·k + λk

(
1−WT

·kW·k
)
+

K∑
j=1

λkj
(
WT
·kW·j

)
(3.6)

This leads us to conclude (see appendix C.10) that also further loading
vectors are given by eigenvectors:

WT
·kΣW·k = λk (3.7)

Again λk is equal to the eigenvalue corresponding to the eigenvector W·k.
In appendix C.8 we show that the covariance of two different principal

components is always zero. We therefore say that PCA performs decorrrela-
tion; the transformed data have zero covariance and so also zero correlation.
5 The covariance matrix of the transformed data is therefore given by:

ΣZ = Λ = diag(λ) (3.8)
where

• Λ a diagonal matrix containing the eigenvalues;

• diag(v) denotes a diagonal matrix of elements of v in the diagonal;

• λ is a vector of the eigenvalues of Z.

3.1.2 PCA and Neural Networks

Principal Component Analysis (PCA) can be seen as an unsupervised learn-
ing technique for improper neural networks. When we have a single layer
ANN with linear transfer function, the network reduces to taking linear
combinations of the input—the outputs are just the weighted inputs. This
reducibility means it is not a proper ANN. 6 Nevertheless, we can perform
PCA in order to train a layer.
It would not make sense to stack PCA layers to form a deep neural net-

work. We have already seen in section 2.1.3 that stacking layers with a
linear transfer function causes neurons to be redundant. Moreover, the prin-
cipal components of the principal components are the principal components
themselves; since the variance along the principal axes is already maximal,

5 Here we mean Pearson product-moment correlation coefficient, given by ρXjXk
=

Cov[Xj ,Xk]
σXj

σXk
.

6 Something is proper when it is not reducible to something different. For example, division
by one is not proper division.
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we don’t have to transform the first layer output data in order to maximize
the variance in the transformed data.

3.2 hebbian learning

In this section we discuss Hebbian learning. Hebbian learning is a class of un-
supervised learning techniques for ANNs. It originated from an early neuro-
scientific theory—Hebbian Theory—and has since grown as a machine learn-
ing technique.[13] It has been formalized in a number of ways[10], though
we consider only one mathematical formalization. In its simplest interpreta-
tion Hebbian learning gives rise to Hebb’s rule. However, Hebb’s rule doesn’t
constitute a viable learning rule, as is showed in section 3.2.2. We then move
on to a learning rule which rectifies the most important problems of Hebb’s
rule, the Generalized Hebbian Algorithm (GHA), in section 3.2.3. First we
provide some background on Hebbian learning.

3.2.1 Hebbian Theory

Humans seem to associate things with each other based on contiguity. This
led Hebb [16, p. 62] to formulate what was later to be called Hebb’s Postulate
of Learning:

When an axon of cell A is near enough to excite cell B or repeat-
edly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.

In 1992, this postulate was summarized in the now popular canonical
phrase “Cells that fire together, wire together.” 7 Though Hebb’s postulate
doesn’t exclude a metabolic change, the mnemonic phrase neatly captures
the basic idea.
Although Hebbian learning has been formalized and/or extended in nu-

merous ways, we consider only two well-known learning rules based on Heb-
bian theory. It’s these learning rules which are of importance for defining
our own learning mechanisms in chapter 4.
In section 3.2.2 we consider the most basic rule based on the core con-

cepts of Hebbian Theory: Hebb’s rule. The problems of this update rule are
overcome by introducing a specific kind of weight decay, giving rise to the
Generalized Hebbian Algorithm (GHA), which is discussed in section 3.2.3.

7 The mnemonic phrase is usually attributed to Carla Shatz at Stanford University, ac-
cording to Doidge [12, p. 427].
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3.2.2 Hebb’s Rule

Hebb’s rule is the most straightforward mathematical instantiation for weight
change in a Hebbian synapse. The weight update rule is simply given by:

∆wi = ηxiy (3.9)
where

• xi is the presynaptic input of the synapse with weight wi;

• y is the postsynaptic output;

• η is the learning rate hyperparameter.

While the output of a neuron is given by the weighted input:

y =
∑
i

wixi (3.10)

An update rule for the bias is not given. Hebbian learning mechanisms
generally disregard the bias. In this chapter we assume the bias always to be
zero, while in chapter 4 we consider changing the bias using a non-Hebbian
learning mechanism.
Updating an ANN using Hebb’s rule alone wouldn’t result in any desirable

functionality. In fact, the problems associated with Hebb’s rule apply to any
update rule which is based on Hebbian Theory alone.
When the weight update is defined by a Hebbian synaptic modification

alone, we call it a purely Hebbian synapse. Below we list the problems
encountered when an ANN only contains purely Hebbian synapses.

positive feedback loop A first problem is that a positive weight
update causes greater and/or more future positive weight updates. Since
a positive weight update causes the presynaptic neuron to more effectively
excite the postsynaptic neuron, the postsynaptic neuron shows more activity
when the presynaptic neuron is firing. This constitutes a positive feedback
loop; the positive weight update causes the postsynaptic neuron to be more
active when the presynaptic neuron is active, which in turn causes greater
and/or more positive weight updates, etc. After a brief period of sparse pre-
and postsynaptic coactivity, a weight will have grown so much that any
presynaptic activity will cause postsynaptic activity. At that stage sporadic
presynaptic activity alone already causes indefinite growth.

duplication Whereas the preceding problems signify that there may
be no stable state of the network, a wholly different problem is that we
might end up with duplicate features. Supposing the problems above have
been overcome and weights do converge (to finite numbers), two neurons
might still converge to the same feature—they might have similar weights
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on the connections from the same input neurons. There is no mechanism by
which neurons which are connected to the same input neurons differentiate.
The only case when they do differentiate, is when they have been initialized
with entirely different input weights. Note that duplicate features don’t con-
stitute a problem per se; although two neurons can show the same activity,
they might have different connectivity with higher order neurons, causing
them to serve different roles in the network after all. Even so, duplication
entails inefficiency, since two neurons are performing the same job.

inertness Another problem which relates to weight initialization, is
one of starting up the synaptic modification. The input weights to a neuron
can get initialized so low as to be unable to ever cause the neuron to fire.8
Also some learning rule might decrease weights, causing a neuron to become
inert. In that case we will never see postsynaptic activity for any of its input
synapses. The neuron then serves no purpose.

Clearly, a purely Hebbian synapse isn’t viable. From the above problems we
can infer some prerequisites when using Hebbian synapses. Besides the Heb-
bian modification, a Hebbian synapse needs a mechanism for depression—a
mechanism by which its weight can decrease and which prevents a positive
feedback loop. In section 3.2.3 we introduce such a depression mechanism,
which in fact also alleviates the problem of duplication.

Hebbian Objective Functions

Up until now we have described Hebbian learning mechanisms in terms
of the update rules used to change the weights. We have not described any
objective function which the network optimizes. Without any clearly defined
objective, the weight updates of Hebbian learning might seem arbitrary. In
this section we show what objective function the update rule approximates,
and thereby what functionality a Hebbian neural network performs.
We can interpret Hebb’s rule as the result of simple gradient ascent learn-

ing for some objective function. As in the previous section, we suppose the
network to be a single layer ANN with linear transfer function and no bias.
In the case of Hebb’s rule we can view xiy as the partial derivative of the
objective function w.r.t. wi. We know the partial derivative of the output
with respect to the weight: ∂y

∂wi
= xi, so we need an objective function

E(LO) for which the derivative with respect to the output is y.
It is easy to see that for Hebb’s rule we can just take the following objec-

tive function:

8 Note that we haven’t yet discussed which activation function we use. Especially the use
of a threshold function may cause the problem of inertness.
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E(LO) =
∑
y∈LO

E(y) (3.11)

E(y) =
1
2y

2 (3.12)
where

• E(y) is the objective function for a single output.

This objective function has the derivative we required and is therefore equiv-
alent to Hebb’s rule if we use simple gradient ascent learning. We call this
objective the Hebbian Objective (HO).

3.2.3 Generalized Hebbian Algorithm

As we have seen in section 3.2.2, using Hebb’s rule alone to determine the
weight updates introduces quite some problems. We solve these problems
by extending Hebb’s rule with decay terms, giving rise to the Generalized
Hebbian Algorithm (GHA) a.k.a. Sanger’s rule[33]. The further decay of
a weight connected to neuron nj is based on the output of the neurons
{ni | i < j}. It causes the neuron to converge to the loading vector with
maximal variance orthogonal to the preceding principal axes. The N output
neurons therefore converge to the firstN loading vectors in descending order.
The formula for the GHA is given by:

∆wi(k = ηyk

xi − k∑
j=1

wi(jyj

 (3.13)

The GHA is an approximation to a procedure which involves a process
which orthogonalizes a given set of vectors called the Gram-Schmidt process.
After we have explained this process we show that the orthogonalization of
the weight vectors makes the extended learning rule converge to the (differ-
ent) loading vectors. Finally we show that the GHA can be derived from
the Hebbian objective with constraints which are enforced using Lagrange
multipliers.

Gram-Schmidt Process

The Gram-Schmidt process is a method to perform orthonormalization. It
can be seen to consist of two stages: an orthogonalization stage and a nor-
malization stage. However, the two stages can be merged, leading to less
complex formulae. In appendix C.11 the Gram-SChmidt process is explained
in more detail, and the merged process is derived.
In the resulting process each vector wk is orthonormalized w.r.t. all pre-

ceding vectors wj by the following formula:
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w⊥k = wk −
k−1∑
j=1

(
wT
j wk

)
wj (3.14)

where

• w⊥k is the orthogonalized vector wk.

Approximation to Loading Vectors

For the first neuron, the GHA reduces to what is known as Oja’s rule[29, 28],
which is given by:

∆wi = ηy (xi − ywi) (3.15)

Oja’s rule can be derived from the HO where the weight updates are
constrained such that the updated weight vector is of unit length. As such
it causes the output of the network to have optimal variance given that the
weight vector is of unit length, which is exactly the objective of PCA.

For each further neuron, we can prove the GHA to perform Oja’s rule
restricted to the subspace in which the weight vectors are orthogonal to all
previous weight vectors. We thereby show that these weight vectors also
converge to loading vectors.
The full proof is given in appendix C.12. There we also show how Oja’s

rule is derived using a Taylor series and how the Gram-Schmidt process is
involved in the GHA.

Lagrangian Derivation

The standard derivation of the GHA and its approximation to the loading
vectors involves Taylor series and the Gram-Schmidt process. In this sec-
tion we provide an alternative derivation using Lagrangian multipliers. We
show how Sanger’s rule can be derived from the HO subject to normality
constraints and orthogonality constraints. This novel method proves to be
useful when deriving a novel kind of Hebbian learning in section 4.5.
It is important to note that we cannot just introduce Lagrange multipliers

for all constraints, add all Lagrange terms to the objective function and solve
for the λ’s. Such a procedure would fail due to the fact that it disregards
the inherent asymmetry among the output neurons. While the constraints
only declare that the weight vectors should be of unit length and orthogonal
to each other, the GHA is based on the Gram-Schmidt process, which only
makes the weight vectors of subsequent neurons orthonormal to previous
weight vectors.

Therefore we turn again to the iterative procedure of the GHA (see sec-
tion 3.2.3), where each loading vector is approximated in turn. We define a
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Lagrange function for each output neuron with the constraints pertaining
to that neuron.
Since for the first neuron we know that the GHA reduces to Oja’s rule, we

have already seen proof that it can be derived using the Lagrangian function.
When learning weights on connections to further neurons, we have to add
more constraints to the Lagrangian function.
We use the same objective function on each output neuron, namely the

HO for a single neuron: E(yk) = 1
2y

2
k. We maximize this objective w.r.t. the

weights wk of that neuron. When learning neuron k we have the constraints
which demand the weight vector wk to be orthogonal to all preceding weight
vectors: ∀j < k : ojk = wT

kwj = 0 and the constraint that the weight
vector we are currently learning is normalized: nk = wT

kwk − 1 = 0. We
are therefore dealing with multiple Lagrange multipliers. Again we make
use of a general technique for determining the Lagrange multipliers, given
in appendix C.13.
We then define a Lagrange multiplier λk for each normalization constraint

nk and a Lagrange multiplier λjk for each orthogonalization constraint ojk.
We then derive (see appendix C.13.1) a function L̃ with the same stationary
points as the original Lagrangian, which has partial derivatives given by:

∂L̃(w,λ)
∂λk

= 2y2
k + 2

∑
j<k

λjkwT
kwj + 4λkwT

kwk (3.16)

and:

∂L̃(w,λ)
∂λak

= ykya + λakwT
kwk +

∑
j<k

λjk
∑
i

wT
awj + 2λkwT

awk (3.17)

When we are in the feasible space we know that the weight vectors are
normalized and orthogonalized. We also know that the partial derivatives
w.r.t. all Lagrange multipliers should be equal to zero. This reduces the
above formulae to the equations:

2y2
k + 4λk = 0 (3.18)

ykya + λak = 0 (3.19)

from which we derive that

λk = −
1
2y

2
k (3.20)

λak = −ykya (3.21)

When we substitute the λ’s in the derivative of the original Lagrangian (see
appendix C.13.1), we get:

∂L(w,λ)
∂wi

= yk

xi −∑
j≤k

yjwi(j

 (3.22)
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which coincides with the update rule for the GHA.
We have therefore proved that using Sanger’s update rule is equivalent

to doing gradient ascent on the Lagrange functions of the output neurons
of the ANN.

3.3 auto-encoders

Another unsupervised learning technique is given by AEs. An Auto-Encoder
(AE) a.k.a. auto-associator, or Diabolo network, is an MLP for which the
output layer has the same size as the input layer. The goal of an AE is
to reconstruct its input. In order to do that the derivatives of some error
function of the input and the reconstruction are backpropagated through
the network and used by the learning mechanism to update the weights.
In the simple case, an AE consists of two layers: the encoding layer and

the decoding layer. Their outputs are computed by equation 3.23 and equa-
tion 3.24 respectively.

tied weights The weights in the reconstruction layer may be a func-
tion of the weights in the encoding layer. In fact, a common type of AE uses
the same weights in both layers, but mirrored by taking W̃ = WT.9 For
each neuron the incoming connections have the same weights as its outgoing
edges. This property of having both layers of an AE use the same weights
is called tied weights.
The use of tied weights downsizes the amount of parameters to be opti-

mized and prevents cases in which the input weights to a neuron are very
small, while the output weights are rather large, which causes a sigmoid
transfer function to act as a linear transfer function, since the sigmoid func-
tions under consideration (the hyperbolic tangent and the logistic sigmoid)
approximate a linear function for small activation values.

encoding layer size We should be careful in choosing the size of
the encoding layer; when the code has the same size as the input, we risk
learning the identity function. When the weight matrix is given by the
identity matrix I, biases are zero and the linear transfer function is used
the code of an input data point is equal to the data point itself, in which
case the layer is superfluous. Also when a sigmoid transfer function is used,
the network can perform the identity function by having small encoding
weights, compensated by large decoding weights, in which case the sigmoid
transfer function acts as a linear function[3, p. 46].
However, in practice an AE generally converges to local optima different

from the identity function. Experiments reported in [4] show that, when
using a larger amount of features than the input dimensionality, gradient

9 Note that there is no such relation between the biases used by both layers; we just use
two distinct sets of bias parameters.
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c = σ (Wx + b) (3.23)
r = σ

(
W̃c + b̃

)
(3.24)

where

• x is the input;

• c is the output of the encoding layer, a.k.a. the code;

• r is the reconstruction, which has the same shape as the input x;

• W and W̃ are the encoding weights and decoding weights;

• b and b̃ are the encoding biases and decoding biases.

descent results in useful features. This may be due to the fact that the
large decoding weights needed in order for the network to perform the iden-
tity function are difficult to reach—along the way, gradient descent might
encounter another local optimum to which it will converge.
When the dimensionality of the hidden layer is larger than the dimen-

sionality of the input, we call the code overcomplete. Overcomplete repre-
sentations of the input can increase the performance of an ANN; they may
increase the robustness to noise and form better representations of the sta-
tistical distribution underlying the dataset[26].

Denoising Auto-Encoder That being said, we still run the risk
of learning the identity function. We would like to employ some technique
which causes the identity function not to be (part of) an optimum in the
objective function surface. One way is doing this is by extending AEs into
Denoising Auto-Encoders (DAEs); rather than trying only to reproduce the
input, a DAE also tries to remove noise in the input image. We therefore
train a DAE by presenting distorted input data, while backpropagating the
error between the reconstruction and the undistorted input data. A simple
kind of input distortion is given by adding uncorrelated Gaussian noise to
the input values.
Another technique which is commonly used to prevent learning the iden-

tity function, is by promoting sparsity among the features[27]. Several tech-
niques can be used to make the encoding layer show sparse activity—for
any input the code would then largely consist of small values close to zero,
while only a small set of features does show activity. However, we won’t
pursue such techniques, since such a coding scheme leads to an inefficient
representation of the input and leads to redundant features and replications
of features[7].
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3.3.1 Learning

When the inputs are binary, or limited within a range, e.g., [0, 1] or [−1, 1],
the output layer uses a sigmoid transfer function, such as the logistic sigmoid
or the hyperbolic tangent function. Consider the case where the input is (pre-
processed) such that each pixel value lies within the interval [0, 1] and we
use the logistic sigmoid transfer function. We can then use cross entropy as
error function (see section 2.3.3).
A single value v within the range [0, 1] can be viewed as a Bernoulli

distribution—a binary probability distribution. The probability of class 1
is then given by v, while the probability of class 0 is given by 1− v. The
error function used is given by the negated total entropy between the true
probability distribution and the reconstructed distribution over all pairs of
input pixel and reconstruction pixel. The objective is then given by:

O = i log r+ (1− i) log(1− r) (3.25)

As was the case for multivariate classification (see section 2.3.3), the
derivative of the negated entropy E between input i and reconstruction
r w.r.t. the activation a of neuron r can be simplified to δr = i− r, which
leads to fast and simple backpropagation of errors.
When we use tanh as transfer function on the reconstruction layer and

the input data lies within [−1, 1], we use an objective function which has
the same formula for the local derivative of at the output neurons as above.
Taking the antiderivative of the local error yields the objective function
given by:

O =
1
2(i+ 1) log(r+ 1) + 1

2(1− i) log(1− r) (3.26)

3.3.2 Relation to PCA

It is important to note the relation between AEs and PCA. When using
a linear transfer function the converged weight vectors of an AE span the
principal subspace of the input[9]. Though similar to what the GHA does,
it is certainly not equivalent. We’ve seen in section 3.2.3 that an ANN with
zero biases and linear transfer function causes the weight vectors to converge
to the loading vectors themselves. The weight vectors of an AE with n

hidden neurons, however, converges merely to vectors which lie somewhere
within the subspace spanned by the first n principal axes.

The fact that AEs are related to PCA in a similar way as the GHA,
provides reasonable cause to think that they have similar functionality and
similar performance. The method we have developed—SM—is a method
for training CNNs and makes use of a method which is an extension to the
GHA. In order to make a fair assessment of its performance, we compare
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ck = σ

∑
z<N

iz ∗Wk
z + bk

 (3.27)

rz = σ

 ∑
k<M

ck ∗+ W̃k
z + bz

 (3.28)

where

• N is the number of input maps;

• M is the number of features, i.e. the number of feature maps in
the hidden layer;

• rk, ck and Wk
z are viewed as functions over position parameters

[xp, yp];

• ∗+ signifies convolution with out-of-map evaluation;

• W̃k
z is the matrix obtained by flipping Wk

z both vertically and
horizontally.

it to an extension to AEs for learning CNNs, namely the Convolutional
Auto-Encoder (CAE), which is the subject of the next section.

3.3.3 Convolutional Auto-Encoders

A Convolutional Auto-Encoder (CAE) is an AE which is a CNN; we simply
combine the two principles. Again we consider an ANN with only one hidden
layer, and an output layer with the same dimensions as the input.
We consider a CAE with tied weights. The weights in the first layer follow

the specification of CNNs; in fact, the first layer is just a convolution layer
as described in section 2.2.1. Since we employ tied weights, the second layer
is just a mirror image of the first layer.10

The decoding layer can, perhaps surprisingly, be described as another
convolution layer. The weight matrices which we convolute are equal to the
weight matrices of the encoding layer, excepts that they are flipped both
vertically and horizontally.11 The convolution employed is one which does
consider out-of-map evaluation; points lying outside the map are handled
as if they are neurons with output value zero.
We can mathematically formalize the CAE under consideration as equa-

tion 3.27 and equation 3.28.

10 Note that we do introduce bias terms for the reconstruction layer.
11 Note that this is not equal to taking the matrix transpose.
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Figure 3.2: A schematic of a CAE
on input of size (3 ×
1) from a single input
feature, depicting the
processing of a feature
with convolution field
size (2 × 1). The cyan
connections show which
reconstructions are asso-
ciated with which input
pixels. The red edges
show that the decoding
layer makes use of out-
of-map evaluation.

The functions rk, ck and Wk
z are defined analogous to the functions f and g

in the definition of mathematical convolution in section 2.2.1. In figure 3.2
we show how out-of-map evaluation and the flipping of the weight matrix
is equivalent to mirroring the weights of the encoding layer.

3.3.4 Pooling Convolutional Auto-Encoders

It is standard to use pooling layers in CNNs. We therefore should consider
incorporating the pooling operation when (pre-)training a CNN by a CAE.
We can then use a CAE to train each convolution and pooling layer sequen-
tially/layerwise, constituting what is called a stack of CAEs, or a CAE stack.
Without incorporating pooling, CAEs produce features without any struc-
ture which do not perform well in a subsequent classification task (Jonathan
Masci, personal communication, August 14, 2014).
One might think we can easily define a CAE with pooling by using a

convolution and pooling layer for the encoding layer and mirror the design
for the decoding layer. However, the pooling layer cannot just be mirrored.
The translation invariance the pooling function introduces causes the code12

to be unable to know where exactly a feature is present in the input. When
using a pooling function we cannot reliably reconstruct the input.
This problem is solved by a method proposed by Masci et al. [27]. Their

method incorporates the functionality of max-pooling into CAEs. We call
their model (and our extension of it) a Pooling Convolutional Auto-Encoder
(PCAE). The idea is to set all values in the pool to zero except the maximal
value, which is retained. The decoding layer then consists of the mirrored
convolution layer alone. Because the pooled value is present only at the
location in the pool where the output of the neuron in the pool was maximal,

12 Here ‘the code’ refers to the output of the encoding layer, consisting of a convolution
layer and a pooling layer.
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we do have the position information and so the decoding layer can better
reconstruct the input.
The step of erasing all non-maximal values greatly increases the perfor-

mance of PCAEs over CAEs, which can be deduced visually from the fea-
tures extracted, as presented in their paper. The features extracted by a
PCAE generally look like blobs or small line segments13, while the features
extracted by a standard CAE rather look like white noise. However, con-
crete performance statistics comparing PCAEs to standard CAEs haven’t
been published.

extension to other pooling functions We extend the ideas
of Masci et al. to other types of pooling. We do this by viewing these pooling
mechanisms as the result of the inner product of two vectors: the vector of
contributions m and the vector of values in the pool itself z, as described
in section 2.2.2. For max-pooling c contains all zeros excepts for the mk

which corresponds to the maximal value zk in the pool. For soft arg max-
pooling with metaparameter p = 1 and f(x) = x, the vector m is equal
to the output vector of a softmax activation function over the values of
the pool. In general the values of m for soft arg max-pooling are given by
mk =

epf (zk)∑
zl∈Zj

epf (zl)
. Derivatives of the function which converts values to their

contributions to the soft arg max-pooled value are given in appendix C.6
The pooling step which causes a CAE to be a PCAE then, consists of

multiplying each value zk in each pool by their contribution mk. The step
makes CAEs suitable for training a CNNs with a convolution and pooling
layer. The pooling operation greatly improves the performance, justifying
the introduction of methods for extracting pooled convolutional features,
rather than just convolutional features.

13 For example a blob of positive weights next to a blob of negative weights, constituting
an edge detector, or a line segment of positive negative weights surrounded by positive
weights, constituting a detector for a black line segment.



4
S p r e a d M a x i m i z a t i o n

We have seen in the previous chapter how the Generalized Hebbian Algo-
rithm (GHA) can help in performing Principal Component Analysis (PCA)
and how the Auto-Encoder (AE) principle can be applied to Convolutional
Neural Networks (CNNs) while considering pooling.
Now we consider a new kind of neural network learning model, which is

based on spread, a concept which is explained in section 4.1. This concept
can be interpreted in two ways, giving rise to two kinds of methods for learn-
ing: a method for dichotomization, which is handled in section 4.3 and one
for uniformization, which is handled in section 4.4. Several instantiations of
these kinds of methods are described and weighed. In section 4.5 we intro-
duce an overarching method which can be used for either dichotomization
or uniformization. This method also solves some inherent problems of the
methods for dichotomization and uniformization. The ideas are evaluated
empirically in chapter 5.

4.1 spread

One of the problems with using (purely) Hebbian learning in a layered feed-
forward neural network is one of differentiation. Since neurons then have
only local update rules and neurons are generally connected to the same
input neurons, they get similar local information, which causes them to con-
verge to similar features. The problem holds especially when the neurons are
initialized with the same weight configuration, but even with differently ini-
tialized weights, there’s nothing keeping neurons from converging to similar
features.
It therefore seems like a good idea to change the update rule such that

it incorporates some differentiation mechanism. The desirable state is one
in which the neurons represent quite different features and so respond quite
differently to different input data. We can visualize this by an output space
in which the data points are mapped to quite different locations. One might
say the outputs for different data points should be spread out over the
output space. Other terms used for spread are ‘dispersion’, ‘scatter’ and
‘variability’, though these have generally been used to describe a univariate
spread measure.
Instead of incorporating some spread term into an existing learning mech-

anism, we might also use spread as the sole objective of a network. Of course
it wouldn’t be a good idea to make a model which randomly generates

53



54 Spread Maximization

spread output irrespective of the input. However, when the spread objec-
tive is used as the objective function of an Artificial Neural Network (ANN)
and the weights are updated so as to maximize this objective function, the
spreading is generally based on the input data.
Most learning methods maximize spread by automatically making use of

the most differentiating features in the data, because most learning methods
make use of the partial derivative of the objective function, which is larger
for more common input patterns. To explain this we first need to explicate
the notion of spread.
Spread can be viewed in two ways, corresponding to two ways in which we

use the word. We could say that the shell of a bomb gets spread out when
it explodes, but we can also say that the gas it releases spreads out. In the
former case an increasing distance from the origin in all directions is implied,
while in the latter an increasing volume in which particles are all around
is implied. We can view the former as points on the surface of a growing
(hyper)sphere, while we can view the latter as points within the volume of a
growing (hyper)sphere. The former kind of spread is maximized by a process
which we call dichotomization, while the latter is maximized by something
which we call uniformization. Section 4.3 covers a method to perform di-
chotomization, namely Eigenvolume Expansion-Dichotomization, while sec-
tion 4.4 cover a method to perform uniformization, namely Pre-Sigmoid
Gaussian-Uniformization. But first, we discuss how we handle CNNs when
using any of the methods used for Spread Maximization (SM).

