gron in gen and engineering

ul'liVGI'SitY of / faculty of science

Master’s Thesis

Deep Attribute Learning for Zero-shot Recognition and
Explainability

Paul Ozkohen
s2575973

Primary Supervisor: Dr. M.A. Wiering (Artificial Intelligence,
University of Groningen)
Secondary Supervisor: prof. Dr. L.R.B. (Lambert) Schomaker
(Artificial Intelligence, University of Groningen)

Contents

List of symbols v
List of figures vi
(I__Introduction 3
(1.1 _Introductionl 3
[[2 Visualattributesl 4
[1.3 Motivation and research questions| 5
L4 Outling 6

2 Theoretical background| 7
21 Artificlal neuralnetworks|o oo 7
2.1.1 Supervised learning| 7

212 Perceptron|. L. 8

[2.1.3 Non-linearity and the multi-layer perceptron|. 11

214 Tossfunctions............................ 13

2.1.5 Backpropagation| 0oL 14

216 Activation functionsl L 16

217 Deeplearning|. 18

2.1.8 Deep architectures| 21

2.1.9 Deep metriclearning|. 24

[2.2 Explainable artificial intelligence| 27
221 Introductionl. 27

222 Ruleextraction| 28

[2.2.3 Class activationmaps| 30

2.3 Zero-shotrecognition|. oL 32

ii

Contents

231 Introductionl. 0L 32

232 Texicon-based classificationl 33

[2.3.3 Attribute labellingl o 00000 35

3 Methods! 37
3.1 Introductionl 37
B2 Datasetsl 37
[3.3 Model and hyper-parameters| 38
B.4 Standard classification experiments]. 39
B5 Zero-shotexperiments| 43
3.6 Explainability] o o oo 45
4_Results] 47
4.1 Standard classification| oL 47
4.2 Zero-shotrecognition|. Lo L oL 51
4.3 Explainability] o 55
4.3.1 Attention heatmaps| 55

B32 Ruleextraction] 59

5 Discussionl 65
[p.1 Answers to research questions|.00 65
B2 Condusion. 67
Bibliography 69

iv

I

LKL S

S <

List of symbols

Vectors and matrices will be displayed in bold,
matrices are capital letters.

Input matrix

Class label matrix

Attribute label matrix

number of input vectors

i-th example

i-th label

Dataset containing triplets of examples, class la-
bels and attribute labels

dimensionality of the input data

number of classes

number of attributes

Hidden layer weight matrix

Output layer weight matrix

Activation function

Feature map

Convolution kernel

Number of convolution kernels
3-dimensional input image

The attribute predictions for the i-th example
Class-attribute lexicon for dataset D

List of Figures

P

The weight vector w and bias weight 0 determine the orientation and

position of the hyperplane in the input space, respectively. S indi-

cates the positive and negative regions. 0 indicates the origin. Perfect

separation is not possible without 6 in this example, which is taken |

from [1[.| 10

22

An example structure of a multi-layer perceptron, containing one hid- |

den Tayer with 5 units and an output layer with one unit. The figure

is taken from [2]. Here, the 4-dimensional input is non-linearly em-

bedded into a 5-dimensional space, where separation of data points |

mightbebetter| o oo oo 11

23

Plots of the sigmoid (red) and tanh functions (blue). Both functions |

have a visible [imit, both on the positive and negative end of the x-axis] 17

na

Diagram of the Inception modules found in the Inception-V1 architec- |

ture, using multiple kernel sizes and dimensionality reduction with |

| Ix1 convolutions. |. Lo 22

25

An example of embedding learning. In this example, the anchor is

closer to the negative sample than to the positive sample in the em-

bedding space. After learning, the anchor is situated closer to the

positive [B[]. 24

76

The multi-label triplet loss allows a deep network to learn an em-

bedding space separately for each attribute, at the same time. Two

images that are positives for one attribute may be negatives for an-

other [4]] 26

vii

List of Figures

[2.7 Generating class activation maps. For a specific class, this method lin- |
[early combines the feature maps that are most relevant for that class |
in order to generate an attention heatmap, by looking at the weights |

[2.8 Examples of CAM for two different attributes. The heatmap shows |
the importance of each pixel to the attribute prediction. Visualisations

‘ were generated using the predictions of an Inception V3 [6] model

[trainedontheCelebAdataset [7].] 31
2.9 The DAP and TAP methods [8] visualized. From an image x, DAP

[predicts a set of attributes p(a]x), which maps deterministically to

classes via the class-attribute lexicon. The IAP method first predicts

classes, then computes the attribute set p(a[x) with a weighted sum

of class probabilities and class attribute representations from the lex-

| icon. Figure taken from [8]] 34

[3.1 Operations versus accuracy on ImageNet of different CNN architec- |

[tures [O) 38

4.1 Standard class recognition accuracy on the AWA?2 dataset for the three |
| T 1 Tssificat Tods 11 Giord Tresh 1

| old methods and two Bayesian methods are also shown| 48

4.2 Standard class recognition accuracy on the AWA?2 dataset for directly |
| learning the classes both with and without attributes, using a decision |

(4.3 Standard class recognition accuracy on the LAD dataset for the three
ditferent attribute classification method he results for the two thresh- |
| old methods and two Bayesian methods are also shown| 50

.4 Standard class recognition accuracy on the LAD dataset for directly
[learning the classes both with and without attributes, using a decision

4.5 Zero-shot class recognition accuracy on the AWA2 dataset for the |
|] i 1 Teesificat Tods. 11 TG for 1 |

[two threshold methods and two Bayesian methods are also shown.| . 53

|4.6 Zero-shot class recognition accuracy on the SUN dataset for the three |
| I 1 lassificat hods. T1 TG for d e
| old methods and two Bayesian methods are also shown.| 55
.7 Zero-shot class recognition accuracy on the LAD dataset for the three
| different attribute classification methods. The resu |
[old methods and two Bayesian methods are also shown| 56

viii

List of Figures

4.8 Attention heat maps of the "Persian Cat’ class from the AWA?2 dataset.

The heatmaps show that the attention ot the network is not what one

| would expect given these three attributes,| 57
[4.9 3 attention heatmaps of the "Giant Panda’ class from the AWA2 dataset. |
[Again, the attention of the network does not seem to localize the spe- |
| cific attributes in theimage.|. L. 58
[4.10 Three attribute attention heatmaps on an instance from the "Cabin’ |
[class| 59

E.ll Attention heatmaps of an instance of the 'Outdoor Theater’ class.

