
MASTER’S THESIS

Efficient Classification and Unsupervised
Keyphrase Extraction for Web Pages

Tim Haarman
s2404184

Department of Artificial Intelligence
University of Groningen, The Netherlands

Primary supervisor:
Dr. M.A. Wiering
(University of Groningen)

External Supervisor:
Drs. B.M. Zijlema
(Dataprovider.com)

July 10, 2019

http://www.rug.nl

i

Abstract

With the ever increasing size of the World Wide Web, indexing and searching through all Web
pages is becoming increasingly difficult. An effective analysis and categorization of Web con-
tent therefore requires an automated approach. However, the open nature of the Web causes it
to be plagued by noise and general inconsistency, making it difficult for heuristic approaches
to be effective. In this thesis we investigate how information can effectively be extracted from
Web pages in two tasks: keyphrase extraction and Web page classification.

Keyphrase extraction is a popular field in natural language processing (NLP), although it is
rarely applied to Web pages. We therefore propose a novel unsupervised keyphrase extraction
method called WebEmbedRank, which is specialized at extracting keyphrases from hypertext
documents. This method combines the extraction power of a state-of-the-art keyphrase extrac-
tion method with a weighting process based on the structural information in the HTML code
of a Web page. To evaluate this new method we created a gold-standard dataset, and used this
to compare the results of WebEmbedRank with several state-of-the-art keyphrase extraction
methods. This showed that our newly proposed method was significantly better at extracting
keyphrases from Web pages compared to all other methods.

We furthermore compared several methods to automatically categorize Web pages. Mul-
tiple baseline models, convolutional and recurrent neural networks were trained on a dataset
consisting of more than one million company Web pages with corresponding industrial cat-
egory labels. This showed that overall the recurrent neural networks achieved the highest
classification scores. Especially the model with GRU cells was found to be a good choice, as
it achieved scores similar to the LSTM but required less time to make new predictions. While
the recurrent neural networks generally achieved the highest classification scores, it came at the
cost of highly increased prediction times for classifying new samples compared to the baselines
and simpler feed forward neural networks. Finally, we also tested the impact of different pre-
trained word embeddings on the classification. We found that the choice of word embedding
model did not seem to have a large effect on the results, indicating that they generalize well for
the current task.

ii

Acknowledgements

First and foremost I want to thank my primary supervisor Dr. Marco Wiering, whom I could
always reach out to for advice. I also want to express my gratitude to my external supervisor
Bastiaan Zijlema, and to all my other coworkers at Dataprovider.com. They gave me new in-
sights for my project, helped with constructing the keyphrase evaluation dataset, and generally
made my time working on this thesis genuinely enjoyable.

Furthermore, I want to thank my parents for their unrelenting support, without whom I
never would have gotten to this point. Last, but most certainly not least, I want to thank my
girlfriend Maureen. She offered tremendous help in proofreading the early versions of this
thesis, and provided me with an invaluable source of motivation throughout the project.

Tim Haarman
July 10, 2019

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Word Representations 4
2.1 Count Vectorization . 4
2.2 Word Embeddings . 4

2.2.1 Word2vec . 5
2.2.2 GloVe . 6
2.2.3 FastText . 8
2.2.4 Contextual Word Embeddings . 9

3 Keyphrase Extraction 11
3.1 TFIDF . 11
3.2 Structural Weighting . 12
3.3 Graph-based Ranking . 13
3.4 Embedding-based Ranking . 14
3.5 WebEmbedRank . 16

4 Classification 19
4.1 Logistic Regression . 19
4.2 Random Forest . 21
4.3 Support Vector Machine . 22
4.4 Multilayer Perceptron . 23

4.4.1 Activation Functions . 23
4.4.2 Training . 24
4.4.3 Vanishing & Exploding Gradient Problem 26

4.5 Convolutional Neural Networks . 26
4.5.1 C-CNN . 27
4.5.2 Character-level CNN . 28

4.6 Recurrent Neural Networks . 29
4.6.1 Bidirectional RNNs . 30
4.6.2 Long Short-Term Memory . 31
4.6.3 Gated Recurrent Unit . 32

4.7 Attention Networks . 33
4.7.1 Hierarchical Attention Network . 33

5 Experimental Setup 35
5.1 Text Extraction & Preprocessing . 35
5.2 Datasets . 36

5.2.1 Keyphrase Extraction . 36

iv

5.2.2 Classification . 36
5.3 Keyphrase Extraction . 37
5.4 Web Page Classification . 38

5.4.1 Word Embeddings . 38
5.4.2 Baselines . 39
5.4.3 Neural Networks . 40

6 Results 41
6.1 Keyphrase Extraction . 41
6.2 Web Page Classification . 42

6.2.1 Timing . 43

7 Discussion & Conclusion 45
7.1 Keyphrase Extraction . 45
7.2 Classification . 46

7.2.1 Word Embeddings . 48
7.2.2 Classification Efficiency . 49

7.3 Conclusion . 50

Bibliography 51

A SIC Codes 57

B HTML Preprocessing Tags 59

v

List of Figures

2.1 Two Word2vec model architectures as proposed by Mikolov et al. [62] (image
taken from [82]). 6

2.2 The TagLM architecture for creating embeddings from text sequences (image
taken from [68]). 9

3.1 PV-DM variant of Doc2vec (image taken from [50]). 15

4.1 Example of a logistic regression curve and decision boundary for binomial data. 20
4.2 Convolutional neural network for text processing with multiple filter widths

(image taken from [47]). 28
4.3 Character level convolutional neural network proposed by Zhang, Zhao, and

LeCun (image taken from [88]). 29
4.4 Schematic overview of a standard bidirectional RNN for text classification. 30
4.5 Example of a bi-directional LSTM with an attention mechanism (image taken

from [90]). 32
4.6 Overview of the architecture of the HAN, using attention layers at both the word

and sentence level (image taken from [85]). 34

5.1 Class distribution of first and second level SIC-codes. The outer layer show the
10 divisions, the inner layer the 84 second layer two-digit codes. 37

7.1 Normalized confusion matrix showing the ratio of classifications for each class
for the GRU classifier using fastText embeddings. 48

vi

List of Tables

2.1 Example of word co-occurrence probabilities and ratios for four example probe
words, taken from [67]. 7

3.1 The weighting scheme for candidate phrases using WebEmbedRank. n is the
number of words in the phrase. 17

5.1 Results of grid-search on bag-of-words classifiers. F1 indicates the mean micro-
F1 measure, s.d. shows the standard deviation on the test score over the 5 folds. . 39

6.1 Scores of WebEmbedRank compared to various other state-of-the-art keyphrase
extraction methods on the Web page dataset. P denotes the precision, R the recall
and F1 the micro-F1 score. The highest scores are marked in bold. 42

6.2 Results of classification for different embedding and classification methods. The
reported scores are the micro-F1 measures for the first level (division) and second
level (SIC) category classification tasks, with the best results marked in bold. . . 43

6.3 Mean prediction times in seconds for the various classifiers per 10,000 samples. . 44

A.1 Full list of all first and second level SIC codes used for classification 57

B.1 Special tags during HTML preprocessing. All style tags are unwrapped, their
contents being placed directly in the parent node. Text in the invisible tags is
ignored (unless explicitly retrieved, such as the description) 59

1

Chapter 1

Introduction

The World Wide Web is one of the largest sources of publicly available textual data, with esti-
mates of the size of the indexed Web ranging up to 50 billion pages [8]. Despite its size, sets of
Web pages that span multiple domains are not frequently used in natural language processing
(NLP) tasks. A possible explanation for this can be found in the lack of a consistent structure in
Web pages. Corpora of old books, tweets or articles from static domains such as Wikipedia gen-
erally provide consistently structured, continuous and relatively clean sources of data, which
are therefore easier to analyze and use than a set of Web pages that highly vary in length, struc-
ture, and content. As there are many of these corpora available, noisy and inconsistent sets of
data such as a corpus of cross-domain Web pages are often avoided.

Nevertheless, being able to accurately analyze and categorize Web pages can be of great im-
portance for many services. For example, being able to automatically produce fitting keyphrases
and category labels for Web pages can make the World Wide Web easily searchable. This also
makes it an interesting topic for Dataprovider.com, which is a company that indexes and struc-
tures the data on the Web to make it more accessible and insightful. They offer a large variety
of information about the content of the World Wide Web, such as where Web pages are hosted,
whether they are an e-commerce store, if they have SSL certification, and much more. At the
time of writing Dataprovider.com has indexed and analyzed more than 281 million websites.
This makes finding a method that can automatically and accurately categorize the Web an in-
teresting task for Dataprovider.com, as it helps with further structuring their data.

In essence, this problem can be treated as any other NLP task, viewing the Web page as a
text document. Two fields in NLP that are relevant for this are keyphrase extraction and doc-
ument classification. Each of these are active fields of research, which have seen many recent
developments. A good example of this is the introduction of word embeddings. Word em-
bedding techniques map individual words to dense, continuous vectors in which the semantic
relations between words are represented. Although the original concept has existed for longer,
word embedding techniques started to become popular in 2013 with the release of Word2vec
[62]. Since then, they have been used in some form in a large variety of subfields in NLP re-
search [52].

This new way of encoding text has also sparked new innovation in the approaches to un-
supervised keyphrase extraction. In this field graph-based methods have been popular for a
long time [59, 53, 11, 10]. These methods often utilize word co-occurrence information from the
document to rank keyphrases based on their relevance. Recently a new method was proposed
that improved on the state-of-the-art graph-based methods using word embeddings [5]. Word
embeddings encode the semantic relations between words, which can be used to select fitting
keyphrases. By comparing each candidate keyphrase from a text with their similarity to the
document as a whole, it is possible to extract only the most relevant phrases. This new method
led to state-of-the-art results on several keyphrase extraction tasks.

Being able to encode the meaning of words has also caused document classification meth-
ods to largely shift towards using word embeddings, which has since become the standard
way to encode text documents. The low dimensional and dense representation makes many

Chapter 1. Introduction 2

classifiers easier to train, and the encoded relations have shown to improve classification re-
sults [47]. The ability to create semantic embeddings on the word or even character level has
furthermore enabled more complex approaches, such as the use of convolutional and recurrent
neural networks.

However, the vast majority of new NLP research is focused on standard text documents
like journal articles or news stories. As Web pages are made up of hypertext, their contents
are inherently different from most other types of documents. Apart from the aforementioned
inconsistency, Web pages often contain many small snippets of texts, and may contain large
amounts of irrelevant text. It is therefore not directly evident that the results from the current
state-of-the-art methods transfer well to Web content. We therefore want to investigate how
we can parse and extract useful information from Web pages, and how well existing methods
transfer to this domain. The main question this thesis aims to answer is formulated as follows:

How can Web pages be indexed effectively and efficiently based on the available textual and
structural information?

In order to find an answer to this, we break down the problem into the following secondary
questions:

1. How can the most relevant keyphrases be extracted from a Web page?

2. Which classification methods can most accurately predict Web page categories?

3. What is the effect of different pre-trained word embedding models on classification?

4. Are the state-of-the-art classification methods computationally efficient enough to be
used in practice in large scale applications?

This thesis attempts to answer these questions in two main parts, being keyphrase extraction and
Web page classification.

In the first part we look at the best way to extract keyphrases from Web pages. The availabil-
ity of relevant keyphrases can enable effective searching for specific Web pages across a large
corpus. Additionally, keyphrases can provide a quick summary of any given Web page. This
process of assigning the most important keyphrases to documents is a task humans are good
at, but is also a highly laborious process. With collections of Web pages growing to the size
of hundred millions of pages manual annotation becomes unfeasible, requiring an automated
approach. In the past various methods for extracting keyphrases from documents have been
proposed, but very few can make use of the extra structure an HTML page provides. We there-
fore propose WebEmbedRank, a novel approach that incorporates the positional information
extracted from the HTML into a state-of-the-art keyphrase extraction method. We furthermore
show that this method significantly increases the accuracy of the extracted keyphrases com-
pared to several baselines and other state-of-the-art methods that do not incorporate structural
information.

In the second part several approaches to classify Web pages are investigated. Over the
past years a myriad of document classification methods have been proposed, however they
are rarely applied to unconstrained domains such as Web pages. These methods are usually
evaluated based on clean datasets. Contrary to this, the text that can be retrieved from Web
pages can be highly noisy, for example due to broken HTML code or large sections of text that
are not directly relevant to the type of Web page. Additionally, the individual text segments are
often very short and inconsistently written across Web domains. Due to the size of the Web and
its high variability it is not possible to either manually check all Web pages, or to devise some
preprocessing steps that can filter out all noise. In this thesis we therefore aim to find how well
these methods perform outside of a controlled experimental setting, where some noise in the
input is unavoidable. Additionally, we are also interested in the computational efficiency of
the methods when making predictions for new samples. The focus in the past years has largely

Chapter 1. Introduction 3

shifted towards very deep neural networks, and while these have yielded very impressive
results, some require a lot of computational resources. In order to make a balanced decision we
want to contrast the potential gain in accuracy of some methods with their execution time.

This thesis is structured as follows. In Chapter 2 the background behind different types of
word representations is given. In Chapter 3 related work for keyphrase extraction is discussed,
and we propose WebEmbedRank, our new method for keyphrase extraction from Web pages.
Followed by this, in Chapter 4 various traditional and more recent methods for document
classification are discussed. In order to evaluate WebEmbedRank and several classification
methods experiments were conducted, which are described along with the setup of the meth-
ods in Chapter 5, followed by the results in Chapter 6. Finally, we end the thesis with a final
discussion and conclusion about the findings in Chapter 7.

4

Chapter 2

Word Representations

One of the main challenges for any natural language processing (NLP) task is to determine how
to represent text in a computer readable form. Whereas humans have an inherent understand-
ing of language, computers do not. To be able to work with data in a computational sense, text
needs to be transformed to a numeric format that supports such processing. More specifically,
the standard way to do this is to create a vector space model (VSM) of the text [70], turning text
sequences into vector representations. Numerous methods have been suggested to perform
this transformation. In this section some of the most notable and recently proposed methods
are discussed.

2.1 Count Vectorization

One of the most intuitive methods to represent text in a vector space is to consider each unique
word as a separate dimension. Each word is then one-hot encoded as a sparse vector with the
length of the amount of unique words, where only the corresponding dimension of the word
is 1. In order to represent a complete text, traditionally the bag-of-words (BoW) model is often
used, which is a count vector that is the sum of the one-hot encoded word vectors of all words
in a document. It lends its name to the fact that it only uses word frequencies, and does not
preserve the order of the words. Additionally, no sense of the meaning or context is assigned to
the words. For example, the BoW vector for the sentence “Purchase two large cars” is completely
orthogonal to that of the sentence “Buy 2 big automobiles”, while it has the same intention. It
furthermore also results in large and sparse vectors, as the dimensionality is determined by the
size of the vocabulary. Nevertheless, the BoW embedding is still often used for its simplicity
and robustness.

2.2 Word Embeddings

Word embedding methods have been introduced to alleviate the aforementioned problems with
one-hot encoding of words. These methods are designed to transform large one-hot encoded
vectors to a dense and continuous vector space where contextual relations between words are
present. This means that the embeddings of words that are semantically similar are expected
to also be close to each other in the vector space. Most state-of-the-art word embedding al-
gorithms use unsupervised methods to create these vectors, based on the notion that “A word
is characterized by the company it keeps”, as originally proposed by Firth [23]. This suggestion
uses the intuition that words that appear frequently in the context of each other are likely to be
semantically related. Similarly, words that often occur in the same context are also expected to
have similar semantic properties.

The core idea to create models of semantic similarity using the properties observed in a
large corpus is not new, and are also known as distributed semantic models (DSM). A popular
example of a DSM is latent semantic analysis (LSA). LSA constructs a matrix of count vectors

Chapter 2. Word Representations 5

for a large set of documents from a corpus. By applying singular value decomposition to this
matrix, it reduces the dimensionality and captures a generalized semantic model based on the
distribution. The resulting model can then be used for several NLP tasks, such as comparing
documents based on their semantic similarity. This method later inspired other popular meth-
ods, like the topic modelling approach known as latent dirichlet allocation [6]. As these models
leverage the statistical information of word distributions across documents, they are also called
statistical models.

The term word embedding was originally coined by Bengio et al. in 2003, who introduced
the neural network language model (NNLM) to construct a DSM [4]. Contrary to the aforemen-
tioned methods, the NNLM was trained to predict words based on a small window of context,
instead of factorizing a matrix of statistical information about a document. By doing so this im-
plicitly creates dense and continuous word representations in the hidden layer of the network.
This type of approach to create word representations is therefore also known as a prediction
model.

2.2.1 Word2vec

Although the NNLM was the foundation for many current word embedding techniques, the
large shift towards word embeddings in a variety of NLP task largely came after the introduc-
tion of Word2vec by Mikolov et al. [62]. A large problem with the NNLM proposed by Bengio
et al. was its complexity. Training relatively small 100-dimensional word embeddings for only
5 epochs on the AP News corpus (16 million words) took the authors approximately 3 weeks
using 40 CPUs. Instead of making a more complex model to increase the accuracy, Mikolov et
al. proposed a simpler model that could feasibly be trained on larger datasets. The neural mod-
els they proposed were shallow networks with only a single linear (hidden) projection layer,
allowing it to be trained on datasets consisting of more than a billion words. With Word2vec
they proposed two new architectures: the continuous bag-of-words (CBOW) and skip-gram mod-
els. With it they also publicly released a toolbox1 with implementations of their algorithms
and models that were pre-trained on large datasets, making it easy to implement in other NLP
tasks.

The CBOW variant of Word2vec was trained to predict a word given its context, as shown
in Figure 2.1a. The input consists of C one-hot encoded word vectors. As the projection layer
is shared for all input words, the input vectors are averaged in the projection layer, hence
the name continuous bag-of-words. Notable here is the lack of a hidden layer with a non-linear
activation function, which according to the authors was the main cause of complexity in the
NNLM.

As shown in Figure 2.1b the skip-gram method is essentially a reversed CBOW architec-
ture. Instead of predicting a word given its context, this model is trained to predict the words
surrounding a given word. Given a word sequence of size T, the objective function is defined
as follows:

1
T

T

∑
t=1

∑
−C≤j≤C,j 6=0

log p(wt+j|wt), (2.1)

where C is the fixed size of the context window. Most of the tests performed in [62] showed
better performance for the skip-gram model, although it also took more than three times longer
to train.