4.2 SM for CNNs

In CNNs pooling layers are used as a way of reducing the dimensionality of
the input to the subsequent layer and as a way of making its functionality
invariant to small deformations. However, when training a CNN layerwise,
using an unsupervised learning method such as SM, the top layer doesn’t
have any subsequent layer yet; the arguments of dimensionality reduction
and deformation invariance do not apply. We may therefore have to treat
the top pooling layer differently from lower layer pooling layers.
Instead of doing away with the top pooling layer during learning because

of the lack of arguments to use it, we present new arguments to use a
pooling layer in the context of an unsupervised objective. These arguments
are of a different nature, which leads to different pool sizes than the normal
(2× 2) pools. The argumentation is twofold, based on the inherent anti-
correlational nature of features and on the information theoretic use of
features in the next layer.
Let’s consider the least complex example of a convolution layer with a

pooling layer with pools of size (1× 1). The outputs of the pooling layer
then cover a visual field the size of which is exactly equal to the size of
a feature of the convolution layer itself. This means that in that position
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in the output maps of the pooling layer each neuron provides information
on in what respect that patch in the input conforms to the feature that
neuron represents. Consider a patch in the input which perfectly conforms
to a given feature; in order to have it conform more to another feature
we’ve got to have different inputs, which in turn means the input conforms
less to the first feature. 1 A given patch can for example never contain a
maximal horizontal contrast, while also having a maximal vertical contrast;
see figure 4.1.

(a) Horizontal contrast (b) Vertical contrast (c) Both

Figure 4.1: Input patches conforming to a horizontal contrast feature, a vertical
one and to a lesser extent both.

This negative correlation is in sharp contrast to our dichotomization ob-
jective. If we know the output neurons to be (negatively) correlated, we
know that we can’t reach the optimal decorrelated output distribution. We
should therefore enhance the pool size so that such negative correlations
don’t necessarily occur. It seems to be a good idea to make the size of the
pool close to the size of the visual field of the neurons in the convolutional
layer. That way it is possible to have a place in the output map where two
mutually exclusive features are fully present because they are present next
to (and/or below) each other in the input.
When we’ve finished training of the current layer and move on to train

the next layer, we reduce the pooling size back to the normal (2× 2), so that
the dimensionality reduction doesn’t take away too much spatial accuracy.

4.3 dichotomization by eigenvolume expansion

As we have indicated above, the process of dichotomization might be seen
as spreading all data points away from the origin in the output space. 2

Though ideally this is done by having all points located on the surface of
a growing hypersphere, in practice the output data points won’t be located

1 We suppose that it is not the case that the two neurons have all zero weights at the
places where the other neuron has non-zero weights. There is thus an actual overlap in
the input field.

2 The word ‘dichotomy’ is chosen because of its meaning in natural language as ‘contrast
on a gradual scale’.
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exactly on such a surface. We are therefore in need of some way to identify
a surface typical for the given output distribution.
In the univariate case we could simply take the standard deviation as a

measure of distance from the origin, which is then identified by the mean.
If the data points are then evenly distributed across two points equidistant
from the origin and lie exactly on those points, the standard deviation
gives us the distance of those points to the origin.3 In that case the line
between the two points is the hypersphere for which all points lie exactly
on its surface. Growing the hypersphere then comes down to growing the
line between the two points at a distance of one standard deviation from
the mean.
The extension of the above method to the multivariate case might not

be as straightforward as one might think. First note that the concept of
spread intuitively disregards any directionality of the distribution w.r.t. the
coordinate system of the output space; whether the data points lie on the
line segment OA or on a line segment OB where O = (0, 0), A = (0, 5)
and B = (3, 4), shouldn’t matter to our measure of spread. Instead of
considering the standard deviations in the coordinate system of the output
space, we look at the standard deviations in the coordinate system of the
principal subspace of the distribution. 4

Two methods come to mind which reduce to the standard deviation in
the univariate case. On the one hand we might define dichotomy as the sum
of the standard deviations along all axes of the principal subspace, while on
the other hand we can use the product.
Recall that the variance in each dimension of the principal subspace is

given by an eigenvalue of the covariance matrix (Section 3.1.1). The stan-
dard deviations in the principal subspace are therefore given by

√
λi: the

square root of the eigenvalues. We can define dichotomy as equation 4.1.5
We can associate the measure of dichotomy D with the volume of a

hyperrectangle whose sides have lengths equal to the standard deviation
in each eigendimension. We call this hyperrectangle the eigenvolume. The
method described in this section is therefore called Eigenvolume Expansion-
Dichotomization.
When we visualize the eigenvolume alongside the distribution, we see that

it neatly captures in which way the output data points are distributed in the
space; see figure 4.2. In figure 4.3, you can see an example of a 3-dimensional

3 For an n-dimensional hypervolume, the hypersurface is (n− 1)-dimensional. So in the
univariate case where n = 1, the hypersurface is 0-dimensional. That is why we talk here
of points instead of surfaces.

4 In the univariate case the principal subspace coincides with the output space, so look-
ing at the standard deviations in the principal subspace provides a valid ground for a
generalization of the method described in the above paragraph.

5 The equality used in the equation below has been taken from [31].
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D =
∏
i

√
λi =

√∏
i

λi =
√

det |Σ| (4.1)

where

• Σ is the covariance matrix of the output data;

• det |Σ| denotes the determinant of Σ.

Gaussian distribution with the corresponding eigenvolume when you stare
at the image cross eyed. 6

(a) Contour plot of normal distribu-
tion in gray.

(b) 3D plot of normal distribution in
rainbow colours indicating height.

Figure 4.2: Graph containing a plot of a multivariate normal distribution (Σ =1 1
2

1
2 1

), its loading vectors in blue and purple and the eigenvolume

in the dashed green box.

6 In literature, formula D is more commonly referred to as a measure of dispersion, in
contrast to a measure of ‘dichotomy’. However, ‘dispersion’ is often used as synonymic to
‘spread’, which we have already used as an abstract term covering both dichotomy and
uniformity. We have therefore chosen for ‘dichotomy’ instead of ‘dispersion’.
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Figure 4.3: Stereogram of points sampled from a multivariate Gauss and the cor-
responding eigenvolume. Squint to achieve stereopsis.

When each neuron in the output layer is constrained to a certain interval,
e.g., (−1, 1) for the hyperbolic tangent transfer function, D is maximized
when the eigenvolume coincides with the hypercube of the output space.
Since the coordinate system of the principal subspace then aligns with the
coordinate system of the output space, we see that the ideal output distribu-
tion is decorrelated. The standard deviation in each dimension is then equal
to 1, since all points lie on the edge of the output space. We can therefore
say that it is part of our objective to decorrelate and standardize. A more
direct approach to perform decorrelation and standardization is performed
by the Hebbian Objective (HO), which is treated in section 4.5.

4.3.1 Update Rule

The derivative of the objective is given by:7

∂D
∂p =

1
2
√

det |Σ|Σ−1∂Σ
∂p (4.2)

where

• Σ is the covariance matrix of the output data;

• det |Σ| denotes the determinant of Σ.

However, multiplication by 1
2

√
det |Σ| only influences the step size, since

the eigenvolume is always positive. We can therefore leave it out and use
the simplified derivatives given by:

∂D̃
∂p = Σ−1∂Σ

∂p (4.3)

The derivatives given by the formula above are then used in combina-
tion with the derivatives of the entries of the covariance matrix (which are
given in appendix C.16) by a learning mechanism such as gradient ascent
to determine the weight updates.

7 See appendix C.14 for a full proof.
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4.3.2 Underdetermination

As we already briefly mentioned in section 4.1, simple learning methods
like gradient ascent follow derivatives which are larger for more distinctive
features. The partial derivative w.r.t. a weight depends on the magnitude
of its input: ∂E(w)

∂wk(n
= δnk (Formula 2.32). Therefore, the inputs which are

largest (in an absolute sense) for a given data point tend to dominate the
direction of the derivative, such that the weight update accommodates the
input pattern.
If we look at a batch of data samples, we see that data points which have

similar outputs have similar objective function values and similar partial
derivatives w.r.t. activations—their local objectives δn are similar. The ac-
cumulated partial derivatives over these data points are larger for weights
connected to input neurons which consistently showed positive of negative
activity over these data points, compared to weights connected to input
neurons which showed both positive and negative activity. This means that
the most prominent features common to these data points are leading in
determining the size and direction of the partial derivatives of the objective
function w.r.t. the weights of a neuron.
When we would maximize our objective by making use of learning meth-

ods which don’t rely so much on the partial derivatives w.r.t the weights as
gradient ascent, we cannot guarantee that the features which are extracted
represent prominent features in the data. In fact, we can show that there
is a vast set of weight configurations for an ANN which would produce the
same objective function values but doesn’t represent common or prominent
features of the input at all. You could say that the objective function is
underdetermined; out of a vast set of weight configurations which result in
places in the objective surface ‘equally close’ to a global optimum, we only
consider a small number to be intuitively correct solutions for dichotomiza-
tion. 8

To see why this is so, consider any set of not perfectly correlated weight
configurations, whether we would view them as intuitively optimal or not.
Each neuron with one of these weight configurations has a standard devi-
ation which might very well be suboptimal. However, for neurons with a
linear transfer function or any other monotonic transfer function, the out-
put of neurons in the output layer can be made bigger by increasing all
concerned weights. We can multiply all weights by some large constant, so
that the standard deviation is equal to what we consider to be the opti-
mal standard deviation. We can therefore always increase the dichotomy

8 Actually there is no global optimum, as is showed below. However, the reasoning here
still holds irrespective of the absence of the optima within finite space. Points are said
to be equally close to a global optimum if their objective functions have the same value.
For any finite global maximum, any two points on any function surface with the same
value are said to have the same distance to the global optimum.
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by increasing all weights, while the neurons essentially represent the same
features which may have been ones we would view as suboptimal.
Another consequence of the fact that multiplication of the weights always

leads to a larger dichotomy is that there is no global optimum. Therefore,
it is hard to specify a criterion for when the learning process should stop.
However, when a sigmoid function is used as transfer function for the output
nodes, the output space is limited to a hypercube and the eigenvolume has
an upper limit.
The problem of underdetermination might be overcome by introducing

some form of weight control. When we add a simple weight decay regu-
larization term to our objective function, the function surface falls when
wandering farther from the origin. This holds when we use sigmoid trans-
fer functions, or when we use a linear transfer function, but after a given
distance the evaluation function is dominated by the weight decay regular-
ization term instead of the objective function.
The addition of weight decay causes maxima that were farther away from

the origin to disappear irrespective of whether these were maxima which
we would view as optimal or suboptimal. It also introduces new maxima at
places where a climbing ridge in the objective surface becomes overpowered
by the regularization term. The hyperparameter λ of the weight regulariza-
tion term (formula 2.42) might even be such that the only global maximum
is at the origin, corresponding to all zero weights. This shows that the ad-
dition of the weight decay term might disregard existing maxima which we
would consider as good maxima and introduce new maxima which we would
consider as bad, depending on the value of λ.
It is hard to determine the right value of λ, since the objective surface

depends on the data at hand. The value at which it is too high, correspond-
ing to neglect of too many (or all) maxima, also depends on the data. On
the other hand we might set the value of λ too low, corresponding to a
case in which we would end up with too many maxima which we wouldn’t
intuitively consider optimal. We thus disregard a normal weight decay reg-
ularization term, on the grounds that it either leads to unwanted maxima,
depending on the data, or needs a too involved procedure to overcome such
a problem.
Another form of weight control is to restrict the weights such that the

vector of weights connecting to each neuron has a length of 1. This won’t
change the objective surface, but it restricts the possible solutions to a sub-
space within that surface, called the the feasible space. This normalization
constraint gives rise to generalized Hebbian learning, which is covered in
section 4.5.
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4.3.3 Mean Centering Problem

As mentioned in section 4.3, the eigenvolume is maximized when all output
data points are at the edge of the hypercube which represents the possi-
ble output space. To be more specific: dichotomy is maximized when each
neuron maps exactly half of the data points to −1 and the other half to 1
(in the case of a hyperbolic tangent transfer function) and the neurons are
decorrelated. Thus we know that the mean should be at the origin.
However, when at a certain iteration in the learning process we get in a

state where a majority of points is mapped to one side of their mean and the
rest to the other, we are stuck in a suboptimal region in the objective surface
from which gradient ascent cannot escape. Let’s give a simple example in
the univariate case of a single output neuron, no (or (1× 1)) pooling and
four data points. Maximizing dichotomy then comes down to maximizing
the variance of the output data. Suppose three data points are mapped
to a similar value, but the fourth one is quite far from the rest, such that
the mean of all points lies between the two groups. In order to get into a
symmetric state, one point needs to move over to the other side. However, it
then has to cross the mean, while the variance is always lower when points
are closer to the mean. The derivative therefore never points toward the
mean for any data point and so we are stuck in a suboptimal region of the
objective surface.
We could try to solve this issue by introducing some regularization term,

or by introducing some constraints on the learning process, but we won’t
pursue such a line of research in this thesis.

4.3.4 Binarization

A principle characteristic of dichotomization in general is that it leads to
binarization, in the case a sigmoid transfer function is used. The output
data points all tend toward either side of the spectrum. The iterative learn-
ing procedure grows toward binarizing the output data. However, it will
never reach this end goal. We therefore manually perform the binarization
by switching from sigmoid transfer function to the hard transfer function
of which it is an approximation. The hyperbolic tangent function will be
switched to the signum function and the logistic sigmoid function will be
switched to its counterpart, which is known as the Heaviside step function.
In a sense binarization is just what we wanted to achieve, but there may

also be some downsides to it. In abstract terms it seems to be a reduction
in informational value to go from a spectrum of possible outputs to binary
alternatives. When a neuron outputs a variety of values on a scale between
0 and 1 it can be seen to provide information as to in what respect a certain
feature is present in the input, while a neuron which outputs either 0 or 1
seems to apply a hard threshold to the same information. The binarization
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of the outputs discards information on where in the spectrum its activation
value was.

We therefore consider another kind of objective: uniformization. Uni-
formization radically disposes of the binarization that comes with dichotomiza-
tion by aiming for uniformity instead of dichotomy. Uniformization is the
subject of the next section.

4.4 uniformization by changing the pre-sigmoid out-
put distribution

Uniformization is a different interpretation of spread than dichotomization.
Instead of pushing all output data points away from the middle, uniformiza-
tion expands the volume in which data points are scattered throughout.
When we use sigmoid transfer functions, which we generally do, dichotomiza-
tion comes down to pushing all data points toward the edges of the output
space, while uniformization comes down to getting the output data uni-
formly distributed.
Uniformization might be better than dichotomization, because the out-

puts are on a scale between the edges of the output space instead of only
on the edges. A subsequent layer might therefore retrieve more information
from the outputs of a uniformized layer.
There are multiple ways in which we can perform uniformization. One ap-

proach is to fit a distribution on the output data and update the weights such
that the distance between that distribution and the uniform distribution is
minimized. This technique is the subject of section 4.4.1 to 4.4.3. Another
way of doing uniformization is described in section 4.5. There we describe
a method which gives rise to techniques for performing either dichotomiza-
tion or uniformization, which deal with some of the inherent complications
in our first definitions of spread given in sections 4.3 and 4.4.

4.4.1 Modelling the Output

Our approach to perform uniformization makes use of a multivariate prob-
ability distribution fitted on the output data. The objective is then to mini-
mize the distance of the fitted distribution to the uniform distribution. This
distance is measured in terms of the Kullback-Leibler (KL) divergence of
the fitted distribution from the ideal distribution.
The main issue here is the question of what kind of model to use to fit to

the data. One of the most commonly used multivariate continuous distribu-
tion functions is the multivariate normal distribution, a.k.a. the multivariate
Gaussian distribution. However, its support is the entire output space, RN ,
while the output of an ANN with sigmoid transfer function is restricted to
a hypercube of fixed size, e.g., [0, 1]N .
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for x ∼ N k(µ, Σ) (4.4)

fx(x) =
1√

(2π)k det |Σ|
exp

(
−1

2(x−µ)TΣ−1(x−µ)
)
(4.5)

where

• µ is the vector of means;

• Σ is the covariance matrix;

• k is the dimensionality.

4.4.2 Pre-sigmoid Gauss

Instead of modelling the output with a probability density function which
has a support of [0, 1]k, we use the multivariate normal distribution to model
another distribution which isn’t limited to a hypercube in the output space;
we look at the output neurons activations, i.e. we model the output signals
of the network before the sigmoid transfer function is applied. That way we
can fit traditional multivariate probability density functions (PDFs), such
as the multivariate Gaussian distribution, which is given by equations 4.4
and 4.5. We call this method Pre-Sigmoid Gaussian-Uniformization.

Pooling

Note that usually in CNNs the convolution layer applies a sigmoid transfer
function, while a pooling layer only summarizes the information from the
previous convolution layer and doesn’t use a transfer function (i.e. uses a
linear transfer function). Therefore the activations of the pooling layer are
still limited to a hypercube, e.g., [0, 1]N , which is what we are trying to
sidestep.
However, we can move the transfer function used from the convolution

layer to the pooling layer, given that the transfer function used in all neurons
in a pool are the same sigmoid function and that one of the standard pooling
functions is used. The transfer function of neurons in the convolution layer
then becomes linear and the transfer function of pooling neurons becomes
the one used in the convolution layer.
Because sigmoid functions are monotonically increasing and the max func-

tion returns the value of one of its inputs, we know that: σ ◦max = max ◦σ.
The same reasoning holds for the absolute maximum. The soft approxima-
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tions to these functions don’t just return one of its input values; it is easy
to see that σ ◦ soft arg max 6= soft arg max ◦σ. However, remember that
soft arg max was only a soft approximation to the max function. Therefore
soft arg max ◦max is an approximation to max ◦σ and hence to σ ◦max; at
least, under the setting of hyperparameter p (see formula 2.28) which makes
it approximate the max function, instead of the average.
When the pooling function consists of taking the average of its inputs,

moving the transfer function upward changes the functionality of the pool-
ing layer radically. The average of the sigmoid transformed input is radically
different from the sigmoid transformed average. When applying the sigmoid
after averaging, an input with a high value is far more influential in deter-
mining the output than when we average the sigmoid transformed inputs.
If a big positive activation is far larger than a big negative activation, the
pooled output is close to 1, and not to the middle, e.g., 0, which could be
the case when applying the sigmoid after averaging. This also makes for
an interesting pooling scheme; We therefore say that moving the transfer
functions from a convolution layer to the soft arg max pooling layer above
only changes the functionality of the network negligibly.

4.4.3 Probability Integral Transform

Consider a case where as transfer function we take the cumulative density
function (CDF) of the univariate normal distribution with zero mean and
unit standard deviation, i.e. the standard normal distribution:

for x ∼ N 1(x;µ,σ) (4.6)

fx(x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 =
1√
2π
e−

x2
2 (4.7)

where

• µ is the mean of the normal distribution;

• σ is the standard deviation of the normal distribution;

The transfer function we consider is then its CDF, which is given by:

for x ∼ N 1(x;µ,σ) (4.8)

Fx(x) =
1
2

(
1 + erf

(
x− µ√

2σ2

))
=

1
2

(
1 + erf

(
x√
2

))
(4.9)

erf(x) = 2√
π

x∫
o

e−t
2
dt (4.10)

where

• erf is the Gauss error function.
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Figure 4.4: In blue the CDF of the
standard normal distri-
bution, in red the lo-
gistic sigmoid function
and in green the logis-
tic sigmoid approxima-
tion.
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Figure 4.5: The difference between
our logistic sigmoid ap-
proximation and the
CDF of the standard
normal distribution.

In figure 4.4 the CDF of the standard normal distribution is depicted in
blue. The function has a ‘S’-shaped curve and falls within the category of
sigmoid functions. It is not that different from the logistic sigmoid func-
tion, depicted in red. In fact, because a CDF is by definition a monotone
function, the CDF of a continuous probability distribution is always a sig-
moid function σ(x) such that for x →∞ we have that σ(x) → 1 and that
σ(−x)→ 0.
When the activations of a neuron then follow the standard normal distri-

bution, we know that the output of that neuron conforms to a uniform distri-
bution. This is so because of the fact that the probability integral transform
of a distribution X results in the uniform distribution (see appendix C.17).
The probability integral transform is the application of the cumulative den-
sity function to the distribution itself:

FX(X) = U1
[0,1] (4.11)

where

• X is any distribution;

• FX is the CDF of X;

• U1
[0,1] is the univariate uniform distribution on the interval [0, 1].

Therefore, we know that when the transfer function of a neuron is given
by the CDF of the standard normal distribution and its activations follow
a standard normal distribution, the output is uniformly distributed. We
call the standard normal distribution the ideal distribution when using the
Gaussian CDF as transfer function; it is the ideal for Pre-Sigmoid Gaussian-
Uniformization (PSGU), because it gives us a uniform output distribution.9

9 The same holds for the logistic distribution and the logistic sigmoid transfer function.
However, we won’t consider using the logistic distribution to model the pre-sigmoid acti-
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However, the CDF of the standard normal distribution is inefficient to
use in actual computations, since the integral in the error function is not
analytically solvable. We therefore try to approximate the CDF by using
the logistic sigmoid function; our approximation has the form of a stretched
logistic sigmoid: σl(sx), where s is the stretch factor. We then minimize the
distance between these two functions by minimizing: 10

∞∫
o

(
σl(sx)− FN 1(0,1)

)2
dx (4.12)

We find that at s ≈ 1.203 this simple distance measure is minimized. 11

Instead of adjusting the standard logistic sigmoid transfer function by
the stretching factor s, we stretch the ideal distribution for the Gaussian
CDF transfer function, in order to approximate the ideal distribution for a
logistic sigmoid transfer function. Since we suppose that x ∼ N 1(x; 0, 1),
by change of variables we get:

fY (y) =

∣∣∣∣∣∂g−1(y)
∂y

∣∣∣∣∣ fx(g−1(y))

=
1
s
fx

(
y

s

)

=
1
s

1√
2π

exp

−
(
y
s

)2

2


=

1
s
√

2π
exp

(
− y2

2s2

)

sx ∼ N 1(0, s) (4.13)
where

• g(x) = sx

The above result holds for every neuron in the output layer, so we say
that the ideal pre-sigmoid multivariate normal distribution for the logistic
sigmoid transfer function, has marginals which follow a univariate normal
distribution with zero mean and a standard deviation of s; the optimal
standard deviation is given by σ∗ = s. Since for a multivariate normal dis-
tribution with means µ and covariance matrix Σ the marginal for the nth

activation are given by N (µn, Σnn), we know that the ideal distribution is

vations, because defining a multivariate extension of the logistic distribution which meets
the necessary conditions is not as straightforward as the multivariate normal distribution.

10 Since both the logistic sigmoid and the CDF of the standard normal are rotationally
symmetric about (0, 0.5), their squared difference is symmetric about x = 0. We therefore
can limit the minimization to either half of the function space.

11 More accurately: 1.2027825075620033.
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such that the means are given by the zero vector and the diagonal of the co-
variance matrix only contains (σ∗)2. 12 We have yet to provide reasoning to
fill in the rest of the covariance matrix, in order to complete the description
of the ideal pre-sigmoid distribution.
It should be quite obvious that the (proper) covariances between the ac-

tivations of different neurons should be zero. When we would allow the
ideal pre-sigmoid distribution to have covariances other than zero, the post-
sigmoid distribution would also have non-zero covariances and hence it
wouldn’t be uniform, even though its marginals are uniform. The ideal pre-
sigmoid normal distribution is therefore given by:

N ∗ = N




0
0
...

 ,


(σ∗)2 0 . . .

0 (σ∗)2 . . .
... ... . . .


 (4.14)

Let’s take a step back. We’ve seen how the use of a CDF as transfer
function of the distribution we fitted to the pre-sigmoid data leads to a uni-
form post-sigmoid distribution. We then went on to approximate the CDF
of the normal distribution using the logistic sigmoid, since it leads to faster
computation. The stretching factor s could then be used to redefine (an ap-
proximation to) the ideal pre-sigmoid distribution, so that we can still use
the standard logistic sigmoid transfer function. We determined s by approx-
imation of the CDF of the normal distribution, while now it only occurs in
the pre-sigmoid ideal distribution; s isn’t involved with the transfer function
directly. It is therefore better to choose s such that the approximation of
the ideal is actually closest to the ideal pre-sigmoid.
This would still be taking a detour, however. Our objective is to make

the output distribution more uniform; we want to decrease the distance
between the actual output distribution and the uniform distribution. We
should therefore estimate s such that the post-sigmoid distribution of the
approximation is closest to the uniform distribution.
As distance measure we take the Kullback-Leibler (KL) divergence from

the uniform distribution P to the post-sigmoid distribution of the approxi-
mation Q:

DKL(P || Q) =
∫
D

fP (x) log
(
fP (x)

fQ(x)

)
dx (4.15)

where

• D is the domain of the PDFs—their support, e.g., [0, 1].

12 The multivariate normal distribution was defined in terms of (co-)variances, while the
univariate normal was defined in terms of the standard deviation. Because we need to
square the standard deviation to get the variance, we get s2 instead of s as parameter to
the distribution.
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The PDF fP (x) of the uniform distribution Uk[0,1] is a constant function,
always returning 1. 13 We can therefore simplify:

DKL(U
k
[0,1] || Q) =

∫
D

1 log
(

1
fQ(x)

)
dx

= −
∫
D

log (fQ(x)) dx (4.16)

The post-sigmoid distribution Q of the approximation to the uniform
distribution is harder to characterize. We compute the post-sigmoid PDF by
converting the pre-sigmoid distribution R using the logistic sigmoid transfer
function. In appendix C.15 we derive that:

fQ(x) =
1

x(1− x)σ∗
√

2π
exp

− log
(

1
1−x − 1

)2

2(σ∗)2

 (4.17)

where

• σ∗ is the optimal standard deviation;

• R = N (0,σ∗)

The distance is minimized at σ∗ ≈ 1.814. 14 In figure 4.6 the difference
between the approximations of the ideal output distributions for different
settings of s are depicted. Besides the two settings we have discussed, a third
option is shown in blue. This is the setting of s when the approximation of
the ideal is closest to the ideal pre-sigmoid, which we called a detour above.
Up until now we have discussed what the optimal pre-sigmoid distribution

looks like when using the logistic sigmoid as transfer function. We would
also like to know what it would look like when we would use the hyperbolic
tangent as transfer function. Recall that we had conveniently defined the
hyperbolic tangent in terms of the logistic sigmoid (formula 2.6): tanh(x) =
2σl(2x)− 1. The scaling by 2 and shift by −1 only transform the output
space in a way which preserves the uniformity of the output distribution
in the output space. We need to account for the pre-sigmoid multiplication
by 2. This is simply done by dividing the value we have found for σ∗ or
the logistic sigmoid function by 2. Thus the optimal standard deviation for
each pre-sigmoid output is given by σ∗ ≈ 0.9069 when using the hyperbolic
tangent transfer function.

objective Now that we have fully specified the ideal pre-sigmoid Gauss
which best approximates the ideal pre-sigmoid distribution leading to a uni-

13 When the uniform distribution has a domain different from [0, 1]k, the constant value
the PDF returns is different. For a domain of [a, b]k the values returned are (b− a)−k,
such that the volume under the function is 1.