The "Ocean” an ailing /Boating” attribute both focus on the water

and the boat and are very similar. The ‘Sunny’ heatmap is focused

mostly on the air, especially the lett and right corners, but the reason

for this is unknown. Possibly, the attention for some attributes can

be attributed to the locations that they often occupy in the images, |

such that the network learns where to approximately expect these at-

tributes. Images with the attribute ‘Sunny” often have the sun or clear

blue skies near the top of theimage.|,

60

{4.12 Attention heatmaps of an instance of the "Indoor Bank” class. The

attention of the network for the "Electric lighting” is focused mostly

on the light generated by the lamps and the lamps themselves. The

"Glass’ attribute attention map is focused mostly on the left and right

‘ glass parts of the entrance, but does not fully cover them. The "Read- |

‘ ing” attribute attention map is very concentrated on the small table

and chairs in the middle of theimage.|.

61

{4.13 Attention heatmaps of an instance of the "Auto Showroom’ class. The

'Driving” and "Asphalt’ attention maps are mostly focused partly on

the ground and lower parts of the surrounding cars and indicate that

these two attributes are correlated. The 'Glossy” attention map is

mostly concentrated on the glossy surtaces of the cars in the image.| .

62

{4.14 Attention heatmaps of an instance of the "Abbey” class. Both the

"Aged/worn” and "Rock/stone” are both focused on the abbey itselt.

The 'Clouds’ attention map is concentrated most strongly on the clouds

behind the abbey, especially those to theright|

{4.15 Attention heatmaps of an instance of the ‘Strawberry” class. The "Grows

on trees” and "Tastes sweet” attention maps seem active in many areas

of the image, but most strongly on the plants. Interestingly, the "Red’

attention map is focused mostly on the strawberries and less on the

plants, which actually seems plausible].

ix

64

List of Figures 1

[4.16 Attention heatmaps of an instance of the 'Laptop” class. All three |
[attention maps are focused mostly on the keyboard, instead of on the |
| screen as one would expect for the first two attributes|. 64

Chapter 1

Introduction

1.1 Introduction

Deep learning has received a lot of attention in recent years, due to its success in
various fields such as computer vision, signal processing and natural language pro-
cessing. In 2012, the so-called ‘Deep Learning Revolution” was started when a deep,
Convolutional Neural Network (CNN) was used to win the 2012 ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [10]. Since then, deep learning mod-
els have been applied to a variety of different tasks instead of more traditional ap-
proaches and have achieved state of the art results [11].

While deep learning achieves superior performance in most domains, a recent
concern has arisen with respect to the explainability of such deep learning models.
These models excel at recognition tasks, but it is often not clear how predictions are
made by the model. This is a result of complex, non-linear interactions of many
layers of artificial neurons within such deep Neural Networks that leads to their
decisions not being interpretable for humans. The application of such ‘black box’
systems leads to difficulties in certain fields such as medicine, where transparent
models are preferred over more accurate but opaque ones. If an automatic system
detects a severe disease in a patient, it might not be ethically sound to blindly trust
the system without understanding why this classification was made [12}[13]. A re-
cent trend of Explainable Artificial Intelligence (XAI) has surfaced, whose aim it is
to make Al systems more transparent, explainable and applicable [14].

Another downside of standard deep learning models is that they require lots of
data to train the millions of parameters that these models contain. If the system has
to learn to distinguish between different classes, enough samples from all categories
should be present. If this is not the case, problems arise as models can become im-
balanced and biased towards the more frequently available categories. Moreover,
even if the samples for categories are well balanced, a lack of sufficient samples for
each can still prevent the network from correctly distinguishing between them. The
problem is that not every category might have enough samples, as certain categories
may be quite rare. Another problem of standard deep models is that if the system

4 1. Introduction

needs to recognize a new class after deployment, the entire model has to be com-
pletely retrained keeping this new category in mind, which is costly. Standard deep
models do not have the capacity to transfer the learned knowledge from the cate-
gories that have been seen to new categories. An exception to this is that a model
such as the CNN can be pretrained on some categories, and part of the extracted
features can be re-used for a different recognition task. Still, for new classes, the
model has to be retrained.

Certain approaches for dealing with this issue of transfer learning have been
developed, often called zero-shot or few-shot recognition, whose name is derived
from the fact that zero or only very few data points from certain classes that need
to be recognized are given [15]. A good zero-shot model is able to train on a set of
classes and recognize new, unseen classes by using knowledge gained from the seen
classes, without the need for any additional training after the training phase. Such
models can be trained on categories that have plenty of samples, then employed to
recognize rare ones. Another upside of such a model is that it is not limited in the
amount of classes it can recognize, like standard models. Theoretically, new classes
can be created on the fly and recognized without having to do any re-training, as
long as the new categories are well-defined and share components with the training
classes. Recognition of unseen instances by using learned components is also related
to how humans learn new categories [16]].

1.2 Visual attributes

A possible solution for dealing with the aforementioned issues is introducing an
intermediate layer of attributes that lies in-between input data and output classes.
By doing this, we can go from recognition of classes to recognition of attributes
that a class consists of, where the attributes are easy to interpret for humans [17].
Examples of such attributes include various visual characteristics such as color and
shape of an object. More specific visual attributes can be defined, such as the type
of fur or teeth of an animal. Other attributes can include visible features of people
such as the type of clothes and hairstyle being worn or whether a person is male or
female. A model trained on these attributes offers more interpretable predictions.
Instead of only predicting an animal to be a cat or a dog, the model can also describe
what the animal looks like, what its diet consists of or the environment it lives in,
which allows a model to gain a greater understanding of the content in images.
Besides offering more explainability, these attributes also allow for transfer of
knowledge from one class to other, possibly unknown ones [8}/18]]. By specifying for
different concepts what attributes they should typically have, a class-attribute lexi-

1.3. Motivation and research questions 5

con can be built. By learning to recognize attributes within images, new categories
can be recognized by first predicting the attributes in the image. The predicted at-
tributes can then be compared and matched with different entries in the lexicon.
The most likely or similar class entry in the lexicon is selected as the predicted class.
New classes can be created on the fly by adding a new entry to the lexicon with the
attributes of the new category. However, such a new category has to be defined in
the same attribute space. Also, each category should be sufficiently and uniquely
described by the set of attributes.