In an extension of their original work, Mikolov et al. later proposed modifications to make
the Word2vec algorithm more computationally efficient [61]. First of all, they found that the fre-
quent computations of the softmax function on high dimensional vectors was computationally

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Chapter 2. Word Representations 6

(a) CBOW (b) Skip-gram

Figure 2.1: Two Word2vec model architectures as proposed by Mikolov et al. [62] (image taken
from [82]).

expensive. To improve on this, they suggested that a hierarchical softmax function can be used
instead [63]. The hierarchical softmax uses a binary Huffman tree that can estimate the stan-
dard softmax output while being much easier to compute. As an alternative to this, they also
proposed to use negative sampling during the training. Usually, the loss is determined based
on the output for the complete vocabulary, including all positive and negative samples. With
a large vocabulary there are many negative samples, which is the main reason why computing
the softmax function is expensive. By only training on the output for all positive samples and
a fixed amount of random negative samples, significantly fewer outputs have to be calculated
and weights need to be updated each step, strongly increasing the efficiency. As a final im-
provement, they performed subsampling on frequent terms. Words that occur most frequently
in a corpus often contain little semantic value, as these tend to be stop words like ‘the’, ‘and’
or ’it’. By subsampling these words based on an inversed global word frequency, irrelevant
yet frequent words are strongly pruned from the dataset while relevant words remain, further
reducing the computational complexity.

2.2.2 GloVe

Pennington, Socher, and Manning introduced Global Vectors (GloVe) in 2014, arguing that both
statistical and prediction based models suffer from drawbacks [67]. They say that statistical
methods like LSA make effective use of information from the corpus as they are based on
frequency information from the whole document. Unlike this, a context-based method like
Word2vec only learns dependencies from local context. However, context-based methods cap-
ture the location and order of words in a document. According to Pennington, Socher, and
Manning, this can yield a better structured vector space, as shown by its higher performance
in the word analogy task. To deal with each of these two problems they introduced the GloVe
method.

GloVe attempts to combine the benefits of statistical and prediction models, although it is
a statistical model and therefore more like the former than the latter. It works by constructing
a global word co-occurrence frequency matrix. The core idea behind their approach lies in the

Chapter 2. Word Representations 7

Table 2.1: Example of word co-occurrence probabilities and ratios for four example probe
words, taken from [67].

Probability and Ratio k = solid k = gas k = water k = fashion

P(k | ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P(k | steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P(k | ice)/P(k | steam) 8.9 8.5× 10−2 1.36 0.96

use of word co-occurrence ratios rather than pure frequencies. This can best be illustrated with
the example provided by Pennington, Socher, and Manning [67]. First, let Xij be the number of
times a word i occurs in the windows of a word j. Pij and Xi are then defined as follows:

Pij = P(j | i) =
Xij

Xi
=

Xij

∑k Xik
. (2.2)

To illustrate the benefits of considering probability ratios instead of raw occurrence probabili-
ties, consider the terms in Table 2.1. This shows the raw probabilities for the terms ice and steam
in the context of four probe words k, extracted from a 6 billion word corpus. It also shows that
only when the ratio is considered, it is easy to find discriminative words for each term by look-
ing how far they diverge from a ratio of 1. For example, solid is more discriminative for ice
as the probability ratio is much greater than 1, and for gas and steam vice versa. Additionally,
it shows that non-discriminative words for both steam and ice like water and fashion get scores
close to 1.

The above intuition lead Pennington, Socher, and Manning to propose a method that could
make use of this information. As shown in the example above, the scores depend on three
words: two target words and one context word. This leads to the most general form of the
model:

F(wi, wj, w̃k) =
Pik

Pjk
, (2.3)

with word vectors w ∈ Rd and context vector w̃ ∈ Rd. The definition of F is devised based on
some constraints. First of all, as a vector space consist of a linear structure, F can be constricted
to only use the difference between two target words, resulting in:

F(wi − wj, w̃k) =
Pik

Pjk
. (2.4)

They furthermore want to avoid F from mixing vector dimensions in non-linear ways, which
is prevented by taking the dot product of the arguments:

F((wi − wj)
T · w̃k) =

Pik

Pjk
. (2.5)

A problem that now needs to be solved is that it should be invariant to swapping w ↔ w̃ and
also X ↔ XT, as the difference between a normal and a context word is irrelevant, and can be
exchanged. The authors therefore require F to be a homomorphism for the groups (R,+) and
(R>0,×). This means that any function F(A+ B) with A, B ∈ R can be rewritten as F(A) ∗ F(B)
while yielding the same results. This also implies that F(A− B) can be rewritten as F(A)/F(B),
which allows us to rewrite the lefthand side of Equation 2.5:

F((wi − wj)
T · ŵk) =

F(wT
i · w̃k)

F(wT
j · w̃k)

, (2.6)

Chapter 2. Word Representations 8

which can by solved using Equations 2.2 and 2.5, from which can be concluded that F = exp,
yielding:

wT
i · w̃k = log(Pik) = log(Xik)− log(Xi). (2.7)

Finally, the log(Xi) in Equation 2.7 prevents it from being symmetrical (thus preventing invari-
ance to swapping). As this term does not depend on the context term k, it can be changed to a
bias bi. In order to keep the symmetry, a similar bias b̃k is also added, resulting in:

wT
i · w̃k + bi + b̃k = log(Xik). (2.8)

While this relatively simple model works, the authors argue that it suffers from treating all co-
occurrences equally. Word pairs that only appear together once in the entire corpus are given
the same weight as ones that occur very frequently, making it susceptible to noise. To deal with
this, they propose to transform Equation 2.8 to a least squares problem, and add a weighting
factor in the cost function. Given a vocabulary of size V, they define this new model as follows:

J =
V

∑
i,j=1

f (Xij)(wT
i · w̃j + bi + b̃j − log(Xij)

2), (2.9)

where f (Xij) is the weighting function. This function can be defined in several ways, but the
authors propose the following:

f (x) =

{
(x

xmax
)α if x < xmax

1 otherwise
. (2.10)

where xmax is a predetermined constant that signifies the cutoff point, and α a parameter that
the authors suggest setting to 0.75, which they empirically found to work well. They further
show that GloVe can outperform other embedding methods like Word2vec, and can also be
more efficient to train than window based methods. However, it is also noted that the complex-
ity of GloVe scales quadratically with the size of the vocabulary. This makes it more efficient
for datasets with smaller vocabularies compared to Word2vec, while often being less efficient
for large datasets.

2.2.3 FastText

In 2016 a new extension to Word2vec was proposed named fastText [7, 42]. Bojanowski et al.
argue that previously suggested word embedding methods suffer from limitations raised by
ignoring the morphology of a word, as they assign a separate vector to each word. They there-
fore proposed training the embeddings by breaking up words into character n-grams. Word
boundaries are also included (marked by < and > for word start and end respectively), along
with the complete word itself. The vector of a word is defined as the sum of the embeddings
of all n-grams. For example, the set of n-grams representing the word ‘anti’ with n = 3 is:

{<an, ant, nti, ti>, <anti>}

It is important to note the importance of the word boundaries, which in this case make sure
that the word ’ant’ with corresponding sequence <ant> is not the same as the ‘ant’ in ’anti’. The
authors used all n-grams with 3≤n≤6, however suggested that other sets of n-grams could also
be considered.

This approach has several advantages. By constructing embeddings from the character n-
grams in a word, it can produce relevant embeddings for so called out-of-vocabulary words that
did not occur in the training set. For example, if a term like ‘antigravity’ did not occur during

Chapter 2. Word Representations 9

Figure 2.2: The TagLM architecture for creating embeddings from text sequences (image taken
from [68]).

training but from the bag of n-grams the words ’anti’ and ’gravity’ are known, it can still create
an embedding of it by combining the n-gram vectors. In a similar manner fastText can produce
accurate embeddings for misspelled words, slang, or words that occur in various forms or
tenses. Additionally, it does not have to learn separate vectors for different morphological
forms of the same word. This finally also enables it to produce better embeddings for rare
words. Even if a word occurs only a handful of times in a corpus, it is likely that it still shares
character n-grams with other, more frequent words. In this way that word can still be assigned
a robust embedding.

By using subword information fastText achieved higher accuracies than both the CBOW
and skipgram variants of Word2vec on word similarity and analogy tasks. The improvements
were most noticeable for languages other than English, such as German and Russian. As these
languages feature more declensions, the use of subword information becomes more important.
Additionally, German contains many rare words, as multiple words that express one thing are
often compounded. For example, the English phrase ‘hotel room key’ translates to ‘hotelzimmer-
schlüssel’ in German. Not treating all declensions and compound words as unique tokens that
each required a separate representation therefore significantly increased the accuracy of the
embeddings.

2.2.4 Contextual Word Embeddings

Recently the state-of-the-art in word embeddings and NLP in general saw a large shift towards
contextualized word embeddings. The main idea behind this approach is that the context a
word occurs in can drastically affect what it represents. The previously mentioned embedding
methods generate a vector space model where each word in the vocabulary is semantically
represented with a fixed vector. However, language is dynamic and polysemic, meaning that
words in different contexts do not always have the same meaning. For example, the word ‘stick’
has a very different meaning in the sentences “The dog grabs a stick” and “Stick to the plan!”.

Chapter 2. Word Representations 10

This problem led McCann et al. to propose the Context Vectors (CoVe) method to incorpo-
rate context into GloVe embeddings [58]. They did this by leveraging pre-trained sequence-to-
sequence translation models. They first trained an encoder-decoder translation model to trans-
late English to German text, using bi-directional LSTMs and an attention mechanism (which
are discussed in more detail in Section 4.6). This model is referred to as the MT-LSTM. The rep-
resentations learned by the model were then used to generate separate context embeddings.
The CoVe vectors are created by extracting the output vectors of the MT-LSTM:

CoVe(w) = MT-LSTM(GloVe(w)). (2.11)

After this the GloVe and CoVe vectors are concatenated to get a final vector for classification
tasks:

w̃ = [GloVe(w); CoVe(w)]. (2.12)

By concatenating both vectors, the power of the standard GloVe embeddings trained on bil-
lions of tokens is still present, while it also encodes the context it appeared in. Because this pro-
cess depends on GloVe vectors, it still cannot create embeddings for out-of-vocabulary (OOV)
words. McCann et al. suggest to use zero-vectors for OOV words instead.

In 2017 Peters et al. proposed tagLM, a text sequence tagger trained using bi-directional
language models [68]. Instead of using the hidden layer from a shallow neural network as
the embedding, they proposed using the hidden state from a bidirectional recurrent neural
network. First, text is tokenized into single characters. Using either a convolutional or recurrent
neural network these tokens are turned into token representations, which are fed into a bi-
directional recurrent neural network to form token embeddings. This embedding network is
trained on a language modelling task, similar to the prediction task Word2vec is trained on.
They then used the resulting embeddings in a sequence tagging model, as shown in Figure 2.2.
While this method was effective, it focused on the fairly specific task of sequence tagging.

To provide a more general approach, Peters et al. recently proposed the Embeddings from
Language Models (ELMo) architecture. This paper builds on their aforementioned TagLM
method, but instead focuses on more general word embeddings [69]. The ELMo method is
highly similar to the embedding section of their earlier work, with the main difference from
TagLM being that it uses the outputs of all recurrent layers rather than only the final output
layer. This means that the resulting word embeddings are created by taking a weighted aver-
age over all recurrent layers, which the authors have shown to consistently increase the per-
formance of the model. Similar to CoVe, for classification the final embedding vector is created
by concatenating the original token representation created in the first layer with the context
embedding from the language model. An advantage of ELMo over CoVe is that it works on
a character basis, which means that unlike CoVe it can produce embeddings for OOV tokens.
Additionally, the MT model from CoVe requires labeled data to be trained, whereas ELMo
can be trained in an unsupervised manner. By using the information from multiple layers of
bidirectional language models, ELMo has furthermore shown to be more effective than both
TagLM and CoVe.

11

Chapter 3

Keyphrase Extraction

In order to index and provide summaries of Web pages, it is interesting to see how the most
relevant phrases from a page can be extracted. However, doing this is not a trivial task. Web
pages are highly inconsistent, and can contain a large number of phrases that are not directly
relevant to the page. We will therefore look at several known methods for keyphrase extraction,
and how we can adapt these methods to work well with Web page documents.

The field of keyphrase extraction can be split into supervised and unsupervised methods.
In the supervised approach the extraction can generally be considered as a binary classifica-
tion problem, where candidate phrases are classified as either a keyphrase or a non-keyphrase
[32]. While they can yield good results and can outperform unsupervised methods [53], su-
pervised methods also come with some difficulties. First and foremost, a supervised approach
requires a large set of annotated data, which is very laborious to construct and as far as we
know there is no suitable large dataset for this task openly available. Additionally, most su-
pervised methods are domain and language specific [5, 54], while the World Wide Web spans
many different languages. This entails that extending a supervised system to another language
requires re-annotating the data and training new classifiers for each language. Considering
this, we focused on unsupervised extraction methods that can extract keyphrases based solely
on the information available on the Web page.

A further distinction can be made between keyword extraction and keyphrase extraction, al-
though in practice the terms are often used interchangeably. The former consists of finding
singular words that can effectively summarize the content of the document, whereas the latter
can be a short phrase consisting of multiple words (often referred to as n-grams). The advantage
of only looking for keywords is that only considering individual words is generally simpler and
can be more computationally efficient, as it does not require evaluating all possible combina-
tions of word n-grams. However, single words are often not sufficient in summarizing the core
of a document. For example, given a website about San Francisco, both ‘San’ and ‘Francisco’ are
not suitable keywords on their own. Leaving both words out is not desirable either, as they are
crucial to describe the topic of the page. As we found the extraction of only single words to be
too limiting, we only focused on the extraction of phrases.

3.1 TFIDF

A popular statistical method to determine the importantce of certain words or phrases in a
document is to use the term frequency-inverse document frequency (TFIDF). This method consists
of two parts: the term-frequency (TF) and the inverse document frequency (IDF). The TF is higher
for words that occur more often in the document, and can simply be defined as the ratio of a
word wi in document j. A downside of only using the term frequency to determine importance
is that words do not have the same base-rate in terms of how frequently they are used, so using
only the TF would lead to common words such as ‘the’ to get high scores. This is countered by
the IDF part of the equation, which decreases as the amount of documents the word appears in

Chapter 3. Keyphrase Extraction 12

in the corpus increases [77]. Several variants of the IDF scoring exist, however most commonly
a logarithmically scaled inversed document count is used:

IDF(wi) = log(
N

df(wi)
), (3.1)

where N is the total number of documents in the corpus, and df the document frequency, de-
fined as the amount of documents in the corpus in which the word appears at least once. To get
the TFIDF score the TF and IDF scores are multiplied. This multiplication effectively leads to
a scoring mechanism that gives high scores to terms that appear frequently in one document,
but infrequently in all other documents in the corpus.

Although the TFIDF measure is simple and effective for filtering out irrelevant words, it
works based on assumptions that may not always hold true for keyphrase extraction. The
main assumption that can cause problems is that relevant words do not occur in many other
documents. However, some words that occur on many webpages may still be relevant terms.
For example, there are many online webshops, many of which will have terms such as ‘shop-
ping’ or ‘store’ on their homepage. Because of their relatively high occurrence frequency, the
TFIDF score decreases for these terms, even though these are relevant keyphrases for this type
of Web page.

3.2 Structural Weighting

As mentioned before, Web pages are inherently different from normal text documents, as they
are constructed from hypertext (or HTML code). This hypertext contains structural elements
that signify how and where parts of the content should be displayed in the rendered docu-
ment. These elements can therefore provide additional information about the importance of
certain segments of texts, which may be helpful in the extraction of keyphrases. For instance,
phrases found in the title of a Web page are intuitively more likely to be relevant than phrases
taken from a random paragraph on the page. Although the previous research on unsupervised
keyphrase extraction from Web pages is limited, it has repeatedly been shown that the HTML
element a word or phrase appears in correlates with its relevance for a page [17, 31, 89]. One ex-
ample of this is the research by Thomaidou and Vazirgiannis, who proposed an unsupervised
keyphrase recommendation system for Web pages that used hypertext location information
[80]. Their extraction method used a relevance score, which was based on word frequency in-
formation with an extra weighting scheme depending on the element a phrase was found in.
They based the weights on the locations Web page designers place the most important informa-
tion on websites, although they provide no further justification for the exact values they chose
for the weights.

This domain knowledge has furthermore been used in other NLP tasks using hypertext doc-
uments, such as classification. Riboni introduced a weighting method they referred to as the
Structure-oriented Weighting Technique (SWT) for Web page classification [72]. The idea be-
hind this weighting was to increase the classification performance by assigning higher weights
to texts in elements that were more suitable to represent a Web page, such as the title and meta
description. Their results showed higher classification performance when the extra weights
were applied, indicating that the title and meta description may contain more important terms
than the rest of the page. Similar to this, Kwon and Lee divided elements into three groups of
different significance [49]. The highest weighted group contained elements like the title, meta
description and headings. These weights were used in combination with a k-nearest neighbor
classifier to effectively assign Web pages to several categories.

This notion that the relevance of phrases may vary based on the hypertext elements they
appear in is something that can be utilized in the selection of keyphrases. By preferring phrases

Chapter 3. Keyphrase Extraction 13

from elements that have a tendency to be more descriptive for the content on a Web page, we
can potentially improve the quality of the selected keyphrases.

3.3 Graph-based Ranking

One of the main subfields in unsupervised keyphrase extraction is the graph-based approach.
This idea was first coined by Mihalcea and Tarau, who introduced an algorithm for finding
keywords in text based on the PageRank method [65] that they named TextRank [59]. The
PageRank algorithm was used by Google to rank websites, representing the websites as ver-
tices in a directional graph that were connected depending on their in- and outgoing links.
PageRank can be formally defined as a directional graph G = (V, E) where the set of vertices
V are websites and E denotes the set of edges. For a given vertex Vi, In(Vi) is defined as the
set of all vertices that point to Vi, and Out(Vi) the set of vertices that Vi points at. In the context
of websites this means there is a directed edge from each vertex to all other vertices that vertex
contains links to. The PageRank algorithm defines the score or rank of a vertex Vi as follows:

S(Vi) = (1− d) + d ∗ ∑
j∈In(Vi)

S(Vj)

|Out(Vj)|
. (3.2)

Here d is a dampening parameter that can be set between 0 and 1, which prevents pages with
no outgoing links to act as ‘rank sinks’ that accumulate all scores. The authors propose setting
this parameter to 0.85. The scores are calculated by iteratively applying this formula until
convergence.