14 More precisely: 1.8137993369195464.
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Figure 4.6: Plot of the post-sigmoid dis-
tribution for different values
of s, the standard deviation
of the pre-sigmoid univariate
normal distribution. In red
the distribution obtained when
choosing s such that the sig-
moid transfer function approx-
imates the CDF of the stan-
dard normal distribution; in
blue when s is chosen such that
the pre-sigmoid normal distri-
bution best approximates the
ideal logistic distribution; in
red when s is such that the
post-sigmoid distribution best
approximates the uniform dis-
tribution.

form output distribution, we can define the objective of the network. The
objective is to minimize the distance of the approximated ideal distribution
from a Gaussian distribution fitted to the actual pre-sigmoid activations
of the output layer. This distance is given by the KL divergence from the
approximated ideal to the fitted distribution, see formula 4.15.
Learning is performed on the network without the sigmoid function in

the output layer, or equivalently, the objective function is applied to the
output neurons activations instead of their outputs. The objective function
itself is then given by the negated KL divergence:

E(LO) = −DKL(N k(0, sI) || N̂ ) (4.18)
where

• k is the dimensionality of the output layer: k = |LO|;

• I is the identity matrix;

• 0 is the zero vector;

• N̂ is the |LO|-dimensional multivariate normal distribution fitted to
the activations a1 . . . aN ;

• N is the number of data points in the sample.

The KL divergence between two multivariate normal distributions actu-
ally has a widely know analytical solution.For two distributions N0(µ0, Σ0)
and N1(µ1, Σ1), we have:
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DKL(N0 || N1) =
1
2 tr

(
Σ−1

1 Σ0
)

+
1
2(µ1 −µ0)

TΣ−1
1 (µ1 −µ0)

− 1
2

(
k+ log det |Σ0|

det |Σ1|

)
(4.19)

where

• k is the dimensionality of the distributions

In our case this reduces to:

DKL(N k(0, sI) || N̂ ) =
1
2ks tr

(
Σ−1

1
)

+
1
2µT

1 Σ−1
1 µ1

− 1
2

(
k+ log sk

det |Σ1|

)
(4.20)

For which the derivative is given in appendix C.14.

4.4.4 Underdetermination

In much the same way as Eigenvolume Expansion-Dichotomization (EED),
PSGU has an underdetermined objective. PSGU suffers from the same prob-
lems as EED (see section 4.3.2). Whereas with EED we could multiply any
weight configuration by a large constant in order to maximize the objec-
tive, with PSGU we can multiply the weight configuration of any neuron
such that the activations of that neuron have a standard deviation with
the optimal value s. For any set of uncorrelated features, we can apply this
multiplication method so that the activations fit the approximated ideal dis-
tribution exactly. 15 The objective of PSGU allows for weight configurations
which are intuitively suboptimal.

Just like the underdetermination we encountered in EED, the underdeter-
mination of PSGU may not be so problematic when using simple learning
methods such as gradient ascent. The path of steepest ascent is generally
leading to the nearest global maximum from the origin, which is the pre-
ferred maximum. The closer the maximum is to the origin, the smaller the
weights are; we thus got to a distribution with a given variance with the
smallest weights, which means that the largest portion of the contribution
to the variance was accomplished by the inputs themselves. This in turn
means that the weights convey the information of the most prominently
present components in the input.
However, we would like to be able to rephrase our objective such that there

is generally only one global maximum. We should limit the learning process
15 Note that PSGU does require these features to be uncorrelated in contrast to EED
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such that the objective function excludes intuitively unwanted maxima. In
section 4.5 we consider such a learning procedure.

4.5 generalized hebbian learning

In the previous sections we have seen two approaches to Spread Maximiza-
tion: Eigenvolume Expansion-Dichotomization and Pre-Sigmoid Gaussian-
Uniformization. For both we introduced an objective function which pro-
motes the corresponding form of SM.
However, we’ve seen that both methods suffer from underdetermination.

In this section we introduce a radical new approach in order to solve that
problem. The technique explained here works for both variants of SM with
different settings of just a single parameter. The approach is based on Heb-
bian learning, which was the subject of section 3.2.
We first look at the commonalities between dichotomization and uni-

formization in order to extract a common objective in section 4.5.1. We
then transform the objective into an alternative objective, the constrained
HO, which can be seen as analogous to it in some sense. In order to apply
HO we transform the data and the network before we start the learning
process. Afterwards we transform the weights of the network such that the
network is optimal for the original objective and the unaltered weights.
We show how the approach works for simple, single layered Multilayer

Perceptrons (MLPs) in section 4.5.1 to 4.5.2, which is based on techniques
previously discussed in this thesis. After that we move on to derive a con-
crete technique for the approach for CNNs with a convolution and pooling
layer in section 4.5.3 to 4.5.6. This concrete technique is called Convolu-
tional Hebbian Algorithm (CHA)-SM.
In the manifestation of the approach for CNNs, we generalize many con-

cepts previously discussed and apply these general forms to the concrete case
of CNNs. We therefore introduce convolutional variants of many concepts
and techniques previously discussed.

4.5.1 Commonalities to Dichotomization and Uniformization

Let’s take a look at what binds the different forms of SM. Here we unify
both into a single objective with different settings of parameters.

decorrelation We’ve seen that EED (section 4.3.2) was underdeter-
mined; weight vectors which we would view as intuitively incorrect would
result in the same values of the objective function as weight vectors which
we would view as optimal. Any weight vector could be stretched such that
the variance of the output neuron would be equal to the variance the neuron
would have with the weight vector which we would view as optimal. Note
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that while this optimal variance is infinite the reasoning presented here still
holds.
We ran into a similar problem in PSGU (section 4.4.4). The objective

function was underdetermined in that its function surface would contain
global maxima which we wouldn’t view as intuitively optimal. Any weight
vector could be stretched such that the variance of the output neuron would
be equal to the square of the optimal standard deviation σ∗.
Furthermore we have seen that both methods lead to decorrelated output.

EED makes the eigenvolume grow toward the optimal hyperrectangle, which
coincides with the output space itself.16 Since the eigenvolume is defined in
terms of the standard deviations in the eigendimensions, we know that at
the optimum, the eigendimensions are aligned with the dimensions of the
output space. Because data are always decorrelated in its eigenspace, we
can conclude that dichotomy performs decorrelation in the output space as
well.

PSGU leads to decorrelated output by definition, since the objective is to
minimize the distance between the distribution of the current pre-sigmoid
output and a Gaussian distribution with independent variables.
We can thus describe both methods as finding a mapping of the input to a

decorrelated distribution with optimal variance, where the optimal variance
is given by different values for the two methods. We would like this mapping
to be based on the most prominent features in the input; we should solve the
underdetermination such that the features extracted are most prominently
present in the input.
We’ve seen in section 4.1 that gradient ascent is expected to result in the

maximum which is closest to the origin for the specific objective function
surfaces at hand. That maximum coincides with what we would intuitively
view as the optimum, since the contribution of the input to the (optimal)
output variance is greatest when the contribution of the weights is smallest.
The maximum closest to the origin is therefore the maximum which is based
on the most prominent input features.
In order to solve underdetermination, we therefore try to find a mapping

with the smallest weights resulting in decorrelated output with a given vari-
ance. Note that whereas in PSGU the optimal variance is the variance of the
pre-sigmoid output distribution, EED tries to maximize the post-sigmoid
variance. However, maximizing the post-sigmoid variance is equivalent to
maximizing the pre-sigmoid variance, since the sigmoid functions are mono-
tonic. The same reasoning applies to decorrelation; in both cases the optimal
pre-sigmoid output distribution is decorrelated and has a given variance,
where the optimal variance depends on the kind of SM we perform.

The mapping of input to pre-sigmoid output is given by a linear combina-
tion of the inputs; the activation is just given by the weighted input. Mul-

16 Actually the sides of the eigenvolume is half the sides of the output space. However, the
eigenvolume and the eigenspace is aligned and their centers coincide.
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tiplying the weights therefore results in a multiplication of the pre-sigmoid
output standard deviation. Finding the smallest weights which result in a
given pre-sigmoid variance can therefore be performed by finding the largest
variance for weight vectors with a given length. After we have found the
weight vectors resulting in the largest variances, we can rescale the weight
vectors such that their variances coincide with the optimal variance.

The question is how to find the weight vectors of a given length which
results in the largest pre-sigmoid variance. For simplicity, let’s constrain the
weight vectors to a length of one. Our new goal, then, is to find a mapping
which results in a decorrelated pre-sigmoid output distribution with largest
variance, under the constraint that the weight vectors are of unit length.

centering Another commonality between EED and PSGU is that
both have optima where the output distribution is centered at the origin. In
a global optimum of EED, the eigenvolume of the output distribution coin-
cides with the output space. Since the middle of this space is the mean of the
distribution, we know that the optimal output distribution has zero mean.
As for PSGU, we just defined the optimal pre-sigmoid output distribution
as having zero mean.
The goal of both methods can therefore be transmuted into a goal of

finding weight vectors of unit length which cause the output distribution to
be decorrelated and centered at the origin.

4.5.2 Principal Component Analysis and Standardization

The above goal is exactly what PCA accomplishes for a single layer MLP
with linear transfer function.17 (See section 3.1.2) PCA finds an orthogonal
transformation such that the variance of the transformed data is maximized.
This transformation consists of loading vectors which can directly be used
as the weight vectors of the PCA.
We’ve seen that PCA can be performed by eigen decomposition of the

covariance matrix of the input distribution. The covariance matrix of the
(pre-sigmoid) output distribution is then given by formula 3.8, which states
that:

ΣZ = Λ = diag(λ) (4.21)
where

• Λ a diagonal matrix containing the eigenvalues;

• diag(v) denotes a diagonal matrix of elements of v in the diagonal;

• λ is a vector of the eigenvalues of Z.

17 Note that centering is not a part of PCA.
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The optimal covariance matrix and the optimal mean vector are given
by:

Σ∗ = σ∗I (4.22)
µ∗ = 0N (4.23)

In order to get to our optimal distribution we then transform the weights
obtained by PCA. We first perform a standardization step which transforms
the (pre-sigmoid) output distribution to a zero-mean, unit variance decor-
related distribution and then multiply by σ∗:

Z̃ =
(
X− 1NµT

)
Wσ∗Λ−1/2

Z̃n· = Xn·
(
Wσ∗Λ−1/2

)
−µTWσ∗Λ−1/2 (4.24)

where

• Z̃ is the standardized output data;

• Λ−1/2 denotes the diagonal matrix of inverses of the square roots of
the eigenvalues

(
Λ−1/2

)
ii
= 1√

λi

Note that we divide by the square root of the eigenvalues, since the eigen-
values correspond to the output variance, instead of the output standard
deviation.
Since for dichotomization the optimal variance is infinite, multiplying by

σ∗ would be an infeasible solution. Instead of multiplying by infinity, we
change the transfer function from sigmoid to its hard counterpart, e.g., we
replace the hyperbolic tangent by the signum function.
Formula 4.24 conforms to a single layer MLP with linear transfer function

(formula 2.2). We convert the weights resulting from PCA by the above
transformation in order to get the MLP which results in the optimal output
distribution.

W 7→Wσ∗Λ−1/2 (4.25)
b 7→ −WµTσ∗Λ−1/2 (4.26)

Since we can perform PCA by using the GHA, we have a full procedure
to perform SM on single layer MLPs with linear transfer function. First we
calculate and subtract the means from the data, which is a necessary prepro-
cessing stage for the GHA. Then we train a single layer ANN without biases
and with linear transfer function by using Sanger’s rule on the preprocessed
data. When the weights have converged we apply the above conversion us-
ing the means calculated in the preprocessing stage, which introduces biases.
We then change the transfer function from linear to a sigmoid function and
end up with the optimal post-sigmoid distribution for the original data.
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Note that the introduction of biases in the above way causes the output
distribution to have zero mean. We have therefore solved the mean centering
problem discussed in section 4.3.3.

Hebbian Objective We have seen in section 3.2.3 that the GHA
can be derived from the Hebbian Objective (HO) with orthonormalization
constraints. Now we consider applying the HO with orthonormalization con-
straints to ANNs which have different structures from the standard single
layer MLP without biases or transfer function. Learning by optimizing the
constrained HO constitutes Generalized Hebbian Learning (GHL).
Because we maximize the squared output, we are maximizing the vari-

ance of the output, which is proportional to it when the output data has
zero mean. The constrained objective therefore causes the weight vectors to
converge to unit length and orthogonal to each other while achieving the
greatest output variance. We can generalize the above method for finding
the weights which lead to the optimal output distribution for single layer
networks by using the GHA to one for double layer CNNs with a convolution
and pooling layer by deriving a concrete update rule from the constrained
HO.
Similar to the method for SM which uses the GHA, we zero-mean the

data beforehand and remove the transfer functions from the CNN. We then
apply a Lagrangian derivation in order to incorporate the orthonormaliza-
tion constraints in the objective function, with which we train the network.
Afterwards, we apply the conversion to the weights which causes the output
neurons to have the optimal variance and zero mean to get our final ANN.

4.5.3 Pooled Convolutional Component Analysis

We’ve seen that the constrained HO in the case of simple single layered
MLPs reduces to the GHA, which leads to networks performing PCA. Since
we now apply the constrained HO to CNNs, we introduce convolutional vari-
ants of these concepts: Convolutional Hebbian Algorithm (CHA) and Pooled
Convolutional Component Analysis (PCCA). Just as the GHA causes the
weights of a network to converge to the loading vectors which form the ba-
sis of PCA, the CHA can be said to cause the weights to converge to a
configuration which forms the basis of PCCA.
However, PCCA is inherently different from PCA in some respects. While

PCA considers the linear (orthogonal) features which result in the greatest
variance, PCCA considers the pooled (orthogonal) features which result in
the greatest variance, or equivalently, PCCA considers the linear (orthogo-
nal) features which result in the greatest pooled variance. The analysis is of
quite a different nature, because the pooling function is ‘lossy’; the pooling
function is inherently surjective, since its output remains the same under re-
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ordering of its inputs. The fact that it is the analysis of pooled convolutional
components means that this inherent difference is natural to PCCA.
Because the pooling operation is generally not a linear function, we cannot

view the output space as a subspace of the input space onto which the input
data is projected linearly. While PCA can be seen as a method to find the
subspace such that the distance between the input data and the projected
data is smallest, PCCA cannot be viewed analogously.
However, since both PCA and PCCA can be viewed as methods for find-

ing the maximal variance of a transformation which uses an orthogonal
projection, we find that the methods have enough in common so that we
can call PCCA the convolutional variant of PCA.
In the next two sections we show how to perform PCCA. Before we move

on to reduce the constrained HO to the CHA in section 4.5.5, we first need to
deal with a problem which was dealt with by the CHA trivially, namely the
fact that we need to have an output mean of zero if we want the constrained
HO to perform variance maximization.

4.5.4 Zero-mean Problem

We’ve seen that when performing PCA by using the GHA, we make the data
zero-mean beforehand and then perform the learning algorithm in order
to find the components with maximal variance. The GHA can be seen as
maximizing the square output, which is proportional to the output variance
when the output has zero mean. Because the transformed input has zero
mean, we could then ensure our output to have zero mean by keeping the
bias term zero.
For PCCA the biases need to be treated differently; we should not simply

disregard the biases as was the case when using the GHA for SM. The
HO maximizes variance when the output mean is zero. Because PCA uses
a linear transformation on the input data, we know that when the input
mean is a zero vector, the output mean must also be a zero vector. This is
not the case when the transformation that the ANN performs also includes
a non-linearity, e.g., the pooling function.
We therefore include a bias bk for each weight configuration k which

causes the pooled outputs to have zero mean. The value of these biases
should change during the learning process, since the output distribution
changes as well.
The difficulty here, lies in the fact that there is no analytical solution

of the bias such that it results in a zero output mean. In fact, it might
be impossible to get an output mean of exactly zero. For example when a
CNN is such that there is one output neuron, the data consist of a single
data point and the convolution map of that data point contains both a
positive extreme and a negative extreme, then any bias term would cause
the absolute maximum pooling function to output either a positive or a



4.5 generalized hebbian learning 77

negative extreme, but in no way could it output zero. However, for larger
data sets with some variance, half of the data could be transformed such
that they output a positive extreme while the other half outputs a negative
extreme, leading to a mean value closer to zero; even though we might be
unable to get a mean of exactly zero, we can change the bias in order to get
the mean closer to zero.
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Figure 4.7: Graphs of pooled output and their average for values of the bias
within [−1, 1], for different pooling functions. In green the pooled
outputs and in red the average output. The soft arg max abs and
soft arg min abs pooling functions are given by formula 2.28 with soft-
ness parameter p = 20 and p = −20. The pools of the two data points
consist of two outputs in the convolution layer with values {−1, 1

2}
and {−1, 1}

We add an objective function which minimizes the distance between (the
approximation of) the mean and zero, which is then optimized only with
respect to the bias terms:

E(pklf) = − (µ̃k)
2 (4.27)

One might be inclined to perform gradient ascent by using backpropaga-
tion to get the derivative of this objective w.r.t. the biases for each pooled
output pklf :
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∂E(pk(xf,yf)
)

∂bk
= −µ̃k

1
N

∑
x<wp,y<hp

∂pk(xf,yf)
∂ak

(xf+x,yf+y)
(4.28)

where

• wp and hp are the width and height of the pool;

• N is the number of pooled output across the whole data set.

However, this approach might get stuck in local optima. In figure 4.7 we
depict the average output of a neuron in the convolution map of an example
CNN as a function of the bias. (See section 2.2.2 for definitions of the pooling
functions.) We see that the hard and soft arg max abs pooling functions are
monotonically increasing, so there are no local optima. Note that the hard
arg max abs function contains discontinuities. Learning the bias terms with
gradient ascent might therefore result in an oscillation between two sides of
a gap, without converging.
The hard and soft arg min abs function, on the other hand, don’t have

this monotonicity property. Especially the soft arg min abs pooling function
might cause convergence to local optima. Note that any local optimum of the
mean as function of the bias corresponds to a local optimum of the squared
mean—the objective function by which we change the biases, as given by
formula 4.27. The orange coloured region in figure 4.7c is the region in which
the gradient is such that gradient ascent converges to the local maximum
at bk ≈ 0.2, at which point the average output is less than zero.
Instead of using gradient ascent, we provide a different, more simple ap-

proach. Note that the derivatives of the hard arg max abs and arg min abs
are 1 at every point. When using 1 instead of the gradient of the pooling
function, we won’t get stuck in local maxima. We therefore take µ̃k as local
objective/local error, instead of the actual partial derivative of the zero-
mean objective w.r.t. the bias. These local objectives are then used by a
learning mechanism such as gradient ascent when training the network.

convergence One might wonder whether the learning mechanism
which uses the above local objectives instead of the real partial derivatives
converges at all, given that a positive bias update might result in a nega-
tive effect on the mean. Nevertheless, the update rule causes the mean to
converge to zero, except when we use the hard absolute maximum pooling
function, in which case it can keep oscillating. For the other pooling func-
tions it holds that when the gradient and the update rule have a different
sign we move away from a zero mean until we have reached a local opti-
mum, after which we move further toward zero mean again. Eventually we
end up with zero mean because in the limit where abs bk → ∞ the mean
as a function of bk approximates a linear function and so it must intersect
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the horizontal axis at which point the bias converges such that the mean is
zero.

mean approximation Since the output distribution changes during
the learning process, so the mean changes as well. Instead of recalculating
the output mean after each update, we approximate it. It is important that
the approximation doesn’t depend on the approximation of the mean in
previous update steps, since the interaction between the approximation and
alteration of the output mean can cause the biases to oscillate around a zero
mean, without converging. Instead we use the output mean of the current
batch, when using a batch learning mechanism, which in fact is the kind of
learning mechanism we employ in the experiments. (See section 5.1.3.)

non-determinism As can be seen in figure 4.7 the hard and soft
absolute minimum pooling functions can have multiple settings of the bias
such that the output mean is zero. This means that we are dealing with
non-determinism; multiple bias settings lead to the output distribution with
the required properties. Different weight initializations and different orders
in which the input data is presented to the network may lead to different
maxima and so the GHAmight result in different ending states when applied
to CNNs.

4.5.5 The Convolutional Hebbian Algorithm

Now that we have seen how we can keep the output means of a double layer
CNN zero during learning (or at least how the network converges to such a
state), we can complete the description of PCCA by showing how the CHA
works.

In this section we show what update rule the CHA has and in section 4.5.6
we show how we can use PCCA in order to find the optimal weights for either
variant of SM.

convolution GHL for a CNN consisting only of a single convolution
layer is quite straightforward. We’ve seen in section 2.2.1 that we can view
convolution as the reiterated application of a fully connected MLP to dif-
ferent positions in the input image. The Lagrange multipliers are therefore
solved in the same way as for the GHA (see section 3.2.3) and the partial
derivatives of the HOs are given by Sanger’s rule.

pooling We’ve seen in section 4.4.2 that we can move the transfer
function used in the convolution layer to the pooling layer, for most of the
pooling functions described in section 2.2.2. Though this change doesn’t
lead to equivalent networks when using soft approximations to hard pool-
ing functions, it still results in approximations to CNNs with hard pooling
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functions. We can then change that output layer transfer function into a
linear function in the same way as we did when using the GHA for SM.

pk(xf,yf)
= s

(
Zk(xf,yf)

)
(4.29)

Zk(xf,yf)
=
{
ak(xf+x,yf+y)

| 0 ≤ x < wp ∧ 0 ≤ y < hp
}

(4.30)

ak(xp,yp) =
∑

(x,y,z)<(wc,hc,N)

iz(xp+x,yp+y)w
k
(x,y,z) + bk (4.31)

where

• i, a and p are neurons representing input, convoluted activation and
pooled output;

• iz(x,y) is the input on location (x, y) in the map of feature z;

• ak(x,y) is the activation and output on location (x, y) in the convolution
map of neuron k;

• pk(xf,yf)
is the output on location (x, y) in the pooling map of feature

k;

• N is the number of input maps, i.e. the number of input features;

• xf and yf are the coordinates of the final output neuron in the output
map;

• Zk(xf,yf)
is the pool of neurons connected to the final output neuron;

• bk is the bias of weight configuration k;

• wp and hp are the width and height of the pool;

• wc and hc are the width and height of the weight configuration k;

• wk(x,y,z) is the weight on the connection from feature z at a relative
location (x, y) for weight configuration k.

objective function The output of a neuron in the pooling layer
of such a CNN is then given by formula 4.29 to 4.31. The unconstrained
objective function is given by formula 3.12. For readability we abbreviate
indices (x, y) to a location index l. in that notation for CNNs, the objective
function for a single neuron is given by:

E(pklf) =
1
2
(
pklf

)2
(4.32)

We can view the outputs of neurons at different locations in the output
map as the outcomes of multiple evaluations of a CNN which would nor-
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mally result in a single output. Just as we can view a convolution layer as
performing a reiterated application of a smaller ANN to different locations
in the input layer (section 2.2.1), we can view a whole CNN as such. Every
neuron at a given location in the pooling map (indirectly) receives informa-
tion from a subframe of the input image shifted by an amount proportional
to the location in the pooling map.
We can therefore view the outputs at a given location in the pooling map

as the only outputs of another network applied to a subframe of the original
input. The structure of the output layer of such a network then corresponds
to the output layer of the network used for the GHA. We therefore constrain
the objective function per output map location instead of the total objective
function W (LO).
In much the same way as the derivation of the GHA which used La-

grangian multipliers (section 3.2.3), we introduce constraints and their λ’s
sequentially for the different features evaluated at a given position in the
output map. While the objective function for the neuron employing the
first feature at a given location we only have the normalization constraint,
while subsequent features also get orthogonalization constraints. We there-
fore have separate Lagrangians for each output neuron.
In appendix C.19 we derive that the partial derivative of the Lagrangian

of a neuron pklf w.r.t. a weight on a connection (indirectly) connected to that
neuron is given by:

∂L(lf,k)
(wk,Λk)

∂wk
(li,z)

=pklf
∑

lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

− pklf
∑
j≤k

wj(li,z)
∑

lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lp (4.33)

When the CNN is viewed as reiterated application of a CNN with a sin-
gle output, the above formula gives rise to the weight update when using
gradient ascent. Otherwise the weight update consists of more than a single
partial derivative, since we sum over all output neurons. Because a weight
from a weight configuration k is only connected to a neuron in a pool as-
sociated with k and that pool is the only input to an output neuron in
pooling map k, we only have partial derivatives w.r.t. a weight from k of La-
grangians for neurons in the same pooling map k. The partial derivatives of
the constrained objective function over the whole output layer are therefore
given by:

∂E(LO)
∂wk

(li,z)
=

∑
pklf
∈Zk

∂L(lf,k)
(wk,Λk)

∂wk
(li,z)

(4.34)

Performing gradient ascent on this objective function then gives rise to
the learning mechanism we call the CHA.
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Figure 4.8: The input, with gray value corre-
sponding to zero, and black corre-
sponding to input of −1. In green
we show that the weight vector is
evaluated at non-overlapping sub-
frames of the input. The weight
vectors, where the light gray cor-
responds to a value of 1√

12 , such
that the length of the weight vec-
tors are 1. The two convolution
maps containing the outputs of
the convolution layer, where gray
values correspond to values be-
tween −1 and 0.

(a) Input

(b) Weights

(c) Convo-
lution
maps

reduction to the GHA Note that this reduces to the GHA when
the pool is reduced to a size of one. When ∀Zklf ⊂ Zk :

∣∣∣Zklf ∣∣∣ = 1 then
wp = hp = 1 and so Zklf =

{
aklf

}
. Suppose the pooling function then reduces

to the linear function s({a}) = a. 18 Formula 4.33 therefore reduces to:

∂L(lf,k)
(wk,Λk)

∂wk
(li,z)

=pklfi
z
lf+li − p

k
lf

∑
j≤k

ajlfw
j
(li,z)

=aklfi
z
lf+li − a

k
lf

∑
j≤k

ajlfw
j
(li,z) (4.35)

Note that this reduced form conforms to Sanger’s update rule (formula 3.13).
The reduction reinforces the statement that a convolution layer can be
viewed as reiterated application of a simple MLP, because the derivative
of the constrained objective function consists of the sum of the derivatives
of the constrained objective functions for all locations in the output maps.