1.3 Motivation and research questions

The aim of this thesis is to provide an exploration of attribute learning with a deep
Neural Network and its effects on learning in both a standard and zero-shot set-
ting. A powerful CNN architecture will be employed for attribute recognition. To
recognize the attributes, two classic methods will be used, where one method tries
to directly learn the attributes while the second one learns them indirectly via the
classes. Additionally, a third method to learn the attributes is experimented with,
which uses a triplet loss [3]] to learn attribute embeddings.

Standard classification with only output labels will be compared with classifica-
tion with attributes. Moreover, the effectiveness of attributes for zero-shot recogni-
tion will be analyzed. These effects will be tested on three attribute datasets, which
vary in size. Additionally, the interpretability of the deep models granted by visual
attributes will be explored in the interest of explainable Al This is done by extract-
ing understandable rules that map from attributes to classes, using decision trees,
which can offer insight into the most discriminative and informative attributes of a
dataset. Additionally, the explainability of a deep model’s predictions will be ex-
plored by investigating how a network’s attention can be visualized, to understand
which areas in an image contribute to certain predictions.

In this project, the primary goal is to investigate the effects and usefulness of
deep attribute learning. The main research question is formulated as follows:

How does deep attribute learning improve the applicability of deep learning?

This main research question is answered by answering the following three sub-
questions:

1. How does deep attribute learning affect standard classification?
2. How well does deep attribute learning allow zero-shot recognition?

3. How does deep attribute learning improve the explainability and interpretabil-
ity of deep learning models?

6 1. Introduction

1.4 Outline

The rest of this thesis is sub-divided into the following sections:

e Theoretical background. This section explains the theory behind all the meth-
ods used in the various different fields, such as Neural Networks, XAI and
zero-shot recognition.

e Methods. This section describes the experimental setup of this thesis. It details
the datasets and frameworks used and the various experiments that have been
performed.

e Results. This section contains all the results that were obtained from each of
the experiments.

e Discussion. This final section attempts to answer the research questions asked
in the previous section and a conclusion is made.

Chapter 2

Theoretical background

2.1 Artificial neural networks

2.1.1 Supervised learning

Supervised learning is one of the major and most studied fields in the Artificial In-
telligence and machine learning literature. Supervised learning algorithms embrace
the idea of learning with examples, or learning with a teacher. The algorithms devel-
oped in this field require that each input sample is complemented by a label, which
indicates the category of the sample. It is up to the algorithm to learn a mapping
from input to label, such that new inputs are assigned the correct label.

Generally, supervised classifiers need a distinct training and testing phase. In the
training phase, the classifier will observe a feature vector that numerically describes
an instance. Such an instance could be a potential customer for a moneylender, or a
photo of a dog. The features of an instance depend on the type of sample: in the first
example, a binary feature could describe the gender of a person, while a different,
continuous feature describes the person’s credit history. In the second example, the
features describing the dog are the pixels in the image and their color intensities.

Besides the feature vector, a label describing what category the instance belongs
to also has to be given. A supervised algorithm then has to learn to predict such a
label, given the input feature vector. Formally, a supervised classifier is a function
that maps a N-dimensional input vector x € RV toalabel y € {0,1,...,C}, where
C'is the number of categories. y is also often a binary indicator vector called a one-
hot vector, which consists of zeros except for the entry at the index of the correct
class, which is set to 1: y € {0, 1}1*¢.

Each of the N features describes some aspect or characteristic of the example,
as mentioned before. For a given supervised algorithm, its task is to find robust
correlations and patterns between features within the feature vector and the cor-
responding label. In this setting, the supervised algorithm performs classification,
since x has to be placed into one of C possible categories. The label can also be any
real number: y € IR™™. In this case, the algorithm performs regression, which is
used for predicting quantitative values for a feature vector, where m is the dimen-

8 2. Theoretical background

sionality of the values being predicted. A dataset D is defined as a set of pairs of
feature vectors and labels: D = {(x!,y!), (x?,¥?), ..., (x", y")}}, where n is the total
amount of examples within the dataset.

In the testing phase, the algorithm will be deployed on unseen examples, whose
feature vectors and labels have not been incorporated into the training process.
Here, the generalization power of the algorithm is tested: the knowledge gained
from the training data is applied to new data. If the supervised algorithm has not
memorized the training data too much, it may generalize well to the testing data.
However, it is possible that instead of extracting the general patterns within the
data, it simply learned the specifics of the training examples too much, resulting in
good performance on the training data but bad performance on new data. If not
enough training examples are provided or the training examples are of poor qual-
ity, performance will also suffer. In this case generalization will be poor, as the new
data can be quite different compared to the training data even if they exhibit similar
patterns, so the predictions will be heavily biased towards training samples. This
is called overfitting. Various methods have been devised to combat the overfitting
problem, both on the general level and algorithm-specific level. In general, for clas-
sification, balancing the dataset to take into account the underlying distribution of
classes is one possible method which can help with algorithmic biases. Different ap-
proaches for reducing overfitting have been studied, especially for Deep Learning,
which will be discussed in section 3.1.6.

2.1.2 Perceptron

When it comes to creating artificial intelligence, people have classicly been inter-
ested in studying the human brain, where real intelligence manifests. Therefore,
Artificial Neural Networks (ANNSs) have been some of the most studied algorithms
in the field of Al Such networks are loosely based on the human brain, with pro-
cessing units that resemble neurons which have various inhibitory and excitatory
connections with neighboring units. These connections, often called ‘'weights’, are
based upon the biological synapses that occur in the brain, which is the process in
which electrical or chemical signals are sent from one neuron to another which alter
the neuron’s state. Many types of ANNs have been proposed over the years in the
Al community, with some of them being successful for a variety of applications. The
focus of this thesis is on a specific branch of neural networks, which are referred to
as ‘feed-forward networks’. Such networks process information starting from their
inputs, propagating from the inputs to the next layer and so on up until the output
layer. Such a network structure can be seen as a directed acyclic graph.