With TextRank, Mihalcea and Tarau proposed to adapt the PageRank process to texts by
constructing a graph representation of the document, where each word is a vertex [59]. First,
all text in the document is tokenized, and part-of-speech (POS) tags are assigned to each token.
A filter for certain POS tags can then be applied. The authors recommend filtering out all
words that are not tagged as a noun or adjective. The remaining words are represented in a
graph where each word is a vertex. The links in the graphs are based on the co-occurrence of
words. A moving window of a predetermined size is passed over the text, where two vertices
are connected if their corresponding words co-occur in the window. This means that contrary
to PageRank, TextRank builds an undirected graph. TextRank makes further adaptations by
making the scoring method weighted. The authors argue that in its original domain of ranking
websites it is unusual for a website to contain multiple or partial links to other pages, which
is why an unweighted graph was used. However, when this algorithm is applied to the word
graph it is likely for multiple or partial links to exist. They therefore introduced a weighted
version of the scoring method for TextRank:

WS(Vi) = (1− d) + d ∗ ∑
Vj∈In(Vi)

wji

∑Vk∈Out(Vj) wjk
WS(Vj). (3.3)

Here the new weight parameter w is added, which can be used to add a weight to the edge.
This scoring is again applied iteratively until convergence. To avoid making the graph too large
by adding all possible n-grams, only single words are considered as candidates. Keyphrases
of multiple words are constructed afterwards by first marking all words that are potential key-
words, and if multiple marked words are adjacent in the unfiltered original text they are col-
lapsed into one keyphrase.

Several methods have since been proposed that built and improved upon the TextRank
method. Wan and Xiao proposed Singlerank [83], which is a slight adaptation of the original
TextRank. It sets the weight parameter w for the edges based on the co-occurrence frequency
of the words. This ensures that words that occur together more frequently in the document

Chapter 3. Keyphrase Extraction 14

are given a higher weight. They additionally proposed to construct phrases by filtering for
noun phrases, and scoring the phrases by summing the scores of individual words to obtain
a score for the phrase. While this method showed increased scores over TextRank, Bougouin,
Boudin, and Daille suggested that there is no justification for this scoring method [11]. They
additionally argued that summing the individual scores to obtain phrase scores leads to longer
phrases getting higher scores, even when some of the words in the phrase are irrelevant. To
solve this, Bougouin, Boudin, and Daille proposed TopicRank. In TopicRank phrases are first
clustered into topics, based on their similarity. The authors suggested placing two phrases
into the same cluster if at least 25% of their words overlap. TextRank’s ranking model is then
applied to a complete graph where the vertices are the topics, in order to assign a score to
each cluster. The keyphrases are selected by taking only the most representative candidate
from each topic cluster, starting with the cluster that got the highest score. This clustering
attempts to avoid overgeneration of similar keywords, however it can not effectively deal with
synonyms that are semantically similar, but not syntactically.

Recently, Boudin proposed a variation of TopicRank using multipartite graphs [10], which
is often referred to as MultipartiteRank. Arguing that a downside of TopicRank is that all
phrases in a single topic are seen as equally important, they proposed to model the topics
in a multipartite graph where the vertices are the words, and the partitions the topics. This
modification allowed the graph to model the relations between all words, while still being able
to represent the different clusters. They also added an additional weighting step, where the
edges between words that first occurred early on in the text were given a higher weight.

This positional weighting mechanism was similar to the concept earlier introduced by Flo-
rescu and Caragea in the PositionRank method [24]. Their motivation was to include an extra
bias based on the location of words, as they argue that important keyphrases are more likely
to be used at the start of a text. They do this by adding an extra parameter p̃, which is a vector
containing normalized positional scores for each word. The authors show two ways to calcu-
late this score. In the full model they look at the positions of all occurrences of a given word in
a document. For each occurrence a score is calculated as 1/pos(w), where pos(w) is the ordinal
position of the word. The score pi for word wi is then calculated as the sum of the scores for
all occurrences of the word. The second version they evaluated is similar, however instead of
summing the scores of all occurrences the score is determined only by the first position of the
word. Finally, all elements in the vector are normalized:

p̃i =
pi

∑n
j=1 pj

. (3.4)

This normalized positional score is incorporated in the scoring as follows, before any filtering
is applied:

WS(Vi) = (1− d) ∗ p̃i + d ∗ ∑
Vj∈In(Vi)

wji

∑Vk∈Out(Vj) wjk
WS(Vj). (3.5)

This bias naturally weighs keyphrases depending on their location in the document. Although
Web pages do not always have a well defined order in which elements are read, this bias may
prove useful when the text on a Web page is selected in a set order, based on the importance of
certain elements. This is something Florescu and Caragea also made us of in lesser extent, as
they constructed the document by concatenating the title and abstracts from papers.

3.4 Embedding-based Ranking

With the rise of word embeddings as explained in Chapter 2, new possibilities also emerged
for keyphrase extraction. Using the semantic representation of text in the form of vectors can

Chapter 3. Keyphrase Extraction 15

Figure 3.1: PV-DM variant of Doc2vec (image taken from [50]).

be very helpful in determining whether a word is relevant to a document. Recently, Bennani-
Smires et al. proposed a new method called EmbedRank that improved on the state-of-the-
art of unsupervised keyphrase extraction using text sequence embeddings. They proposed a
relatively simple yet effective algorithm that extracts phrases based only on the Web page itself
and pretrained sequence embeddings, requiring no corpus. Similar to most other methods,
EmbedRank starts with selecting candidate phrases. After tokenizing all text in the document,
part-of-speech (POS) tags are assigned to each token. Only phrases that consist of one or more
nouns and any adjectives that directly precede them are considered candidates. The candidates
are then ranked based on their similarity with the document as a whole. This is done by making
word sequence embeddings of the complete document and all the candidates. The similarity
between each candidate embedding and the general document embedding is calculated using
the cosine similarity. This metric is defined as the normalized dot product of the document and
candidate embeddings:

sim(p, d) =
p · d

‖p‖ · ‖d‖ . (3.6)

The candidates with the highest similarity to the document are selected as the keyphrases.
EmbedRank therefore ranks the phrases based on how similar, and thus descriptive they are
for the complete document.

In the original paper two methods are compared to create the document embeddings. The
first is the paragraph vectorization method that has been dubbed Doc2vec [50]. This method
is an extension of Word2vec (see section 2.2.1), proposed by the same authors. Doc2vec con-
sists of variants of both the CBOW and skipgram models of Word2vec. However, the authors
acknowledge that the former is more accurate than the latter, hence we will only consider the
adaptation of the CBOW variant. This model is also referred to as the Paragraph Vector with Dis-
tributed Memory (PV-DM) model, of which a schematic overview is shown in Figure 3.1. This
illustrates how the PV-DM model is similar to Word2vec’s CBOW model, with the addition
of a paragraph vector D. This vector is unique for each paragraph and is incorporated in the
model similar to the other word embeddings. The main difference is that where the word vec-
tors are static across paragraphs, the paragraph vector varies. This allows this vector to act as a
memory for the topic of the paragraph, hence the name of the model. Both the paragraph and
word vectors are trained using gradient descent and backpropagation, which are explained
in more detail in Section 4.4.2. By using document vectors instead of paragraph vectors this
paragraph embedding method can easily be generalized to documents. Bennani-Smires et al.

Chapter 3. Keyphrase Extraction 16

compared the Doc2vec model to Sent2vec [66], which is an extension of the more recently re-
leased fastText embedding method (see section 2.2.3). In practice Sent2vec is highly similar
to fastText, only it uses word n-grams instead of character n-grams. When only unigrams are
considered, the model is trained very similarly to Word2vec’s CBOW model, with the main
difference being that the context window covers the complete input sentence instead of having
a fixed size. Whereas Doc2vec infers document embeddings by feeding all inputs through the
network, Sent2vec averages the pre-trained word vectors in a linear pass over all words in the
input. This results in an inference complexity of O(1), meaning that the sentence embeddings
can be inferred very efficiently. In the comparison the authors of EmbedRank found that overall
Sent2vec outperformed Doc2vec in both inference quality and speed.

The authors furthermore proposed a different version of EmbedRank that incorporates a
diversity mechanism to decrease the amount of semantically equivalent keyphrases from be-
ing selected, which they refer to as EmbedRank++. This diversity mechanism is an adapted
version of the Maximal Marginal Relevance (MMR) metric, which weighs diversity against
similarity. It does this by taking into account the cosine similarities between all the candidate
embeddings. A parameter λ is used to determine the balance between the relevance (similarity
with the document) and the diversity (similarity with other candidates). This parameter can
range between 0 and 1, where a higher value indicates an increased importance of the relevance
versus the diversity, and vice versa. With a balanced value for λ candidates that are too similar
to other candidates but not as relevant are excluded. Although this version scored lower on
their evaluation set, they also showed the results of a pilot user study that suggested that users
overall preferred the sets of phrases with diversity.

3.5 WebEmbedRank

While the EmbedRank method has been shown to be capable of extracting state-of-the art
keyphrases, it does not use the positional information from the text. In the original proposal the
method is implemented for extracting keyphrases from scientific documents and news articles.
As documents from these domains consist of a single segment of continuous text, there is lim-
ited structural information available. When Web pages are treated in the same way, valuable
structural information from the hypertext is ignored. To effectively make use of this informa-
tion we propose WebEmbedRank, an extension to the EmbedRank algorithm that adds an extra
weighting scheme to allow it to take advantage of the extra structural information present in
Web pages.

The base of WebEmbedRank is similar to EmbedRank. After all text is collected from a
Web page, candidates are selected by applying a POS-filter and extracting all combinations of
adjacent adjectives, followed by at least one noun. The distance between the text embeddings
of the candidate and the document are calculated to get a similarity score. We chose to use
Sent2vec [66] to transform the text to embeddings, as Bennani-Smires et al. have shown that it
generally worked better and faster than Doc2vec [5]. We furthermore slightly altered the way
the document embedding was calculated to deal with the highly varying length of text on Web
pages. Instead of basing the document embedding on all candidates, which can sometimes be
scarce, the embedding was based on all text on the page after stop-word removal. The stop-
words were removed as these yield no semantic value and therefore only added noise to the
embedding. While lexical items other than adjectives and nouns may generally not make the
best keyphrases, they can contribute to the overall meaning of the page, and we found that
using all text improved the performance of WebEmbedRank on our evaluation set.

As the resulting cosine similarity scores can be negative, the similarity scores for all candi-
dates are normalized between 0 and 1 before the weighting. The weight is determined based
on the elements a phrase occurs in. As a phrase that appears in multiple key elements is likely

Chapter 3. Keyphrase Extraction 17

Table 3.1: The weighting scheme for candidate phrases using WebEmbedRank. n is the number
of words in the phrase.

Element Weight

Hostname 4
Title 1.5

Headings 1
Description 0.5

Others 0
Multi-word penalty -0.25 * (n-1)

to be more important than one that only occurs in one, we propose a cumulative weighting
system. This entails that for each candidate phrase, the bonus weight is determined as the sum
of all weights of the elements the phrase occurs in. Earlier work has shown that the hostname
can be a strong descriptor for a Web page [44, 45], and often consists of the most relevant words
for the page such as the brand name, or the main product or service it provides. We therefore
included a weight to increase the score for terms that occurred in the hostname. We also in-
cluded a small penalty for long phrases. As the document embedding is essentially a mean of
the word vectors in the documents, a phrase embedding has a tendency to move more towards
the mean of all word vectors as the number of words in the phrase increases. For this reason we
noticed that EmbedRank had a tendency to generate many long phrases, which may have also
been a cause for the lack of diversity described in the EmbedRank paper [5]. By adding a slight
penalty to long phrases, we bias the ranking by preferring shorter phrases, while still allowing
longer phrases to be generated if the extra words significantly contribute to the relevance of the
phrase. The proposed weights are based on an exhaustive grid search on our manually anno-
tated evaluation set. We determined the top-10 keyphrases for all Web pages in the evaluation
set for more than 24,000 combinations of weights. The set that achieved the highest average
micro-F1 score can be found in Table 3.1, using the annotated keyphrases as golden standard.
To illustrate how this bonus weight is calculated, consider a phrase that consists of two words
and appears in the title and the description, but not in hostname or headings. In this case the
bonus weight is 1.5 + 0.5− 0.25 ∗ (2− 1) = 1.75.

The complete scoring S(pi) for a candidate phrase is calculated as follows, where sim(pi, d)
is the cosine similarity between a candidate phrase embedding pi ∈ P and the document em-
bedding d, and wi the bonus weight corresponding to pi:

s̃im(pi, d) =
sim(pi, d)−min

pj∈P
sim(pj, d)

max
pj∈P

sim(pj, d)−min
pj∈P

sim(pj, d)
, (3.7)

S(pi) = (1 + wi) ∗ s̃im(pi, d). (3.8)

This scoring method allows a sentence that is semantically similar to the complete document
to get a significant boost in the ranking if it appears in one or more key locations. At the
same time phrases that are highly dissimilar to the document will get a cosine similarity score
closer to zero, making the bonus multiplier much less effective. This ensures that semantically
representative keyphrases in good locations will get a high rank, while still being robust against
irrelevant words that are placed in the important HTML elements. For completeness we also
evaluated a WebEmbedRank variant with the diversity preservation mechanism as described
in the previous section, which is referred to as WebEmbedRank++. In this case the weighting
process (Equation 3.8) is applied before the MMR filtering.

Chapter 3. Keyphrase Extraction 18

By combining both a-priori knowledge about the importance of specific elements and re-
cently developed text sequence embedding methods, we aim to provide a new method that
combines the best of both worlds. WebEmbedRank uses semantic information from the com-
plete Web page, and is strengthened with structural information where available. This com-
bination makes it more robust to the inconsistent nature of Web pages, where it can not be
assumed that any of the elements are always present.

19

Chapter 4

Classification

Classification is the task of mapping an input to one or more discrete categories. To do this,
most classification methods are tasked with finding a function f : Rn → {1, ..., k}. In the case
of this thesis, we aim to find a function that can predict the category a vectorized text sequence
belongs to. These vectors are either high dimensional bag-of-word vectors, or a set of lower
dimensional continuous word embeddings. To determine which approach is best suited for
this task, various methods that are and have been popular in the field of text classification are
compared based on their precision, recall and micro-F1 score. In this chapter an overview of
the chosen methods is given. First, some older yet robust baselines are described. Follow-
ing this we show more recent developments in text classification such as convolutional neural
networks, recurrent neural networks, and attention based networks.

4.1 Logistic Regression

Logistic regression is a popular statistical method for categorical classification problems. It
works by fitting a sigmoid (or logistic) function to binomial data, which provides a probability
distribution of the two classes. A simple example is shown in Figure 4.1, which shows how
a sigmoidal regression curve is fit to a single indicator variable to predict a binomial label.
By coding the positive label as 1 and the negative label as 0, the regression curve yields a
probabilistic value of a new sample belonging to the positive class. A classification for that
sample can then be made by setting a decision threshold based on the probability, which is
usually set to 0.5 for balanced classification. However, if either precision or recall for a class is
considered more important, this threshold can be changed accordingly. The previous example
showed how logistic regression is applied using a single variable, but in practice input data is
often multivariate. In that case a linear combination of the input variables can be used, similar
to linear regression. This results in the following equation for the regression curve:

θTx(i) = θ0 + θ1x(i)1 + ... + θjx
(i)
j , (4.1)

hθ(x(i)) = P(y(i) = 1 | x(i)) =
1

1 + e−θT x(i)
. (4.2)

The exponent makes it more difficult to determine the optimal values for θ compared to
linear regression, which can be trained using the least-squares method. Instead, gradient descent
is used to optimize the fit of the regression curve. In order to improve the fit of a standard
regression curve, we want to change the coefficients θ in a way that minimizes a loss function
J . This weight update is calculated using the partial derivative of the loss function in order to
find the direction to move the weights in such that it moves towards a local minimum:

θt+1 = θt − η
∂J
∂θ

, (4.3)

Chapter 4. Classification 20

Figure 4.1: Example of a logistic regression curve and decision boundary for binomial data.

where θ are the coefficient parameters, and η is the learning rate. Choosing a suitable value for
η is important, as a learning rate that is too low can result in slow training, whereas a value that
is too high can make the update overshoot the minimum, resulting in erratic behavior. We also
need to determine which cost function J to use. The mean squared error could be used, like is
common with linear regression, however due to the exponent this loss can become non-convex.
This means that there can be local minima, which gradient descent may get stuck in. Instead,
the logistic loss function is often used, which in this case is convex and therefore ensures that the
global maximum will be found (given that the learning rate is set correctly). This cost function
is defined as follows:

J (hθ(x(i)), y) =

{
− log(hθ(x(i))) if y = 1
− log(1− hθ(x(i))) if y = 0,

(4.4)

where y is the binary label. Since logistic regression is a binary classifier, we know that the label
is either 1 (positive) or 0 (negative). This cost function can therefore be rewritten as:

J (hθ(x(i)), y) = −(y log(hθ(x(i))) + (1− y) log(1− hθ(x(i)))). (4.5)

This is the same as Equation 4.4, as the left side is cancelled out if y = 0, and the right side
when y = 1. By taking the derivative of Equation 4.5 the gradient for a parameter j can be
defined as:

∂J
∂θj

= (hθ(x(i))− y(i))x(i)j . (4.6)

Now that we know the gradient, we can use the gradient descent method from Equation 4.3
to update the weights θ. The aforementioned only assumes updating on a single data point,
though in general training is done in batches. This is called mini-batch gradient descent, which is
further discussed in Section 4.4.2. The update equation for a batch of size m then becomes:

Chapter 4. Classification 21

θt+1 = θt − η

m

m

∑
i=1

(hθ(x(i))− y(i))x(i)j . (4.7)

By iteratively applying these weight updates, the parameters move towards the minimal loss
with respect to the input samples. The amount of iterations can be a set amount, or more
commonly the training can be stopped when the loss no longer decreases.

Logistic regression is by design a binary classifier, as it yields a single probability . A simple
yet effective method for allowing it to be used in multinomial settings is to use the one-vs-
rest approach. Given a classification problem with K classes, the one-vs-rest method trains K
separate binary classifiers - one for each class. For each class i a classifier fi is trained using all
data belonging to class i as positive samples, and all others as negative samples. After training
new samples are classified using f (x) = argmaxi fi(x).