Local Maxima

It is important to note that the objective function contains local maxima
in which the learning rule of the CHA can get stuck. We give an example
in which the CHA is shown to be stuck.

18 For all pooling functions considered in section 2.2.2 this in fact holds.
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Consider a CNN consisting of a convolution layer and a pooling layer with
one pooled output. The single pool contains at least two neurons which
receive input from disjoint sets of input neurons. Lets suppose the input
is (10× 10) and the weight configuration is (5× 5) which makes the pool
contain neurons from a frame of size (6× 6). Let’s use the linear transfer
function and the absolute maximum pooling function.
Suppose the input looks like figure 4.8a. We consider two features which

look like a crosshair and a circle, given in figure 4.8b. These result for the
given input image in the convolution maps given in figure 4.8c.
The input data is similar to the input shown in the figure, except that

they are inverted for half of the images in the data set. Another exception
is that in some images the upper left corner doesn’t have a crosshair; all
input values there are zero instead. Note that the variance of the upper left
neuron in the convolution map of the crosshair is largest and the variance
of the lower right neuron in the convolution map of the circle is largest.
Furthermore, these activations are always the greatest in an absolute sense

and so the pooled output is given by the value of the upper left or the lower
right neuron of the convolution layer. The output variance is therefore given
by the variance of the upper left and lower right pixel in the convolution
maps. Since the crosshair doesn’t occur in all images, the output variance
associated with the circle is greater.
Suppose we have a CNN with only a single weight configuration, corre-

sponding to the crosshair. We would like to see this feature converge to the
circle, since that feature results in larger output variance. This is not the
case, however.
For the given pooling function, the derivative of the pooled output w.r.t.

a neuron in the convolution map is zero at all places except the upper left
corner, where it is one. The partial derivative of the constrained objective of
the CHA w.r.t. a weight therefore reduces to formula 4.35, which conforms
to Sanger’s update rule. The weight configuration therefore converges to the
first loading vector of the upper left sub-frame of the input image, which
is the crosshair. We have thereby shown that the feature doesn’t converge
to the feature which would result in the largest output variance, namely
the circle; the first feature therefore doesn’t necessarily converge to the first
convolutional loading. 19

We therefore have to train several CNNs with the CHA and see which
one extracted the best convolutional components. 20

Pooled Convolutional Component Analysis

Now that we know what update rule the CHA has we can combine it with
the zero-meaning method in order to perform PCCA. When we update the

19 A convolutional loading is to PCCA what a loading vector is to PCA.
20 A convolutional component is defined analogously to a principal component.
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biases during the learning process, by applying the zero-meaning method
after each iteration we ensure that when the weights have converged, the
output mean is zero. In that case the CHA has maximized the variance
of the pooled convolutional components, since the squared output (HO) is
proportional to the variance, when the output mean is zero. The combina-
tion of the update rules of zero-meaning and the CHA therefore causes the
network to eventually perform PCCA.
PCCA coincides with the reformulated objective of SM. We can thus use

the method described above for SM. Next we show how we can use the
weights obtained by performing PCCA in order to find the weight config-
urations which lead to the optimal output distribution in terms of either
variant of SM.

4.5.6 Standardization

Now that we have described how to perform PCCA, we can show how to use
it to perform either variant of SM. We standardize the output data and scale
it so that each dimension has the optimal variance, which is different for
either method of SM. We incorporate this transformation in the weights and
biases of the network. Also the zero-meaning operation which was performed
before applying the CHA is incorporated.

rescaling Whereas the variance of the output neurons of an ANN
used by the GHA were equal to the eigenvalues of the covariance matrix, we
don’t have an analytical way to find the variances of the output neurons of
a CNN used by the CHA. We therefore just compute the empirical standard
deviation σ̃k of each neuron k.
We then transform the pooled outputs pklf such that their standard devi-

ation is equal to the required standard deviation σ∗:

pklf 7→
σ∗

σ̃k
pklf (4.36)

For dichotomization the optimal standard deviation was infinite; instead
of multiplying by the standard deviation we just replace the sigmoid transfer
function by its hard counterpart. For example, we switch the hyperbolic
tangent to the signum function.
Note that for all the hard pooling functions discussed it holds that cs(X) =

s(cX). We can thus push the rescaling constant σ
∗

σ̃k
down the formula for the

CNN at hand (formula 4.29 and 4.31) until we reach the bias and weighted
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input. The transformation is therefore equivalent to multiplying the weights
and bias by the rescaling constant:

wkx,y,z 7→
σ∗

σ̃k
wkx,y,z

bk 7→
σ∗

σ̃k
bk (4.37)

The above equivalence of transformations doesn’t hold when using a soft
pooling function which uses the soft arg max function given by formula 2.28.
This is so because for small values the soft approximation to the hard
arg max function becomes less accurate. In appendix C.20 we show that
by changing the hardness of the approximation while multiplying the input,
we can get a similar result as for hard pooling functions: cs(X) 7→ s(cX)
when p 7→ p̃.

However, this would lead to different hardness settings for the different
pooling functions on the different feature maps. We therefore leave p the
way it is when standardizing the output. We expect this not to have a large
impact on the output distribution since both settings of p lead to a function
which is a soft approximation to the hard arg max function. We therefore
just use the transformation given by formula 4.37.

shifting Recall that we had subtracted the mean µi from the input
data before we applied the CHA. We therefore have to incorporate this
shift in inputs into the weights of the CNN if we want to use it on the
unaltered data. The convoluted outputs for the shifted input data can be
rewritten to convoluted outputs of the unaltered input data:

ak(xp,yp) =
∑

(x,y,z)<(wc,hc,N)

(
iz(xp+x,yp+y) − µ

z
i
)
wk(x,y,z) + bk

=
∑

(x,y,z)<(wc,hc,N)

{
iz(xp+x,yp+y)w

k
(x,y,z) − µ

z
i w

k
(x,y,z)

}
+ bk

(4.38)
where

• µzi is the mean of input feature z;

• other variables are explained in formula 4.29 to 4.31.

We therefore transform

bk 7→ bk −
∑

(x,y,z)<(wc,hc,N)

µzi w
k
(x,y,z) (4.39)
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after we have performed the transformation which leads to the optimal
standard deviation. Combining these transformations, gives us the transfor-
mation which forms the standardization step:

wkx,y,z 7→
σ∗

σ̃k
wkx,y,z

bk 7→
σ∗

σ̃k

bk − ∑
(x,y,z)<(wc,hc,N)

µzi w
k
(x,y,z)

 (4.40)

SM

Now that we have shown how to convert the weights obtained from PCCA
into weights which result in the optimal output distribution for either vari-
ant of SM, we have completed our general method for performing SM.
First we make the input data zero mean, just as we did when applying
the GHA. Then we use the learning mechanism which consists of both the
zero-meaning technique and the CHA. After the learning phase, we perform
a standardization step which causes the output distribution to have the re-
quired variance for each output neuron. Remember that this variance was
the optimal pre-sigmoid variance; as a final step we reintroduce the transfer
function in order to obtain our final CNN which maximizes spread.



5
E X P E R I M E N TAT I O N

Now that we have described and argued for methods to perform Spread
Maximization (SM), we evaluate their behavior empirically. This chapter
covers empirical experiments performed to assess the performance of the
various unsupervised learning methods.

In order to compare the methods as unsupervised learning techniques we
evaluate them as feature extractors in section 5.3; to this end we assess the
performance of a classifier which receives the extracted features as input.
The classifier used is a single layered Convolutional Neural Network (CNN),
so that the whole model consists of one multi-layered CNN.
In section 5.4 we evaluate the unsupervised learning techniques as pre-

training techniques. Such evaluation differs from the evaluation of the meth-
ods as feature extraction techniques in that the unsupervisedly trained lay-
ers are subsequently trained by the supervised learning mechanism.
In the first section we describe which experimental setup was used and in

what way the techniques were employed; section 5.2 considers experiments
performed on a simple synthetic dataset in order to show the basic work-
ings of the methods considered. Sections 5.3 and 5.4 cover a wide range
of experiments to evaluate the unsupervised learning techniques as feature
extraction and as pre-training techniques.

5.1 experimental setup

This section covers the specifics of the experiments performed. Section 5.1.1
describes the datasets on which we trained the Artificial Neural Networks
(ANNs). In 5.1.2 we describe what hyperparameters we have used in testing
the methods, i.e. the parameters of the learning mechanism and network
structure. Section 5.1.3 covers method specific hyperparameter settings and
implementation details.

5.1.1 Datasets

We have tested SM on a data set commonly used in computer vision. The
majority of the tests have been performed on the MNIST dataset. As a
basic starting point however, we’ve performed experiments on a synthetic
data set.
The data has been scaled such that the values of individual pixels lie

within the interval [−1, 1], coinciding with the range of the hyperbolic tan-
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gent function. No other preprocessing of the data has taken place. While
preprocessing can greatly improve the performance of CNNs[11], we limit
our research purely to the proposed methods and comparisons to alterna-
tives such as Pooling Convolutional Auto-Encoders (PCAEs).

Dataset #Categories #Training Images Image Size Input form

az 2 144 10× 10 Grayscale
MNIST 10 60000 28× 28 Grayscale

Table 5.1: Basic properties of the datasets used.

Figure 5.1: Example images from the synthetic az data set. Blue pixels signify
values of zero.

Figure 5.2: Example images from the MNIST data set. Near blue pixels signify
values near zero.

az We’ve constructed a simple synthetic dataset called az which is sim-
ilar to the one described in section 4.5.5. The dataset consists of images
of size (10× 10) which contain one of two patterns of size (5× 5), which
can be viewed as the letter A and the letter Z. The background consists of
zero values on which either pattern is inserted positively or negatively at
different positions in the image—see figure 5.1. This amounts to 144 images.
From these images, 44 were randomly taken as test set, while the rest was
used for training.

MNIST The Mixed National Institute of Standards and Technology
(MNIST) dataset consists of grayscale images of handwritten digits, which
have been size-normalized and centered in a fixed size image [24]—see fig-
ure 5.2. The ten classes of digits are quite easily separable, as can be con-
cluded from the fact that CNNs have been reported to produce error rates
on the test data between 0.21% and 1.7% [24], [1], depending on the network
structure and learning techniques used. The dataset therefore serves as a
good benchmark with which we can easily test our unsupervised learning
techniques.
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5.1.2 Training Hyperparameters

For all of the methods we’ve used in experiments, we computed the deriva-
tives of the objective function associated with the method w.r.t. the pa-
rameters of the model, e.g., the weights. We then use either momentum or
gradient ascent in order to determine the weight updates. The momentum
parameter α was chosen to be 0.9, which is standard[18]. The η parameter
(learning rate) of both momentum and gradient ascent depends very much
on the dataset and method used. Settings of that parameter which we used
in our experiments ranged from 10−2 to 10−5.
Instead of calculating the derivative of the objective over the whole dataset,

we approximated the true gradient by considering the derivatives of the ob-
jective only for a mini-batch of data samples. The size of these mini-batches
was chosen to be 24.

The experiments for evaluating the methods as feature extraction meth-
ods share the setting of having 20 features. This number is quite low com-
pared to the number of hidden units of ANNs commonly found in literature.
Mind that for a convolution field size of (7× 7), the input dimensionality is
49; the number of features is roughly half the number of principal compo-
nents, which is equal to the input dimensionality for convoluted Principal
Component Analysis (PCA).1 Given the intricate relationship between PCA
and Convolutional Hebbian Algorithm (CHA) based SM, 20 features seems
a good setting.
Weights were initialized by random values sampled from a univariate

Gaussian distribution with standard deviation 0.1, though biases were ini-
tialized to zero.
No stopping criterion has been used. Instead, a fixed number of iterations

were used to train the ANNs. Based on some preliminary testing, we con-
cluded that a number of iterations in the order of 103 can already produce
fairly good features. We chose settings of the number of iterations around
the order of 104, so that the learned features have had a chance to con-
verge better. For unsupervised learning we used 1× 104 iterations, while for
supervised learning we chose 2× 104 iterations
We used the hyperbolic tangent transfer function because of symmetry

considerations covered by section 2.1.3. For the pooling function we exper-
imented on two different functions: a hard pooling function and the soft
approximation to it; we used the arg max and soft arg max-function with
p = 1 and f(x) = absx so that positive outputs weren’t favoured over neg-
ative ones. Note that arg max abs-pooling introduces jump discontinuities in
the objective function, which might be harmful for the training mechanism
used. In the following we indicate the hard pooling function with the code
hp and its soft approximation with sp.

1 Section 2.2.1 describes how any method can be used in a convoluted fashion.
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We have also experimented with using weight decay in the supervised
learning phases. The weight decay regularization term has been added to the
cross entropy error function in some of the experiments. Experiments which
make use of weight decay are tagged with the code wd, while experiments
without are marked with x. The λ setting2 of the weight decay regularization
term was chosen to be 10−3, which seemed to perform well based on some
preliminary experiments.

Network Structure

We have tested each method by training the first layer of a CNN unsu-
pervisedly, after which we added a classification layer which is trained by
minimizing cross entropy. The first layer was trained with convolution fields
of size (7× 7) and pool of either size (7× 7) or of size (2× 2). Recall that
in section 4.2 we have argued for using the same convolution field size as
pool size when performing SM, while (2× 2)-pooling is standard.
After having trained the first convolution layer the pool size was set to

(2× 2), trading (partial) translation and deformation invariance for spatial
accuracy. Instead of training a fully connected classification layer on top of
the first layer, we reintroduced some translation invariance by taking a pool
size of (2× 2) and a convolution field size one pixel smaller than the width
and height of the pooling maps of the first layer.3
Consider input data samples of size (28× 28). A convolution field size

of (7× 7) leads to convolution maps of size (22× 22). When pools have
size (7× 7) as well, we end up with pooling maps of size (3× 3), meaning
that we disregard the last pixel in every column and row.4 When pools have
size (2× 2), as is the case in the second learning phase, the pooling maps
have size (11× 11). The classification layer then has convolution field size
of (10× 10), such that its convolution maps have size (2× 2), which leads
to outputs of size (1× 1) for a pooling field size of (2× 2). The output maps
of the classification layer should always be of size (1× 1), so that we can
apply the softmax activation function to all features on the single location.
The network structure of the resulting network can be represented by the

following code:

20@[7〉2}]; 10@[10〉2}] (5.1)

The layers are separated by semicolons and each layer n@[wc〉wp}] is to be
read as a (double) layer consisting of n features, a convolution field size of
(wc ×wc) and pooling field size of (wp ×wp).

2 See section 2.3.4.
3 Note that a CNN layer with convolution field size equal to the size of its input maps and
pool size equal to (1× 1) is equivalent to a fully connected Multilayer Perceptron (MLP)
layer.

4 Note that for PCAEs the pooling contribution maps always have the same size as the
convolution maps.
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lenet-1 A more elaborate network structure is used in experiments
covered in section 5.4. The structure is the one of a classic CNN example
known as LeNet-1. Its structure can be represented by the code[25]

4@[5〉2}]; 12@[5〉2}]; 10@[4〉1}] (5.2)

This structure is considerably more complex than the simple network struc-
ture described above.
Note that while the architecture seems more complex the number of pa-

rameters (weights) is quite a bit smaller; while LeNet-1 has about 3.000 pa-
rameters, the simple network structure has about 20.000 parameters. Look-
ing at the number of parameters in the non-classification layers alone, how-
ever, the numbers are given by approximately 1200 for LeNet-1 and 1000 for
the simple architecture. The fact that these numbers are comparable means
the workload of the unsupervised learning phases of both architectures is
comparable. The fact that the number of parameters in the classification
layer of the simple network structure is quite large means that training
might get stuck in worse local optima more easily which might result in a
higher variance of the error rates of the networks.
For unsupervised pre-training of this network structure we again consid-

ered using pool sizes different than the eventual (2× 2). For the both the
first and second layer we used pools of size (4× 4) while using convolution
field size (5× 5). The pools were chosen to be of a slightly different size than
the convolution fields so that the network wouldn’t suffer from unconsidered
edge cases (see section 2.2.1).

hyperparameter space In the experiments performed we consider
different hyperparameter settings as described above. An experiment per-
formed either uses weight decay (wd) or not (x); uses the hard arg max abs-
pooling function (hp) or its soft approximation (sp); uses the simple network
structure or LeNet-1 and for the simple network structure an experiment
performed can use unsupervised training on a layer structure with large
pools (7〉7}) or small pools (7〉2}).
Furthermore, we have tested the unsupervised learning techniques as fea-

ture extraction techniques and as pre-training technique. These translate
into supervised training of the classification layer alone and supervised train-
ing of the whole network. We also consider using both; the supervised train-
ing of the classification layer alone can be seen as supervised pre-training of
the classification layer preceding the supervised training of the whole net-
work. While the former two are indicated with pre and post, the latter is
indicated with pre+post.
In order to obtain reliable statistics on the performance of the ANNs,

we tested each setting eight-fold, where each rerun had a different weight
initialization.
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An exhaustive search through the hyperparameter space proved unfeasi-
ble given the computational resources available to us. Some combinations
of settings have therefore not been tested.

5.1.3 Methods

In this section we describe what settings we have used in experiments for
the various methods and which algorithms we used to achieve the objectives
of the unsupervised learning techniques.

dichotomization by eigenvolume expansion For Eigenvol-
ume Expansion-Dichotomization (EED) we used the simplified objective as
described in section 4.3. However, at certain points in the objective function
surface, the derivatives can be abnormally high, in such a way that it is dif-
ficult to choose a setting for the learning rate η. Choose the η too high and
training might shoot over a large chunk of the objective function surface.
Choose it too low and training might take unreasonably long to get past
shallow regions in the objective function surface.
We therefore use a learning mechanism which limits the vectors of gradi-

ents for each feature to unit length, which we call limited gradient ascent.
When the gradient calculated is given by a larger vector, we rescale it so
that we know that the largest possible step size is as large as η, which we
chose to be 10−3. This procedure is very ad hoc, however; one might think it
to be better to limit the vector of all gradients instead of gradient vectors of
each feature, for example. Note also that the limit is quite arbitrarily taken
to be unit length. Further research could provide better ways of dealing
with the irregular objective function surfaces at hand.

The learning mechanism used for these experiments is thus a limited
variant of gradient ascent, in accordance with section 4.3.

Since the objective surface of EED does not have any global optimum in
finite space we convert the network obtained after we stop the learning phase.
Instead of stretching the weight vector to infinity, the hyperbolic tangent
transfer function is replaced by the signum function, which is equivalent.
The dichotomization is thus finalized by performing binarization manually.

Weights were initialized around the origin randomly sampled from a nor-
mal distribution with standard deviation 10−2. Initialization closer about
the origin might be more appropriate, given the reasoning in section 4.3 on
convergence to a global optimum ‘close’ to the origin. However, we found
that for very low weight initialization, the derivatives start out so low that
the learning process takes too long to get started up.

Pre-Sigmoid Gaussian-Uniformization For Pre-Sigmoid Gaussian-
Uniformization (PSGU) we also used limited gradient ascent, with learning
rate η = 10−3. However, in contrast to EED we have initialized the weights
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by sampling from a normal distribution about the origin with standard de-
viation 10−3 instead of 10−2. Though the gradients are very large near the
origin, limited gradient ascent only takes steps of size η or smaller, so that
we don’t have to abstain from low initialization.

CHA based uniformization Recall that CHA based SM consists
of Generalized Hebbian Learning (GHL) applied to CNNs, with a second
objective which causes the mean output of each feature to converge to zero.
The objective function is therefore two-fold; one term of the objective func-
tion is used to compute the partial derivatives at the proper weights (i.e.
not the biases), while the other is used to compute the partial derivatives
at the biases. We therefore used two different learning rates η. While the
ηw of the main objective was chosen to be 10−5, the ηb used for updating
the biases was chosen to be 10−3, based on some preliminary testing. The
higher learning rate for the biases was due to the fact that the partial deriva-
tives w.r.t. the proper weights can be orders of magnitude greater than the
partial derivatives w.r.t. the biases.
The learning mechanism used to determine the weight updates was mo-

mentum; the momentum parameter α was 0.8.
We observed after some preliminary experiments that while the first cou-

ple of weight vectors converge quite quickly, the latter take quite a bit longer
to converge. This is due to the fact that latter pooled convolutional com-
ponents depend on all former ones and so do their derivatives. In order to
speed up the process we mapped the weight vectors to the feasible space at
the middle iteration, i.e. when the learning phase was at 50% we perform
Gram-Schmidt orthonormalization.
When the learning phase has finished, we again performed an orthonor-

malization step, because numerical instability and the stochastic nature of
using mini-batches to approximate the true gradients may cause the learning
phase not to converge to solutions in the feasible space.
We then transformed the weights of the network as described in sec-

tion 4.5.6. The transformation depends on the standard deviation, which
we estimate from 104 samples.

Because the soft arg max pooling function is non-linear, the resulting fea-
tures might still have different output variance than the optimal. We there-
fore apply an iterative process, which minimizes the squared difference be-
tween the optimal standard deviation and the actual standard deviation
as measured on the current mini-batch. In each iteration the length of the
weight vectors was assigned a derivative proportional to (σ∗ − σ̃) and mo-
mentum was used in order to compute the weight updates, i.e. the weight
vectors were scaled such that the difference in vector length coincided with
the ∆ ‖w‖ update given by the momentum learning mechanism. For this
process we used half the number of iterations used in the main training
phase, i.e. 5× 103 and η = 2× 10−4.
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Because of the stochastic nature of this learning phase, caused by using
mini-batches to approximate the true standard deviation, we apply another
weight transformation based on estimations of the standard deviations again
from 104 samples.
The above orthonormalization and standardization step may cause the

output means of the features to diverge from zero by a rather large amount.
We therefore performed a separate learning phase in which we solely trained
the biases. This phase consists of half the iterations of the main learning
phase, though a stopping criterion is used; when the vector of Exponential
Moving Averages (EMAs) of the output features has length smaller than
10−4 we stop adjusting the biases.5

Finally the signalling function is changed from a linear function to the
hyperbolic tangent function.

Pooling Convolutional Auto-Encoder The PCAEs were
trained on the same network structure settings as CHA based SM. We tested
the denoising variant of PCAEs, with 30% binomial noise, meaning that 30%
of pixels is randomly turned fully on (1) or fully off (−1), depending on the
outcome of a fair coin toss. 30% noise is an amount of noise commonly used
for autoencoders and specifically the amount of noise used by the inventors
of PCAEs themselves—Masci et al.[27].
The learning rate η was chosen to be 10−5, since the partial derivatives

w.r.t. the weights may be very large at the start of the learning phase.

5.2 synthetic data

For the synthetic az data set, we used a layer structure given by 2@[5〉6}].
Note that 5〉6} leads to output maps of size (1× 1), meaning that a single
neuron in the output map is connected to all input image pixels. The hope
for any of the unsupervised learning methods considered is to extract the
letter A and Z as the two features; hence the number of features.

weight images In the following we depict weight configurations by
images of which the pixels’ Red Green Blue (RGB) values correspond to the
real values of the proper weights (excluding the biases). Each input map in
the weight configuration is converted to a single image. Generally we depict
values between−1 and 1 on a scale from black to white. Because our eyes can
deceive us6, we have depicted values close to zero as blue, so that it is easier
to see what pixels correspond to nearly absent weights. Beyond the interval
[−1, 1] the values also get coloured. From w →∞ the depicted colour gets
closer to green, while for w → −∞ the colour gets redder. However, because
it is foremost the relative size of the weights which is of interest, we have

5 The smoothing factor of the EMAs was set to 0.9.
6 Context influences the perception of luminance change as shadow[37].
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Figure 5.3: Weight vector images of the features extracted from the synthetic az
dataset for eight different runs of each setting.

rescaled the weight vectors such that the maximum weight is transformed
to 1 or the minimum is transformed to −1 in such a way that all weight
values fall between −1 and 1.

In the remainder of this section we describe the extracted features on a
visual basis. Quantitative assessment of the methods is performed in the
remainder of this chapter.

5.2.1 Extracted Features

We have performed experiments on the synthetic dataset with each of the
unsupervised learning techniques and both pooling function settings. In
figure 5.3 we present the weight vectors thus extracted. Note that the fea-
tures extracted by CHA-based uniformization are the same as the features
extracted by CHA-based dichotomization; binarization doesn’t change the
direction of the weight vector. Also the weight decay setting doesn’t change
features extracted in the unsupervised learning phase, since we only experi-
mented on weight decay in the supervised learning phases. We thus present
a total picture of the weight vectors in the figure.
The first thing we note is that the soft pooling function seems to be

counterproductive for EED and PSGU (see figures 5.3a and 5.3b). This
might be caused by the fact that for small input values, the soft pooling
function approximates average pooling. Since weights are initialized close
to the origin the outputs of the convolution layer are also small, and thus
the inputs to the pooling function are small. Because the derivatives of the
objective are backpropagated more homogeneously over the visual field the
features become smooth gradients in the initial part of the learning phase.
It seems that this initial phase causes EED and PSGU to propel the weight
vectors to features which do not capture important aspects of the input
data.
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PCAEs seem to be unable to make good use of the soft pooling function
(see figure 5.3d). Recall that the PCAEs are denoising autoencoders. Again
this might be related to the fact that the soft pooling function approximates
the average pooling function for small input values.
The features extracted by CHA-SM (figure 5.3c) with soft pooling seem

quite a bit better. In each run we see that the first feature encodes for a Z,
while having zero weights elsewhere. It should be noted that the training
data contains more Zs than As and the converse holds for the test data. The
second feature seems less helpful, since it also looks like a Z; however, there
the pixels belonging to the Z are close to zero while the rest is all positive
or negative. These features can be seen as coding for anything-besides-a-Z,
which codes for As as well as off-center Zs.

The case is different when using the hard pooling function (see figures 5.3e
to 5.3h). Each method seems to be able to capture the two patterns quite
well. However, in many cases the patterns are not centered in the visual field
of the features. For example, the A in the first run of EED (see figure 5.3e)
is shifted one pixel up compared to the optimal pattern coding for an A.
This seems to be a recurring problem when using a hard pooling function.
Since the soft pooling variant of CHA-SM doesn’t seem to suffer from the
same problem, we are inclined to conclude that soft pooling might have
advantages over hard pooling.
We also see that some features contain information of both an A and a Z.

Take for example the weight images from the sixth run of EED; it can be
seen as containing a white A shifted up by one pixel, and a black Z which
is centered. Though different from what we had intended the features to be,
such features do seem to code for patterns in the data efficiently.

5.3 feature extraction

This section is on the unsupervised learning techniques as feature extraction
techniques. It covers experiments performed using the simple network archi-
tecture and supervised learning by backpropagating only to weights within
the classification layer. The resulting performance statistics then serve as
proxy of how well the extracted features work independent of how they are
actually used. We discuss the features extracted for each method, before we
move on to the performance statistics.