The Perceptron [19] is a simple feed-forward ANN, which has served as the ba-

2.1. Artificial neural networks 9

sis for more complicated neural networks that have been built. A single perceptron
unit can be seen as a neuron with a collection of weights that are connected to in-
coming input signals. The connections determine in what way the perceptron is
affected by the input, such that certain inputs increase (excite) or decrease (inhibit)
the activation of the neuron to various degrees. The neuron’s activation can then be
used for pattern recognition: the perceptron can learn to become very active when
a certain pattern is present in the input, while being dormant when such a pattern
is absent. Formally, given an input vector x, the perceptron is a function f(x) that
uses a weight vector w € IR'*Y to map the input to some output value, where the
output represents the activation of the perceptron. The perceptron has exactly one
weight for each input, so the dimensionalities of x and w are equal. Given a dataset
D = {(x}yh), (x%y?),...,(x", y")}}, the perceptron classifier’s task is to learn a
mapping from x to y, such that f(x?) = y?, for all n input samples. A perceptron
uses its weights to linearly combine the given inputs to produce its activation:

N
f(x)= ijwj =xTw. (2.1)
J

A good set of weights should be defined in such a way that input features that are
not important for distinguishing between categories are assigned a small weight,
such that their importance in the linear combination is low, while important fea-
tures, either inhibitory or excitatory, have a weight with a large magnitude. The
perceptron can perform both classification and regression. When looking at binary
classification, we want the perceptron to map the input to one of two categories,
which are often encoded as either {0,1} or {—1, 1}. However, the output of the per-
ceptron is not restricted to this range because its weights can be arbitrarily large.
Therefore, the activation of the network is squashed to be in a certain range, by us-
ing a saturating activation function. Examples of such activation functions will be
discussed in section 2.1.6. While early algorithms such as the perceptron training
rule [19] were used to train the network to find a good weight vector w, most ANNs
these days are trained using backpropagation and gradient descent. These methods
are discussed in section 2.1.5.

The perceptron’s weight vector defines a hyperplane in the input space which
separates the positive input examples from the negative ones (in the binary classifi-
cation setting). This is visualized in Figure 2.1} where positive examples have a label
of +1 and negative examples have a label of -1. The decision line is made up of the
points in the input space whose dot product with the weight vector equals 0, so they
lie exactly on the boundary between the -1 and the +1 regions in the input space. The
points and the orientation of the decision plane are thus determined by the values of
the weights. By changing the weights, the orientation is also changed and having a

10 2. Theoretical background

Figure 2.1: The weight vector w and bias weight 6 determine the orientation and po-
sition of the hyperplane in the input space, respectively. S indicates the positive and
negative regions. 0 indicates the origin. Perfect separation is not possible without 0
in this example, which is taken from [1]].

good set of weights means having a hyperplane that separates the positives from the
negatives quite well. However, sometimes it’s not possible to separate the positive
from the negative examples by only changing the orientation of the hyperplane. By
shifting its position, a wider variety of hyperplane placements in the input space are
possible, which will allow the perceptron to separate more datasets and thus learn
a wider variety of functions that map from x to y. To add the ability for the hyper-
plane to shift from the origin, a bias weight is introduced, often denoted as b or 6,
which is not connected to an input, but is simply added to the perceptron activation
before applying the squashing activation function. When all the features of x are
zero, b will determine the starting position of the decision plane, since the weights
are not contributing anything in this case. This bias variable b can be trained, just
like w. Incorporating this bias value, the full perceptron equation can be described
as follows:

N
F(x) = oY (xjw;) = b) = o(x"w — b), (2.2)

J

where o(x) is an activation function. The bias b can also be interpreted as a thresh-
old. The dot product x’w must then be greater than or equal to b in order to be
classified as the positive class. Perceptrons that are not trained with gradient de-

2.1. Artificial neural networks 11

Input Hidden Layer Output
Layer Layer

Figure 2.2: An example structure of a multi-layer perceptron, containing one hidden
layer with 5 units and an output layer with one unit. The figure is taken from [2].
Here, the 4-dimensional input is non-linearly embedded into a 5-dimensional space,
where separation of data points might be better.

scent can use a threshold function o(x, w, b) which can give one of two outputs:

+1, ifx"w=>b
o(x,w,b) =) (2.3)
—1, otherwise
Neural networks trained with gradient descent need differentiable activation func-
tions, as will be described later.

2.1.3 Non-linearity and the multi-layer perceptron

While the Perceptron is one of the basic units of modern feed-forward neural net-
works, it is often not used on its own on real problems. While this classifier is able
to separate data points with a linear decision boundary, many problems are not
linearly separable, especially complex ones found in the real world. This greatly
reduces the effectiveness of the perceptron. In order to properly classify such a
dataset, a non-linear decision boundary is needed which is not possible with a sim-
ple perceptron.

12 2. Theoretical background

One solution to deal with this problem is to introduce non-linearity in the clas-
sifier. This can be done by introducing an intermediate layer of neurons that non-
linearly transforms the input, often denoted as the hidden layer [20]. In such a
Multi-Layer Perceptron (MLP), inputs are first fed to this hidden layer, whose acti-
vations are squashed with a non-linear activation function. This non-linear trans-
form maps the input samples from their original input space, where separation is
not possible, to a non-linearly transformed hidden space where linear separation
may be possible. The structure of a simple multi-layer perceptron is shown in Fig-
ure The hidden layer is ‘'hidden’, since its values are never observed from the
outside, unlike the input values that are fed to the network and the output layer that
computes the predictions for the task at hand.

Since each unit in the hidden layer is just a perceptron with a differentiable trans-
fer function, the activation for one unit is equal to equation (2.2). The full activation
vector of the hidden layer, a(x), can be computed as follows using a vector-matrix
multiplication and a vector summation:

a(x) = o(xTWH 4+ bf), (2.4)

with input sample x, hidden weight matrix W € IRN*" and a bias vector b €
IR containing one bias value for each hidden unit. 4 is the amount of units in
the hidden layer and o(x) is an activation function. After computing the hidden
activation vector, it serves as the input to the next layer. If the MLP has one hidden
layer, the output layer is computed using the hidden activation as input, which
is a non-linearly transformed version of the original input, which may be linearly
separable:

f(x) = o(a(x)TW + b9), (2.5)

with hidden activation a(x) € R™", output weight matrix W € IR**° and an out-
put bias vector b € IR*. ¢ is the amount of units in the output layer.

When training an MLP, the hidden layer learns to non-linearly embed the input
into a different space in such a way that the output layer is better able to separate
the instances, since the output units are simple linear perceptrons. This is why the
hidden layer and similar mechanisms are often also referred to as embeddings. In
this way, the layers in an MLP can be viewed as cooperating together: the hid-
den layer(s) learn(s) to improve its embedding of the original input for improved
separation, while the output layer learns to better perform classification given the
non-linear embedding as input.