4.2 Random Forest

The random forest classifier is an ensemble learning technique that is based on decision trees.
A decision tree is a model that is made by learning simple decision rules based on the provided
features. Decision trees are generally generated in an iterative top-down process, where con-
secutive tree splits are determined based on the feature that can best split the data at that point.
To determine what constitutes the best split, various metrics have been proposed to calculate
the impurity of a split. In general, the impurity is based on the distribution of classes among
the nodes after the split. If the nodes after a split each contain many samples of only one class,
the impurity is low, which indicates a discriminative split. One of the more popular metrics for
finding the impurity is the entropy:

i(t) = −
k

∑
j=1

p(j|t) log2 p(j|t), (4.8)

where k is the numbers of classes, and p(j|t) the fraction of data points from class j in node t.
Another method that is frequently used is the Gini impurity, which is slightly less computa-
tionally expensive to compute as it does not contain a logarithm:

i(t) = 1−
k

∑
j=1

p(j|t)2. (4.9)

One of the differences between these two methods is that for two classes entropy ranges from
0 to 1, whereas Gini ranges from 0 to 0.5. Both are measures of impurity, so splits with lower
impurity are in this case considered better. The information gain of each split is calculated for
each split by subtracting its impurity from the impurity before the split. The option that yields
the highest information gain is then chosen. This is applied in an iterative process that can
continue until all nodes are pure, however doing so may lead to overfitting, especially when
many features are considered. A common way to prevent this is to set a maximum tree depth.

One of the most prominent advantages of decision trees is that they are easy to understand,
as the resulting decision tree can be visualized to explain how the decisions are made. Addi-
tionally, thanks to its simplicity the computational cost to train a decision tree is low. However,
a common problem is that decision trees have a tendency to overfit, and are known to be un-
stable as small variations in the training data can completely change the tree that is generated
[78]. Random forests attempt to overcome these downsides through an extension of the bagging
method. Bagging is an abbreviation of bootstrap aggregating, which is a method where multiple
weak learners are trained on subsets of the data, and combined in an ensemble. This process

Chapter 4. Classification 22

has shown to improve unstable methods like decision trees by reducing the variance of a pre-
diction function [12]. Random forests extend this method by not only training the estimators
on random samples of the data, but also by using random subsets of the features for each node
split. This further improves the variance reduction, leading to more stable results [33]. A final
classification is made by a majority vote of all the trees in the ensemble.

While a random forest classifier can often produce more consistently good results, it does
lose the interpretability that decision trees offer. In general, the stability and overall perfor-
mance becomes better as the number of trees in the ensemble increases. However, including
more trees also increases the computational complexity. Depending on the problem, usually
somewhere in the tens to hundreds of trees are used.

4.3 Support Vector Machine

A support vector machine (SVM) is a classifier that attempts to optimally separate two classes in
a vector space [20]. When the data is linearly separable, the SVM aims to find an n-dimensional
hyperplane defined as w ∗ x + b = 0 that provides the largest margin between the hyperplane
and the closest data points from each class, which are also known as the support vectors. The
two classes are labeled -1 and 1, which means we are looking for a decision boundary that
satisfies the following constraints for all labels y:

w ∗ xi + b =

{
≥ 1 if yi = 1
≤ −1 if yi = −1,

(4.10)

which can be rewritten in a single line as:

yi(w ∗ xi + b) ≥ 1, ∀i. (4.11)

In a linearly separable case, there are infinite possible hyperplanes that satisfy these constraints.
What we want to find is the hyperplane that can separate the two classes with the largest
margin, also known as the maximal margin hyperplane. To do this we want to minimize the
following function subject to Equation 4.11:

1
2
||w||2, (4.12)

which can be written as a Lagrangian function with Lagrangian multipliers αi:

L =
1
2
||w||2 +

N

∑
i=1

αi(1− yi(w ∗ xi + b)). (4.13)

However, this assumes that the constraint applies that the data is linearly separable. In practice,
datasets are often not linearly separable, which the SVM addresses with two methods: soft
margins and the kernel method.

The addition of soft margins makes it possible to have a decision hyperplane that does not
perfectly separate all data points from the training set. By introducing a penalty for each data
point on the wrong side of the decision boundary instead of disallowing them completely, the
conditions for the separating hyperplane are relaxed. This is implemented by adding the slack
variables ξ, and a penalty parameter C as follows:

1
2
||w||2 + C

N

∑
i=1

ξi +
N

∑
i=1

αi(1− ξi − yi(w ∗ xi + b)). (4.14)

Chapter 4. Classification 23

Here C controls the trade-off between getting the maximum margin between the support vec-
tors and the degree to which misclassification is allowed. A low value for C allows for a large
margin that may misclassify many samples, whereas a high value for C puts more weight on
classifying all samples correctly which can in turn cause the decision hyperplane to overfit on
the training data.

Additionally, the kernel method (also known as the kernel trick) is used to map the data to
higher dimensions in which it is linearly separable. These extra dimensions are created by
kernel functions that use the inner products of pairs of features. In the resulting implicit fea-
ture space the linear classifier can be used, allowing for complex non-linear decision bound-
aries in the input space. Several kernel functions can be used, such as a linear, polynomial or
radial-basis kernel, with varying computational complexities. Because text represented in the
bag-of-words format is already very high-dimensional, it lends itself well to classification with
an SVM. This high dimensionality also makes the input data likely to be linearly separable,
causing the much more computationally efficient linear kernel to often be sufficient for good
classification [41].

In a similar fashion to logistic regression, the SVM is made to perform binary classification.
Likewise, for SVMs multi-class classification can also be implemented using one-versus-rest
classification (see Section 4.1).

4.4 Multilayer Perceptron

The multilayer perceptron is a feed-forward artificial neural network, and is considered as one
of the most basic forms of neural networks. As the name suggests, it is based on multiple layers
of perceptrons. A single perceptron is a linear classifier loosely based on the workings of indi-
vidual biological neurons [73]. It takes multiple inputs, which are turned into a single output
using a linear combination of the inputs. Often a non-linear activation function is applied to
the output. This can be represented as follows:

y = ϕ(
N

∑
i=1

xiwi + b). (4.15)

Here N is the number of inputs, x is the input vector, w the weight vector, b the bias and ϕ
the activation function. In multilayer perceptrons layers of these perceptrons sequentially feed
into each other, where the perceptrons in each layer are fully connected to all perceptrons in the
neighbouring layers. To be considered a multilayer perceptron, there need to be at least three
layers. These consist of an input layer, one or more hidden layers and an output layer.

4.4.1 Activation Functions

The non-linear property of the activation function is important, as a combination of linear func-
tions will always result in another linear function, losing all benefits of combining multiple lay-
ers. By having a non-linear activation function, the network is able to generate more complex
non-linear decision boundaries. In the original perceptrons the activation function ϕ is a step-
function where the output is 0 if the value is smaller or equal to 0, and 1 when it is larger than 0.
In this case the bias is trained and used as the threshold value that determines when a neuron
fires. However, in order to train a neural network it is useful to be able to make small changes
that gradually improve the network. Therefore continuous activation functions are more suit-
able for multilayer perceptrons. Traditionally two activation functions have been very popular,
being the sigmoid and hyperbolic tangent (tanh) function. The sigmoid is the same as used in
logistic regression (see Section 4.1) and is defined as follows:

Chapter 4. Classification 24

sigmoid(x) =
1

1 + e−x . (4.16)

The sigmoid bounds the output between 0 and 1 in a non-linear way. The tanh function is
defined as:

tanh(x) =
2

1 + e−2x − 1. (4.17)

As the equation shows, the tanh function shows clear similarities to the sigmoid function,
which is because it essentially is a scaled variant of the sigmoid. Instead of ranging between 0
and 1, the output of the tanh function ranges between -1 and 1. This makes it have a stronger
gradient during training as the derivatives are steeper. However, recently a much simpler acti-
vation function known as the ReLU has been gaining popularity:

ReLU(x) = max(0, x). (4.18)

The Rectified Linear Unit, commonly referred to as ReLU, has quickly been adopted by many
researchers and has currently become the most widely used activation function [71]. The main
reason for this can be found in both its simplicity and effectiveness. The ReLU allows networks
to be trained faster by decreasing the effects of vanishing gradients, which are further discussed
in Section 4.4.3.

The exact architecture of the multilayer perceptron can be optimized for different tasks. For
multi-class classification problems it is common practice to have one node for every class in
the output layer. The softmax function is often applied to the output layer [13], which can be
defined as follows:

σ(zi) =
ezi

∑K
j=1 ezj

. (4.19)

Here the output score is calculated for output node zi, where K is the number of output nodes.
As the name suggests, this provides a softer version of a max function. Instead of giving a hard
classification to the highest scoring node, it calculates a probability distribution over all output
nodes, allowing for a probabilistic interpretation of the output. To compare this type of output
with the categorical labels, the labels are generally one-hot encoded. This encoding produces a
sparse vector with one dimension for each class, where only the dimension that corresponds to
the label is 1.

4.4.2 Training

The network is trained by updating the weight vectors of each layer in a process called gradient
descent. Initially the weights of the network are set randomly. Then, given a training sample,
a forward pass is made by feeding the sample through the network, making a first prediction.
This prediction is compared to the desired output using a loss function to calculate the loss or
error of the given sample. Various loss functions have been proposed for different models and
purposes, but for multinomial classification problems with a softmax output layer and one-hot
encoded labels it is common to use the multinomial cross entropy (also known as the negative log
likelihood):

L(x(i)) = −
K

∑
k=1

y(i)k log(ŷ(i)k), (4.20)

where y is the actual label, and ŷ the predicted label probability. As the labels are one-hot
encoded, y acts as an indicator function. The cross-entropy loss exponentially increases as the

Chapter 4. Classification 25

predicted label deviates from the actual label, heavily penalizing predictions that are confident
yet wrong.

In order to improve the network, we want to change the weights in a way that minimizes
the loss. To effectively do so gradient descent is used, similar to Logistic Regression (Section
4.1). Just like before, gradient descent takes small steps towards a local minimum by finding
the derivative of the loss function with respect to the weight parameters and iteratively moving
in the downwards direction. However, in MLPs the output is dependent on several embedded
functions. For example, consider a simple single hidden layer MLP with an arbitrary activation
function A and loss function L. In order to find the loss for one sample given the outputs of
the hidden layer H, we calculate the following:

L(A(Z(WH))), (4.21)

where Z is the weighted input. To find the partial derivative of the loss function with respect to
the weights we need to use backpropagation [74]. Backpropagation iteratively applies the chain
rule such that the gradients can be calculated in an efficient way. This enables us to find the
gradient for a weight wi as follows:

∂L
∂wi

=
∂L
∂A
· ∂A

∂Z
· ∂Z

∂wi
. (4.22)

During training we know the output A for a given sample, as this is the output of the forward
pass ŷ. The gradient for the second set of weights w2

i in a single layer neural network can
therefore be calculated as follows:

∂L
∂w2

i
=

∂L
∂ŷ
· ∂ŷ

∂Z2
i
·

∂Z2
i

∂w2
i

. (4.23)

The gradient of the first set of weights is dependent on the layers after it, so if we want to
calculate it for a weight wi, we need to consider the output of all nodes in the following hidden
layer H. We can again apply the chain rule to calculate the gradient:

∂L
∂w1

i
=
(

∑
j

∂L
∂ŷ
· ∂ŷ

∂Z2
j
·

∂Z2
j

∂H1
j

)
·

∂H1
i

∂Z1
i
·

∂Z1
i

∂w1
i

. (4.24)

With multiple hidden layers, this chain rule can simply be applied iteratively to find the gra-
dient of the weights in all layers. However, there is much redundancy in these calculations.
Given an MLP with three hidden layers, the calculation of gradients for the second hidden
layer require the derivatives of the loss function with respect to the weights of the third hidden
layer. Consequently, to find the gradients of the first hidden layer we need to calculate the
gradients of the second and third layer. Instead of recalculating the gradients for each layer
for all weights, back propagation starts calculating the gradients at the last layer. The resulting
gradients are then stored, and used in the calculation of the penultimate layer. This process
then continues for all layers, propagating backwards through the network to efficiently calcu-
late the gradients. When these gradients are known, the weights and biases are adjusted in the
negative direction of the gradient to decrease the loss for the given training samples.

The process of standard gradient descent is very slow, as for every iteration it needs to eval-
uate and calculate the gradients of all samples in the set, after which the weights and biases
are updated. Seeing as neural networks are often applied to big data problems with millions of
samples, this quickly becomes problematic. A variant that converges faster is called stochastic
gradient descent. Instead of calculating all gradients, this method randomly selects one example
from the data set, based on which the weights and biases are updated. This results in faster
training as weights are updated more often. However, because the gradient of just a single

Chapter 4. Classification 26

sample is used the training tends to become erratic. In order to strike a balance between these
two extremes, it is standard practice to use mini-batch (stochastic) gradient descent or variants
thereof. This works by dividing the input data into subsamples of a predetermined size, called
mini-batches. By having each training step update based on a mini-batch, a balance is struck
between efficacy and efficiency. The optimal size of the mini-batches is dependent on the data,
model architecture, and hardware that is used, and is often found empirically. Two popular
optimization variants are RMSprop [81] and Adam [48]. RMSprop can make the learning more
robust by dividing the learning rate with an exponentially decaying running average of the
squared gradients for the current parameter [81]. Adam uses a similar idea of having custom
per-parameter learning rates, and is sometimes considered as an extension of RMSprop. Apart
from using the squared gradients to determine the learning rate, it also incorporates an ex-
ponentially decaying running average of past gradients (similar to stochastic gradient descent
with momentum) [48].

4.4.3 Vanishing & Exploding Gradient Problem

A large difficulty that comes with the use of gradient descent and backpropagation in artificial
neural networks is that of the vanishing gradient problem [36]. As explained before, backprop-
agation works by moving backwards through the network, computing the loss-gradients of
the layer with respect to the layer’s weights. However, the derivative of traditional activation
functions like the sigmoid (Eq. 4.16) can be small, and can quickly move towards zero for
both high and low input values. To propagate the error through layers of the network, these
small derivatives are multiplied together. This process causes the updates to decrease exponen-
tially with each hidden layer in the network. For networks with few layers this is not a large
problem, but the state-of-the-art is moving towards very deep neural networks, which in some
extreme cases can consist of more than one thousand layers [34]. Using the traditional methods
described above, the gradient will have almost completely vanished after a few layers, which
results in the initial layers of a deep network hardly or not being trained.

This problem in combination with the recent trend of using increasingly deep neural net-
works is the main reason for the quick adoption of the ReLU activation function (Eq. 4.18).
Because the ReLU has no upper bound, the derivative does not plateau for higher input val-
ues, diminishing the vanishing gradient problem. Additionally, it introduces sparsity in the
network as all neurons with zero or lower output do not fire, which has been argued to pro-
vide various benefits [25]. It may be noted that the ReLU is technically not suited as activation
function as it is not always differentiable. When the input is zero, the ReLU has no derivative.
In practice this is often solved by simply setting the derivative of a zero-input to 0, making the
derivative 1 for x > 0, and 0 otherwise.

The opposite of the vanishing gradient problem is known as the exploding gradient problem.
This can happen when the gradients become larger than 1. In this case the gradient can increase
exponentially when it is propagated through the network, causing it to ‘explode’. Consequently,
this can result in erratic behavior during the training of the network. This problem can often
be avoided by using batch normalization [39], in which the inputs of each layer are normalized
for every mini-batch, or by clipping the gradients.

4.5 Convolutional Neural Networks

The classifiers mentioned in the previous sections all take one input for a complete document
(often a bag-of-words vector), and use this to make a prediction. However, for text classifica-
tion there is one big downside to this approach: they do not take the sentence structure into
account. In order to understand the intention of a sentence, it is often not enough to only know

Chapter 4. Classification 27

which words are in a sentence and how often they occur. Consider the sentence “We only sell
to businesses, not to consumers”. Now take the following sentence, with a clearly reversed inten-
tion: “We only sell to consumers, not to businesses”. When using a count-based method, these two
sentences are treated identically, which can cause errors in classification.

Convolutional Neural Networks (CNNs) are a type of feed-forward deep neural network that
contain one or more layers that apply a convolution to a structured input. A convolution works
by passing a kernel or filter over the input data. These kernels have a fixed size, known as a
receptive field. By moving the kernel over each input location and calculating the dot product
between the receptive field and the kernel weights, a feature map is created. During training of
a CNN the weights of the kernel are optimized to find relevant patterns, allowing it to encode
topological information. These convolutional layers are often followed by a pooling layer, which
subsamples the feature map for better generalization. A popular variant is the max-pooling
layer, which subsamples by outputting only the maximum value in a window of a fixed size.
Its first appearance in machine learning was in a paper published at the end of 1989 by LeCun
et al., who used a small CNN for handwritten postal code detection [51]. Their inspiration for
this was biologically inspired, following research on the neurons in the visual cortex of a cat
[37, 57]. It is therefore no surprise that CNNs are mainly used in fields that deal with computer
vision tasks.

The usage of convolutions is however not restricted to image related tasks, as this operation
can be used for any task that can be interpreted as a sequence. This also includes texts, as a text
consists of a sequence of words (which in turn consist of a sequence of letters). By tokenizing
a text sequence and representing each token as a k-dimensional word embedding, a text can be
represented as a 2-dimensional matrix by concatenating the embeddings. This representation
enables the use of convolutional operations, although usually only 1-dimensional convolutions
are used. As there is no meaningful order to exploit from the k dimensions in a single word
embedding, the width of the kernel is usually defined as k, such that the convolution only
happens on the dimension of the tokens.

4.5.1 C-CNN

A variant of the normal CNN for text classification was developed by Kim [47], that was based
on networks earlier proposed by Collobert et al. [19]. The proposed architecture is relatively
simple, containing only a single convolutional layer. An interesting addition and key part of
this network is that their convolutional layer contains multiple filter widths. The input text is
first tokenized, after which each token is transformed into a k-dimensional embedding vector
vi. The input vector is created by concatenating the vectors: x = [v1 ⊕ v2 ⊕ ...⊕ vn], where
⊕ is the concatenation operator. A convolution is applied to obtain a feature ci for a window
xi:i+h−1 as follows:

ci = f (w · xi:i+h−1 + b). (4.25)

Applying this operation to all possible windows yields a feature map c = [c1, c2, ..., cn−h+1]. A
problem with using layers with multiple filter widths is that it results in feature vectors of vary-
ing sizes, which is hard to deal with in following layers. This problem is solved by adding a
max-over-time pooling layer after the convolutional layer. This pooling layer takes a feature map
c from a convolutional filter, and applies max-over-time pooling as ĉ = max{c}. Whereas con-
ventional 1-d max-pooling layers reduce dimensionality by taking the max value from strides
over the feature map, the max-over-time pooling method used here takes the maximum value
from the entire feature map. This means that each feature map will be downsampled to one
value regardless of the amount of input values, allowing it to naturally deal with the variability

Chapter 4. Classification 28

Figure 4.2: Convolutional neural network for text processing with multiple filter widths (image
taken from [47]).

in the length of sentences and feature maps. The outputs of the max-over-time pooling are con-
catenated to form a feature vector of a fixed length, which is why this architecture is referred
to as the Concatenation-CNN (C-CNN). A schematic overview of the architecture is shown in
Figure 4.2.