5.3.1 EED

The experiments on EED show a great difference between the different set-
tings. While training with a pool size of (2× 2) results in highly localized
features, training with a pool size of (7× 7) results in features which seem
to capture properties which cover a larger portion of the visual fields. In
figure 5.4 we depict weight images resulting from the setting combinations.
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Again soft pooling seems to have an adverse effect on the features extraction,
though the features depicted here are not as bad as the features extracted
from the synthetic data set (see figure 5.3a). Especially the setting 7〉7}
with sp seems to result in more reasonable features.

7〉2}hp
7〉2}sp
7〉7}hp
7〉7}sp

Figure 5.4: Features extracted by EED using various settings.

5.3.2 PSGU

The experiments performed with PSGU also show a great difference between
the features extracted when using pool size (2× 2) and pool size (7× 7).
In figure 5.5 we depict features extracted under the different setting com-
binations. We see that all weight images obtained when using the former
setting consists of a set of small dots scattered differently across the visual
field. These features seem ineffective in capturing any recurring properties
of the dataset.
The features extracted under the other setting seem a lot better. However,

some features (for example the first and fifth in the bottom row of figure 5.5)
code only for a couple of pixels at the edge of the visual field.

7〉2}hp
7〉2}sp
7〉7}hp
7〉7}sp

Figure 5.5: Features extracted by PSGU under various settings.

5.3.3 CHA-based Spread Maximization

The features extracted by the CHA-based SM techniques have the same
topology irrespective of whether we use the dichotomization or uniformiza-
tion variant. The only difference is a multiplication factor or equivalently a
change of transfer function. Features extracted using CHA-SM are depicted
in figure 5.6. For weight images of all runs, see appendix D.1.
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The features extracted by different runs under different settings are quite
similar. The first couple of features are most informative and quite intu-
itively graspable. The first weight image is often uniformly black or white;
the second is a horizontal contrast, though slightly tilted (perhaps because
of italics); the third is a vertical contrast orthogonal to the preceding con-
trast and the forth is a thick diagonal line. The first feature acts as a simple
downscaling of the image, while the second and third are basic edge detec-
tors.

7〉2}hp
7〉2}sp
7〉7}hp
7〉7}sp

Figure 5.6: Features extracted by CHA-SM under various settings.

feature order From figure 5.7 one can see that preceding weight
vectors have smaller lengths while subsequent weight vectors get larger and
larger. This is caused by the fact that, after having converged to the the
feasible space in which all weight vectors are of unit length, the weight
vectors are divided by the standard deviation of their output. We can thus
see that the features are neatly ordered by output variance because of the
nature of CHA.

7〉2}hp
7〉2}hp

Figure 5.7: Non-scaled (upper) and scaled (lower) weight images of a run of CHA-
SM under settings 7〉2} and hp.

semi-determinism Note that nearly equivalent features are produced
by the other runs of CHA-SM with the same setting. This is caused by the
fact that for pooling sizes closer to (1× 1), CHA produces results closer
to the loading vectors of PCA, which is a deterministic procedure. The
global optimum at which each pooled convolutional component has maximal
variance seems to be reached by many of the runs with pool size (2× 2)

Note that the equivalence at hand precludes negation; the weight con-
figurations are nearly equal or each others inverse. We therefore see the
same weight images but with inverted gray values. The first weight image
of figure 5.7 is equivalent to the first weight image of figure 5.8, for example.
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local optima While training with pool size (2× 2) results in a nearly
equivalent set of features each time we run the algorithm, the same cannot
be said when using pool size (7× 7). In accordance with section 4.5.5, we
find that for some initializations the training methods gets stuck in a local
optimum where the first feature isn’t the feature with highest variance. One
can see in figure 5.8 that the bottom run has the first two features switched
compared to the run depicted at the top.
The use of large pools also seems to cause later features to act more er-

ratic. The latter weight images in figure 5.8 don’t seem to have as much
topological structure as the weight images in figure 5.7; they look rather
noisy. It might be the case that these features have converged to a subop-
timal local optimum, though it might also be the case that these features
have more difficulty converging because of the erratic nature of stochastic
learning mechanisms when using mini-batches. The gradual orthonormal-
ization to ever changing features might aggregate in the non-convergence of
latter features.

data dependence Note that the features presented in figure 5.7 seem
quite rigid; they do not seem to capture inherent features of the MNIST
dataset. One might expect similar features when applying the method to
another dataset of grayscale images.
One property which does seem specific to the dataset at hand is the tilt

at which the features are presented. The contrasts of the second and third
feature might have another angle for a different dataset perhaps. Except
for that property, the features seem an intuitive systematic enumeration of
possible topological arrangements even when taking the actual dataset used
not into consideration.
The case is different for the features extracted with pool size (7 × 7).

There we see features encoding for some curvatures which are specifically
common in the MNIST dataset (see figure 5.6). From the fourth feature
on we see some features which deviate from the rigid pattern we see in the
features extracted under the small pool size.

Figure 5.8: Scaled weight images of two arbitrary runs of CHA-SM using settings
7〉7} and sp.

5.3.4 Pooling Convolutional Auto-Encoders

Features extracted using Pooling Convolutional Auto-Encoders are depicted
in figure 5.9. The upper rows depicts weight images obtained by training a
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PCAEs with pooling operations applied to fields of size (7× 7), while the
bottom rows depicts weight images for pool size (2× 2). For weight images
of all runs, see appendix D.1.

7〉2}hp
7〉2}sp
7〉7}hp
7〉7}sp

Figure 5.9: Features extracted by PCAEs using various settings.

locality Note that quite some features obtained by PCAEs trained
with a pool field size of (2× 2) and hard pooling function are highly lo-
cal; they only have distinct properties for a small region within the visual
field and have small weights elsewhere. Take for example the first couple of
features of the bottom row in image 5.9.
Due to the small pool size a large amount of outputs in the coding layer

contributes to reconstructing the same patch in the input image. The fea-
tures can therefore permit to code for only a small patch in the visual field.
However, these features do not seem to code for informative or intuitive
properties of the input; instead of coding for properties of pen strokes they
code for incidental value of some input pixels.

redundancy Note that other features are not as local, coding for a
large white or black spot within the visual field. In spite of the fact that
these do seem useful features, we see the PCAEs contain other very similar
features. Especially the 7〉7} sp seems to suffer from this problem, though
the 7〉2} seem to suffer from the problem as well, but to a lesser degree.
This near duplication of features makes for an inefficient coding.

Supervised Training

hp wd
hp x
sp wd
sp x

Figure 5.10: Features extracted by supervised training under various settings.

For completeness we also consider the features extracted when only us-
ing supervised training for the simple network structure. In figure 5.10 we
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depict the weight vectors from the first layer when performing supervised
training with several settings. Since these experiments didn’t make use of
unsupervised pre-training, it doesn’t make sense to apply the 7〉7} setting.
However, we do consider using weight decay when performing supervised
training.
We see that the visually most pleasing features are extracted when using

the hard pooling setting. Most features seems to code for a line segment
adjacent to pixels of opposite value while the rest of the visual field is
assigned small weights. There doesn’t seem to be a large difference when
using weight decay or not.
The features extracted when using the soft pooling function seem less

effective in capturing the patterns in the input data. Quite some features
contain a straight white line next to a black one. This is related to the fact
that we use pools of size (2× 2). When a convolution neuron with such
a feature outputs a high positive value, the other convolution neuron in
the pool along the direction of the white line probably also outputs a high
positive value, while the other two neurons in the pool probably outputs a
high negative value, because of the black line next to the white one. Because
the output values are then of the same magnitude, the pooling function has
partial derivatives w.r.t. each neuron of the same magnitude. The pattern
in the feature is thus likely to be reinforced in such a case.
For supervised learning without pre-training, soft pooling doesn’t seem

to provide an advantage.

5.3.5 Performance

Now that we have described the extracted features qualitatively, we assess
them quantitatively. We estimate the usefulness of the extracted features
by the performance of some classifier which receives input from the unsu-
pervisedly learned layer. The classifier we used is again a CNN, so that the
combination of the feature extraction layer and the classification layer be-
comes one large CNN. However, only the classification layer is trained, since
only the classifier is fitted to the output of the feature extraction layer.
The in this section reported error rates of this classifier are a proxy to the

performance of any network of which the first layer is initialized using one
of the methods considered. Since a network which uses the features merely
for pre-training changes the features during supervised learning, we expect
the error rates reported in this section to be higher than the error rates of
state-of-the-art CNNs which use pre-training.
The difference in error rates for nearly each pair of settings has been

shown to be statistically significant by Welch’s t-test[36], where p < 0.05
implies significance. This is no surprise given that the standard deviation in
error rate of nearly each setting is close to 1. Without presenting the results
of each t-test, we provide the reader with the rule of thumb that when the
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difference in the average error of two settings is larger than one, they have
been proved to have significantly different performance. For interesting edge
cases deviant of this rule we explicitly inform the reader of the significance.
In appendix D.2 we list statistics of all experiments performed. How-

ever, because the large table found there can obscure the data, we present
small subsets of the data in small tables in the following. The cells in these
tales which are left empty correspond to settings which haven’t been exper-
imented on due to insufficient computational resources, while cells marked
with ‘-’ correspond to combinations of settings which haven’t been experi-
mented on due to principled reasons.
We have depicted the average percentage of misclassification over the

eight runs as well as the misclassification rate of the best performing net-
work of any given hyperparameter setting. Both statistics provide valuable
information on the performance of a type of ANN. The average error gives
insight in how well a single run can be expected to perform, while the error
of the best performing network gives insight into what error can be achieved
after multiple reruns.
Note that the average error can occasionally be quite misleading. Keep in

mind that the results are the end state of a function optimization algorithm.
An objective surface can be such that the learning mechanism easily con-
verges to a quite bad local optimum, while other times it finds a far better
local optimum. Judging a method by its average performance alone would
therefore be unfair.
When using neural networks in practice it is common to do several reruns

and take the best performing network based on its performance on some
test set or on some other choosing criterion. Although we use the same test
set for choosing the best rerun as for evaluating the performance of the
network, the statistic denotes the performance of a type of ANN for the
optimal choosing criterion.7

Results

In table 5.2 we present the error rate statistics for the different methods.
We see that for EED the soft pooling function seems to have an adverse
effect, increasing the error rate by a staggering 40% approximately. We
also note that performing unsupervised learning on a pool size equal to
the convolution field size decreases the performance of EED by a couple of
percents, contrary to our expectations.
The case is converse for PSGU. The soft pooling function and larger pool

size do improve the performance by a couple of percents. Furthermore we

7 While the optimal choosing criterion is purely hypothetical, we suppose that some fairly
simple choosing criterion can be found which picks the actual best performing network
out of eight reruns or otherwise picks a network with roughly the same classification
error.
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7〉7} 7〉2}
avg best avg best

EED HP 8.4 7.88 6.89 6.55
SP 51.57 48.84 48.35 46.94

PSGU HP 4.7 3.51 7.57 5.17
SP 3.27 3.1 4.81 4.58

CHA-D HP 18.05 15.11 19.65 18.5
SP 80.1 73.26 48.35 46.94

CHA-U HP 7.79 3.82 7.57 5.17
SP 3.77 2.72 3.95 3.23

PCAE HP 19.12 11.37 78.76 74.4
SP 3.7∗ 3.7∗ 2.29∗ 2.29∗

Table 5.2: Average and best error rates associated with methods as feature extrac-
tion techniques (pre) on network architecture Simple. (∗The experi-
ments on PCAEs with soft pooling function have only been performed
once.)

see that PSGU outperforms EED, which is in line with our expectation that
the binarization effect of EED is harmful.
The same holds for CHA-based dichotomization; the performance of CHA-

d is excessively worse than the performance of CHA-u, for any setting of
pool size and pooling function. Soft pooling also has a positive effect on
CHA-based uniformization, cutting the error rate roughly in half. Though
the 7〉7} setting seems to outperform the 7〉2} setting, the difference in per-
formance between the two has not been shown to be statistically significant
(p ≈ 0.4). This is not surprising, given that the features extracted by either
setting look quite similar.
Using larger pool sizes during training improves the performance of PCAEs

quite much when using the hard pooling function. However, when using the
soft pooling function we get the best results: an error rate of 2.29% when us-
ing the 7〉2} setting. Soft pooling seems to greatly increase the performance
of a PCAE

7〉7} 7〉2}
avg best avg best

BIN 8.4 7.88 6.89 6.55
x 5.14 3.71 5.5 4.38

Table 5.3: Average and best error rates of EED with the hard pooling function
setting (hp) as feature extractor (pre).
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Non-binarized EED

Since binarization has proved to have an adverse effect on the CHA-SM,
we also tested EED without performing binarization; we performed experi-
ments in which after the iterative training procedure ended the hyperbolic
tangent transfer function was not replaced by the signum function. Note
that this inevitable means the weights of the networks are not near any
global optimum in the objective function surface, since EED doesn’t have
any global optima within finite space. The ending point of the iterative pro-
cedure is therefore at an arbitrary place on an ever climbing slope in the
objective function surface, determined by the number of iterations and step
size of the learning mechanism.
The statistics on the performance of the networks thus obtained are given

in table 5.3. We see that leaving the output non-binarized improves the
performance by a couple of percents for both pool size settings. This shows
that there may be a level of dichotomy less than fully binarized which
constitutes a better unsupervised learning criterion; perhaps this lesser level
of dichotomy coincides with uniformity, or it may be in between.

Comparison

Our best feature extractor seems to be CHA-based uniformization on a CNN
layer with the soft pooling function and 7〉7} setting, based on the fact that
this method produced a network which achieved an error of 2.72, which
is the lowest error rate among all settings of our methods. PSGU under
the same settings comes in a close second. Note however, that the average
performance of PSGU is greater than CHA-u. This discrepancy is explained
by the fact that the standard deviation of the performance of PSGU is rather
small (0.15) compared to that of CHA-u (1.02). A choosing criterion over the
multiple reruns of a given method may therefore prove CHA-u to perform
better. However, we haven’t found any significant difference in performance
between the sets of reruns in themselves (p = 0.11).
PCAEs achieved even a lower error rate of 2.29%, based merely on a single

run (due to insufficient computational resources). Based on these prelimi-
nary findings one would like to conclude that our unsupervised learning tech-
niques do not outperform conventional unsupervised learning techniques for
convolution and pooling layers. However, a more sophisticated view emerges
when assessing the performance of the unsupervised learning techniques as
pre-training methods.

5.4 pre-training CNNs

In this section we take a look at the performance of the various methods
as pre-training methods. The features extracted by unsupervised earning
techniques were subsequently used merely as initialization of the first layer
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of a larger CNN. We have performed some such experiments on the simple
network architecture, and others on the LeNet-1 network architecture, which
is described in section 5.1.2.

known results The LeNet-1 network architecture is a fairly simple
multi-layered CNN which has already been experimented on in literature[25].
It has been reported to achieve an error rate of 1.7%, which is quite low. The
performance of the methods we experimented on should be tested against
this statistic. Note that LeCun et al. did perform some preprocessing on the
data.
Note that several other network architectures have been proved to work

better for MNIST. For example LeNet-5, which is similar to LeNet-1 except
that two fully connected non-convolutional layers have been added on top;
this network architecture is reported to achieve an even lower error rate of
0.95%. Other techniques left unconsidered by this thesis are preprocessing
techniques, which destort the input data in some ways; such techniques may
further cut the error rate roughly in half[34]. However, such techniques are
beyond the scope of this thesis.

binarization The experiments covered by this section disregard bina-
rization. Binarization is the replacement of the transfer function of a CNN
pre-trained by either EED or CHA by the signum transfer function. How-
ever, the derivatives of the signum function are always zero, which means
that the weight updates in the corresponding layer are zero as well.8 The
performance statistics of these methods reported in the previous section can
therefore not be improved by using the extracted features for initialization.
This section therefore only covers the uniformization variant of CHA-SM
and the variant of EED which doesn’t use binarization.

Simple LeNet1
avg best avg best

HP WD 8.03 6.95 6.31 5.98
x 4.76 4.45 5.67 4.88

SP WD 12 9.26 1.77 1.44
x 10.91 7.56 6.39 4.87

Table 5.4: Average and best error rates of CNNs trained without unsupervised
learning (none).

8 Except in case we use weight decay, which causes all weights to converge to zero.
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supervised learning Before we examine the performance of the
unsupervised learning techniques we discuss the baseline which results from
supervised training alone. The performance statistics are listed in table 5.4.
For the simple network architecture the best performing network (4.45%)

is obtained when using the hard pooling function and not using weight decay.
When using the hard pooling function weight decay significantly impover-
ishes the performance.
For the LeNet-1 network architecture the best setting is the one which

used the soft pooling function and weight decay resulting in error rates as
low as 1.44%, which is even lower than known result of 1.7%. This might
be due to the fact that in our experiments the hyperbolic tangent function
was used as transfer function or that the hard pooling function was the
symmetric arg max abs function instead of the asymmetric max function.
Given the fact that for the simple network architecture the hard pooling

function and no weight decay performs significantly better and the fact
that for hard pooling the simple network architecture performs significantly
better it might come as a surprise that the overall best setting is given by the
LeNet-1 architecture with soft pooling and weight decay, but the converse
holds as well. This shows that there are local optima in hyperparameter
space.

5.4.1 Unsupervised Pre-training Performance

Here we review the performances of CNNs which have been pre-trained using
the unsupervised learning techniques. Due to the large number of possible
setting combinations we first review some settings which seem disadvanta-
geous to all unsupervised learning techniques. After that we can downsize
the number of settings in order to produce smaller and more comprehensible
tables of error rates.

avg best

CHA-U
HP WD 6.16 4.9

x 5.67 4.88

SP WD 9.01 6.48
x 6.39 4.87

PCAE HP WD 17.1 8.69
x 10.66 9.05

Table 5.5: Average and best error rates of CHA-based uniformization and PCAEs
as pre-training techniques (post) on LeNet-1 showing the influence
of weight decay.
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weight decay In table 5.5 we list some error rate statistics related
to using weight decay when weight vectors have been pre-trained using a
supervised learning technique. Note again that in appendix D.2 the results
of all experiments performed are listed. While purely supervised learning
clearly benefits from using weight decay we can conclude that weight decay
significantly harms the performance of pre-trained CNNs.
We suppose this result holds as well for the other unsupervised learning

methods and have not performed experiments using weight decay on EED
and PSGU.

Simple LeNet-1
7〉7} 7〉2} 5〉4}

avg best avg best avg best

EED hp 4.31 2.98 5.94 5.71 7.1 5.57
sp 1.94 1.57 1.47 1.31 2.15 1.66

PSGU hp 4.87 3.54 5.89 5.52 7.4 5.91
sp 2.31 2.02

CHA-u hp 5.19 3.65 8.75 5.4 5.67 4.88
sp 3.78 2.95 4.43 3.86 6.39 4.87

PCAE hp 10.66 9.05
sp 4.3∗ 4.3∗ 3.23∗ 3.23∗ 6.67∗ 6.42∗

Table 5.6: Average and best error rates methods as pre-training techniques (post)
without using weight decay (x). (∗The experiments on PCAEs with soft
pooling function have only been performed once or twice.)

pre-training without weight decay In table 5.6 we list the
error statistics of various hyperparameter settings of the unsupervised learn-
ing techniques as pre-training techniques without weight decay. Note that
not all hyperparameter settings have been tested due to insufficient compu-
tational resources—especially for the simple network architecture.
The method performing best on MNIST turns out to be EED for the

simple network architecture with soft pooling function and pre-trained on
pools of size (2× 2), resulting in a CNN which achieves an error rate of
1.31%. However, experiments on PSGU with the soft pooling function have
not been performed. Given that we cannot prove PSGU and EED to perform
significantly different on LeNet-1 with soft pooling, we cannot prove that
EED outperforms PSGU.
Note that the 7〉2} setting significantly outperforms the 7〉7} setting for

EED (p = 0.003). We conclude that using a larger pool size has a negative
effect on this method.
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The lowest error rate which EED achieves is significantly lower than the
lowest error rate which is achieved by supervised training alone (p = 0.007).
We can thus conclude that unsupervised pre-training by Spread Maximiza-
tion (SM) can improve the performance of CNNs.
Furthermore each of our unsupervised learning techniques with any set-

ting outperforms PCAE when using the hard pooling function. However, we
have also enriched PCAEs with the introduction of a soft pooling function,
which decreased their error rate down to 3.23%. Still, each of our unsu-
pervised training techniques has some setting performing better than the
best setting of PCAEs.9 We can therefore conclude that we have invented
valuable unsupervised learning techniques which may outperform existing
ones.

Simple pre LeNet1
7〉7} 7〉2} pre post

avg best avg best avg best avg best

EED sp 1.6 1.56 1.97 1.59 4.9 4.52 2.15 1.66
PSGU sp 3.27 3.1 4.81 4.58 7.68 6.94 2.31 2.02
PCAE sp 3.7∗ 3.7∗ 2.29∗ 2.29∗ 6.34∗ 5.48∗ 6.67∗ 6.42∗

CHA-SM sp 3.77 2.72 3.95 3.23 11.88 9.02 6.39 4.87
PSGU hp 4.7 3.51 7.57 5.17 19.42 17.61 7.4 5.91
EED hp 5.14 3.71 5.5 4.38 23.37 20.36 7.1 5.57
CHA-SM hp 7.79 3.82 7.57 5.17 8.66 8.21 5.67 4.88
PCAE hp 19.12 11.37 78.76 74.4 15.76 13.67 10.66 9.05

Table 5.7: Average and best error rates sorted on 7〉7} pre, showing the appropri-
ateness of using pre as a proxy to post when not using weight decay
(x). (∗The experiments on PCAEs with soft pooling function have only
been performed once or twice.)

feature extraction performance as proxy to pre-train-
ing performance While the previous section assessed the unsuper-
visedly extracted features as features in themselves (unsupervised learning
as feature extraction), in this section we view the extracted features merely
as initial approximation to the final features (unsupervised learning as pre-
training). Table 5.7 compares the error rate statistics obtained when the un-
supervised learning techniques are viewed as feature extraction techniques
and when viewed as pre-training techniques. When considering the order of

9 Note that this comparison might slightly favor our unsupervised learning techniques,
since the experiments on PCAEs with soft pooling function consist only of one or two
reruns, depending on the network structure.
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the first two and last two columns of this table, we see that the pre perfor-
mance works quite well as a proxy of how well the type of extracted features
works in a post setting; the order of the column of average error rates for
LeNet-1 post loosely corresponds to the order of the column of average
error rates for the simple network architecture with setting 7〉7} pre.10 We
can conclude that the valuation of the extracted features in themselves is a
fine indication of how well the final features perform.

supervised pre-training Recall that the CNN classifier used to
assess the performance of the unsupervised learning techniques as feature
extraction techniques forms one large CNN together with the unsupervisedly
trained layer. The supervised training of the classification layer alone can
be seen as a supervised pre-training technique. A CNN then gets initialized
with the features extracted by the unsupervised learning techniques and the
weight vectors resulting from the classifier. Another way of looking at it is
to see it as a three step process:

1. Use unsupervised learning to determine the features in the first layers
of the CNN;

2. Perform supervised learning while keeping the unsupervisedly trained
layers locked;

3. Train the whole CNN supervisedly, unlocking all layers.

We expect CNNs to benefit from such unsupervised pre-training, because
the final supervised learning phase might change the features extracted
by unsupervised learning; when this learning phase would take of from
randomly initialized weights in the classification layers the unsupervisedly
learned feature might change quite much before the classification layer starts
to settle into a weight configuration. This might change the features in such
respect that some of the work performed by the unsupervised learning might
get undone. Supervised pre-training causes the weights of the classification
layer to be tuned to the extracted features, so that the final learning phase
doesn’t change the first layers’ features based on the random configuration
of the classification layer.
Table 5.8 shows error rate statistics related to such supervised pre-training.

The experiments using supervised pre-training are tagged pre+post. Su-
pervised pre-training has not been tested on all methods due to insufficient
computational resources.
One can tell from the table that supervised pre-training can significantly

increase the performance of a CNN (the difference between the average
error when performing CHA-u with hard pooling function is not statistically

10 The largest deviation from the order is CHA-based uniformization, which performs rather
better than what would be predicted based on the simple pre performance.
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pre+post post
avg best avg best

CHA-U
HP WD 6.53 5.55 6.16 4.9

x 5.56 4.93 5.67 4.88

SP WD 4.35 3.87 9.01 6.48
x 4.35 3.87 6.39 4.87

PCAE
HP WD 6.16 5.35 17.1 8.69

x 8.74 8.04 10.66 9.05

SP WD
x 4.86∗ 4.39∗ 6.67∗ 6.42∗

Table 5.8: Average and best error rates on network architecture LeNet-1 showing
the influence of supervised pre-training. (∗The experiments on PCAEs
with soft pooling function have only been performed twice.)

significant). We conclude that supervised pre-training is a great way to
supplement unsupervised pre-training.

Simple LeNet-1
settings error settings error

EED non-bin sp 7〉7} pre 1.3 non-bin sp post 1.66
PSGU sp 7〉7} pre 3.1 sp post 2.02
CHA-SM u sp 7〉7} pre 2.72 u sp post 4.87
PCAE sp 7〉2} pre 2.29 sp pre 5.48
none x hp 4.45 wd sp 1.44

Table 5.9: Settings and error rate of the best performing network per method per
network architecture when considering only pre and post.

overview of results In table 5.9 we list the best performing run
out of all settings for each method when not considering supervised pre-
training. Figure 5.11 shows the same error rates in a visual way. The reason
we do not take into consideration experiments which did use supervised
pre-training is that these settings haven’t been experimented on for all un-
supervised learning techniques due to insufficient computational resources.
Note that EED has produced the lowest error rate outperforming purely

supervised training. Unsupervised pre-training does not seem to increase the
performance when using the LeNet-1 network architecture. However, the
converse holds for the simple network architecture. Spread maximization
does outperform PCAEs on LeNet-1, but the same does not hold for the
simple network architecture.
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Figure 5.11: Error rate of the best performing network per method per network
architecture when not using weight decay (x) and considering pre
and post.

The non-binarized version of EED and the uniformization variant of CHA-
SM outperform their counterparts, confirming our hypothesis that the bi-
narizing effect of dichotomization is disadvantageous. Furthermore we see
that nearly all of the best performing setting combinations in the table
contain the soft pooling setting, leading us to conclude that soft pooling
forms a valuable alternative to the standard hard pooling functions. using
larger pool sizes during supervised training seems to benefit all of the SM
techniques, but not PCAEs, which is in line with our predictions.





6
C O N C L U S I O N

We now come to the conclusion of our thesis. We first present an overview
of the material presented in the previous chapters. Section 6.1.1 discusses
the results and what they mean for the relevance of our methods for the
field of unsupervised learning of Artificial Neural Networks (ANNs). The
last section (6.2) discusses the limitations of our research and experiments
and present possible future research.