2.1. Artificial neural networks 13

2.1.4 Loss functions

The aim of training a neural network is to find good values for all of the weights,
such that the network is able to perform its task well, whether that be classification
or regression. In modern neural networks, this training is done with mathemati-
cal optimization procedures. We can define a function that measures the degree to
which a network makes errors, often called an error or loss function. Using opti-
mization techniques, we then aim to minimize this loss function with respect to its
variables, the network’s weights, which should as a result improve the network’s
behavior on a given task. Formally, the loss over a set of data points is computed as
follows:

L(D;6) = %ZZ(D(Z‘),GL (2.6)

where L(D;0) is the average loss over the training dataset D given network pa-
rameters 6. [(D(:),8) is an arbitrary loss function, taking as input weights 6 and
an input-output pair D(i): D(i) = (x’,y’). The loss function /(D(i),6) should be
defined such that it takes on high values when the network prediction for input
sample x(i) is far away from the ground-truth label y () and low values when the
prediction is close to the label.

A popular loss function that is commonly used in classification problems is the
cross-entropy loss. For a network with o output units, this loss is defined as follows
for multi-class classification:

Uy, 0) = = 2 ¥jlog(F(x'50);), (27)

where y! indicates for example x’ and output node j whether output node j is the
correct class (1) for z* or not (0). f(x;;0); is the output of the j-th output unit of
network f(z;;6). Since classes are mutually exclusive in a multi-class classification
problem, only one output unit contributes to the loss per data point, as only one
yé will be non-zero. For multi-label classification, more than one output unit can
contribute to the loss, since the label for every output unit can be either 0 or 1. Multi-
label classification can therefore be seen as multiple binary classification problems,
so the multi-label cross-entropy loss is defined as the average binary cross-entropy
over all output units:

o

W(x',y"),0) = %Z —(yjlog(f(x',0);) + (1 — yj)log(1 — f(x",6);)) (2.8)

J

Since the labels are either 0 or 1, one of the two terms in the summation cancels
out because of either y’ or (1 — y’) being equal to zero.

14 2. Theoretical background

2.1.5 Backpropagation

Minimizing the cost function with respect to the weights of the neural network can
be done by a first-order optimization method called gradient descent [21}22]]. It is
a first-order method since it uses first-order derivatives. The gradient of a function,
Vf, is a vector consisting of the partial derivatives of that function with respect to
its variables. Formally, the gradient can be described as follows:

of of of

Vi = {0W17 an""’ aWN

(2.9)

v

where N, is the number of variables of function f. Given a point P in the N,-
dimensional weight space defined by the values of all N, weights, the gradient of f
points in the direction of biggest increase of the value of f from point P. Since we
want to minimize f, going against the gradient will turn the weights away from the
direction of greatest increase at point P, instead going the opposite direction: the
direction of decrease. Given a neural network with randomly initialized weights,
the point P starts off in a random location in the gradient space of the cost function.
The gradient can then be computed and the weights can be moved in the opposite
direction in order to move towards a better minimum. This is repeated many times
in order to find weights that minimize f. This method can be seen as a local method,
as we look only at the current local point P at a time, defined by the values of the
weights, and decide from there where to move. Because of this locality, gradient
descent has problems with ending up at a local minimum, instead of the global
minimum of the cost function, since we always take the greedy approach by taking
the best step each time instead of considering more global information.

In gradient descent, a step-size is defined that controls the magnitude of the
steps of w into the negative direction of the gradient, also called the learning rate
and often denoted as « or 7. By carefully setting 1 between 0 and 1, the step-size
at each training step is kept small in order to avoid overshooting and ending up in
a worse position than the current point P. Setting a proper learning rate is quite
important for training, as a high learning rate can lead to overshooting while a low
learning rate can lead to very slow convergence. For each training step, the update
equation for each weight w; is then defined as follows:

_ o
U

(2.10)

W; = W;

where ;—v{;, is the partial derivative of loss f with respect to variable w;.
In order to compute the partial derivatives, a technique called backpropagation
can be applied [20]. This method applies the chain-rule of differentiation to calcu-

late the partial derivative of the loss function with respect to some variable through

2.1. Artificial neural networks 15

every layer of the network, all the way back to the layer in which the variable re-
sides. The method of backpropagation is related to the credit assignment problem:
if a neural network makes a bad prediction on a certain data point, to what extent
is each weight to blame? The partial derivative % estimates how f changes when
only looking at weight w;. Therefore, it measures the contribution of w; to the error
function f, whether that’s in the positive or negative direction. Using backpropaga-
tion, we can trace the path of contributions back to w;. An illustration can be given
with regard to the MLP structure given in Figure[2.2) which contains 5 hidden units
and 1 output unit. First, the contribution of the output unit’s output, denoted by o?,
to the value of the loss f is computed as a(%' which is dependent on the specific loss
function being used. Since the output node’s output is dependent on the activation
function, we also have to compute the partial derivative of the output to the acti-
vation of the output node according to the chain rule of differentiation. Let 0© and
off denote the output of the output layer and hidden layer respectively and let a®
and a’’ denote the activation of the output layer and hidden layer, respectively. The
contribution of hidden unit j, whose weights are denoted as Wfl , can be computed
by computing the chain of derivatives from loss f all the way to W' as follows:

of of 00° 0a® ool oall

_ . 211
0W§{ 009 0a0 doH oall 6W§{ @11)

of
awT

are used to update unit j’s weights as defined in equation 2.10.

Typically, three different kinds of gradient descent are used: online, batch and
mini-batch gradient descent. Equation 2.10 denotes an online learning rule, as it
updates the parameters according to the gradients separately for each data point.
This results in an update for each data point separately instead of considering all
the training data points, which leads to a noisier path to a minimum, which can aid
the network in escaping from local minima. Online learning is also called stochastic
gradient descent (SGD), due to its noisy nature.

In batch gradient descent, the gradients for each variable for each training data
point are accumulated. After every data point has been fed to the ANN, the gradi-
ents are averaged over the data points and the weights are adapted. Batch gradient
descent modifies equation 2.10 as follows:

is thus a vector containing the gradients for each weight of hidden unit j and

wi—w,—nt 320 212)

where f; is the loss on example x. Batch gradient descent is not as noisy as stochas-
tic gradient descent, since it takes into account more data points.