Kim furthermore experimented with four different input methods. Their baseline model
randomly initialized the word embeddings, which were updated during the training. Two
further models were initialized with pre-trained word embeddings from Word2vec. For one
of these models the Word2vec embeddings remained unaltered, while for the other model the
weights were fine-tuned during training. These methods were respectively called the static
and non-static models. The final model, referred to as the multichannel model, used two sets
of word embeddings in two channels. One channel was static, while the other was trained.
The idea behind this was to keep the power of fine-tuning the embeddings for specific tasks,
while avoiding overfitting. The results of these four models on several datasets were mixed,
although the use of pretrained word embeddings largely increased the scores. The non-static
and multichannel models furthermore scored slightly higher on average than the static model,
although they were not consistently better across all tasks.

4.5.2 Character-level CNN

Instead of looking at text sequences at the word level, it is also possible to treat it as a sequence
of characters. Zhang, Zhao, and LeCun argue that convolutional neural networks are useful
for extracting information from raw, low level signals [88]. By moving from the word to the
character level, the convolutional network treats text as a raw signal. Doing this can simplify
the engineering process of building a classifier, as it requires no understanding of semantics
of words, and unlike word level networks it requires little to no preprocessing such as word
tokenization. They further argue that a character-level CNN can account for misspellings of
words, and other symbols that are otherwise seen as out-of-vocabulary or removed such as
emoticons.

In order to vectorize the text sequence, a set of accepted characters had to be determined.
All characters that were not present in this predetermined dictionary were dropped. The dic-
tionary used by Zhang, Zhao, and LeCun contained the following 70 characters:

abcdefghijklmnopqrstuvwxyz0123456789
-,;.!?:”’/\|_@#$%^&*~‘+-=<>()[]{}

Chapter 4. Classification 29

Figure 4.3: Character level convolutional neural network proposed by Zhang, Zhao, and LeCun
(image taken from [88]).

They also experimented with differentiating between capitalized and normal characters, how-
ever they found that not making this distinction produced better results. Each character in the
input was then vectorized using one-hot encoding. The length of each document was limited
to the first 1,014 characters, resulting in an input tensor of 1,014 by 70 per document.

Figure 4.3 shows an overview of the architecture used by the Char-CNN. The first two
layers were convolutional layers with a kernel size of 7, followed by a max-pooling layer of
size 3 with a stride of 1. The four following layers also were convolutional layers, but with a
kernel size of 3. Of these four, only the last was followed by a max-pooling layer, again of size
3. The final three layers were fully connected layers, with the last being a softmax output layer.
Two dropout layers were added between the fully connected layers, with a dropout percentage
of 50%. The authors furthermore compared a big and smaller model. For the big model the size
of the convolutional and fully connected layers were 1,024 and 2,048 respectively, while being
256 and 1,024 for the smaller model.

The Char-CNN showed good results compared to baselines, although only for very large
datasets. For datasets smaller than a million samples it did not perform as well, often being
beaten by relatively simple baselines. They furthermore showed mixed results for the large
and smaller model, with neither consistently outperforming the other.

4.6 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of neural network that is designed to model sequen-
tial data. All neural architectures described so far were feed-forward networks that contained
no cycles. Contrary to this, an RNN contains feedback loops in the form of recurrent connec-
tions. To visualize the recurrent connections, they are often unrolled over time, which we will
also do in this thesis. In this case each timestep has its own layer that feeds into the next in the
sequence, while sharing the weights between layers. As the amount of layers can vary with-
out changing the output (depending on which outputs are used), they can naturally deal with
sequential input, even when the length of the input varies.

A standard RNN starts with an initial hidden state h0. For each sequential step t the activa-
tion is calculated by combining the weighted hidden state of the previous timestep ht−1 with
the new weighted input xt:

at = Wht−1 + Uxt + b. (4.26)

This is then used to updated the hidden state for the current timestep:

ht = tanh(at). (4.27)

Chapter 4. Classification 30

Figure 4.4: Schematic overview of a standard bidirectional RNN for text classification.

This new hidden state is used to calculate a weighted output, which yields the output ŷt for
timestep t after applying a softmax function:

ot = Vht + c, (4.28)

ŷt = softmax(ot). (4.29)

Here b and c are the bias vectors, and U, W and V the weight matrices. The tanh and so f tmax
functions are the same as defined in equations (4.17) and (4.19) respectively. As is clear from
these equations, the RNN takes the state from a previous timestep, and combines it with next
input from the sequence. This allows it to dynamically learn from sequential data. RNNs can be
trained like other neural networks with gradient descent, where the gradients can be calculated
with a slight variation of the aforementioned backpropagation algorithm called backpropagation-
through-time or BPTT [84, 64].

4.6.1 Bidirectional RNNs

In traditional RNNs the information only flows in one direction, which makes sense when only
past information is known and a following state needs to be predicted. However, when we
try to classify documents we get access to the complete text at once, and therefore potentially
do not use all information by only moving in one direction. This can happen because in texts
something that is mentioned later on can be relevant for what happened before. For example,
when we want to predict which word should filled into the blank in the sentence “The ___ says
moo”, we know that it should be the word ‘cow’ from the extra information in the context after
the blank.

To use this information, Bi-directional RNNs (B-RNNs) were introduced by Schuster and
Paliwal, which can utilize context in both directions [76]. A B-RNN adds an extra layer of
recurrent units that moves backwards through time parallel to the original forward moving
layer. As illustrated in Figure 4.4, the two directional layers of units have no direct connection
to each other. Though it is possible to sum or take the mean of the two unit outputs to reduce

Chapter 4. Classification 31

dimensionality, usually the two outputs are concatenated so that no information is lost. B-
RNNs have earlier been found to outperform uni-directional RNNs [29, 87], and have been
widely adopted in sequence classification tasks where both past and future context is available,
such as handwriting recognition [30], speech recognition [28] and text-to-speech systems [1, 22].
In most state-of-the-art models the units are generally gated units such as the LSTM or GRU,
which will be explained in more detail in the following two sections.

4.6.2 Long Short-Term Memory

In theory a standard RNN is able to learn long term dependencies from sequential data. How-
ever, in practice it has been shown that just like the multilayer perceptrons it can suffer from the
vanishing gradient problem (see section 4.4.3). This makes it practically unable to successfully
learn dependencies from sequences larger than 10 elements [2, 3]. To deal with this problem,
Hochreiter and Schmidhuber developed a gated variant of the standard recurrent architecture
called the long short-term memory (LSTM) [35].

The core idea behind the LSTM lies in the addition of the cell-state C. The cell state can
also be seen as the memory of the cell, which can at each step be updated using two gates: the
forget gate and input gate. Additionally a third gate called the output gate is used to determine
the output and update the hidden state. These gates make it easy for information to flow
through the network unchanged, allowing it to form long-term dependencies. The forget gate
f determines what should be forgotten from the cell state. To update it with new information,
the input gate i determines what values should be updated in the cell state. Finally, the output
gate o determines how much of the cell state values should be used in calculating the output
activation. These gates are defined as:

ft = σs(W f xt + U f ht−1 + b f), (4.30)

it = σs(Wixt + Uiht−1 + bi), (4.31)
ot = σs(Woxt + Uoht−1 + bo), (4.32)

where σs is the sigmoid activation function that outputs a value between 0 and 1. As this shows,
the equations for each gate are very similar, but they each have their own weights and biases.
The cell state is updated by first multiplying the previous cell state with the output of the forget
gate. As the output of the forget gate is a value between 0 and 1, this number determines how
much is forgotten. This is followed by adding the product of the input gate activation and the
new candidates for the cell state:

Ct = ft ◦ Ct−1 + it ◦ σh(Wcxt + Ucht−1 + bc), (4.33)

where ◦ is the element-wise multiplication of two vertices, also known as the Hadamard prod-
uct, and σh the hyperbolic tangent (tanh) activation function. Finally, the new hidden state is
calculated using the output gate activation and the new cell state:

ht = ot ◦ σh(Ct) (4.34)

As at each timestep the gates determine what should be kept and what should be forgotten,
it is possible for information from far away timesteps to remain in the cell’s memory. This
can additionally decrease the risk of exploding gradients [26], although it is not guaranteed to
prevent it [79].

Chapter 4. Classification 32

Figure 4.5: Example of a bi-directional LSTM with an attention mechanism (image taken from
[90]).

4.6.3 Gated Recurrent Unit

Recently another gated RNN called the gated recurrent unit (GRU) has been gaining in popular-
ity among researchers. Proposed by Cho et al., the GRU has a simpler design by only containing
two gates: the update gate and the reset gate [16]. In short, the update gate z combines the for-
get and input gates of the LSTM, determining what should be kept from the previous memory
state. The reset gate r determines how to combine the new input into the cell’s hidden state.
The equations for these are comparable to the gates in the LSTM:

zt = σs(Wzxt + Uzht−1 + bz), (4.35)
rt = σs(Wrxt + Urht−1 + br). (4.36)

The main difference can be found in how the update and reset gates are used in order to update
the hidden state:

h̃t = σh(Whxt + Uh(rt ◦ ht−1) + bh), (4.37)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t. (4.38)

As shown by Equations 4.37 and 4.38, contrary to the LSTM the GRU does not maintain a
separate cell state. Instead, only the hidden state is passed on in the sequence. Thanks to its
simpler design containing fewer parameters the GRU is faster to train than the LSTM, and has
in certain tasks shown comparable or even better performance [18, 43]. However, there is no
clear consensus on this topic yet, as others have also argued that the GRU’s simplification can
negatively impact the performance. This resulted in the LSTM consistently outperforming the
GRU in some tasks [40, 14]. It will therefore be interesting to see how the GRU and LSTM
compare in practice for our problem.

Chapter 4. Classification 33

4.7 Attention Networks

Recently the idea of using attention in neural networks has increased in popularity. The main
idea behind attention in NLP tasks is that when an input text sequence is used, not all tokens
in the sequence are equally relevant to finding the answer. For example, in order to classify a
company Web page that states “We are a construction company based in Florida”, the word “con-
struction” is much more relevant to make a correct classification than the word “Florida”. An
overview of an attention mechanism used in combination with a bi-directional LSTM is shown
in Figure 4.5. Contrary to the bi-directional RNN classification architecture shown in Figure
4.4, the outputs from all recurrent units in the sequence are used. The attention layer looks at
all states, and determines which parts of the sequence are most relevant and should therefore
be attended more strongly in the classification.

This attention layer is defined as follows. Let O be a vector of output states [o1, o2, ..., oN]
from an RNN where N is the length of the sequence. The attention layer is then implemented
as described in [90]:

M = tanh(O), (4.39)

α = softmax(wT M), (4.40)

where wT is a transposed weight vector. This yields the activation vector α, whose activation
values can be used to calculate a weighted sum of the output vectors:

r = OαT, (4.41)

h∗ = tanh(r). (4.42)

Finally, the classification for a text sequence S is made using a dense softmax layer like with
other approaches, using the weighted output vectors:

ŷ = softmax(W(S)h∗ + bS). (4.43)

As the weights in the attention layer are trained, it can learn which parts of a text sequence it
should pay more attention to. Zhou et al. showed that a simple model as shown in Figure 4.5
was able to classify texts with similar or higher accuracy than more complex models [90].

4.7.1 Hierarchical Attention Network

Yang et al. introduced the Hierarchical Attention Network (HAN) for document classification [85].
The HAN uses a similar attention mechanism to the one described in the previous section, only
it is applied to two levels. As shown in Figure 4.6, they inserted attention layers for both
individual words and sentences. This hierarchical approach allows it to not only put a weight
on the importance of individual words, but also on that of sentences. This also made it possible
to see which inputs a classification is based on by extracting the activation vectors for a sample.

First, words are transformed to word embedding vectors. These vectors are then encoded
using a bi-directional RNN, which is a GRU in the original implementation. For each sentence,
the output states from the GRUs are used as inputs for the attention layer, which is imple-
mented similarly to Equations 4.39-4.41. These weighted vectors are then used as input for the
second layer of bi-directional GRUs, which acts as the sentence encoder. To increase the weight
of sentences that help more towards classifying the document another attention layer is added
on top of the sentence encoder. The output of this second attention layer is used to classify the
document in a dense softmax layer, like in Equation 4.43.

Chapter 4. Classification 34

Figure 4.6: Overview of the architecture of the HAN, using attention layers at both the word
and sentence level (image taken from [85]).

35

Chapter 5

Experimental Setup

To answer the research questions posed in the introduction, we benchmarked several of the
methods mentioned in the previous chapters against real-world datasets. In this chapter we
show how these experiments were set up, what data were used and how the models were con-
figured. First we explain how the Web pages that were used in the experiments were acquired
and preprocessed. We then discuss the datasets used in both the keyphrase extraction and Web
page classification experiments. Finally, the methods and word embeddings that were used for
the keyphrase extraction and classification are discussed.

5.1 Text Extraction & Preprocessing

In order to use the data from a Web page, the page first has to be parsed to extract all relevant
text. This parsing of raw HTML-code was done using the BeautifulSoup1 Python package. A
potential problem in extracting text from HTML is that some elements are used to stylize words
in sentences, or even parts of words. As an example, consider the following snippet of HTML
code:

<div>
Joe’s Restaurant

</div>

In this case the text ‘Joe’s Restaurant’ should be extracted, but when all tags are considered to
be sentence separators this results in this small text fragment being separated into four words.
This happens because the bold tag is not used as a structural, but as a styling tag. Therefore
all tags that were considered style tags were ignored, moving their content directly into the
parent node. Table B.1 in Appendix B shows all HTML-tags that were marked style tags. This
table also shows which tags were considered ‘invisible’, meaning that their contents are not
displayed when the page is rendered. For example the script tag is generally filled with code
that is executed when the page is rendered, and does not contain any relevant text. All content
within these tags was therefore not considered. Two exceptions to this are the title and the
description, which are often in the head and meta tags, as these do tend to contain text relevant
to the page and company.

After all text was extracted, the pages that were used for the classification task were further
processed by removing all non-alphanumeric characters. We also found that in some cases the
homepage of a company contained very little text. An example of this is that some websites
start with a landing page that acts as a welcome screen, often containing only an image and a
link that says “click here to access our site”. Additionally, in some cases the domain name of a
company was expired. In this case the domain could still be reached, however the content had
been replaced by a short message stating the domain has expired. As there is not enough rele-
vant content on these types of Web pages for correct classification, all documents that contained

1https://www.crummy.com/software/BeautifulSoup/

Chapter 5. Experimental Setup 36

fewer than 25 words after the preprocessing step were excluded. We also experimented with
stemming all words using a Porter stemmer before classification, a common preprocessing step
in NLP. Interestingly, preliminary tests showed lower classification scores for classifiers trained
on the stemmed data, so this step was omitted from the process. The maximum amount of
words was limited to 1,000 to trim down excessively large Web pages. We also attempted to
decrease this number to improve the efficiency of the classifiers, however in preliminary tests
we found that using less than 1,000 words significantly decreased the accuracy.

5.2 Datasets

5.2.1 Keyphrase Extraction

In order to evaluate the quality of keyphrase extraction methods there are several annotated
datasets available that are frequently used as benchmarks. Examples of these are the Inspec
dataset consisting of scientific abstracts [38], the keyphrase extraction part of the SemEval
dataset on scientific papers [46] , and the set of news articles from [56]. For Web pages however,
as far as we know, no such benchmark exists. Given this lack of a gold-standard dataset, we
created our own. In order to select a set of Web pages that was representative of the content
on the Web we used Dataprovider.com’s database of domains, which contains over 250 mil-
lion indexed hostnames. From this database, 105 hostnames were randomly selected, using
some filters to improve the quality of the data. These filters constrained the data to Web pages
where English was detected as the main language, as our tokenizer and embedding model
were trained on English texts. We furthermore included the constraints that the homepage still
had to be online, was not a placeholder or parked domain, and contained at least some text.
Three annotators were asked to annotate the complete set by going to each Web page, and to
write down the keyphrases they thought best described the Web page. They were given three
main guidelines:

• Keyphrases must be present on the homepage (text in title or meta description is also
allowed).

• Keyphrases consist of at least 1 and at most 5 words.

• Choose at least 3 and at most 8 keyphrases per page.

Two of the websites were further rejected for not containing enough content, resulting in a
final dataset of 103 annotated Web pages. Similar to [32] and [5], the union of the three sets
of keyphrases for each Web page was used for the evaluation. The final combined dataset
contained an average of 10.02 keyphrases per document, while each annotator assigned on
average 5.19 keywords per document. In order to detect wrong or misspelled annotations, we
removed all annotations that were not in the extracted text from the page. The text extraction
and preprocessing was performed only once, after which all parsed content was stored in page
snapshots. This ensured that all methods were evaluated using identical Web pages as input.
To avoid copyright infringement we can not share the exact snapshots of the Web pages used
for the evaluation, however we published2 the set of annotations such that other researchers
can use this for their experiments, and can hopefully extend it.

5.2.2 Classification

To evaluate the Web page classifiers, we trained the methods to predict two levels of Standard
Industrial Classification (SIC) codes. The SIC categorization is a standardized indexation de-
veloped to assign companies to predetermined categories. The categorization is hierarchical,

2https://gitlab.com/Tim-Haarman/WebEmbedRank

https://gitlab.com/Tim-Haarman/WebEmbedRank

Chapter 5. Experimental Setup 37

Figure 5.1: Class distribution of first and second level SIC-codes. The outer layer show the 10
divisions, the inner layer the 84 second layer two-digit codes.

meaning that there are several levels of categories, with each successive category more spe-
cific than the last. In our tests we will be training on the two highest levels. The first level,
also known as the Division, contained 10 main categories. The second level was significantly
larger, containing 84 categories, which we will refer to as the SIC category. The labeled data
for the supervised classification of SIC-categories came from Dunn & Bradstreet, a company that
maintains a business directory that contains the SIC categories businesses were registered with.
From these data all companies that had a registered domain name were extracted, along with
their annotated SIC code. This yielded an annotated dataset of 1,237,813 company Web pages.