6.1 overview

In this thesis we’ve described the workings of standard Multilayer Percep-
trons (MLPs) and of Convolutional Neural Networks (CNNs) specifically
in chapter 2 and supplemented these with new types of pooling function.
We’ve reviewed some established methods for the unsupervised training of
ANNs in chapter 3. The Generalized Hebbian Algorithm (GHA) forms an
important learning mechanism for ANNs and its optimal weight configu-
ration for a simple type of ANN forms the basis of Principal Component
Analysis (PCA).

In chapter 4 we have introduced a new unsupervised learning paradigm,
based solely on the output distribution: Spread Maximization (SM). In order
to solve the underdetermination the objective introduces, we augment SM
with the goal of keeping the weight vectors low. We have also introduced
the idea of performing unsupervised learning on CNN layers with greater
pool sizes than the CNN layer in which the extracted features are eventually
used.
SM has been interpreted in two ways: dichotomization and uniformization.

While dichotomization causes a network to eventually perform binarization,
meaning that the output data points lie within the corners of the output
space, uniformization causes the output data to be scattered across the
output space uniformly.
We’ve introduced three methods for performing SM: one specifically for

dichotomization, one specifically for uniformization and one which can be
used for both. The first method, Eigenvolume Expansion-Dichotomization
(EED), performs dichotomization by maximizing the eigenvolume, the size
of which is equal to the determinant of the covariance matrix of the output
distribution. This objective is maximized by replacing the sigmoid trans-
fer function with a hard transfer function, which causes the output to
be binarized. The second method, Pre-Sigmoid Gaussian-Uniformization
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(PSGU), performs uniformization by minimizing the distance between the
pre-sigmoid output distribution and an optimal uncorrelated Gaussian dis-
tribution with the same variance in each dimension.
The final method, Convolutional Hebbian Algorithm (CHA)-SM for per-

forming either kind of SM makes use of the Hebbian Objective (HO). Ap-
plied to a simple form of ANN the HO reduces to the GHA, which performs
PCA. Applied to CNNs it reduces to the CHA, which performs Pooled Con-
volutional Component Analysis (PCCA). When the GHA training phase is
finished, we transform the network so that it performs SM. This transfor-
mation differs depending on whether we perform dichotomization or uni-
formization.
In chapter 5, we have compared our methods to Pooling Convolutional

Auto-Encoders (PCAEs), which is similar in spirit to SM applied to CNNs
with pooling in that both incorporate the pooling function in learning the
weights of the convolution layer. We have compared the features resulting
from each of the methods qualitatively and quantitatively; furthermore we
have given an indication into how well these features perform on themselves
and how well CNNs perform which have been initialized with the features.
These two types of assessment of the features can be combined, giving rise
to supervised pre-training of the classification layer.

6.1.1 Discussion

We’ve seen in chapter 5 that a soft and symmetric pooling function can
greatly increase the performance of CNNs which don’t make use of unsuper-
vised learning and it can greatly increase the performance of the features
extracted by unsupervised learning techniques; we have improved on PCAEs
with the use of a soft pooling function.

Performing unsupervised learning on pools of greater size than the ones
eventually used has shown to improve performance for all SM techniques.
It also has the further benefit of reducing the output dimensionality, lead-
ing to faster computations. This technique can be seen as supplement to
the proposed SM techniques and not as much to unsupervised learning in
general, since PCAEs did not seem to benefit from it.
Supervised pre-training has proved to be a valuable technique to comple-

ment unsupervised pre-training when pre-training deep CNNs. The same
cannot be concluded for the simple network architecture, since the neces-
sary experiments have not all been performed due to a lack of computational
resources. However, because without supervised pre-training the final super-
vised learning phase would start of changing the supervisedly learned fea-
tures influenced by the random initialization of the classification layers, we
suspect supervised pre-training to also be of benefit for more simple network
architectures.
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The inherent binarizing nature of dichotomization has proved to be disad-
vantageous; binarizing the output decreases the performance. We therefore
considered a variant of EED where the transfer function is not replaced by
the hard signum function. Though performing such EED means there is
no principled stopping criterion (since there is no global optimum in finite
space), the given settings with which we have tested it result in CNNs hav-
ing the best performance of all experiments. This form of EED applied to a
simple network architecture outperforms purely supervised training of the
same network architecture, as well as the more complex LeNet-1 architec-
ture. It therefore seems that this form of SM can greatly improve CNNs.
However, we have experimented on a very limited set of hyperparameter
settings, compared to the vast set of possible hyperparameter settings.
We’ve seen that the structure of the CNN has great influence on the

performance of the unsupervised learning techniques. While performance
of purely supervised training increased with the complexity of the network
architecture, some unsupervised learning techniques performed worse on the
LeNet-1 architecture than on the simple architecture and other performed
better.
We’ve seen that for the simple network architecture all unsupervised learn-

ing mechanisms can increase performance, while for the LeNet-1 architec-
ture each unsupervised learning technique merely decreases performance.
Note that while the LeNet-1 architecture contains more layers, the indi-
vidual layers have less features. Perhaps with more features per layer we
would see unsupervised pre-training to cause CNNs to outperform purely
supervisedly trained CNNs by a significant amount.
Note that while the SM techniques not all outperform PCAEs on the

simple network architecture, they do for the LeNet-1 architecture. It there-
fore seems that Spread Maximization (SM) forms a valuable alternative to
PCAEs when used for deep learning.
We can conclude that it is possible and fruitful to define unsupervised

learning techniques based solely on some primary desirable attributes of
the output data themselves, such as spread, rather than on a reconstruction
of the input. We have seen that the proposed techniques for SM produce
intuitively understandable features, which have been shown to work well,
achieving lower error rates than conventional unsupervised learning tech-
niques.
The achievements of our techniques for performing Spread Maximization

justify further research into novel unsupervised learning criteria which are
based solely on desirable properties of ANN in themselves. They show that
an unsupervised learning paradigm radically disposing with input recon-
struction can be competitive to conventional unsupervised learning tech-
niques which are based on input reconstruction.
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6.2 future research

This section covers in what ways the performed research is limited and in
what ways the ideas and techniques presented can be extended, purified,
enhanced, etc.

6.2.1 Limitations of Performed Experiments

First we discuss some limitations and pitfalls concerning the experiments
performed.

instability and non-convergence In the method for SM by
CHA, we optimize two objectives at the same time: zero-meaning and the
constrained HO. The two might interact in such a way that the goal might
never be reached. For example, a weight vector might grow faster than
the zero-meaning objective can keep up with, causing the weight vector
to always have a length greater than one. One might therefore change the
zero-meaning technique such that the above situation would never occur.
Alternatively, a technique might be proposed which uses a single objective
function for which the optima occur only at points where the mean is zero.
Another instability problem is caused by the stochastic nature of using

mini-batches to estimate the gradient of the objective over the whole dataset.
This causes the weight vectors to fluctuate around the optimum, rather than
converging to it. This might be quite problematic for CHA based SM, since
the weight vectors of latter features depend on former ones. Since latter
features converge to weight vectors orthogonal to all former weight vectors,
and all former weight vectors fluctuate, we might end up in a state where
some weight vectors cannot converge to the feasible space or even stay at
near the origin.
One way in which one might solve this issue is by performing CHA sequen-

tially. One would then train each weight vector separately, while keeping all
preceding weight vectors constant. Alternatively, we might use our parallel
method with the addition of locking the weights sequentially as soon as they
have converged.

number of features Note that we have tested the unsupervised
learning techniques on CNNs with 20 features, while in literature it is quite
common to experiment with ANNs with an order of magnitude more hid-
den neurons. Recall from section 5.1.3 that the number of features one
should like to use is related to the number of principal components, which
is equal to the dimensionality of the convolution field for convoluted PCA.
We should expect the performance of CHA based SM to benefit less from
having more features than the convolution field dimensionality than the
PCAE does, which doesn’t have such a relation to PCA. When experiment-
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ing with a larger number of features we might find that PCAEs outperform
our methods by some amount.

deep learning A big shortcoming of the experiments performed is
the shallow architecture of the networks used. While Convolutional Auto-
Encoders (CAEs) and PCAEs have widely been used to pre-train deep
ANNs with over four layers, we didn’t have the computational resources
to perform such experiments. Deep architectures are currently the models
with leading performance on Mixed National Institute of Standards and
Technology (MNIST)[24]. As such, we haven’t had the possibility to fairly
compare our techniques and the CNNs they produce with the state-of-the-
art in digit recognition.

restricted boltzmann machines We have weighed our method
against a type of auto-encoder which we have called the PCAE. Another
commonly used unsupervised learning technique if given by Restricted Boltz-
mann Machines (RBMs). However, in our experiments we have not com-
pared our methods to RBMs. This was in part due to insufficient com-
putational resources, but we also have principled reasons for not having
compared to RBMs. In order to make a fair comparison, we have chosen
to compare our methods to an unsupervised learning technique which also
incorporates the pooling function into the objective. We haven’t found any
such modification of RBMs, however, and therefore felt that weighing our
methods against RBMs wouldn’t constitute a fair comparison.
It would be interesting to find or invent a form of RBM which does

incorporate the pooling function used in the CNN for which the RBM is
pre-training. Such method can then be weighed against our methods of SM,
to see which one would work better.

6.2.2 Extensions

SM is an unsupervised learning objective in itself and not specifically for
CNNs. One could therefore extend the proposed methods to other types of
ANN. While dichotomization by eigenvolume expansion and uniformization
by Kullback-Leibler (KL)-divergence minimization are objectives which are
defined in terms of the outputs of a network, and hence applicable to any
kind of ANN, the same doesn’t hold for CHA based SM. One should derive
a different formula for the constrained HO applied to the specific ANN.
The application of CHA based SM to simple ANNs has already be shown

to be equivalent to performing PCA and using a whitening step to transform
the loading vectors obtained. It would be interesting to see how well such a
method would perform compared to denoising Auto-Encoders (AEs).
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6.2.3 Theoretic Reservations

We conclude this thesis by discussing some limitations of the theory under-
lying spread maximization and what research can be performed to further
crystallize and solidify the practices in SM.

global optimum localization In section 4.1, 4.3.2 and 4.4.4
we’ve argued that for the particular objective function surfaces of EED and
PSGU are such that the path of steepest ascent is in the direction of the
global optimum closest to the origin. While it does seem feasible given the
reasoning presented in those sections, we have not provided proof of any
kind. Finding the proof or its invalidation is thus possible future research.

soft pooling The soft pooling function we have provided is by def-
inition an approximation to the hard arg max-pooling function. However,
different approximations to the hard pooling function may be considered.
Any soft approximation should have cases for which the output is less prox-
imate to the output of the hard arg max-pooling function, since the hard
arg max-function may have jump discontinuities (depending on the inner
function).
In our case the soft approximation is less proximate when the absolute

distance between the mapped input values is small (mapped by the inner
function of the arg max function). Our soft approximation is given in for-
mula 2.28. Since we initialize weights near the origin the input values to
the pooling function are also small and so is their absolute difference. This
means the soft pooling function starts out as performing average-pooling
approximately, which causes the features to have no definite structure after
an initial part of the learning phase. Thus can cause the features to converge
to suboptimal solutions.
One would instead like the approximation to break when the relative dis-

tance between the mapped input values is small. This can be accomplished
by scaling the mapped input values by the inverse of the length of the vector
of mapped inputs. The soft arg max would then be given by:
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soft arg max
z∈Zj

f(z) = zT
j m
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l
cl

cn = exp
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p
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‖f(z))‖

)
(6.1)

where

• p is a hyperparameter controlling the hardness of the approximation;

• f is the inner function.

Further research would have to show how well such a pooling function
performs and whether it outperforms the soft pooling function we have
used in our experiments.

CHA’s convergence to the feasible space In section 4.5.5
and appendix C.19 we’ve derived the formula for the constrained HO, when
applied to CNNs (the CHA). However, the derivation uses the assumption
that the weight vectors converge to the feasible space much like the deriva-
tion of the formula for the constrained HO when applied to simple ANNs
(the GHA). While we have shown how the update rule of the GHA converges
to the feasible space, we haven’t done the same for the CHA.
However, one might expect there to be such a proof, since the empirical

experiments verify the conjecture. The proof might very well look a lot like
the proof of convergence of the GHA, since the convolution layer can be seen
as the application of the network to different sub-images, and pooling might
be seen as selecting some of those sub-images, while disregarding others.

transmutation between dichotomization and uniformiza-
tion In section 4.5.1 we show how EED and PSGU can both be seen
as performing decorrelation and variance optimization. While the optimal
standard deviation of dichotomization is infinite, the optimal standard de-
viation of uniformization is estimated to be approximately 0.9 when using
the hyperbolic tangent transfer function. We then showed how the network
obtained by CHA can be converted in order to achieve either variant of SM.
It would be interesting to look at the performance of a network with

weights initialized by EED but converted in order to achieve uniformization.
Conversely, we could convert the transfer function of a network pre-trained
with PSGU and see how well it performs as dichotomization method. Such
experiments could be future research.

optimal pre-sigmoid variance for uniformization Both
PSGU and CHA-based uniformization make use of a (finite) optimal pre-
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sigmoid standard deviation σ∗. The value of the optimal pre-sigmoid stan-
dard deviation was chosen by analytical considerations. The only way in
which the output can be perfectly uniformly distributed within the interval
[0, 1] is for the pre-sigmoid data to follow a distribution for which the cumu-
lative distribution function is given by the transfer function. Given that we
use the logistic sigmoid transfer function (or the hyperbolic tangent transfer
function, which can be seen as a stretched version of it) the optimal pre-
sigmoid distribution would be conform to the logistic distribution. However,
a multivariate form of the logistic distribution is hard to construct; more-
over, a formula for the derivative of the KL-divergence between two such
multivariate distributions would be especially hard to deduce. We therefore
quite pragmatically chose to use the multivariate normal distribution.
Of course a line of further research might be to find a good multivari-

ate logistic distribution and try to derive a formula for the KL-divergence
between the fitted pre-sigmoid distribution and the optimal one. However,
there is no guarantee at all that the pre-sigmoid data in fact conforms to ei-
ther a multivariate normal or a multivariate logistic distribution. Following
the line of this argument, one would have to find a formula for the KL-
divergence between the optimal pre-sigmoid logistic distribution and some
distribution appropriate for modelling the actual pre-sigmoid output data.
However, we provide the reader with a more pragmatic approach; one can

view the optimal standard deviation σ∗ as an optimizable hyperparameter.
Future research might even do away with the whole foundation of spread
maximization as having two interpretations. Instead one may try to find the
σ∗ which results in the best performing ANNs, which could lead to output
distributions which are neither nearly uniform nor nearly dichotomized, but
somewhere in between.
Supposing the optimal value of σ∗ lies somewhere between a value which

would result in a uniform distribution and a dichotomized distribution, it
would make sense that the non-binarized variant of EED outperforms both
the binarized version as other uniformization techniques. Optimizing σ∗

therefore clears the way for explaining why the non-binarized version of
EED performs so well.
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A
L I S T O F AC RO N Y M S

ae Auto-Encoder

ann Artificial Neural Network

cae Convolutional Auto-Encoder

cdf cumulative density function

cha Convolutional Hebbian Algorithm

cnn Convolutional Neural Network

dae Denoising Auto-Encoder

eed Eigenvolume Expansion-Dichotomization

ema Exponential Moving Average

gha Generalized Hebbian Algorithm

ghl Generalized Hebbian Learning

ho Hebbian Objective

kl Kullback-Leibler

mlp Multilayer Perceptron

mnist Mixed National Institute of Standards and Technology

pca Principal Component Analysis

pcae Pooling Convolutional Auto-Encoder

pcca Pooled Convolutional Component Analysis

pdf probability density function

psgu Pre-Sigmoid Gaussian-Uniformization

rbm Restricted Boltzmann Machine

rgb Red Green Blue

sm Spread Maximization
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b.1 general

σ activation function Function applied by a neuron to its
local activation

y output Output(s) of a simple neural net-
work

x input Input(s) of a simple neural network
σl logistic sigmoid The logistic sigmoid function
tanh hyperbolic tangent The hyperbolic tangent function
η learning rate Learning rate hyperparameter for an

update rule
τ time Time parameter or iteration param-

eter for the τ th update step in the
learning process

ak local activation The local activation of neuron k: the
weighted sum of its inputs

λ regularization cost Hyperparameter governing by what
amount to weigh a regularization
term such as weight decay

S(x) softmax activation
function

Function which applied to the out-
puts of neurons in one layer, causes
their outputs to sum to one

soft max(S) soft max Function approximating the max
function over a set S

arg max
x∈S

f(x) arg max Function returning the x for which
f(x) is largest for all x ∈ S

soft arg max soft arg max Soft approximation of the arg max
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b.2 ANNs

Neuron

i( j synapse Connection between from neuron i

to neuron j
wi(j weight Weight on the connection from neu-

ron i to neuron j
bj bias Bias variable of neuron j
i input Presynaptic neuron: the variable rep-

resenting its output
j output Postsynaptic neuron: the variable

representing its output

Neural Network

L layer Set of neurons within one layer
LO output layer The set of neurons within the output

layer
E(LO) objective function Function giving the value of the ob-

jective of the ANN which is to be
maximized

δx local objective The local objective at ax,
S(A, am) softmax activation

function
The softmax activation function: an
output function

O objective function The objective function consisting of
the objective function E(LO) and
perhaps a regularization term R

j ≺ k neuron order Some total order on the neurons
within a layer
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Convolutional Neural Networks

Z feature map Set of neurons with the same weight
configuration

Zi pool Set of neurons which constitute a
pool in some feature map which are
inputs to pooling neuron j

zi pool vector representation of Zi
mi pool contributions weight vector used by the pooling

function
izx,y input pixel Input neuron at the coordinates

(x, y) from the feature map z
s(z) pooling function Summarization function, or pooling

function applied to a vector of neu-
ron outputs from the corresponding
pool Z

∗ mathematical convolu-
tion

Convolution operation, convolution
two functions resulting in a new func-
tion

pk(x,y) pool value Value at location (x, y) in the pool-
ing map of feature k

Simple Neural Networks

y outputs Vector of outputs of the last layer in
a layered neural network

yj(x, W) output function Function computing the output of
neuron j for given input x and
weights W

x inputs Vector of inputs of the first layer of
a layered neural network

W weights Matrix containing all weights be-
tween two layers

b biases Vector of all biases of neurons within
one layer
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Training

τ time Iteration number
η learning rate Hyperparameter scaling the update

steps
α momentum Hyperparameter of the momentum

learning mechanism
λ weight decay Amount of weight decay

b.3 math and statistics

Var [·] variance
Cov [·, ·] covariance
Σ covariance matrix
E[·] expectation
λi principal axis i
λ principal axes vector
Λ set of Lagrange multipliers
λ Lagrange multiplier
N Normal distribution
erf Gauss error function
UN[a,b] N -dimensional uniform distribution on the interval [a, b]
σ standard deviation
µ mean
µ mean vector
fx(x) probability density function
Fx(x) cumulative density function
DKL(P ||Q) KL divergence from P to Q
x∗ optimal x
x̃ redefinition or alteration of x
x̂ x fitted to data
x average x
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b.4 linear algebra

I identity matrix
1 all-ones vector
1N all-ones vector of length N
MT matrix transpose
Mi· row i of M
M·i column i of M
λi eigenvalue i
λ eigenvalue vector
Λ diagonal eigenvalue matrix
W matrix of eigenvectors (columns)
diag v diagonal matrix with values of vector v on the diagonal
det |M| determinant of matrix M
tr M trace of matrix M
⊥ orthogonal
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c.1 redundancy of linear transfer function

Suppose that ∀i : i( j : σi(x) = x, then

j =σj

 ∑
i:i(j

{i ·wi(j}+ bj


=σj

 ∑
i:i(j


 ∑
h:h(i

{h ·wh(i}+ bi

 ·wi(j

+ bj


=σj

 ∑
i:i(j

 ∑
h:h(i

{h ·wh(i ·wi(j}+ bi ·wi(j

+ bj


=σj

 ∑
i:i(j

 ∑
h:h(i

{h ·wh(i ·wi(j}


+

∑
i:i(j

{bi ·wi(j}+ bj


=σj

 ∑
h:∃i:h(i∧i(j

 ∑
i:h(i∧i(j

{h ·wh(i ·wi(j}


+

∑
i:i(j

{bi ·wi(j}+ bj


=σj

 ∑
h:h(Dj

{
h ·wh(Dj

}
+ bDj

 (C.1)

where

• h(D j ⇐⇒ ∃i : h( i∧ i( j;

• wh(Dj =
∑

i:h(i∧i(j
wh(i ·wi(j ;

• bDj =
∑

i:i(j
{bi ·wi(j}+ bj .

So instead of the intermediate neurons i, we can have an equivalent network
with direct connections (D.
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c.2 equivalence of neural network with tanh and with
logistic sigmoid transfer function

ak = tanh
 ∑
i:i(j

{i ·wi(j}+ bj

 ·wj(k + bk

=

2σl
2

 ∑
i:i(j

{i ·wi(j}+ bj

− 1
 ·wj(k + bk

=

2σl
 ∑
i:i(j

{i · 2wi(j}+ 2bj

− 1
 ·wj(k + bk

= 2σl
 ∑
i:i(j

{i · 2wi(j}+ 2bj

 ·wj(k −wj(k + bk

= σl

 ∑
i:i(j

{i · 2wi(j}+ 2bj

 · 2wj(k −wj(k + bk

= σl

 ∑
i:i(j

{
i ·wS

i(j

}
+ bSj

 ·wS
j(k + bSk (C.2)

where

• wS
i(j = 2wi(j ;

• bSj = 2bj ;

• bSk = bk −wj(k;

• wS
j(k = 2wj(k.
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c.3 derivative of the softmax activation function

For simplicity of the equations to come, we denote the output of the softmax
activation function as ok = S({an|n ∈ LO}, ak)

ok =
eak∑
l
eal

(C.3)

∂ok
∂an

=
∂
∂an

eak∑
l
eal

=
∂eak
∂an

1∑
l
eal

+ eak
∂
∂an

1∑
l
eal

=
∂ak
∂an

eak
1∑

l
eal

+ eak
∂
∂an

1∑
l
eal

(C.4)

∂
∂an

1∑
l
eal

= −

∂
∂an

∑
l
eal

(
∑
l
eal)2 = −

∑
l

∂
∂an

eal

(
∑
l
eal)2

= −

∑
l

∂
∂an

eal

(
∑
l
eal)2 = −

∂
∂an

ean

(
∑
l
eal)2 = − ean

(
∑
l
eal)2 (C.5)

∂ok
∂an

=
∂ak
∂an

eak
1∑

l
eal
− eak ean

(
∑
l
eal)2

=
∂ak
∂an

eak∑
l
eal
− eak ean

(
∑
l
eal)2

=
∂ak
∂an

eak∑
l
eal
− eak∑

l
eal

ean∑
l
eal

=
∂ak
∂an

ok − okon

= ok

(
∂ak
∂an
− on

)
= ok ((n ≡ k)? ∗ −on)

= ok ((n ≡ k)?− on)

(C.6)
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For any function e which ranges over all outputs of the softmax activation
function, we have that

∂e
∂an

=
∑
k

∂ek
∂ok

∂ok
∂an

=
∑
k

{
∂ek
∂ok

ok ((n ≡ k)?− on)
}

=
∑
k

{
∂ek
∂ok

ok(n ≡ k)?− ∂ek
∂ok

okon

}

=
∂en
∂on

on −
∑
k

{
∂ek
∂ok

okon

}

= on

∂en
∂on
−
∑
k

∂ek
∂ok

ok


(C.7)

c.4 derivative cross entropy

Given a dataset of N data points and K output neurons, corresponding to
K classes, cross entropy is defined by:

H(o, t) = −
N∑
n

K∑
k

tkn log okn (C.8)

where we apply 1-of-K coding to represent the true distribution t over the
classes K, so for a given sample n having true class c (such that txn = 1 if
x = c and txn = 0 otherwise) we have

H(o, t) = −
K∑
k

tkn log okn

= −
K∑
k

(k ≡ c)? log okn

= − log ocn (C.9)

for which the derivative is given by (omitting the subscript n)

∂H(o,t)
∂ok

=
∂
∂ok
− log oc

= (k ≡ c)? · − tk
ok

= −(k ≡ c)?
tc
oc

= −(k ≡ c)?
1
oc

(C.10)
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∂H(o,t)
∂an

=
K∑
k

∂H(o,t)
∂ok

· ∂ok∂an

=
K∑
k

ok ((n ≡ k)?− on) · −(k ≡ c)?
1
oc

= oc ((n ≡ c)?− on) · −
1
oc

= − ((n ≡ c)?− on)

= (on − (n ≡ c)?) (C.11)
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c.5 soft arg max derivative

o =
∑
k

ok ef (ok )∑
l
ef (ol )


=

1∑
k
ef (ok )

∑
k

oke
f (ok ) (C.12)

∂o
∂on

=
∂
∂on

 1∑
k
ef(ok)

∑
k

oke
f(ok)


=

∂
∂on

 1∑
k
ef(ok)


∑
k

oke
f(ok) +

1∑
k
ef(ok)

∂
∂on

∑
k

oke
f(ok)


(C.13)

∂
∂on

∑
k

oke
f(ok) =

∂
∂on

one
f(on)

= ef(on) + onf
′(on)e

f(on) =
(
onf

′(on) + 1
)
ef(on) (C.14)

∂
∂on

1∑
l
ef(ol)

= −

∂
∂on

∑
l
ef(ol)(∑

l
ef(ol)

)2 = −
∂
∂on

ef(on)(∑
l
ef(ol)

)2 = −f
′(on)ef(on)(∑
l
ef(ol)

)2

(C.15)
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∂o
∂on

=
∂
∂on

 1∑
k
ef(ok)


∑
k

oke
f(ok) +

1∑
k
ef(ok)

∂
∂on

∑
k

oke
f(ok)


=− f ′(on)ef(on)

(
∑
l
ef(ol))2

∑
k

oke
f(ok) +

1∑
k
ef(ok)

(
onf

′(on) + 1
)
ef(on)

=− f ′(on)ef(on)∑
l
ef(ol)

o+
1∑

k
ef(ok)

(
onf

′(on) + 1
)
ef(on)

=
ef(on)∑
k
ef(ok)

(
onf

′(on) + 1− f ′(on)o
)

=
ef(on)∑
k
ef(ok)

(
1 + f ′(on) (on − o)

)

= cn
(
1 + f ′(on)(on − o)

)
(C.16)
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c.6 soft arg max contribution pool derivative

Each input on is accompanied by an output, which we denote o ′n:

o ′n = oncn = on
ef (on )∑
l
ef (ol )

(C.17)

First note that

∂
∂on

1∑
l
ef(ol)

= −

∂
∂on

∑
l
ef(ol)