16 2. Theoretical background

Another variant called mini-batch stochastic gradient descent is used, especially
in deep learning, which combines aspects from online and batch gradient descent.
As deep learning usually deals with large amounts of data, feeding an entire train-
ing set to a deep model might not be feasible. However, only feeding a single data
point at a time can also be costly, as the forward pass and backwards gradient com-
putations have to be computed one by one and the amount of computations grows
with deeper models. On modern GPU architectures, these types of operations can be
sped up for many data points at once. Therefore, mini-batch gradient descent trains
on n, data points at once, benefitting from the stochastic nature of online learning
while feeding more data at once in the training procedure. The mini-batch SGD
update rule can be written as follows:

wi=w, g 213)

2.1.6 Activation functions

In the history of Neural Networks, many activation functions have been devised for
output squashing and adding non-linear behavior to artificial neurons. As described
before, this non-linear transform of neuron activation is what allows an MLP to clas-
sify non-linear datasets by first transforming the inputs from the original space into
a different space where a linear classifier can be applied. Different differentiable
transfer functions exist for performing this task. The most notable ones will be de-
scribed here.

The logistic Sigmoid function and the Tanh function were traditionally the most
popular transfer functions used for Neural Networks. The Sigmoid and Tanh are
given by the following equations, respectively:

1
) ; = — 2.14
sigmoid(x) Tp— (2.14)
tanh(x) = w. (2.15)
exp* +exp™*
The derivatives of these functions are given as follows:

dsi id

% = sigmoid(x)(1 — sigmoid(x)) (2.16)
x

dtanh

C‘lm =1 (tanh(x)) (2.17)
x

The fact that the derivatives of both the sigmoid and tanh can be computed by
re-using their values from the forward pass makes them attractive to use from a

2.1. Artificial neural networks 17

—
T—
\\

o

-1

(a) Sigmoid and tanh. (b) Derivatives of sigmoid and tanh.

Figure 2.3: Plots of the sigmoid (red) and tanh functions (blue). Both functions have
a visible limit, both on the positive and negative end of the x-axis.

computational point of view. The two functions and their derivatives are shown in
Figure2.3|

As can be seen from the graph, both activation functions have an S-like shape.
They can be interpreted as a smooth, differentiable version of the threshold function,
where the biggest increase happens close to z = 0. Both functions saturate when z
is very small or large, which can be seen as a maximal inhibition point (f(z) = 0 for
sigmoid, f(r) = —1 for tanh) and a maximum excitation point (f(xz) = 1 for both
sigmoid and tanh). The use of these activation functions have fallen off in the era of
deep learning. With deep learning, many layers are typically stacked on top of each
other. The deeper the network becomes, the longer the chain of partial derivatives
becomes, such as the one in equation 2.11. In each layer i of some ANN that uses an
activation function, an expression of the type gg‘ occurs, which involves computing
the derivative of the activation function used, which is subsequently multiplied in
the computation of the gradient. As shown in Figure the derivatives of both
the tanh and sigmoid function are below 1 in most cases. With many layers, many
multiplications with values below 1 have to be done in order to compute the par-
tial derivative of weights in the early layers. These partial derivatives, as a result,
will grow smaller and smaller and closer to zero, which will hamper and eventually
even prevent learning of earlier layers in a deep model. This is known as the "van-
ishing gradient” problem. Similarly, the ‘exploding gradient” problem can occur if
activation functions are used where the derivative can be higher than 1, which can
cause the gradients and subsequently the weights to become very large.

18 2. Theoretical background

One proposed solution to this problem is a different activation function called
the 'Rectified Linear Unit (ReLU), which has become one of the standard activation
functions in deep neural networks [11)23]]. The ReLU function is defined as follows:

if 0
LR = max(0, x) (2.18)
0, otherwise

ReLU(z) = {

The ReLU is partially the linear identity function f(z) = x when x is positive, and
zero otherwise. Clipping all negative inputs to zero is what gives the ReLU its non-
linearity. The derivative of the ReLU is given as:

1, ifz>0

0, otherwise

- (2.19)

dReLU {
Therefore, if the derivative of the ReLU is used in backpropagation terms like g—z,
then this term will reduce to either 1 or 0. While negative activation will be set to 0,
the positive gradients will not be reduced in magnitude as they will be multiplied by
1, unlike the sigmoid and tanh functions. This allows the gradients to reach further
back in a deep network and improves the training of early layers. For this reason,
ReLU has become the dominant activation function in deep learning.

2.1.7 Deep learning

CNN s are deep Neural Networks that have been very successful for various recog-
nition applications. For computer vision, features had to traditionally be manually
computed from images, using methods such as the well-known Scale-Invariant Fea-
ture Transform (SIFT) [24] or Histograms of Oriented Gradients (hoG) [25], which
extract general patterns in the image which could subsequently be used for classi-
fication. Therefore, the feature extraction and classification were separate stages in
the processing pipeline.

The basic operator that distinguishes CNNs from different Neural Networks is
the use of the convolution operator, often denoted by the asterisk () symbol. The
discrete convolution operation in one dimension can be described as follows:

s(t) = (x = w)(t) =). x(a)w(t — a), (2.20)

where x is an input signal, w is a parameter vector containing weights for every
time step in the input signal and « is the off-set from time ¢. s(t) therefore calculates
the convolution of x with w at time step ¢. In practice, x and w are zero everywhere

2.1. Artificial neural networks 19

except for a finite number of points. Therefore, this infinite sum can be implemented
as a finite sum of multiplications between each signal value and its corresponding
weight. With this convolution operator, local patterns in the signal can be found at
time ¢, by weighting the signal value at time ¢ and a finite amount of past values.
In other words, a convolution can be seen as a window of fixed size that slides over
the input to find patterns within this small interval at different locations.