An important characteristic of the data was that the class distributions were strongly imbal-
anced. Both the first level (the Division) as well as the second level distributions were heavily
skewed. Figure 5.1 provides a depiction of the class distributions, showing all distributions of
the 10 main divisions and the largest second-level codes. This for example shows that close to
half of the data was in the ‘Services’ category, whereas only approximately 0.1% of all compa-
nies were in the ‘Mining’ category. A full list of all first-level divisions and second-level SIC
codes are provided in Table A.1 in Appendix A for reference.

5.3 Keyphrase Extraction

In order to evaluate the performance of our keyphrase extraction method, we compared it to
several baselines and state-of-the-art extraction methods. Similar to earlier research [38, 59, 24,
10], the methods were evaluated based on their precision, recall, and F1 score with respect to
the Web page annotations. In the matching of the keyphrases we only accepted exact matches
of the complete phrase. We will briefly describe the evaluated methods.

The first method was TFIDF [75], a frequently used and robust baseline, implemented as
explained in Section 3.1. In order to determine the document frequencies we used the large
company Web corpus we created for the SIC classification, as described in the previous section.
The top keyphrases were selected by taking the phrases with the highest TFIDF scores. The

Chapter 5. Experimental Setup 38

location based method was a simple heuristic baseline that was based on the aforementioned
theory that certain HTML elements have varying levels of relevance. It applied a part-of-speech
(POS) tagger to all texts, and selected all the longest chains of zero or more adjectives followed
by one or more nouns as candidates. The candidates were ranked based on the HTML element
they appeared in. This hierarchical ranking method ranked candidates that occurred in the
hostname the highest, followed by the title, headings, description, and all remaining elements
respectively. If multiple candidates were present in an element they were ranked in the order
of appearance in the original HTML code.

We further compared the WebEmbedRank and WebEmbedRank++ methods from Section
3.4 to four state-of-the-art graph based models3 as described in Section 3.3, being TextRank [59],
TopicRank [11], PositionRank [24] and MultipartiteRank [10]. Lastly we also compared it to the
original implementation of EmbedRank4 [5], using both the standard version (EmbedRank)
and the version with diversity mechanism (EmbedRank++). For all methods we used the ver-
sions and parameters as suggested by the authors. The tokenization and POS-tagging was
done using the Stanford CoreNLP toolkit [55] for all methods.

5.4 Web Page Classification

5.4.1 Word Embeddings

Training custom word embeddings from scratch can potentially create a better vector space for
a new domain, especially if the text in the domain diverges much from the domain the pre-
trained embeddings were trained on. However, as our data consisted of Web pages across a
large variety of domains that were likely to mostly consist of generic terms, we expected that
the size of the dataset the pre-trained embeddings were trained on outweighed the benefits
of training new embeddings from scratch on a custom dataset. We therefore chose to use and
compare various pre-trained word embeddings.

For all embedding methods we chose to use 300-dimensional embeddings, as this is one
of the most commonly used sizes, in which most pre-trained models are available [86]. The
Word2vec model was obtained from the official Word2vec project page5, and was pretrained
on a Google News dataset containing more than 150 billion tokens. The GloVe embeddings
were pretrained on a combination of a Wikipedia archive and the common crawl dataset, as
described in [67]. The files were the same as in the paper, and were obtained from GloVe’s offi-
cial Web page6. Finally, the fastText embeddings were also obtained from the official website7.
These embeddings were trained on a combination of Wikipedia data, Stanford’s web-based
UMBC corpus, and a news article dataset from statm.org [60].

We also implemented an ELMo embedding layer, however found it to be too memory in-
tensive for our current systems. To get a fair comparison we used the first 1,000 words of the
text like with the other methods, but even when using stochastic gradient descent training one
sample at a time, it ran out of the 4GB of VRAM available on our GTX 970. We also tried run-
ning it on a CPU, using the 32GB of normal RAM. This was possible, however the training was
estimated to take over a month per epoch, rendering this approach unfeasible with our current
setup.

3TextRank, TopicRank, PositionRank and MultipartiteRank were implemented using the python keyphrase ex-
traction (PKE) toolkit [9]

4EmbedRank and EmbedRank++ were tested using the original implementation of the authors: https://
github.com/swisscom/ai-research-keyphrase-extraction

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/
7https://fasttext.cc/docs/en/english-vectors.html

https://github.com/swisscom/ai-research-keyphrase-extraction
https://github.com/swisscom/ai-research-keyphrase-extraction
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html

Chapter 5. Experimental Setup 39

Table 5.1: Results of grid-search on bag-of-words classifiers. F1 indicates the mean micro-F1
measure, s.d. shows the standard deviation on the test score over the 5 folds.

Classifier F1 S.d. Best model configuration

Division LR 0.745 0.004 Penalty (C) = 1.5
(Level 1) RF 0.677 0.003 Gini impurity, num. trees = 100, max depth = 500,

min. samples per split = 2
SVM 0.748 0.003 Squared hinge loss function, penalty (C) = 0.15
MLP 0.748 0.003 1 hidden layer, layer size 50, ReLU activation

SIC LR 0.601 0.003 Penalty (C) = 2
(Level 2) RF 0.542 0.004 Gini impurity, num. trees = 200, max depth = 250,

min. samples per split = 2
SVM 0.609 0.002 Squared hinge loss function, penalty (C) = 0.15
MLP 0.601 0.003 1 hidden layer, layer size 100, tanh activation

5.4.2 Baselines

All tests with the baselines were performed using a bag-of-words (BoW) representation of the
complete set of parsed text from the Web page. We furthermore applied a TFIDF transforma-
tion on the input, increasing the values of more discriminative words (as explained in Section
3.1). Preliminary tests showed that this transformation consistently increased the performance
of the baselines. To avoid overfitting and somewhat limit the dimensionality of the input data,
only the 20,000 most common words with respect to the term frequency across the corpus
were considered. For all BoW based classifiers the hyperparameters were determined using
exhaustive grid searches. As the different amount of classes in the first and second levels of the
SIC codes may influence the optimal choice of parameters, the grid searches were performed
separately for both levels. This process can be very computationally demanding depending
on the amount of parameters considered, as it requires retraining a classifier multiple times
from scratch. Therefore, for all hyperparameter optimization tests a seeded random sample of
100,000 data points was used. All grid searches were performed with 5-fold cross-validation,
using the micro-F1 score as performance measure to account for the class imbalance. For all
classifiers a training split of 80% was used. The remaining 20% was used as test set for all clas-
sifiers except the multilayer perceptron, which used 10% as a validation set and the remaining
10% as a test set. When the highest score was achieved by multiple sets of parameters, the
simplest model was chosen.

For the random forest the Gini impurity measure always outperformed entropy. Addition-
ally, because the Gini measure did not require logarithms to be computed (see section 4.2),
entropy also was approximately 9.5% slower to train on average over all folds compared to
Gini. The MLP on the division level classification showed the same average score of 0.748 for
both the sigmoid, tanh and ReLU activation functions. Of these three the ReLU activation func-
tion showed the fastest training times and was therefore chosen. For the second level codes the
tanh showed a slightly better score. The reason the ReLU function was not better despite its
recent popularity is likely because the best model consisted of a single hidden layer. As ex-
plained in section 4.4.3, the main reason ReLU is currently the preferred activation function is
that it works well with deeper neural networks. With just a single hidden layer, these benefits
are not as relevant.

Chapter 5. Experimental Setup 40

5.4.3 Neural Networks

For all word-level neural networks the text was first tokenized, and converted to word em-
beddings to serve as input. For the CNNs the input was padded to a length of 1,000 where
necessary. The standard CNN was implemented to act as a baseline for the convolution based
methods, which was empirically tuned for this task. It used two convolutional layers, each con-
sisting of 128 dimensions with a filter size of 5. Both of these were followed by a max-pooling
layer of size 5 and 3 respectively, to which dropout was applied with a 30% chance. These lay-
ers were followed by a dense layer of size 128, followed by the variably sized softmax output
layer. Between the last two layers dropout was applied with a 50% chance.

The C-CNN was implemented as described in [47]. We used convolutional filters of size
3, 4, and 5, which each constructed 100 feature maps, and applied a dropout with probability
0.5 on the penultimate layer. The only change from the model proposed by Kim was that we
used a larger mini-batch size of 256 to speed up the training. For the Character-CNN we used
the small network as proposed by Zhang, Zhao, and LeCun [88], as the larger model did not
seem to improve the results. We further used the same dictionary of 70 characters without case
sensitivity, as the authors showed that this also did not improve the performance. Zhang, Zhao,
and LeCun further suggested that taking only the first 1,014 characters is sufficient, which we
also mimicked in our classifier. However, this is often only a fraction of the text on a Web
page and much fewer than other proposed architectures utilize. We therefore trained another
C-CNN on the first 2,028 characters, doubling the suggested amount of input characters. This
could indicate whether the performance of the suggested model may have been held back by
the limited amount of input it received.

We also wanted to see how well recurrent neural networks could classify the Web pages. As
the standard RNN is in practice never used anymore due to its inability to maintain long term
dependencies, we only looked at the LSTM and GRU units. We performed a grid-search to find
the best number of hidden units to use, and found one layer of 300 units to be optimal while
still being trainable in a reasonable time. For all RNNs we used bi-directional layers, therefore
resulting in a total of 600 units per layer. To see if the attention module could improve the
results, we also trained a bidirectional GRU of 300 units with an additional attention layer as
described in [90]. For the HAN a setup was used that was comparable to the one proposed by
Yang et al. [85], using the attention mechanism at both the word and the sentence level. For
consistency we used 300-dimensional word embeddings, and we increased the dimensionality
of the GRU encoder from 50 to 100 as we found that this increased the performance. As the
attention layers require a fixed size input vector, the size of the input text had to be limited and
padded similar to the convolutional neural networks. As the HAN contained two attention
layers, this was required at both the sentence and document level. The size of the sentences
was set to 50 tokens, with 100 sentences per document, both padded where necessary.

41

Chapter 6

Results

In this chapter the results from the experiments described in the previous chapter are presented.
First, we discuss the evaluation of our novel WebEmbedRank method for keyphrase extraction.
We then show the results for the Web page classification, and present the time each method
required to classify new samples.

6.1 Keyphrase Extraction

To compare our WebEmbedRank method to various state-of-the-art approaches, we evaluated
the extracted keyphrases using a manually annotated dataset. The resulting precision, recall
and micro-F1 scores for all methods as evaluated on this gold-standard set are shown in Table
6.1. As all keyphrase extraction methods required a predetermined number of keyphrases to
extract, the results for both the top-5 and top-10 keyphrases are shown. As the amount of
annotated keyphrases varied between Web pages in the test set, achieving an average precision
or recall of 100% was not possible.

The results show that WebEmbedRank outperformed all other methods, achieving the high-
est precision, recall and F1 score for both the top-5 as well as the top-10 ranked keyphrases.
Paired t-tests showed significant improvements of WebEmbedRank over TFIDF, TextRank, Top-
icRank, PositionRank, MultipartiteRank, EmbedRank and EmbedRank++ for N = 5, and over
all other tested methods at N = 10, with p < 0.001. Surprisingly, the simple location based
heuristic got the second highest scores. This indicates the importance of considering the hy-
pertext markup in the extraction process. The TFIDF method also scores comparably or even
better than some of the state-of-the art methods.

The low scores of the EmbedRank and EmbedRank++ methods are surprising, as the au-
thors have shown that it can achieve state-of-the-art results on similar tasks with datasets of
articles and abstracts [5]. In this task they score the worst of all methods, with F1 scores of only
8.24 and 7.34 on the first five keyphrases. For the top-10 keyphrases the scores are slightly bet-
ter relative to the other methods, but still low with 16.22 and 10.09 respectively. By inspecting
the extracted keyphrases we found that the low scores of many extraction methods may have
been due to a tendency to generate long keyphrases. Embedrank and EmbedRank++ also have
this tendency, as explained in Section 3.5. The phrases selected by these methods contained
on average 2.43 and 2.13 words respectively, compared to an average 1.51 words for WebEm-
bedRank and 1.61 words for the annotated phrases in the gold-standard evaluation set. We
observed the same problem with PositionRank, which extracted phrases averaging 2.36 words.

We furthermore also see that the scores of the EmbedRank and WebEmbedRank versions
with diversity do not perform better than the standard versions. This concurs with the results
of Bennani-Smires et al. [5]. For the top-5 keyphrases the scores are only slightly lower, and
the difference is not significant. When the top-10 keyphrases are considered the difference
becomes much greater, going from 10.09 to 16.22 and from 25.82 to 34.81 for EmbedRank and
WebEmbedRank respectively.

Chapter 6. Results 42

Table 6.1: Scores of WebEmbedRank compared to various other state-of-the-art keyphrase ex-
traction methods on the Web page dataset. P denotes the precision, R the recall and F1 the
micro-F1 score. The highest scores are marked in bold.

N=5 N=10
Method P R F1 P R F1

TFIDF 30.49 16.20 20.78 20.97 21.81 21.00
Location 40.00 21.11 27.09 29.42 30.13 29.29
TextRank 15.73 8.37 10.74 14.94 15.54 14.98
TopicRank 29.51 15.47 19.92 22.04 22.86 22.01
PositionRank 24.85 13.43 17.14 21.36 22.61 21.57
MultipartiteRank 32.82 17.24 22.22 24.47 25.47 24.50
EmbedRank 11.84 6.53 8.24 16.02 17.06 16.22
EmbedRank++ (λ = 0.5) 11.07 5.63 7.34 10.10 10.54 10.09
WebEmbedRank 43.69 23.37 29.94 34.56 36.41 34.81
WebEmbedRank++ (λ = 0.5) 41.36 22.10 28.27 25.83 26.86 25.82

6.2 Web Page Classification

For the Web page classification we trained multiclass classifiers on the two levels of SIC codes.
As mentioned in the previous chapter, the first level that is referred to as the Division contained
10 classes, whereas the second level that is referred to as the SIC level consisted of 84 classes. As
the dataset was highly imbalanced, the micro-F1 score was used to evaluate the performance
of the models. The results for both datasets can be found in Table 6.21.

When the scores are compared at the higher level of model architectures, it shows a clear
winner in the methods that are based on recurrent neural networks. For both the 10 and 84 class
problems the highest scores are achieved by the GRU with the attention layer, with respective
F1 measures of 77.9 and 64.1 for the GLoVe embeddings. However, the standard GRU and
LSTM are right behind it, with only a marginal difference in F1 score of 0.1. It also shows that
despite its simpler architecture, the GRU performed on a similar level as the LSTM, while even
slightly outperforming it for the Division level. For the SIC level the results are reasonably
consistent between the LSTM and GRU.

The low scores for the HAN are furthermore surprising. Whereas the GRU with a simple
attention layer scores similar to the GRU and LSTM, the more specific HAN fails to keep up.
The results show that it scored similar to the baselines for the Division level, and more than
a full percent lower on the SIC category. However, the HAN was not the only method that
had difficulties in surpassing the scores of the baselines. This was especially the case for the
SIC category, where only the RNN-based models outperformed the linear SVM. The Char-
CNN also underperformed compared to the baselines, achieving some of the lowest scores
all around. Doubling the amount of input characters largely increased the score from 73.5 to
75.1 for the Division, and from 56.6 to 58.4 for the SIC level. This is an indication that only
considering the first 1014 characters as suggested by the authors was a limiting factor for this
task. Due to time restraints we did not investigate whether further increasing the number
of input characters can result in competitive scores, but this may be interesting for further
research.

We also see that the baseline CNN scores are just above the best BoW baselines, but for
the SIC level it scored comparatively lower by a relatively large margin. We furthermore see

1Even with aggressive pruning of the trees and limiting the number of estimators, the Random Forest required
more than the 32GB of RAM available for the SIC level classification. Because of this we were unable to collect
results for this dataset.

Chapter 6. Results 43

Table 6.2: Results of classification for different embedding and classification methods. The
reported scores are the micro-F1 measures for the first level (division) and second level (SIC)
category classification tasks, with the best results marked in bold.

Classifier Embedding Division SIC

Baselines Logistic Regression BoW 76.4 63.1
Random Forest BoW 72.5 -
Linear SVM BoW 76.5 63.4
MLP BoW 76.9 62.9

CNNs CNN Word2vec 76.9 62.0
GloVe 77.0 61.8
FastText 77.0 62.2

C-CNN Word2vec 77.2 63.0
GloVe 77.1 62.8
FastText 77.1 62.8

Char-CNN (1014 ch.) One-hot 73.5 56.6
Char-CNN (2028 ch.) One-hot 75.1 58.4

RNNs LSTM Word2vec 77.6 64.0
GloVe 77.6 63.9
FastText 77.7 64.0

GRU Word2vec 77.7 64.0
GloVe 77.8 63.7
FastText 77.8 64.0

Attention Att-BGRU Word2vec 77.8 63.9
GloVe 77.9 64.1
FastText 77.7 64.0

HAN Word2vec 76.5 61.7
GloVe 76.4 61.7
FastText 76.4 61.7

that the multiple filters introduced by the C-CNN did improve on the baseline CNN network,
even though it only contained one convolutional layer. Especially on the SIC level it performed
better than the CNN, however it still did not beat the best BoW baselines. Overall the convolu-
tional neural networks struggled more with the high number of classes than the BoW classifiers,
while performing better on the Division task with 10 classes.

Finally, the different embedding methods did not seem to have a great effect on the final
scores. The difference in scores between the methods only slightly varied, and not consistently
in favor of one method. Across all methods the three methods score approximately the same
on average.

6.2.1 Timing

To find the empirical efficiency of each classification method, we tracked the time each method
required to classify new samples. This was done by measuring the time it took each method
to classify the complete test set. In order to make the results more reliable, the average time of
three predictions was used for each method. This number was scaled to find the mean time it
took to classify 10,000 samples, the results of which can be found in Table 6.3. As train and test
sets were the same for each method, all timings were based on the same samples. All baselines,

Chapter 6. Results 44

Table 6.3: Mean prediction times in seconds for the various classifiers per 10,000 samples.

Time (s)
Classifier Division SIC

Baselines Logistic Regression 0.020 0.133
Random Forest 0.371 -
Linear SVM 0.019 0.115
MLP 0.082 0.285

CNNs CNN 2.24 2.36
C-CNN 5.06 5.09
Char-CNN (1014 ch.) 14.13 14.24
Char-CNN (2028 ch.) 17.96 17.98

RNNs LSTM 324.73 336.39
GRU 223.03 255.94

Attention Att-BGRU 229.59 229.71
HAN 50.96 51.16

including the MLP, were trained and tested on an i7-6770 CPU with 4 cores and 8 threads. All
other methods were trained and tested on a Nvidia GTX 970 GPU with 4GB of VRAM.