(
∑
l
ef(ol))2 = −

∑
l

∂
∂on

ef(ol)

(
∑
l
ef(ol))2

= −
∂
∂on

ef(on)

(
∑
l
ef(ol))2 = −f

′(on)ef(on)

(
∑
l
ef(ol))2 (C.18)

When n 6= k:

∂o′k
∂on

=
∂
∂on

ok
ef(ok)∑
l
ef(ol)

= ok
∂
∂on

ef(ok)∑
l
ef(ol)

= oke
f(ok) ∂

∂on

1∑
l
ef(ol)

= −okef(ok)
f ′(on)ef(on)

(
∑
l
ef(ol))2

= −f ′(on)ok
ef(ok)∑
l
ef(ol)

ef(on)∑
l
ef(ol)

= −f ′(on)o′kcn (C.19)
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When k = n

∂o′n
∂on

=
∂
∂on

on
ef(on)∑
l
ef(ol)

=
ef(on)∑
l
ef(ol)

+ on
∂
∂on

ef(on)∑
l
ef(ol)

=
ef(on)∑
l
ef(ol)

+ on

f ′(on)ef(on) 1∑
l
ef(ol)

+ ef(on)
∂
∂on

1∑
l
ef(ol)



=
ef(on)∑
l
ef(ol)

+ on

f ′(on) ef(on)∑
l
ef(ol)

− ef(on) f
′(on)ef(on)

(
∑
l
ef(ol))2


=

ef(on)∑
l
ef(ol)

+ f ′(on)on
ef(on)∑
l
ef(ol)

− f ′(on)on
ef(on)∑
l
ef(ol)

ef(on)∑
l
ef(ol)

= cn + f ′(on)o
′
n − f ′(on)o′ncn (C.20)

For any E, function of the whole pool, we have:

∂E
∂on

=
∑
l

∂E
∂o′l

∂o′l
∂ol

=
∂E
∂o′n

∂o′n
∂on

+
∑
l 6=n

∂E
∂o′l

∂o′l
∂on

=
∂E
∂o′n

(
cn + f ′(on)o

′
n − f ′(on)o′ncn

)
+
∑
l 6=n

∂E
∂o′l

(
−f ′(on)o′lcn

)

=
∂E
∂o′n

(
cn + f ′(on)o

′
n

)
− ∂E
∂o′n

f ′(on)o
′
ncn −

∑
l 6=n

∂E
∂o′l

f ′(on)o
′
lcn

=
∂E
∂o′n

(
cn + f ′(on)o

′
n

)
−
∑
l

∂E
∂o′l

f ′(on)o
′
lcn

=
∂E
∂o′n

(
cn + f ′(on)o

′
n

)
− f ′(on)cn

∑
l

∂E
∂o′l

o′l (C.21)
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c.7 variance of principal components

Var [Z·k]
= E

[
Z2
·k
]
−E [Z·k]2

=
1
N

N∑
n=1

(Xn·W·k)
2 −

 1
N

N∑
n=1

Xn·W·k

2

=
1
N

N∑
n=1

 K∑
i=1

WikXni

2

−

 1
N

N∑
n=1

K∑
i=1

WikXni

2

=
1
N

N∑
n=1

 K∑
i=1

WikXni

 K∑
i=1

WikXni

−
 K∑
i=1

Wik
1
N

N∑
n=1

Xni

2

=
1
N

N∑
n=1

K∑
i=1

K∑
j=1

WikXniWjkXnj −

 K∑
i=1

WikE [X·i]

2

=
K∑
i=1

K∑
j=1

WikWjk
1
N

N∑
n=1

XniXnj −

 K∑
i=1

WikE [X·i]

 K∑
i=1

WikE [X·i]


=

K∑
i=1

K∑
j=1

WikWjkE [X·iX·j ]−
K∑
i=1

K∑
j=1

WikE [X·i]WjkE [X·j ]

=
K∑
i=1

K∑
j=1

WikWjk (E [X·iX·j ]−E [X·i]E [X·j ])

=
K∑

i,j=1
WikWjkσX·iX·j

= WT
·kΣW·k (C.22)

where

• K is the dimensionality of the data;

• N is the size of the data set;

Thanks to Jolliffe[20].
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c.8 covariance of principal components

E [Z·k] = E [XW·k]

=
1
N

N∑
n=1

Xn·W·k

= W·k
1
N

N∑
n=1

Xn·

= W·kE [Xn·] (C.23)
Covariance is invariant under translations of the data:

Cov [X·l, X·k] = Cov [Y·l, Y·k] (C.24)
where

• Y = X + 1NvT;

• 1N is an N -dimensional column vector of only ones;

• v is any column vector with the same dimension as the width of X.

Let’s subtract the mean from the data:
X 7→ X + 1NµT (C.25)

We then have:
Cov [X·l, X·k] = E [X·lX·k]−E [X·l]E [X·k]

= E [X·lX·k] (C.26)

Σ =
1
N

XTX (C.27)

E [Z·lZ·k] =
1
N

N∑
n=1

W·lXn·W·kXn·

=
1
N

N∑
n=1

K∑
i=1

WilXniWikXni

=
K∑
i=1

WilWik
1
N

N∑
n=1

XniXni

=
K∑
i=1

WilWik
1
N

XT
·iX·i

= W·l
1
N

XTXW·k

= W·lΣW·k

= W·lλkW·k

= λkW·lW·k = 0 (C.28)
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c.9 first principal component

WT
·1ΣW·1 + λ1

(
1−WT

·1W·1
)

(C.29)

is optimal when its partial derivatives are zero.

∂
∂W·1

{
WT
·1ΣW·1 + λ1

(
1−WT

·1W·1
)}

= 0

∂
∂W·1

{
WT
·1ΣW·1

}
+

∂
∂W·1

{
λ1
(
1−WT

·1W·1
)}

= 0(
Σ + ΣT

)
W·1 − λ1

∂
∂W·1

{
WT
·1W·1

}
= 0

2ΣW·1 − λ12W·1 = 0

ΣW·1 = λ1W·1 (C.30)
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c.10 further principal components

WT
·kΣW·k + λk

(
1−WT

·kW·k
)
+

K∑
j=1

λkj
(
WT
·kW·j

)
(C.31)

is optimal when its partial derivatives are zero.

We will first consider the partial derivatives of the formula w.r.t. λkl for
each l:

∂
∂λkl

{
WT
·kΣW·k + λk

(
1−WT

·kW·k
)

+
K∑
j=1

λkl
(
WT
·kW·j

) = 0

∂
∂λkj


K∑
j=1

λkj
(
WT
·kW·j

) = 0

∂
∂λkj

{
λkl

(
WT
·kW·l

)}
= 0

WT
·kW·l = 0 (C.32)

When we substitute 0 for WT
·kW·l for each l, the formula reduces to:

WT
·kΣW·k + λk

(
1−WT

·kW·k
)

(C.33)

The above formula and the derivation of the variance of the projected data
are analogous to appendix C.9. We can conclude that

ΣW·k = λkW·k (C.34)
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c.11 gram-schmidt process

The Gram-Schmidt process is a method to perform orthonormalization. It
can be seen to consist of two stages: an orthogonalization stage and a nor-
malization stage. However, we will show below that merging the two stages
leads to less complex formulas. We will first explain the orthogonalization
stage and then move on to explain how the inclusion of normalization sim-
plifies the process.

c.11.1 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is a simple procedure to make a given list
of vectors orthogonal to each other. The first vector remains the same as
the original, but every subsequent vector is made to be orthogonal to all
preceding orthogonalized vectors. Orthogonalization of a vector wm to a
given vector vn is performed by subtracting the component of wm in the
direction of vn; the orthogonalized vector om is obtained by subtraction of
the projection of wm onto vn:

om = wm − p(wm, vn) (C.35)

p(wm, vn) =
vT
nwm

vT
nvn

vn (C.36)
where

• p(w, v) is the projection of vector w onto vector v;

• p(w, 0) = 0.

v

w

p(w,v)

w-p(w,v)

(a) Orthogonalization of w to v.

v2

v1

p(w,v1)

p(w,v2)

w

w-p(w,v1)
w-p(w,v1)-p(w,v2)

(b) Orthogonalization of w to v1 and v2.

Figure C.1: Visual representation of Gram-Schmidt Orthogonalization.
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Gram-Schmidt orthogonalization then consists of sequentially orthogonal-
izing each vector to each preceding vector:

w⊥k = wk −
k−1∑
j=1

p(wk, w⊥j ) (C.37)

Note that we first compute oj before we use its value in any further ok for
k > j. See figure C.1 for visual aid to this explanation.

c.11.2 Orthonormalization

As we have said in section 3.1, we want the principal axes to be of unit length.
We will therefore perform normalization after orthogonalization, constitut-
ing orthonormalization. When we perform Gram-Schmidt orthogonalization
with normalization, we perform what is called the Gram-Schmidt process.

We could do the normalization step after orthogonalizing all vectors
(wk 7→ ok/ ‖wk‖), but we might just as well normalize during Gram-
Schmidt orthogonalization. Instead of first iteratively orthogonalizing and
then normalizing, we could iteratively do orthogonalization and normaliza-
tion steps. The two are equivalent because the projection of a vector onto
vector v results in the same vector as projection onto the normalized v:

p(lw, v) = (lv)T w
(lv)T (lv)

(lv) = l
lvTw
l2vTv

v =
vTw
vTv

v = p(w, v) (C.38)

where

• l could be any scalar value.

The resulting process can then be simplified, because we know that the
previous vectors already have unit length:

wk 7→
w⊥k∥∥∥w⊥k ∥∥∥ (C.39)

w⊥k = wk −
k−1∑
j=1

wT
j wk

wT
j wj

wj

= wk −
k−1∑
j=1

(
wT
j wk

)
wj (C.40)

where

• w⊥k is the orthogonalized vector wk.
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c.12 proof that the GHA performs PCA

We will here show how the update rule of the GHA will let the weight
vectors converge to principal components. For simplicity we suppose our
data has zero mean, so that the covariance of x1 and x2 is proportional to
E [x1x2] for any two different input variables x1 and x2. When the data at
hand does not have zero mean, we simply apply a preprocessing stage in
which we subtract the mean, so that we guarantee the data presented to be
centered around the origin.
The proof is performed by mathematical induction on the output neurons.

The base case consists of the proof that the weight vector of the first neuron
will converge to the first principal component. Provided that all previous
weight vectors have converged to principal components, the inductive step
then consists of the proof that the consecutive weight vector will converge
to the next principal component.

c.12.1 Oja’s Rule

Remember that the update rule of the GHA is given by:

∆wi(k = ηyk

xi − k∑
j=1

wi(jyj

 (C.41)

For the first neuron the GHA reduces to what is known as Oja’s Rule:

∆wi = ηy (xi − ywi) (C.42)

Here we have left out the index k because Oja’s rule is only concerned with
a single output neuron. In this section we leave k implicit, since all weights
are weights on connections to the same neuron y.
Oja’s Rule is derived from Hebb’s rule constrained within a weight space

where the weight vectors are of unit length. Because Hebb’s rule can be
viewed as an optimization technique for the HO, which is proportional to
variance of the output when the output data has zero mean, Oja’s rule
causes the weight vector to converge to the first principal component; the
first principal component is defined by the weight vector which maximizes
the variance of the converted data, under the restriction that the weight
vector has unit length.

Note that when the input has zero mean, the output of an ANN with
linear activation function also has zero mean, since the network forms a
linear combination of the input values. Given that the input does have zero
mean, we can conclude that the HO is indeed proportional to the output
variance.

The constrained update rule consists of two steps; first it updates the
weights according to Hebb’s rule and then it normalizes the weight vector:
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wi 7→ wi + ηyxi

wi 7→
wi√√√√ K∑
j=1

w2
j

(C.43)

where

• K is the number of input neurons.

We can merge these into the single stage and rewrite it by doing a first order
Taylor expansion about the point η = 0, constituting a Maclaurin series:

wτ+1
i =

wi + ηyxi√√√√ K∑
j=1

(wi + ηyxi)
2

=
1
l
wi + ηy

1
l

xi −wi 1
l2
∑
j

wjxj

+O(η2) (C.44)

where

• l is the length of the weight vector at iteration τ , i.e. l =
√√√√(∑

j
wpj

)

• τ indicates the time or iteration; it’s omitted where possible.

• O(η2) are terms with at most an order of magnitude proportional to
η2

Generally we choose η to be quite small, η � 1, so that η2 ≪ η and
so the effect of O(η2) on the value of wτ+1

i is negligible. We can therefore
safely omit all higher order terms from the formula to approximate the
weight update.

When we further suppose that the weight vector from the previous step
was already of unit length, i.e. l = 1 and that the linear transfer function is
used (as is usual when using Hebbian learning rules), we end up with Oja’s
rule:

wτ+1
i =

1
l
wi + ηy

1
l

xi −wi 1
l2
∑
j

wjxj


= wi + ηy

xi −wi∑
j

wjxj


= wi + ηy (xi −wiy) (C.45)
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Approximation to the Feasible Space

We have now proved that the unit length constraint is preserved under appli-
cation of Oja’s rule; when the weight vector at some point has unit length
the update rule will let the weight vector converge to the first principal
component. We still have to prove that Oja’s rule will in fact let the weight
vector converge to any weight vector of unit length.

The hypersurface within the weight space where the weight vector is of
unit length is called the the feasible space, since in that subspace the unit
length constraint is met. Under the current constraint the the feasible space
is a hypersphere centered at the origin. In this section we prove that Oja’s
rule causes the weights to converge to the the feasible space.
After a weight update the length of a weight vector is given by:√√√√ K∑

i=1

(
wτ+1
i

)2
(C.46)

For simplicity of the formulas, let’s consider the squared length of the weight
vector:

K∑
i=1

(
wτ+1
i

)2
=

K∑
i=1

(wi + ηy (xi −wiy))2

=
K∑
i=1

(
w2
i +wiηy (xi −wiy) + η2y2 (xi −wiy)2)

=
K∑
i=1

w2
i +

K∑
i=1

wiηy (xi −wiy) +
K∑
i=1

η2y2 (xi −wiy)2

=
K∑
i=1

w2
i + ηy

K∑
i=1

wi (xi −wiy) + η2
K∑
i=1

y2 (xi −wiy)2

(C.47)

Because η2 ≪ η we can omit the third term:

K∑
i=1

(
wτ+1
i

)2
≈

K∑
i=1

w2
i + ηy

K∑
i=1

wi (xi −wiy)

=
K∑
i=1

w2
i + ηy

K∑
i=1

{
wixi −w2

i y
}

=
K∑
i=1

w2
i + ηy

K∑
i=1

wixi − ηy
K∑
i=1

w2
i y

=
K∑
i=1

w2
i + ηy2 − ηy2

K∑
i=1

w2
i

=
K∑
i=1

w2
i + ηy2

1−
K∑
i=1

w2
i

 (C.48)
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Since η > 0 and y2 > 0 we know that when the squared weight vector
length was less than 1 in the previous time step, the square weight vector
will become larger and when the square weight vector length was greater
than 1 the square weight vector will become zero. The same must hold for
the weight vector itself, since

√
1 = 1.1 In effect we home in on a unit vector

length.
Thus we have proved that Oja’s rule will cause the weight vector to con-

verge to weight vector of unit length which maximizes the output variance,
which is the first principal component.

c.12.2 Further Principal Components

Above we have proved the base case of the inductive proof that GHA will
cause the weight vectors of a neural network layer to converge to the princi-
pal components. Now we deduce the inductive step; provided that we have
already proved the first k − 1 weight vectors to be converged to principal
components, we have to prove that wk converges to the next principal com-
ponent.
We do this by showing that the GHA can be expected to perform a

Gram-Schmidt orthogonalization. When using the GHA when a random
input sample (sampled from the uniform distribution over the whole data
set) we compute the expected value of the update. For simplicity of the
derivation we divide both sides by η.

1 Also the square root function is monotonically increasing.
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E [∆wi(k] /η

=E

yk
xi − k∑

j=1
wi(jyj


=E

yk
xi − k−1∑

j=1
wi(jyj

− (yk)
2
wi(k


=E

yk
xi − k−1∑

j=1
wi(jyj

−E
[
(yk)

2
wi(k

]

=E

 D∑
h=1
{xhwh(k}

xi − k−1∑
j=1

wi(j

D∑
h=1

{
xhwh(j

}


−E
[
(yk)

2
wi(k

]
=E

 D∑
h=1

xhwh(kxi


−E

k−1∑
j=1

wi(j

D∑
h=1

D∑
g=1

xhwh(kxgwg(j

−E
[
(yk)

2
wi(k

]

=
D∑
h=1

E [xhwh(kxi]−
k−1∑
j=1

wi(j

D∑
h=1

D∑
g=1

E [xhwh(kxgwg(j ]

−E
[
(yk)

2
wi(k

]
=

D∑
h=1

wh(kΣhi −
k−1∑
j=1

wi(j

D∑
g,h=1

wh(kΣghwg(j

−E
[
(yk)

2
wi(k

]
(C.49)

E [∆wk] /η = Σwk −
k∑
j=1

(
wT
j Σwk

)
wj −E [diag(y)y diag(wk)]

(C.50)
where

• D is the input dimensionality;

• wk is the vector of weights on connections to the neuron corresponding
to yk;

• Σ is the covariance matrix of the input.

Here the first two terms are equivalent to the orthonormalization of Σwk

to the first k− 1 weight vectors. (See formula 3.14.) We therefore rewrite it
to:

E [∆wk] /η = (Σwk)
⊥ −E [diag(y)y diag(wk)] (C.51)
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We can prove the distributivity of perpendicularity, i.e. we can prove that
(Σwk)

⊥ = Σw⊥k :

(Σwk)
⊥ = Σwk −

k−1∑
j=1

(
wT
j Σwk

)
wj

= Σwk −
k−1∑
j=1

(
(Σwj)

T wk

)
wj

= Σwk −
k−1∑
j=1

(
(λjwj)

T wk

)
wj

= Σwk −
k−1∑
j=1

(
wT
j wk

)
λjwj

= Σwk −
k−1∑
j=1

(
wT
j wk

)
Σwj

= Σwk − Σ
k−1∑
j=1

(
wT
j wk

)
wj

= Σ

wk −
k−1∑
j=1

(
wT
j wk

)
wj


= Σ (wk)

⊥ (C.52)

The left term of formula C.51 thus causes the weight update to be in the
direction orthogonal to all previous principal components, while the right
term constitutes a weight decay term. 2 Any component of the weight not
orthogonal to the previous weight vectors will in effect decay toward zero,
while the decay of a component which is orthogonal might be countered by
the left term. The weight vector is therefore bound to end up in a subspace
which is orthogonal to all preceding principal components.

We can further derive:

2 Since Σ is positive-definite, wT
k Σwk is always positive, so that the right term of for-

mula C.51 will constitute a weight decay term.
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E [∆wk] /η = Σw⊥k −E [diag(y)y diag(wk)] (C.53)

E [∆wi(k] /η =
D∑
h=1

w⊥h(kΣhi −E
[
(yk)

2
wi(k

]

=
D∑
h=1

E
[
xhw

⊥
h(kxi

]
−E

[
(yk)

2
wi(k

]
= E

[
y⊥k xi − (yk)

2
wi(k

]
(C.54)

where

• w⊥h(k is element h from the orthogonalized weight vector w⊥k ;

• y⊥k is the component of output k within the orthogonal subspace.

When restricted to the orthogonal subspace the above formula reduces
to Oja’s rule restricted to the orthogonal subspace. Sanger’s rule will thus
behave as Oja’s rule within the subspace orthogonal to all preceding princi-
pal components.[17, p. 209] When converged, the weight vector will therefor
maximize the variance, subject to the constraint of being orthonormal to
all previous weight vectors, which is to say that the weight vector converges
to the next principal component.
Note that even though the inductive proof applies to a sequential proce-

dure, where we let each neuron converge after we start learning the next,
the result must be the same for a concurrent procedure. When we learn
all weight vectors simultaneously, they will still converge to the principal
components, albeit consecutively. Any weight vector can only be converged
when all weight vectors of preceding neurons have converged and so the
conditions for the proof of the iterative procedure apply.
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c.13 solving multiple lagrangian constraints generi-
cally

The Lagrangian function and its partial derivatives are given by:

L(w, Λ) = E(w) +
∑
c∈C

λcc (C.55)

∂L(w,Λ)
∂wi

=
∂E(w)
∂wi

+
∑
c∈C

λc
∂c
∂wi

(C.56)

∂L(w,Λ)
∂λcn

= cn (C.57)
where

• E(w) is the function to be optimized;

• C is a set of constraints c which are met when c = 0;

• cn is a constraint in C;

• λc is the Lagrange multiplier belonging to constraint c;

• Λ is the set of all Lagrange multipliers.

However, setting the derivatives of the Lagrangian to zero doesn’t always
help in solving the Lagrange multipliers. We therefore define a new func-
tion L̃, which is zero exactly when all partial derivatives of the original
Lagrangian function are zero. Moreover, it has a stationary point where the
original Lagrangian has one. Our modified function will have minima when
the original Lagrangian function has saddle points, maxima or minima.

L̃(w, Λ) =
∑
j

(
∂L(w,Λ)
∂wj

)2
+
∑
c∈C

(
∂L(w,Λ)
∂λc

)2

=
∑
j

∂E(w)
∂wj

+
∑
c∈C

λc
∂c
∂wj

2

+
∑
c∈C

c2 (C.58)

∂L̃(w,Λ)
∂wi

= 2
∑
j

∂E(w)
∂wj

+
∑
c∈C

λc
∂c
∂wj

∂2E(w)

∂wj∂wi
+
∑
c∈C

λc
∂2c

∂wj∂wi


+ 2

∑
c∈C

c
∂c
∂wi

(C.59)
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∂L̃(w,Λ)
∂λcn

=
∂

∂λcn


∑
j

∂E(w)
∂wj

+
∑
c∈C

λc
∂c
∂wj

2

+
∑
c∈C

c2


=
∑
j

2
∂E(w)

∂wj
+
∑
c∈C

λc
∂c
∂wj

 ∂cn
∂wj


=
∑
j

2 ∂cn∂wj

∂E(w)
∂wj

+ 2 ∂cn∂wj

∑
c∈C

λc
∂c
∂wj


= 2

∑
j

∂cn
∂wj

∂E(w)
∂wj

+ 2
∑
j

∂cn
∂wj

∑
c∈C

λc
∂c
∂wj

= 2
∑
j

∂cn
∂wj

∂E(w)
∂wj

+ 2
∑
c∈C

λc
∑
j

∂cn
∂wj

∂c
∂wj

(C.60)

When L̃ is minimal we have that:

∂L̃(w,Λ)
∂λcn

= 0

2
∑
j

∂cn
∂wj

∂E(w)
∂wj

+ 2
∑
c∈C

λc
∑
j

∂cn
∂wj

∂c
∂wj

= 0

∑
c∈C

λc
∑
j

∂cn
∂wj

∂c
∂wj

= −
∑
j

∂cn
∂wj

∂E(w)
∂wj

(C.61)

This forms a system of linear equations; we want to know λ such that

Kλ = o (C.62)
where

• λ is a vector of the elements of Λ;

• Knm =
∑
j

∂cn
∂wj

∂c
∂wj

• on = −∑
j

∂cn
∂wj

∂E(w)
∂wj
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c.13.1 Generalized Hebbian Algorithm

For Generalized Hebbian Algorithm we have:

E(yk) =
1
2y

2
k (C.63)

Ck =
{
ojk | j < k

}
∪ {nk} (C.64)

ojk =
∑
i

wijwik = wT
j wk (C.65)

nj = 1−
∑
i

w2
ij = 1−wT

j wj (C.66)

Λk =
{
λjk | j < k

}
∪ {λk} (C.67)

where

• E(yk) is the objective function of output neuron k;

• Ck is the set of constraints for output neuron k;

• ojk is an orthogonalization constraint between the weight vectors of
neuron j and k;

• nj is a normalization constraint on the weight vector of neuron j;

• Λk is the set of Lagrange multipliers for output neuron k;

• λjk is the Lagrange multiplier for orthogonalization constraint ojk, i.e.
λjk = λojk ;

• λj is the Lagrange multiplier for normalization constraint nj , i.e. λj =
λnj .

Note that we define objective functions for each output neuron k. We
want to maximize such an objective function with respect to the weights on
connections to that neuron alone, i.e. wk. We therefore only use the weights
wk when substituting in the Lagrangian functions given above.

For each orthogonalization constraint ojk we have a corresponding La-
grange multiplier given by λjk and for each normalization constraint nj we
have a corresponding Lagrange multiplier given by λj .
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Partial derivatives with respect to the weights are given by:

∂E(yk)
∂wij

=

 ykxi if j = k

0 if j 6= k
(C.68)

∂olk
∂wij

=


wil if j = k

wik if j = l

0 otherwise
(C.69)

∂nk
∂wij

=

 −2wik if j = k

0 if j 6= k
(C.70)

Since we maximize the objective only w.r.t. the weights of neuron k, we
can view the Lagrangian functions L and L̃ as functions over wk and view
the other weights as constants. We can then fill in the partial derivatives
of the orthogonalization Lagrange multipliers in formula C.60 and simplify
the resulting modified Lagrangian:

∂L̃k(wk,Λk)
∂λak

=
∑
i

∂oak
∂wik

∂E(yk)
∂wik

+
∑
c∈C

λc
∑
i

∂oak
∂wik

∂cm
∂wik

=
∑
i

∂oak
∂wik

∂E(yk)
∂wik

+
∑
j<k

λjk
∑
i

∂oak
∂wik

∂ojk
∂wik

+ λk
∑
i

∂oak
∂wik

∂nk
∂wik

=
∑
i

wiaykxi

+ λak
∑
i

∂oak
∂wik

∂oak
∂wik

+
∑

j<k∧j 6=a
λjk

∑
i

∂oak
∂wik

∂ojk
∂wik

+ λk
∑
i

wia (−2wik)

=ykya + λakwT
awa +

∑
j<k,j 6=a

λjkwT
awj − 2λkwT

awk

(C.71)

At the optimum the constraints are met; since we are trying to find the
optimum we will suppose the parameters are in the feasible space. We also
know that at the optimum, the partial derivative of the modified Lagrangian
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w.r.t. any Lagrange multiplier must be zero. We can therefore simplify for-
mula C.71 and derive an expression for λak:

∂L̃k(wk,Λk)
∂λak

= ykya + λak = 0

λak = −ykya (C.72)

Now we do the same for the normalization constraints; we fill in the partial
derivatives of the normalization multipliers in formula C.60 and simplify:

∂L̃k(wk,Λk)
∂λk

=
∑
i

∂nk
∂wik

∂E(yk)
∂wik

+
∑
c∈C

λc
∑
i

∂nk
∂wik

∂cm
∂wik

=
∑
i

−2wikykxi +
∑
j<k

λjk
∑
i

∂nk
∂wik

∂ojk
∂wik

+ λk
∑
i

∂nk
∂wik

∂nk
∂wik

= −2y2
k +

∑
j<k

λjk
∑
i

−2wikwij + λk
∑
i

4w2
ik

= −2y2
k − 2

∑
j<k

λjkwT
kwj + 4λkwT

kwk (C.73)

At the optimum, similar to the derivation of λak, we then derive that

∂L̃k(wk,Λk)
∂λk

= −2y2
k + 4λk = 0

λk =
1
2y

2
k (C.74)

We substitute the Lagrange multipliers in the definition of the original
Lagrangian of formula C.55 for the expressions derived above and simplify:

∂Lk(wk,Λk)
∂wi

=
∂E(yk)
∂wik

+
C∑

m=1
λm

∂cm
∂wi

= xiyk −
∑
j<k

yjyk
∂ojk
∂wik

+
1
2y

2
k
∂nk
∂wik

= xiyk −
∑
j<k

yjykwij −
1
2y

2
k2wik

= xiyk −
∑
j<k

yjykwij − y2
kwik

= yk

xi −∑
j<k

yjwij − ykwik


= yk

xi −∑
j≤k

yjwij

 (C.75)
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c.14 derivative of EED

Recall that

D =
√

det |Σ| (C.76)
where

• Σ is the covariance matrix of the output data;

• det |Σ| denotes the determinant of Σ.