CNNs are mostly used for grid-like data with a fixed height and width, such
as images. Therefore, CNNs employ 2-dimensional convolution. In this scenario,
convolution is done along both the height and width dimension of the input image
I. The 2D parameter vector w is usually referred to as a kernel K. In many Neural
Network libraries the related cross-correlation function is implemented instead of
convolution:

S(4,5) = (K = 1)(i, 5) = I(i + h,j + w)K(h,w), (2.21)

me
e M=

where S(i, j) is the result at pixel location (7,) of convolving the kernel K with in-
put image I. H and W are the height and width of the kernel, respectively. This
convolution generates a feature map S and each element of S contains the resulting
vector dot product between some local area of I and the kernel K. Similar to the
1-dimensional case, patterns are discovered by weighting a specific location’s value
and the neighboring values, this time in 2 dimensions. Since the dot product be-
tween two vectors is higher the more similar the two vectors are, the convolution
of K and image pixels within the kernel K centered on location I(7, j) will result
in high values in the resulting feature map the more these pixels resembles K. The
kernels can therefore be seen as pattern detectors, which fire more when the location
in the input that the kernel is currently overlaying represents the pattern it is look-
ing for. The feature map S can be interpreted as the firing intensities or activations
of K along different positions of I, indicating the presence of the feature. A ker-
nel designed to detect edges will have a large activation in regions of the image that
contain edge-like patterns. Traditionally, convolution of images with kernels was al-
ready used for image processing, such as filtering, smoothing or edge detection [26].
However, in these applications, the kernels were handcrafted. In a CNN, the kernels
are weight parameters that are randomly initialized and trained during supervised
learning. Unlike more traditional computer vision methods, this means that the fea-
ture extraction is automatically learned and not hand-crafted, which saves a lot of
human effort.

Kernel convolution in a CNN brings a host of advantages over more traditional
feed-forward neural networks. Unlike a perceptron or MLP, the weights in the CNN
are shared among the different locations in the input. This leads to a lot fewer pa-

20 2. Theoretical background

rameters that have to be used. An image usually contains a lot of pixels and ev-
ery hidden unit in a fully-connected MLP would need one weight for every pixel,
leading to a huge amount of parameters. Parameter sharing leads to both a lower
computational and model complexity [11].

Another advantageous property of convolution is its equivariance to translation
[11]). If the content of an input image is shifted, the kernels of the CNN may still find
the patterns that they are looking for, except at a different location. This will also be
reflected in the resulting feature map.

One of the standard building blocks of modern CNNSs is the convolutional layer.
Such a layer contains many kernels, all looking for various patterns. Each kernel is
convoluted over the input I, generating one feature map for every kernel. Convolu-
tion is a linear operation, so non-linearity is introduced into the network for better
separation, which is done by applying an activation function to the resulting fea-
ture maps. These feature maps are then stacked to produce a 3-dimensional output
volume layer.

A more general version of the kernel is called a filter. Since the input to a collec-
tion of kernels is often a 3D volume, such as an an image with red, blue and green
color channels, kernels for each of these channels are needed. A filter is therefore a
collection of kernels, one for each input channel. The kernels of the filter look for
patterns in each of the input’s channels and the resulting feature maps for one filter
are summed. A convolutional layer therefore takes a 3D input volume and pro-
duces another 3D volume of stacked feature maps, which serve as the input to the
next layer. The input to a convolutional layer is therefore either the input image for
the first convolutional layer, or otherwise a stack of feature maps from the previous
layer. The filters in the next layer will look for patterns in the filter activations of
the previous layers, which can lead to complex and hard-to-interpret but effective
templates. However, the input feature maps to a convolution layer are often first
modified by a different CNN building block, called the pooling layer.

Even though the direct connectivity between units in a CNN is lower due to only
having local direct interactions, units in higher layers get an increasingly higher
receptive field due to indirect connections to units in lower layers. For example,
while a 3x3 kernel in a higher CNN layer only has a direct receptive field of 3x3, the
input consists of activations of units in the previous layer, which themselves have
a receptive field. The higher level kernel therefore indirectly has a bigger receptive
field, as it has indirect connections to the inputs within the receptive field of the
lower units.

Pooling layers are often applied after convolutional layers to downsample the
input. The pooling operation replaces the input feature maps with local summary
statistics [11]. Like convolution, pooling is also done using a sliding window, but

2.1. Artificial neural networks 21

pooling windows are often spaced apart further than convolution windows. If pool-
ing windows are spaced k pixels apart, the resulting feature maps will be reduced
to be roughly & times smaller. The spacing between windows, or alternatively the
distance the window moves is often referred to as the stride. The most used pooling
operations are max pooling and average pooling, which takes the max or mean of
a region of input activations, respectively. Pooling grants the CNN more invariance
towards small translations [11]. Translations in the input lead to translations in the
output feature maps, but if these translations are small then the features may still
fall within the same pooling window, therefore making the output of the pooling
operation roughly the same compared as the non-translated input.

After the final convolutional or pooling layer, the extracted features are usually
flattened into a one-dimensional feature vector and fed to fully connected layers,
which represent a typical MLP, with one or more hidden layers, which performs
non-linear transformations of the input features for classification. Both the kernel
weights and weights from the fully connected layers are trained during the same
backward pass of the network during supervised learning. Both the feature extrac-
tion and classification are thus trained in the same connected process. This means
that the kernels are learned to recognize robust features, such that the fully con-
nected layer can accurately perform classification. The entire CNN can be trained
end-to-end using backpropagation [20].

While CNN kernels are trained for a specific domain, they can sometimes be
general enough to be used for other domains. This is known as transfer learning,
where a CNN trained on one domain is only partially re-trained for application on
a different domain [27]. The kernels learned in a CNN often have a hierarchical
nature: in the first layers, the kernels learn to detect simple general features such as
edges. In the next layer, filters look for patterns that are combinations of edges by
looking at the filter activations of the previous layer. This continues in subsequent
layers and at the highest layers more complex, domain-dependent features will be
detected, such as eyes or noses in face recognition. While these highest-level features
are usually specific for the dataset that is trained upon, the lower level features
such as edges can be general enough for most other datasets as well. Higher level
features can also be used for transfer learning, if the domains of the source and
target datasets are similar enough.

2.1.8 Deep architectures

Many deep learning architectures have been constructed that build upon the CNN
concepts described in the previous section. One popular network is GoogleNet,
also known as Inception-V1, which was able to win the 2014 ILSVRC [28]. One

22 2. Theoretical background

Filter
concatenation
..f 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions) $ $
*t\ 1x1 convolutions 1x1 convolutions 3x3 max pooling
- | S 1
Previous layer

Figure 2.4: Diagram of the Inception modules found in the Inception-V1 architec-
ture, using multiple kernel sizes and dimensionality reduction with 1x1 convolu-
tions.

of the main components of this architecture is the use of Inception modules. One
issue in the design of a CNN is the receptive field or kernel size used within the
convolutional layers. Small kernels can pick up more fine-grained features, while
bigger kernels can detect patterns that span a wider part of the image. The inception
modules attempt to address this design issue by including different sets of kernels
containing different kernel sizes, which are applied at the same layer. The resulting
feature maps from these different filters are all stacked. In this way, features at
different scales are extracted and fed to the next layer, which can learn filters to
detect patterns in this multi-scale feature volume.