The timings show that the baselines could very quickly classify a large number of samples.
The linear SVM was the fastest, requiring only 0.019 seconds to assign Division categories to
10,000 Web pages. The simple MLP also only took 0.082 seconds to do this, even though it
was tested on the CPU. We do see a large relative increase going from the Division to the SIC
classification, but the times are still fast enough to be used on a large scale.

Even though the non-baselines were able to use the computational power of a dedicated
graphics card, the timing clearly shows the increased complexity of the deep neural networks.
Whereas most baselines were able to classify 10,000 new samples in a fraction of second, the
recurrent neural networks take up to 324.73 seconds to do so. This shows that the increased per-
formance as displayed in Table 6.2 comes at a sizable cost in terms of computational efficiency,
even compared to the convolutional neural networks.

45

Chapter 7

Discussion & Conclusion

In this chapter we discuss the findings presented in the previous chapter, and conclude the
thesis. First the keyphrase extraction is discussed, followed by the Web page classification.
This includes the findings from the results, and suggestions for follow-up research to address
items that could not be covered in this thesis. We finally wrap up the thesis with a concise
conclusion.

7.1 Keyphrase Extraction

In the introduction we raised the question how the most relevant keyphrases can be extracted
from a Web page. As the amount of research on keyphrase extraction that has a focus on
Web pages is limited, we attempted to apply techniques that have been shown to work well
in other domains to our current task. However, the results of the keyphrase extraction ex-
periment show that most state-of-the-art unsupervised keyphrase extraction methods transfer
poorly to Web documents. Multiple methods had a tendency to extract very long phrases,
which may explain the lower scores. This might have been due to the different nature of the
data, as most keyphrase extraction systems are evaluated on datasets of scientific abstracts
and articles. These documents often comprise multiple complex topics, which may require
longer keyphrases to accurately represent the document compared to Web pages. To check this
hypothesis we analyzed the assigned keyphrases in the training part of the Inspec [38] and
SemEval 2010 [46] datasets, which are some of the most frequently used datasets to evaluate
unsupervised keyphrase extraction methods [32]. We found that they respectively contained
on average 2.33 and 2.16 words per phrase, which is substantially more than the average of 1.61
in our annotated Web page dataset. This disparity can potentially explain why some methods
are more geared towards extracting longer phrases, and hence why their results are poor when
transferred to the present domain and evaluation set.

Because WebEmbedRank incorporates a small penalty for long phrases, it did not suffer
from this problem. Longer phrases could still get a high rank if they got a high similarity score,
or if they appeared in important positions, but a preference was given to shorter sentences
that could convey a similar meaning. This resulted in keyphrases with an average length of
1.51 words, similar to the annotated set. The additional weighting of keyphrases in important
locations furthermore proved to be effective, resulting in the highest scores for both the top-
5 and top-10 keyphrases. The importance of considering HTML elements in the process of
extracting keyphrases from Web pages is further accentuated by the high score of the location-
based method. This method ranked the phrases purely based on their location in the HTML,
and achieved the best results behind WebEmbedRank.

When only considering the state-of-the-art models, MultipartiteRank achieved the highest
F1 scores. A part of its success can be attributed to the positional component in this method. The
parsed Web page document that was used as input for each method was constructed hierarchi-
cally, starting with the more important elements (as defined in Section 3.5). This meant that the
positional element in MultipartiteRank effectively assigned phrases from important elements

Chapter 7. Discussion & Conclusion 46

a higher weight, as these were placed at the beginning of the document. PositionRank also
implemented a similar positional weighting, but the scores of this method also suffered from
extracting phrases that were too long. As PositionRank constructs phrases by summing the
scores of the individual words, a strong bias towards long phrases is created, even when some
of the words do not contribute much to the overall score. This is a known problem with this
approach to constructing phrases, and was earlier criticized by Bougouin, Boudin, and Daille
[11]. In the original paper where PositionRank is proposed this problem is largely avoided by
limiting the keyphrase extraction to at most tri-grams [24], however it can be argued that such
a hard cut-off is undesirable. Unlike PositionRank, MultipartiteRank did not suffer from gener-
ating too lengthy keyphrases. The extracted phrases contained on average approximately 1.61
phrases, almost identical to the annotated set.

Similar to the results reported in [5], the EmbedRank and WebEmbedRank versions with di-
versity mechanism both scored lower than their counterparts without diversity. An interesting
finding is that while the scores with and without diversity are quite close for the top 5 phrases,
they are much higher when the diversity method is enabled for the top 10 keyphrases. This
may be explained by the lack of enough diverse keyphrases on a Web page. Often the aim or
topic of a Web page is quite specific. This is also shown by the fact that the annotators assigned
5.2 keyphrases on average per Web page, even though they could provide 8. Forcing diversity
during the generation of 10 keyphrases may result in irrelevant phrases being extracted when
there are only a few true main topics. However, Bennani-Smires et al. also showed a pilot ex-
periment which suggested that users preferred the keyphrases with diversity, even though it
achieved lower scores on their evaluation set as well [5]. To see whether this is also the case
for WebEmbedRank and WebEmbedRank++ it may be interesting to follow up on the current
experiments with a similar user study.

In this thesis we focused the weighting on what we perceived to be the most important
elements, being the hostname, title, headings and description. Earlier work has shown some
indications that other elements may also have positive or negative effects on the relevance of
their contents, such as text style elements (bold, italic, etc.) or anchor text [21, 17]. We could
therefore extend the current system to include weights for more elements. Additionally we
may experiment with different weights for the different sizes of headings (h1 to h6), instead of
having one fixed weight for all sizes.

We furthermore exclusively considered English Web pages in the current work. However,
given the unsupervised nature of WebEmbedRank, it is expected that it can be generalized
to other languages relatively easily. The word embeddings can be trained in the same way
for different languages, as long as there is some large set of written text available in that lan-
guage. Given that the fastText method already provides pre-trained embedding models for 157
languages [27], this is not expected to be a problem. Different languages will also require an au-
tomatic POS-tagger trained for that language. This may be problematic for smaller languages,
but the Stanford CoreNLP POS-tagger we used in the experiments is available in most major
languages [55]. Whether the same rules about what constitutes a good keyphrase also apply to
different languages remains to be answered, which we will leave for future work.

7.2 Classification

To find the classification method that could most accurately classify Web page categories we
compared several popular text classification models. The effectiveness of these methods were
evaluated by training them to predict two levels of industrial categorization codes. In terms
of the micro-F1 measure, the LSTM, GRU and Att-BGRU achieved the highest scores, with the
Att-BGRU scoring slightly higher for one of the three embedding methods. As this difference

Chapter 7. Discussion & Conclusion 47

was so small, it remains questionable whether the added attention layer significantly improved
the GRU. Overall, these RNNs clearly outperformed the baselines and CNNs.

Interestingly, the character level convolutional neural network scored quite poorly, per-
forming worse than most baselines. A likely cause for this can be found in the amount of input
data that was used. The model we used was based on the parameters as proposed by Zhang,
Zhao, and LeCun in their paper [88]. In this model only the first 1,014 characters of a document
were used, likely in order to keep the resources required to train the model feasible. Consid-
ering each character individually can potentially make the model more robust as it can make
it less vulnerable to misspellings and out-of-vocabulary words, but it also greatly increases the
computational complexity. In our preliminary tests with the bag-of-words classifiers a signifi-
cant drop in accuracy happened when limiting the document length to 500 words instead of the
1,000 used currently. Reducing the information a model gets to only 1,014 characters may have
severely impacted the performance of the model. To confirm that this was a limiting factor, we
also tested a second model with the same hyperparameters, apart from that is used the first
2,048 characters. This doubling of the input size increases the accuracy from 73.5 to 75.1 for
the division and from 56.6 to 58.4 for the SIC category, indicating that using only the first 1,014
was likely not enough. Additionally, Zhang, Zhao, and LeCun say: “only until the dataset goes to
the scale of several millions do we observe that character-level ConvNets start to do better”. Although
our dataset consisted of over a million documents, perhaps even more data was required to
achieve competitive scores.

The HAN also did not perform well compared to the other models. We expect that this can
largely be attributed to the inconsistent length and content of both complete documents and
the individual sentences. Because the consecutive attention layers require a fixed amount of
inputs, all sentences and documents had to be padded to a static length. Choosing this length
results in a trade-off. By increasing the length less information is lost as long sequences are not
cut short, but this also results in a high number of padding values, which makes the process
much more inefficient. When the length of the input data is very inconsistent the effects of this
trade-off become more apparent. With Web pages this is a problem, as they often contain many
sentences that consist of only one or a few words, like headings, titles, and menu items, yet
can also contain full length paragraphs. Yang et al. also explicitly mentioned that they chose
documents with similar lengths for their experiments [85], which may be why they were able
to get good results with this architecture. Similarly, the CNNs also required inputs of a fixed
size, and may therefore also have suffered from this problem.

Furthermore,the relatively high baseline scores for the classification may be due to the na-
ture of the task. For many complex NLP challenges that evaluation measures are based on,
getting the right classification can be highly dependent on the context and order of words in
a sentence. For example, in a sentiment analysis task there is a large difference between ‘I did
order the lobster, but it was not good’ and ‘I did not order the lobster, but it was good’. Similarly, in
question answering tasks ‘Is A larger than B?’ requires a different answer than ‘Is B larger than
A?’. Contrary to this, in the current classification task if the word ‘restaurant’ and ‘food’ appear
multiple times on a page it is relatively clear that it belongs in the food services category, re-
gardless of the exact context the word appears in. In this case a bag-of-words approach is more
likely to be sufficient.

Nevertheless, the best model had F1 scores of 77.9 and 64.1 for the two classes, indicating
that the tasks were not trivial. This can be attributed to a few things. Firstly, the large amount
of classes (10 and 84 for the division and SIC respectively) increased the difficulty and base-rate
of making a wrong prediction. Furthermore, and perhaps more importantly, the assigned label
was not always exclusively the right one. The dataset contains user-assigned labels, with one
main label for each company. The problem with this is that some companies could fit well in
multiple categories. For example, a car dealer that both sells and repairs cars could be assigned
the label G-55 (Automotive Dealers) or I-75 (Auto Repair, Services & Parking). Both would be

Chapter 7. Discussion & Conclusion 48

Figure 7.1: Normalized confusion matrix showing the ratio of classifications for each class for
the GRU classifier using fastText embeddings.

correct labels, yet they have a different code and even are in different divisions. Additionally,
the difference between some labels can be quite subtle, especially in the SIC level. This is for
example shown by the fact that on the second level there are separate categories for Railroad
Transportation (40), Passenger Transit (41), Water Transportation (44), Air Transportation (45), and
Transportation Services (47).

Figure 7.1 furthermore shows that many samples are wrongly classified as the I division,
which is the Services category. This is caused by the imbalanced nature of the dataset, as il-
lustrated in Section 5.2.2. Due to its large base rate, the classification is biased towards the I
class. In practice this results in the model assigning all samples it is not confident about to the
I class, as this yields the overall highest accuracy. This can be avoided by taking a stratified
sample to undersample the majority classes, or by using an oversampling technique for the
minority classes like SMOTE [15]. Although this may increase the mean classwise accuracies,
this is likely to decrease the overall (micro) accuracy. We did experiment with both under- and
oversampling, but opted not to use it as we were more interested in the overall accuracy of the
model.

7.2.1 Word Embeddings

We furthermore set out to find the effect of different word embedding techniques on the classi-
fication of the Web pages. To find an answer to this question, we applied frequently used pre-
trained models of Word2vec, GloVe and fastText, as provided by the authors of each method.
The results seem to indicate that the different word embedding methods that were used did not
have a large effect on the performance of the classification models. The fastText model scores
slightly higher with some classifiers, but this result is not statistically significant. However, as

Chapter 7. Discussion & Conclusion 49

the fastText embeddings achieved good results and are fast to train, we are inclined to prefer
this method. As fastText embeddings can theoretically also better deal with a high number of
declensions and compound words, they may show better results when retraining for a different
language like German. Whether this is also the case in practice remains to be answered.

We furthermore implemented ELMo embeddings [69], yet found that they were too re-
source intensive to be used effectively for this task. As ELMo works on a character level, it
creates separate embeddings for each character in the input. While this has shown to be ef-
fective, it is also hugely memory and processing intensive. This practical constraint is often
circumvented by evaluating it on NLP tasks with short texts, like question answering or text
entailment [69]. Contrary to this, our dataset is both very large with more than a million sam-
ples, and has highly varying text lengths. We were able to use ELMo embeddings when limit-
ing all documents to the first 128 words, but the discarding of large amounts of text was more
detrimental to the results than the contextual embeddings could make up for, and did not offer
a fair comparison to the other methods. For now we have to conclude that while the technique
is very promising, it is not practical to use on a large scale for long documents.

For future research it may be interesting to experiment with training embedding methods
from scratch. Currently only pre-trained embeddings were used that were mostly trained on
data from a different domain than Web content. By completely training the methods on hyper-
text data, the resulting vector space model may be better constructed for Web page classifica-
tion.

7.2.2 Classification Efficiency

Finally, we aimed to empirically find the computational efficiency of the tested classification
methods to assess their viability in a large scale setting. To this end we measured the time each
method required to classify new samples. Although the recurrent neural networks achieved
the highest classification scores in terms of F1 score, they are not intrinsically the go-to choice
in a production setting. Comparing the GRU with the MLP showed a slight improvement of
less than 1% in terms of accuracy, however the time required to classify a sample increased
greatly. For the division data, going from an average of 0.08 to more than 223 seconds per
10,000 samples indicated an increase with a factor of more than 2,720. The linear SVM was
even faster, and although its accuracy was slightly lower than the MLP it classified the samples
more than 11,738 times faster than the GRU. Additionally, it has to be noted that the baselines
ran on a CPU with 8 threads, whereas all other methods used a dedicated GTX 970 GPU. When
we only look at the highest scoring RNNs we do see the increased efficiency from the simpler
structure of the GRU compared to the LSTM, while achieving similar scores. This concurs with
earlier findings in [18, 43].

Unsurprisingly, making predictions is much slower for the logistic regression, linear SVM,
and MLP classifiers when classifying the SIC labels compared to the Division labels. As ex-
plained in Section 4.1, logistic regression and the linear SVM use the one-vs-all classification
scheme for multinomial classification. This means that for each extra class label an extra classi-
fier has to be used. Whereas the Division level has 10 classes, the SIC has 84. Consequently, the
classification of the SIC codes roughly takes 8.4 times longer for these models. For the MLP the
increase in time is caused mostly because we used twice as many nodes in the hidden layer for
the SIC model, as explained in Section 5.4.2. Additionally, the increased amount of classes may
have also caused the efficiency to decrease, as it requires the calculation of more weights at the
output layer, and the softmax function has to be computed over more outputs. This effect is
also present in the more complex neural networks, although the relative increase is not as large
as these have many more weights to train that do not depend on the size of the output layer.

Chapter 7. Discussion & Conclusion 50

In the end, the final decision on which method is most suitable for this task comes down
to the scale to which it is applied and the computational resources that are available. To il-
lustrate the potential impact of this increase in complexity, we can extrapolate the result to
Dataprovider.com’s complete Web page database. In total, this database contains over 281 mil-
lion indexed Web pages. If we were to classify these on the Division level with an LSTM, it
would approximately take more than 100 days to complete on a GTX 970 GPU. However, if we
were to accept a slightly lower accuracy and use the linear SVM, the complete database could
be classified in less than 9 minutes on one CPU.

7.3 Conclusion

In this thesis a new unsupervised method is proposed to extract keyphrases from Web pages.
It combines the semantic information provided by word embedding techniques with domain
knowledge about the structure of Web pages to effectively select the most representative phrases
from a Web page. We furthermore compared and evaluated several approaches to the classifi-
cation of Web pages, and tested the effects of three different text embedding methods.

For the keyphrase extraction we proposed WebEmbedRank, an extension to EmbedRank
[5] for keyphrase extraction from Web pages. WebEmbedRank uses text embeddings to ex-
tract only the phrases that are relevant to the document, and strengthens the ranking with
a weighting procedure based on the structural information in the document. To evaluate this
novel approach, we annotated keyphrases for 105 randomly sampled Web pages. We then com-
pared the extracted keyphrases of WebEmbedRank and several state-of-the-art methods with
these manually annotated keyphrases. This showed that the keyphrases extracted by our new
method were significantly closer to the gold-standard set than all other compared methods. It
also showed that considering the structural markup that Web pages offer is crucial in deter-
mining good keyphrases. By using this structural information where available to strengthen
the ranking process, but not solely relying on it, WebEmbedRank was able to effectively deal
with the inconsistency in Web documents.

We furthermore looked at different supervised classification methods to categorize Web
pages. We found that recurrent neural networks consistently outperformed various baselines
and convolutional neural networks. However, this higher accuracy also came with signifi-
cantly increased prediction times for new samples. Choosing a suitable method for large scale
use therefore requires a careful consideration of the required classification accuracy and the
available computational resources. We also found that most convolutional approaches did not
work as well due to their requirement of fixed sized input. As the content on Web pages is
very inconsistent in length, this resulted in either efficiency or efficacy problems. We addition-
ally reviewed the effect of various pre-trained word embeddings on the classification, which
showed that overall the choice between pre-trained embedding methods did not have a signif-
icant impact on the results. All methods seemed to generalize well, and the small differences
may have easily been rectified by fine-tuning the embeddings during training.

51

Bibliography

[1] Sercan Ö Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky,
Yongguo Kang, Xian Li, John Miller, Andrew Ng, Jonathan Raiman, et al. “Deep voice:
Real-time neural text-to-speech”. In: Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70. JMLR. org. 2017, pp. 195–204.

[2] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. “The problem of learning long-term
dependencies in recurrent networks”. In: IEEE international conference on neural networks.
IEEE. 1993, pp. 1183–1188.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE transactions on neural networks 5.2 (1994),
pp. 157–166.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. “A neural prob-
abilistic language model”. In: Journal of machine learning research 3.Feb (2003), pp. 1137–
1155.

[5] Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Mar-
tin Jaggi. “Simple Unsupervised Keyphrase Extraction using Sentence Embeddings”.
In: Proceedings of the 22nd Conference on Computational Natural Language Learning. 2018,
pp. 221–229.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In: Jour-
nal of machine Learning research 3.Jan (2003), pp. 993–1022.

[7] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enriching Word
Vectors with Subword Information”. In: CoRR abs/1607.04606 (2016). arXiv: 1607.04606.
URL: http://arxiv.org/abs/1607.04606.