The derivative is then given by:

∂D
∂p =

∂
√

det|Σ|
∂p

=
∂
√

det|Σ|
∂Σ

∂Σ
∂p

=
1

2
√

det |Σ|
det |Σ|

(
Σ−1

)T ∂Σ
∂p

=
1
2
√

det |Σ|
(

Σ−1
)T ∂Σ

∂p

=
1
2
√

det |Σ|
(

ΣT
)−1 ∂Σ

∂p =
1
2
√

det |Σ|Σ−1∂Σ
∂p (C.77)

In the above proof we made use of the well known derivative of the deter-
minant of a matrix[31] and the fact that the covariance matrix is symmetric.
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c.15 pre-sigmoid normal distribution

By change of variables we derive that the post-sigmoid distribution of a
pre-sigmoid normal distribution (for the logistic sigmoid) is given by:

fQ(y) =
∣∣∣∣ ∂∂yσ−1(y)

∣∣∣∣ · fR(σ−1(y))

=
1

y(1− y) · f(σ
−1(y);µ,σ)

=
1

y(1− y) · f
(

log
(

1
1− y − 1

)
;µ,σ

)

=
1

y(1− y) · (σ
√

2π)−1 exp

−
(
log

(
1

1−y − 1
)
− µ

)2

2σ2


where

• R = N (0,σ∗)

• σ∗ is the standard deviation of the pre-sigmoid distribution;

• σ(·) is the logistic sigmoid σl.
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c.16 derivative of mean and covariance

∂o
∂or

=
∂
∂or

1
N

∑
i

oi =
1
N

(C.78)

∂ var o
∂or

=
∂
∂or

1
N

∑
i

(oi − o)2 =
1
N

∂
∂or

∑
i

(oi − o)2

=
1
N

∑
i

∂
∂or

(oi − o)2 =
1
N

∑
i

2(oi − o)
∂
∂or

(oi − o)

=
1
N

∑
i

2(oi − o)(
∂oi
∂or
− 1
N
) =

1
N

∑
i

2(oi − o)(o′i −
1
N
)

=
1
N

∑
i

{
2(oi − o)o′i − 2(oi − o)

1
N

}

=
1
N

(∑
i

2(oi − o)o′i −
∑
i

2(oi − o)
1
N

)

=
1
N

(∑
i

2(oi − o)o′i −
1
N

∑
i

2(oi − o)
)

=
1
N

(∑
i

2(oi − o)o′i − 2 1
N

∑
i

(oi − o)
)

=
1
N

(∑
i

2(oi − o)o′i − 2 1
N

∑
i

oi −−2 1
N
No

)

=
1
N

(∑
i

2(oi − o)o′i − 2o+ 2o
)

=
1
N

∑
i

2(oi − o)o′i

=
1
N

2(or − o)

=
2
N
(or − o)

(C.79)
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∂Cov[o,u]
∂or

=
∂
∂or

1
N

∑
i

(oi − o)(ui − u)

=
1
N

∑
i

∂
∂or
{(oi − o)(ui − u)}

=
1
N

∑
i

∂
∂or
{(oi − o)} (ui − u)

=
1
N

∑
i

(o′i −
1
N
)(ui − u)

=
1
N

∑
i

{
o′i(ui − u)−

1
N
(ui − u)

}

=
1
N

∑
i

o′i(ui − u)−
1
N

∑
i

1
N
(ui − u)

=
1
N
(ui − u)−

1
N

∑
i

1
N
(ui − u)

=
1
N
(ui − u)−

1
N

∑
i

1
N
ui −

1
N
u

=
1
N
(ui − u)−

1
N

(∑
i

1
N
ui −

∑
i

1
N
u

)

=
1
N
(ui − u)−

1
N

(
1
N

∑
i

ui −
1
N

∑
i

u

)

=
1
N
(ui − u)−

1
N

(
u− 1

N
Nu

)
=

1
N
(ui − u)

(C.80)
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c.17 probability integral transform

For a random variable X with pdf fx and CDF FX we prove that Y =
FX(X) has a uniform distribution:

fY (x) = fFX (X)(x)

=
∣∣∣∣ ∂∂xF−1

X (y)
∣∣∣∣ · fX(F−1

X (x)) (Change of variables)

=

∣∣∣∣∣ 1
F ′X(F

−1
X (y))

∣∣∣∣∣ · fX(F−1
X (x)) (Inverse function theorem)

=

∣∣∣∣∣ 1
fX(F

−1
X (y))

∣∣∣∣∣ · fX(F−1
X (x)) (F ′X = fX almost everywhere)

=
1

fX(F
−1
X (y))

· fX(F−1
X (x)) (non-negativityof pdf)

= 1 if fX(F−1
X (y)) 6= 0 (C.81)

where

• (Change of variables) presupposed that FX is monotonic, which is
true because it’s a CDF;

• (Inverse differentiation) assumes monotonicity, which is true for the
PDFs associated with the sigmoid transfer functions we consider.
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c.18 derivative of PSGU objective

DKL(N0||N1) =
1
2

(
tr(Σ−1

1 Σ0) + (µ1 −µ0)
TΣ−1

1 (µ1 −µ0)− k− ln |Σ0|
|Σ1|

)
(C.82)

Our optimal distribution has ∀i : µ0i = 0

DKL(N0||N1) =
1
2

(
tr(Σ−1

1 Σ0) + µT
1 Σ−1

1 µ1 − k− ln |Σ0|
|Σ1|

)
(C.83)

∂DKL
∂Σ1

=
∂
∂Σ1

1
2

(
tr(Σ−1

1 Σ0) + µT
1 Σ−1

1 µ1 − k− ln |Σ0|
|Σ1|

)

=
1
2

(
∂
∂Σ1

tr(Σ−1
1 Σ0) +

∂
∂Σ1

µT
1 Σ−1

1 µ1 −
∂
∂Σ1

ln |Σ0|
|Σ1|

)
(C.84)

Note that for a covariance matrix Σ it holds that: Σ = ΣT, and (Σ−1)T =
(ΣT)−1, so (Σ−1)T = Σ−1.

∂
∂Σ1

tr(Σ−1
1 Σ0) =

∂
∂Σ1

tr(IΣ−1
1 Σ0)

= −
(

Σ−1
1 Σ0IΣ−1

1
)T

(cookbook 113)

= −
(

Σ−1
1 Σ0Σ−1

1
)T

= −(Σ−1
1 )TΣT

0 (Σ
−1
1 )T

= −Σ−1
1 Σ0Σ−1

1 (symmetricity)

∂
∂Σ1

µT
1 Σ−1

1 µ1 = −(Σ−1
1 )Tµ1µT

1 (Σ
−1
1 )T (cookbook 55)

= −Σ−1
1 µ1µT

1 Σ−1
1 (C.85)

∂
∂µ1

µT
1 Σ−1

1 µ1 =
(

Σ−1
1 + (Σ−1

1 )T
)

µ1 (cookbook 73)

=
(

Σ−1
1 + Σ−1

1
)

µ1

= 2Σ−1
1 µ1 (C.86)
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∂
∂Σ1

ln |Σ0|
|Σ1|

=
∂
∂Σ1
{ln |Σ0| − ln |Σ1|}

=
∂
∂Σ1
{− ln |Σ1|}

= − ∂
∂Σ1

ln |Σ1|

= − 1
|Σ1|

∂
∂Σ1
|Σ1|

= − 1
|Σ1|
|Σ1|(Σ−1

1 )T

= −(Σ−1
1 )T

= −Σ−1
1

(C.87)

∂DKL
∂Σ1

=
1
2

(
∂
∂Σ1

tr(Σ−1
1 Σ0) +

∂
∂Σ1

µT
1 Σ−1

1 µ1 −
∂
∂Σ1

ln |Σ0|
|Σ1|

)

=
1
2
(
−Σ−1

1 Σ0Σ−1
1 − Σ−1

1 µ1µT
1 Σ−1

1 + Σ−1
1
)

=
1
2Σ−1

1
(
−Σ0Σ−1

1 −µ1µT
1 Σ−1

1 + I
)

=
1
2Σ−1

1
(
I−

(
Σ0 + µ1µT

1
)

Σ−1
1
)

(C.88)

Since the optimal Σ0 = cI, we get

∂DKL
∂Σ1

=
1
2Σ−1

1
(
I−

(
cI + µ1µT

1
)

Σ−1
1
)

(C.89)

∂DKL
∂µ1

=
1
2

(
∂
∂µ1

tr(Σ−1
1 Σ0) +

∂
∂µ1

µT
1 Σ−1

1 µ1 −
∂
∂µ1

ln |Σ0|
|Σ1|

)

=
1
2

(
∂
∂µ1

µT
1 Σ−1

1 µ1

)
=

1
2
(
2Σ−1

1 µ1
)

= Σ−1
1 µ1 (C.90)
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c.19 convolutional hebbian algorithm

We will use location indices l:

• l = (x, y)

• (x, y) < (w, h) is short for 0 ≤ x < w∧ 0 ≤ y < h

• (x1, y1) + (x2, y2) is short for (x1 + x2, y1 + y2)

For a convolution layer with pooling and linear transfer function and no
bias we have:

pklf = s
(
Zk(xf,yf)

)
= s

(
Zklf

)
(C.91)

Zklf =
{
aklf+l | l < (wp, hp)

}
(C.92)

∀aklp ∈ Z
k
lf : aklp =

∑
li<(wc,hc),z<N

izlp+liw
k
(li,z) + bk (C.93)

where

• i, a and p are neurons representing input, convoluted activation and
pooled output;

• iz(x,y) is the input on location (x, y) in the map of feature z;

• ak(x,y) is the activation and output on location (x, y) in the convolution
map of neuron k;

• pk(x,y) is the output on location (x, y) in the pooling map of feature k;

• N is the number of input maps, i.e. the number of input features;

• xf and yf are the coordinates of the final output neuron in the output
map;

• Zklf is the pool of neurons connected to the final output neuron;

• bk is the bias of weight configuration k;

• wp and hp are the width and height of the pool;

• wc and hc are the width and height of the weight configuration k;

• wk((x,y),z) is the weight on the connection from feature z at a relative
location (x, y) for weight configuration k.

Note that when using a linear transfer function, the activation of a convo-
luted neuron is equal to its output.
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E(pklf) =
1
2
(
pklf − µk

)2
(C.94)

Ck =
{
ojk | j < k

}
∪ {nk} (C.95)

ojk =
∑

li<(wc,hc),z<N
wj(li,z)w

k
(li,z) = wT

j wk (C.96)

nj = 1−
∑

li<(wc,hc),z<N

(
wj(li,z)

)2
= 1−wT

j wj (C.97)

Λk =
{
λjk | j < k

}
∪ {λk} (C.98)

where

• E(pklf) is the objective function of output neuron k;

• Ck is the set of constraints for output neuron k;

• ojk is an orthogonalization constraint between the weight vectors of
neuron j and k;

• nj is a normalization constraint on the weight vector of neuron j;

• wj is the vector containing all weights of weight configuration j;

• Λk is the set of Lagrange multipliers for output neuron k;

• λjk is the Lagrange multiplier for orthogonalization constraint ojk, i.e.
λjk = λojk ;

• λj is the Lagrange multiplier for normalization constraint nj , i.e. λj =
λnj .

For each orthogonalization constraint ojk we have a corresponding La-
grange multiplier given by λjk and for each normalization constraint nj we
have a corresponding Lagrange multiplier given by λj .
Partial derivatives with respect to the weights are given by:

∂E(pklf
)

∂w
j
(li,z)

=


∂E(pklf

)

∂pklf

∑
ak∈Zklf

∂pklf
∂ak

∂ak

∂w
j
(li,z)

if j = k

0 if j 6= k

(C.99)

∂aklp
∂w

j
(li,z)

= izlp+li (C.100)

∂E(pklf
)

∂wk
(li,z)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li (C.101)
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∂olk
∂w

j
(li,z)

=


wl(li,z) if j = k

wk(li,z) if j = l

0 otherwise

(C.102)

∂nk
∂w

j
(li,z)

=

 −2wk(li,z) if j = k

0 if j 6= k
(C.103)

We can fill in the partial derivatives of the orthogonalization Lagrange
multipliers in formula C.60 and simplify:

∂L̃(lf,k)
(wk,Λk)

∂λgk
=

∑
li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂E(pklf
)

∂wk
(li,z)

+
∑
c∈Ck

λc
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂cm
∂wk

(li,z)

=
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂E(pklf
)

∂wk
(li,z)

+
∑
j<k

λjk
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂ojk
∂wk

(li,z)

+ λk
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂nk
∂wk

(li,z)

=t1 + t2 + t3 (C.104)
where

• M is the number of output maps, i.e. the number of weight configura-
tions.

t1 =
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂E(pklf
)

∂wk
(li,z)

=
∑

li<(wc,hc),z<N
wg(li,z)

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

∑
li<(wc,hc),z<N

wg(li,z)i
z
lf+lp+li

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aglf+lp (C.105)



170 proofs

t2 =
∑
j<k

λjk
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂ojk
∂wk

(li,z)

=
∑

j<k,j 6=g
λjk

∑
li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂ojk
∂wk

(li,z)

+ λgk
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂ogk
∂wk

(li,z)

=
∑
j<k

λjk
∑

li<(wc,hc),z<N
wg(li,z)w

j
(li,z)

+ λgk
∑

li<(wc,hc),z<N

(
wg(li,z)

)2

=
∑
j<k

λjkwT
awj + λgkwT

g wg (C.106)

t3 =λk
∑

li<(wc,hc),z<N

∂ogk
∂wk

(li,z)

∂nk
∂wk

(li,z)

=λk
∑

li<(wc,hc),z<N
wg(li,z)

(
−2wk(li,z)

)

=− 2λk
∑

li<(wc,hc),z<N
wg(li,z)w

k
(li,z)

=− 2λkwT
awk (C.107)

∂L̃(lf,k)
(wk,Λk)

∂λgk
=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aglf+lp

+
∑
j<k

λjkwT
awj + λgkwT

g wg − 2λkwT
awk (C.108)

At the optimum the constraints are met; since we are trying to find the
optimum we will suppose the parameters are in the feasible space. We also
know that at the optimum, the partial derivative of the modified Lagrangian
w.r.t. any Lagrange multiplier must be zero. We can therefore simplify for-
mula C.108 and derive an expression for

∂L̃(lf,k)
(wk,Λk)

∂λgk
=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aglf+lp + λgk (C.109)

λgk =−
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aglf+lp (C.110)
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Now we do the same for the normalization constraints; we fill in the partial
derivatives of the normalization multipliers in formula C.60 and simplify:

∂L̃(lf,k)
(wk,Λk)

∂λk

=
∑

li<(wc,hc),z<N

∂nk
∂wk

(li,z)

∂E(pklf
)

∂wk
(li,z)

+
∑
c∈Ck

λc
∑

li<(wc,hc),z<N

∂nk
∂wk

(li,z)

∂c
∂wk

(li,z)

=
∑

li<(wc,hc),z<N

∂nk
∂wk

(li,z)

∂E(pklf
)

∂wk
(li,z)

+
∑
j<k

λjk
∑

li<(wc,hc),z<N

∂nk
∂wk

(li,z)

∂ojk
∂wk

(li,z)

+ λk
∑

li<(wc,hc),z<N

∂nk
∂wk

(li,z)

∂nk
∂wk

(li,z)

=
∑

li<(wc,hc),z<N
−2wk(li,z)

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

+
∑
j<k

λjk
∑

li<(wc,hc),z<N
−2wk(li,z)w

j
(li,z)

+ λk
∑

li<(wc,hc),z<N
4
(
wk(li,z)

)2

=− 2
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

∑
li<(wc,hc),z<N

wk(li,z)i
z
lf+lp+li

− 2
∑
j<k

λjkwT
kwj + 4λkwT

kwk

=− 2
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp

− 2
∑
j<k

λjkwT
kwj + 4λkwT

kwk (C.111)

At the optimum, similar to the derivation of λgk, we then derive that

∂L̃(lf,k)
(wk,Λk)

∂λk
= −2

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp + 4λk = 0

λk =
1
2
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp (C.112)
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We fill substitute the expressions

L(lf,k)(wk, Λk) =E(p
k
lf) +

∑
c∈Ck

λcc

=
1
2
(
pklf − µk

)2
+
∑
j<k

λjkojk + λknk

=
1
2
(
pklf − µk

)2

−
∑
j<k

ojk
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lp

+
1
2nk

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp (C.113)

We can go further and derive:

=
1
2
(
pklf − µk

)2

−
∑
j<k

wT
j wk

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lp

+
1
2
(
1−wT

kwk

) (
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp (C.114)
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We substitute the Lagrange multipliers in the definition of the original
Lagrangian of formula C.55 for the expressions derived above and simplify:

∂L(lf,k)
(wk,Λk)

∂wk
(li,z)

=
∂E(pklf

)

∂wik
+
∑
c∈Ck

λc
∂c

∂wk
(li,z)

=
∂E(pklf

)

∂wik
+
∑
j<k

λjk
∂ojk
∂wk

(li,z)
+ λk

∂nk
∂wk

(li,z)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

−
∑
j<k

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lp
∂ojk
∂wk

(li,z)

+
1
2
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp
∂nk

∂wk
(li,z)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

−
∑
j<k

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lpw
j
(li,z)

+
1
2
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lp

(
−2wk(li,z)

)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

−
∑
j<k

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lpw
j
(li,z)

−
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

aklf+lpw
k
(li,z)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

−
∑
j≤k

(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lpw
j
(li,z)

=
(
pklf − µk

) ∑
lp<(wp,hp)

∂pklf
∂aklf+lp

izlf+lp+li

−
(
pklf − µk

) ∑
j≤k

wj(li,z)
∑

lp<(wp,hp)

∂pklf
∂aklf+lp

ajlf+lp

(C.115)
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c.20 linearity of soft arg max

The soft approximation to the arg max of f ( ·) is given by:

soft arg max
z∈Zj

f (z ) =
∑

zk∈Zj

zk
epf (zk )∑

zl∈Zj
epf (zl )


=

1∑
zk∈Zj

epf (zk )

∑
zk∈Zj

zke
pf (zk ) (C.116)

We derive:

c soft arg max
z∈Zj

f (z ) = c
1∑

zk∈Zj
epf (zk )

∑
zk∈Zj

zke
pf (zk )

=
1∑

zk∈Zj
epf (zk )

∑
zk∈Zj

czke
pf (zk ) (C.117)

Let’s suppose that f ( ·) distributes over multiplication: f (cx) = f (c)f (x).
This property holds for the linear function, the absolute function and the
square function, which are commonly used functions for f . We can then
derive that:

c soft arg max
z∈Zj

f (z ) =
1∑

zk∈Zj
epf (zk )

∑
zk∈Zj

czke
pf (zk )

=
1∑

zk∈Zj
e
p 1
f (c)

f (c)f (zk )

∑
zk∈Zj

czke
p 1
f (c)

f (c)f (zk )

=
1∑

zk∈Zj
e

p
f (c)

f (czk )

∑
zk∈Zj

czke
p

f (c)
f (czk )

(C.118)

So for p 7→ p
f (c) we have that c soft arg max

z∈Zj
f (z ) 7→ soft arg max

z∈Zj
f (cz )
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d.1 weight vector images
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Figure D.1: Weight images for EED using settings 7〉7} hp, 7〉2} hp, 7〉7} sp and
7〉2} sp.
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Figure D.2: Weight images for PSGU using settings 7〉7} hp, 7〉2} hp, 7〉7} sp
and 7〉2} sp.
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Figure D.3: Weight images for CHA-SM using settings 7〉7} hp, 7〉2} hp, 7〉7} sp
and 7〉2} sp.
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Figure D.4: Weight images for PCAEs using settings 7〉7} hp, 7〉2} hp, 7〉7} sp
(single run) and 7〉2} sp (single run).
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Figure D.5: Weight images for purely supervised learning using hard pooling and
soft pooling.
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d.2 performance
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Simple LeNet-1
7〉7} 7〉2} 5〉4}

pre p+p post pre p+p post pre p+p post

EED-bin
hp wd - - -

x 8.4 6.89

sp wd - - -
x 51.57 48.35

EED
hp wd - - -

x 5.14 4.31 5.5 5.94 23.37 7.1

sp wd - - -
x 1.6 1.94 1.97 1.47 4.9 2.15

PSGU
hp wd - 6.7 - -

x 4.7 4.87 7.57 5.89 19.42 7.4

sp wd - - -
x 3.27 4.81 7.68 2.31

CHA-D
hp wd - - -

x 18.05 19.65

sp wd - - -
x 80.1 48.35

CHA-U
hp wd - 15.36 14.71 - 17.1 - 6.53 6.16

x 7.79 7.58 5.19 7.57 7.28 8.75 8.66 5.56 5.67

sp wd - - - 4.35 9.01
x 3.77 4.06 3.78 3.95 7.57 4.43 11.88 4.35 6.39

PCAE
hp wd - - - 6.16 17.1

x 19.12 78.76 15.76 8.74 10.66

sp wd - - -
x 3.7∗ 4.3∗ 2.29∗ 3.23∗ 6.34∗ 4.86∗ 6.67∗

none
hp wd - - - - - 8.03 - - 6.31

x - - - - - 29.43 - - 5.67

sp wd - - - - - 12 - - 1.77
x - - - - - 10.91 - - 6.39

Table D.1: Average error rate of each experimented setting. (∗The experiments
on PCAEs with soft pooling function have only been performed once
or twice.)
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Simple LeNet-1
7〉7} 7〉2} 5〉4}

pre p+p post pre p+p post pre p+p post

EED-bin
hp wd - - -

x 7.88 6.55

sp wd - - -
x 48.84 46.94

EED
hp wd - - -

x 3.71 4.38 4.38 5.71 20.36 5.57

sp wd - - -
x 1.3 1.57 1.59 1.31 4.52 1.66

PSGU
hp wd - 6.54 - -

x 3.51 3.54 5.17 5.52 17.61 5.91

sp wd - - -
x 3.1 4.58 6.94 2.02

CHA-D
hp wd - - -

x 15.11 18.5

sp wd - - -
x 73.26 46.94

CHA-U
hp wd - 9.31 11.07 - 8.69 - 5.55 4.9

x 3.82 4.61 3.65 5.17 4.95 5.4 8.21 4.93 4.88

sp wd - - - 3.87 6.48
x 2.72 2.76 2.95 3.23 5.17 3.86 9.02 3.87 4.87

PCAE
hp wd - - - 5.35 8.69

x 11.37 74.4 13.67 8.04 9.05

sp wd - - -
x 3.7∗ 4.3∗ 2.29∗ 3.23∗ 5.48∗ 4.39∗ 6.42∗

none
hp wd - - - - - 6.95 - - 5.98

x - - - - - 4.45 - - 4.88

sp wd - - - - - 9.26 - - 1.44
x - - - - - 7.56 - - 4.87

Table D.2: Error rate of the best run of each experimented setting. (∗The experi-
ments on PCAEs with soft pooling function have only been performed
once or twice.)
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AE, 47
GHA , see Generalized Hebbian Al-

gorithm

activation, 8
activation function, see transfer func-

tion

backpropagation, 28
batch learning, 34
Bernoulli distribution, 49

classification, 29
convolution field, 15
convolutional Hebbian algorithm,

75, 79
convolutional neural network, 12
cross entropy, 30

deformation invariance, 22
dichotomization, 55
discrete mathematical convolution,

see mathematical convolu-
tion

dispersion, see spread
down-sampling, see pooling
down-sampling function, see pool-

ing function

eigenspace, 37
eigenvolume, 56
error function, see objective func-

tion, see Gauss error func-
tion64, 64

feasible space, 60, 150
feature map, see map
feedforward neural network, 7
full convolution, see out-of-map eval-

uation
fully connected layer, 10

fully connected layers, 7

Gauss error function, 64
Generalized Hebbian Algorithm, 44
generalized Hebbian learning, 75
gradient ascent, 27
Gram-Schmidt Orthogonalization,

146
Gram-Schmidt process, 44, 146

Heaviside step function, 61
Hebb’s rule, 42
Hebbian objective, 44
Hebbian theory, 41
hidden layer, 7
hidden neuron, see hidden layer
hyperbolic tangent function, 11
hyperparameters, 10

Karhunen-Loève transform, see prin-
cipal component analysis

limited gradient ascent, 92
loading vectors, see loadings
loadings, 37
local error, see local objective
local field, 10
local objective, 27
logistic sigmoid function, 11

map, 12, 15
mathematical convolution, 16
momentum, 28
multilayer perceptron, 7
multivariate Gaussian distribution,

62
multivariate normal distribution, see

multivariate Gaussian dis-
tribution

objective function, 26
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Oja’s rule, 45, 148
one-of-K coding, 29
online learning, 34
out-of-map evaluation, 15
overcomplete, 48

partial translation invariance, 19
pool, 20
pooled convolutional component anal-

ysis, 75
pooling, 19
pooling function, see pooling func-

tion, 22
principal axes, 37
principal component analysis, 37
principal components, 37
principal subspace, 37
probability integral transform, 65

random restart, 30
recurrent neural network, 9
regularization term, 31

Sanger’s rule , see Generalized Heb-
bian Algorithm

softmax activation function, 29
spread, 53
sub-sampling, see pooling
sub-sampling function, see pooling

function
summarization, see pooling
supervised learning, 25

teacher signal, 26
tied weights, 47
total pooling layer, 19
transfer function, 8
translation invariance, 19

unsupervised learning, 25, 26
update rule, 27

valid convolution, 15

weight, 8
weight decay, 31
weight sharing, 10, 14
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