[8] Antal Van den Bosch, Toine Bogers, and Maurice De Kunder. “Estimating search en-
gine index size variability: a 9-year longitudinal study”. In: Scientometrics 107.2 (2016),
pp. 839–856.

[9] Florian Boudin. “PKE: an open source python-based keyphrase extraction toolkit”. In:
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
System Demonstrations. Osaka, Japan, Dec. 2016, pp. 69–73. URL: http://aclweb.org/
anthology/C16-2015.

[10] Florian Boudin. “Unsupervised Keyphrase Extraction with Multipartite Graphs”. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, June 2018, pp. 667–672. DOI: 10.
18653/v1/N18-2105. URL: https://www.aclweb.org/anthology/N18-2105.

[11] Adrien Bougouin, Florian Boudin, and Béatrice Daille. “Topicrank: Graph-based topic
ranking for keyphrase extraction”. In: International Joint Conference on Natural Language
Processing (IJCNLP). 2013, pp. 543–551.

[12] Leo Breiman. “Bagging predictors”. In: Machine Learning 24.2 (Aug. 1996), pp. 123–140.
ISSN: 1573-0565. DOI: 10.1007/BF00058655. URL: https://doi.org/10.1007/BF00058655.

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://aclweb.org/anthology/C16-2015
http://aclweb.org/anthology/C16-2015
http://dx.doi.org/10.18653/v1/N18-2105
http://dx.doi.org/10.18653/v1/N18-2105
https://www.aclweb.org/anthology/N18-2105
http://dx.doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655

BIBLIOGRAPHY 52

[13] John S Bridle. “Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition”. In: Neurocomputing. Springer, 1990,
pp. 227–236.

[14] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. “Massive Exploration
of Neural Machine Translation Architectures”. In: CoRR abs/1703.03906 (2017). arXiv:
1703.03906. URL: http://arxiv.org/abs/1703.03906.

[15] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. “SMOTE:
synthetic minority over-sampling technique”. In: Journal of artificial intelligence research 16
(2002), pp. 321–357.

[16] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078. URL:
http://arxiv.org/abs/1406.1078.

[17] Ben Choi and Zhongmei Yao. “Web page classification”. In: Foundations and Advances in
Data Mining. Springer, 2005, pp. 221–274.

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Empirical
evaluation of gated recurrent neural networks on sequence modeling”. In: arXiv preprint
arXiv:1412.3555 (2014).

[19] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. “Natural language processing (almost) from scratch”. In: Journal of Machine
Learning Research 12.Aug (2011), pp. 2493–2537.

[20] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297.

[21] Timothy C Craven. “HTML tags as extraction cues for web page description construc-
tion”. In: Informing Science 6 (2003), pp. 1–12.

[22] Yuchen Fan, Yao Qian, Feng-Long Xie, and Frank K Soong. “TTS synthesis with bidi-
rectional LSTM based recurrent neural networks”. In: Fifteenth Annual Conference of the
International Speech Communication Association. 2014.

[23] John R Firth. “A synopsis of linguistic theory, 1930-1955”. In: Studies in linguistic analysis
(1957).

[24] Corina Florescu and Cornelia Caragea. “Positionrank: An unsupervised approach to key-
phrase extraction from scholarly documents”. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2017, pp. 1105–
1115.

[25] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural net-
works”. In: Proceedings of the fourteenth international conference on artificial intelligence and
statistics. 2011, pp. 315–323.

[26] Yoav Goldberg. “Neural network methods for natural language processing”. In: Synthesis
Lectures on Human Language Technologies 10.1 (2017), p. 60.

[27] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov.
“Learning Word Vectors for 157 Languages”. In: Proceedings of the International Conference
on Language Resources and Evaluation (LREC 2018). 2018.

[28] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with
deep recurrent neural networks”. In: 2013 IEEE international conference on acoustics, speech
and signal processing. IEEE. 2013, pp. 6645–6649.

http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

BIBLIOGRAPHY 53

[29] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classification with bidirec-
tional LSTM and other neural network architectures”. In: Neural Networks 18.5-6 (2005),
pp. 602–610.

[30] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and
Jürgen Schmidhuber. “A novel connectionist system for unconstrained handwriting recog-
nition”. In: IEEE transactions on pattern analysis and machine intelligence 31.5 (2009), pp. 855–
868.

[31] Khaled M Hammouda and Mohamed S Kamel. “Efficient phrase-based document index-
ing for web document clustering”. In: IEEE Transactions on Knowledge & Data Engineering
10 (2004), pp. 1279–1296.

[32] Kazi Saidul Hasan and Vincent Ng. “Automatic keyphrase extraction: A survey of the
state of the art”. In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Vol. 1. 2014, pp. 1262–1273.

[33] Trevor Hastie, Robert Tibshirani, and JH Friedman. The elements of statistical learning: data
mining, inference, and prediction. 2009.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for
Image Recognition”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016.

[35] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural com-
putation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.

[36] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. In: A field guide to dynamical
recurrent neural networks. IEEE Press, 2001.

[37] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex”. In: The Journal of physiology 160.1 (1962),
pp. 106–154.

[38] Anette Hulth. “Improved automatic keyword extraction given more linguistic knowl-
edge”. In: Proceedings of the 2003 conference on Empirical methods in natural language process-
ing. Association for Computational Linguistics. 2003, pp. 216–223.

[39] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: International Conference on Machine
Learning. 2015, pp. 448–456.

[40] Kazuki Irie, Zoltán Tüske, Tamer Alkhouli, Ralf Schlüter, and Hermann Ney. “LSTM,
GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling
in Speech Recognition.” In: Interspeech. 2016, pp. 3519–3523.

[41] Thorsten Joachims. “Text categorization with support vector machines: Learning with
many relevant features”. In: European conference on machine learning. Springer. 1998, pp. 137–
142.

[42] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. “Bag of tricks for
efficient text classification”. In: arXiv preprint arXiv:1607.01759 (2016).

[43] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical exploration of
recurrent network architectures”. In: International Conference on Machine Learning. 2015,
pp. 2342–2350.

[44] Min-Yen Kan. “Web page classification without the web page”. In: Proceedings of the 13th
international World Wide Web conference on Alternate track papers & posters. 2004, pp. 262–
263.

http://dx.doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY 54

[45] Min-Yen Kan and Hoang Oanh Nguyen Thi. “Fast webpage classification using URL fea-
tures”. In: Proceedings of the 14th ACM international conference on Information and knowledge
management. ACM. 2005, pp. 325–326.

[46] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. “Semeval-2010 task
5: Automatic keyphrase extraction from scientific articles”. In: Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation. 2010, pp. 21–26.

[47] Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, 2014, pp. 1746–1751. DOI: 10.3115/
v1/D14-1181.

[48] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[49] Oh-Woog Kwon and Jong-Hyeok Lee. “Text categorization based on k-nearest neighbor
approach for web site classification”. In: Information Processing & Management 39.1 (2003),
pp. 25–44.

[50] Quoc Le and Tomas Mikolov. “Distributed representations of sentences and documents”.
In: International conference on machine learning. 2014, pp. 1188–1196.

[51] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. “Backpropagation applied to handwritten zip
code recognition”. In: Neural computation 1.4 (1989), pp. 541–551.

[52] Yang Li and Tao Yang. “Word embedding for understanding natural language: A sur-
vey”. In: Guide to Big Data Applications. Springer, 2018, pp. 83–104.

[53] Marina Litvak and Mark Last. “Graph-based keyword extraction for single-document
summarization”. In: Proceedings of the workshop on Multi-source Multilingual Information
Extraction and Summarization. Association for Computational Linguistics. 2008, pp. 17–
24.

[54] Marina Litvak, Mark Last, Hen Aizenman, Inbal Gobits, and Abraham Kandel. “DegExt
- A language-independent graph-based keyphrase extractor”. In: Advances in Intelligent
Web Mastering–3. Springer, 2011, pp. 121–130.

[55] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and
David McClosky. “The Stanford CoreNLP natural language processing toolkit”. In: Pro-
ceedings of 52nd annual meeting of the association for computational linguistics: system demon-
strations. 2014, pp. 55–60.

[56] Luís Marujo, Anatole Gershman, Jaime Carbonell, Robert Frederking, and João P. Neto.
“Supervised topical key phrase extraction of news stories using crowdsourcing, light fil-
tering and co-reference normalization”. In: Proceedings of the Eighth International Language
Resources and Evaluation (LREC. 2012.

[57] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji Kaneda. “Subject indepen-
dent facial expression recognition with robust face detection using a convolutional neural
network”. In: Neural Networks 16.5-6 (2003), pp. 555–559.

[58] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. “Learned in trans-
lation: Contextualized word vectors”. In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 6294–6305.

[59] Rada Mihalcea and Paul Tarau. “Textrank: Bringing order into text”. In: Proceedings of the
2004 conference on empirical methods in natural language processing. 2004.

http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.3115/v1/D14-1181

BIBLIOGRAPHY 55

[60] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin.
“Advances in Pre-Training Distributed Word Representations”. In: Proceedings of the In-
ternational Conference on Language Resources and Evaluation (LREC 2018). 2018.

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Distributed
representations of words and phrases and their compositionality”. In: Advances in neural
information processing systems. 2013, pp. 3111–3119.

[62] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation of word
representations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[63] Frederic Morin and Yoshua Bengio. “Hierarchical probabilistic neural network language
model.” In: Aistats. Vol. 5. Citeseer. 2005, pp. 246–252.

[64] Michael C Mozer. “A Focused Backpropagation Algorithm for Temporal Pattern Recog-
nition”. In: Complex Systems 3 (1989), pp. 349–381.

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the web. Tech. rep. Stanford InfoLab, 1999.

[66] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. “Unsupervised Learning of Sen-
tence Embeddings using Compositional n-Gram Features”. In: NAACL 2018 - Conference
of the North American Chapter of the Association for Computational Linguistics. 2018.

[67] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global vectors
for word representation”. In: Proceedings of the 2014 conference on empirical methods in nat-
ural language processing (EMNLP). 2014, pp. 1532–1543.

[68] Matthew Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. “Semi-supervised
sequence tagging with bidirectional language models”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancou-
ver, Canada: Association for Computational Linguistics, July 2017, pp. 1756–1765. DOI:
10.18653/v1/P17-1161. URL: https://www.aclweb.org/anthology/P17-1161.

[69] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. “Deep contextualized word representations”. In: Proc. of
NAACL. 2018.

[70] Vijay V Raghavan and SK Michael Wong. “A critical analysis of vector space model for
information retrieval”. In: Journal of the American Society for information Science 37.5 (1986),
pp. 279–287.

[71] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation functions”.
In: arXiv preprint arXiv:1710.05941 (2017).

[72] Daniele Riboni. “Feature selection for web page classification”. In: Proceedings of the Work-
shop on Web Content Mapping: A Challenge to ICT. 2002.

[73] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
Tech. rep. Cornell Aeronautical Lab Inc. Buffalo NY, 1961.

[74] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors”. In: Cognitive modeling 5.3 (1988), p. 1.

[75] Gerard Salton and Christopher Buckley. “Term-weighting approaches in automatic text
retrieval”. In: Information processing & management 24.5 (1988), pp. 513–523.

[76] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
Transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[77] Karen Sparck Jones. “A statistical interpretation of term specificity and its application in
retrieval”. In: Journal of documentation 28.1 (1972), pp. 11–21.

http://dx.doi.org/10.18653/v1/P17-1161
https://www.aclweb.org/anthology/P17-1161

BIBLIOGRAPHY 56

[78] Carolin Strobl, James Malley, and Gerhard Tutz. “An introduction to recursive partition-
ing: rationale, application, and characteristics of classification and regression trees, bag-
ging, and random forests.” In: Psychological methods 14.4 (2009), p. 323.

[79] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with Neu-
ral Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409.3215. URL: http://arxiv.
org/abs/1409.3215.

[80] Stamatina Thomaidou and Michalis Vazirgiannis. “Multiword keyword recommenda-
tion system for online advertising”. In: 2011 International Conference on Advances in Social
Networks Analysis and Mining. IEEE. 2011, pp. 423–427.

[81] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude”. In: Coursera: Neural networks for machine learn-
ing 4.2 (2012), pp. 26–31.

[82] Elena Tutubalina and Sergey Nikolenko. “Demographic Prediction Based on User Re-
views about Medications”. In: Computacion y Sistemas 21 (June 2017), pp. 227–241. DOI:
10.13053/CyS-21-2-2736.

[83] Xiaojun Wan and Jianguo Xiao. “Single Document Keyphrase Extraction Using Neigh-
borhood Knowledge.” In: AAAI. Vol. 8. 2008, pp. 855–860.

[84] Paul J Werbos. “Generalization of backpropagation with application to a recurrent gas
market model”. In: Neural networks 1.4 (1988), pp. 339–356.

[85] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. “Hi-
erarchical attention networks for document classification”. In: Proceedings of the 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2016, pp. 1480–1489.

[86] Zi Yin and Yuanyuan Shen. “On the dimensionality of word embedding”. In: Advances in
Neural Information Processing Systems. 2018, pp. 887–898.

[87] Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang. “Bidirectional long short-term
memory networks for relation classification”. In: Proceedings of the 29th Pacific Asia confer-
ence on language, information and computation. 2015, pp. 73–78.

[88] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level convolutional networks for
text classification”. In: Advances in neural information processing systems. 2015, pp. 649–657.

[89] Yiquing Zhang Zhang, Nur Zincir-Heywood, and Evangelos Milios. “Summarizing web
sites automatically”. In: Conference of the Canadian Society for Computational Studies of In-
telligence. Springer. 2003, pp. 283–296.

[90] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. “Attention-
based bidirectional long short-term memory networks for relation classification”. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Vol. 2. 2016, pp. 207–212.

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://dx.doi.org/10.13053/CyS-21-2-2736

57

Appendix A

SIC Codes

Table A.1: Full list of all first and second level SIC codes used for classification

Division SIC Category name

A. Agriculture, Forestry & Fishing 01 Agricultural Production – Crops
02 Agricultural Production – Livestock
07 Agricultural Services
08 Forestry
09 Fishing, Hunting & Trapping

B. Mining 10 Metal Mining
12 Coal Mining
13 Oil & Gas Extraction
14 Nonmetallic Minerals, Except Fuels

C. Construction 15 General Building Contractors
16 Heavy Construction, Except Building
17 Special Trade Contractors

D. Manufacturing 20 Food & Kindred Products
21 Tobacco Products
22 Textile Mill Products
23 Apparel & Other Textile Products
24 Lumber & Wood Products
25 Furniture & Fixtures
26 Paper & Allied Products
27 Printing & Publishing
28 Chemical & Allied Products
29 Petroleum & Coal Products
30 Rubber & Miscellaneous Plastics Products
31 Leather & Leather Products
32 Stone, Clay & Glass Products
33 Primary Metal Industries
34 Fabricated Metal Products
35 Industrial Machinery & Equipment
36 Electronic & Other Electric Equipment
37 Transportation Equipment
38 Instruments & Related Products
39 Miscellaneous Manufacturing Industries

E. Transportation & Public Utilities 40 Railroad Transportation
41 Local & Interurban Passenger Transit
42 Trucking & Warehousing

Appendix A. SIC Codes 58

43 U.S. Postal Service
44 Water Transportation
45 Transportation by Air
46 Pipelines, Except Natural Gas
47 Transportation Services
48 Communications
49 Electric, Gas & Sanitary Services

F. Wholesale Trade 50 Wholesale Trade – Durable Goods
51 Wholesale Trade – Nondurable Goods

G. Retail Trade 52 Building Materials & Gardening Supplies
53 General Merchandise Stores
54 Food Stores
55 Automotive Dealers & Service Stations
56 Apparel & Accessory Stores
57 Furniture & Home Furnishings Stores
58 Eating & Drinking Places
59 Miscellaneous Retail

H. Finance, Insurance & Real Estate 60 Depository Institutions
61 Nondepository Institutions
62 Security & Commodity Brokers
63 Insurance Carriers
64 Insurance Agents, Brokers & Service
65 Real Estate
67 Holding & Other Investment Offices

I. Services 70 Hotels & Other Lodging Places
72 Personal Services
73 Business Services
75 Auto Repair, Services & Parking
76 Miscellaneous Repair Services
78 Motion Pictures
79 Amusement & Recreation Services
80 Health Services
81 Legal Services
82 Educational Services
83 Social Services
84 Museums, Botanical, Zoological Gardens
86 Membership Organizations
87 Engineering & Management Services
88 Private Households
89 Services, Not Elsewhere Classified

J. Public Administration 91 Executive, Legislative & General
92 Justice, Public Order & Safety
93 Finance, Taxation & Monetary Policy
94 Administration of Human Resources
95 Environmental Quality & Housing
96 Administration of Economic Programs
97 National Security & International Affairs
98 Zoological Gardens

59

Appendix B

HTML Preprocessing Tags

Table B.1: Special tags during HTML preprocessing. All style tags are unwrapped, their con-
tents being placed directly in the parent node. Text in the invisible tags is ignored (unless
explicitly retrieved, such as the description)

Style tags Invisible tags

i style
em script
b head
strong meta
a
big
small
abbr
acronym
cite
strong
span
sub
sup
var
tt

	Abstract
	Acknowledgements
	Introduction
	Word Representations
	Count Vectorization
	Word Embeddings
	Word2vec
	GloVe
	FastText
	Contextual Word Embeddings

	Keyphrase Extraction
	TFIDF
	Structural Weighting
	Graph-based Ranking
	Embedding-based Ranking
	WebEmbedRank

	Classification
	Logistic Regression
	Random Forest
	Support Vector Machine
	Multilayer Perceptron
	Activation Functions
	Training
	Vanishing & Exploding Gradient Problem

	Convolutional Neural Networks
	C-CNN
	Character-level CNN

	Recurrent Neural Networks
	Bidirectional RNNs
	Long Short-Term Memory
	Gated Recurrent Unit

	Attention Networks
	Hierarchical Attention Network

	Experimental Setup
	Text Extraction & Preprocessing
	Datasets
	Keyphrase Extraction
	Classification

	Keyphrase Extraction
	Web Page Classification
	Word Embeddings
	Baselines
	Neural Networks

	Results
	Keyphrase Extraction
	Web Page Classification
	Timing

	Discussion & Conclusion
	Keyphrase Extraction
	Classification
	Word Embeddings
	Classification Efficiency

	Conclusion

	Bibliography
	SIC Codes
	HTML Preprocessing Tags