Including many kernels with different receptive fields within one layer could
lead to a higher computational complexity because of the higher number of con-
volutions. To address this, a lot of dimensionality reduction is used within such
modules. Before convolving the input with kernel sizes such as 3x3 and 5x5, the
amount of input channels is first reduced with 1x1 convolutions with an amount of
filters lower than the amount of input channels. A 1x1 convolution is equivalent to
first multiplying each input channel by a different scalar weight, then applying non-
linearity and finally summing the scalar-transformed non-linear maps. 1x1 convo-
lutions are therefore a relatively cheap method of embedding the 3D input volume

2.1. Artificial neural networks 23

into a thinner one. Convolutions with bigger kernel sizes can then be performed
on this thinner volume, which is faster than convolution with the original, thicker
input volume, since the filters require fewer kernels. The concept of the inception
modules is illustrated in Figure
For Inception-V2, a very popular optimization technique known as batch nor-

malization is introduced [29]. With batch normalization, a concept known as in-
ternal covariate shift is addressed. During training, the parameters at each layer
are adjusted, which changes the activation patterns of the layer. Since the layer’s
activation distribution changes, the next layer will have to re-adjust to this new dis-
tribution, which slows down the training process. The inputs to a Neural Network
are often normalized such that the features are within a similar, small range, which
reduces quick saturation of neurons due to high feature values and stabilizes the
input distribution, which helps the network train. Similarly, batch normalization
normalizes the outputs of a layer over a mini-batch, to normalize the inputs of the
next layer. The normalization is done by first computing the mean p;, and variance
o2 over mini-batch b for each feature. The inputs z to a layer are then standard-
ized by first subtracting the mean, then dividing by the variance. To prevent the
layer from losing representational power, some additional parameters are learned
for each batch normalization layer, which can map the normalized activations back
to the unnormalized versions in case the batch normalization is detrimental. These
parameter vectors 7' and (3! are learned along-side the other parameters of the net-
work using SGD, for each batch-normalization layer /. The batch-normalization for
layer I, BN (z!), can then be computed as follows:
1 — l

— + (2.22)

BN(a') =+ —
b

where 4! scales each activation of input 2! and ' shifts them. Deciding which lay-
ers in a network should receive batch-normalization is part of the network design
process.

Finally, Inception-v3 introduces various enhancements to the Inception modules
from previous versions [6]. Three different Inception modules are introduced, which
are placed at different locations within the network. The first module attempts to re-
duce the computational complexity and amount of parameters further by replacing
the 5 x 5 convolutions in the inception module by 2 subsequent 3 x 3 convolutions.
While 5 x 5 kernels have a wider receptive field compared to 3 x 3 kernels, applying
a 3 x 3 kernel to the result of a different 3 x 3 kernel will still result in a wide recep-
tive field due to the indirect connectivity. These inception modules are placed in the
early layers. The second type of Inception modules uses asymmetrical convolutions
by replacing n x n kernels by subsequent 1 x n and n x 1 kernels, which have been

24 2. Theoretical background

found to work well on medium-sized input volumes and are therefore placed in the
middle layers. The third Inception module type is placed in the final layers. In these
layers, the input volumes will have a small height and width due to the many pool-
ing operations that have been performed. To extract as many different features from
these small grids, different asymmetrical filters are employed on the same input and
then concatenated.

One final important aspect of the Inception network is its use of Global Average
Pooling (GAP) at the end of the network before the prediction layer, instead of fully-
connected layers, which was first introduced in [30]. Global Average Pooling takes
the final feature maps of the network and averages each channel into a single scalar.
This final feature vector is then fed into the prediction layer. One advantage is that
a GAP layer contains no parameters, unlike fully-connected layers that are prone
to overfitting. Furthermore, it is easier to interpret the connections between output
units and the feature maps in the final convolutional layer, as each output unit will
have one weight for each feature map.

219 Deep metric learning

Negative f'_‘\\v
Anchor . g LEARNING e
- o Negative

e Anchor _ ©
Positive Positive

Figure 2.5: An example of embedding learning. In this example, the anchor is closer
to the negative sample than to the positive sample in the embedding space. After
learning, the anchor is situated closer to the positive [3].

While cost functions such as the cross-entropy have been very successful in Deep
Learning, recent research has led to alternative loss functions that have been shown
to work well for certain applications. One such an alternative function is called the
triplet loss, which has been applied for face recognition and verification [3]. Unlike
more traditional CNNs, a network trained with the triplet loss does not contain out-
put units that represent categories. Instead, the final layer of the network contains
a fully-connected layer of a certain size. The triplet loss works directly on this em-
bedding layer using a special constraint. During the training of a triplet network,
three images are presented to the network at once: the anchor, the positive and the
negative. The anchor image represents some class, the positive is a different image

2.1. Artificial neural networks 25

of the same class and the negative is an image of a different class. The objective of the
network is then to learn a d-dimensional embedding of an image, f(z) € R?, such
that images of the same class are embedded close in Euclidean space, while images
of different classes are far away. This concept is illustrated in Figure Classi-
fication can then be done by finding an appropriate maximum distance threshold,
such that, given an image, all other images with a distance within this threshold
will be given the same label as the initial query image. The network therefore tries
to optimize the embedding f(x) under the following constraint for each triplet i:

di? = |1f(x}) — F(x])I3 (2.23)
di" = |1 f(xf) = F(x7)II3 (2.24)
constraint = d;¥ + a < di™, (2.25)

where d;” represents the squared Euclidean distance between the anchor embedd-
ing f(z¢) and positive embedding f(z) and d¢" represents the squared Euclidean
distance between f(z¢) and the negative embedding f(z}'). o represents a margin
that is enforced between the positive and negative anchor distances. This constraint
forces the anchor-positive distance to be small and the anchor-negative distance to
be big. The corresponding loss function that incorporates this constraint is the fol-
lowing, for each triplet i:

I((xf, 2, 2)),0) = di" —di" + a. (2.26)

This loss function is minimized by minimizing d;” and maximizing d?", given an-
chor z¢, positive 2’ and negative . Increasing the margin « may lead to a larger
distance between positive samples for a certain person and negative samples in the
embedding space. However, this will also make it harder for the network to learn,
as certain high margins may not be feasible to maintain for each class. Theoretically,
in order to get a minimum loss of zero, d;” needs to be zero. a needs to be counter-
acted, so d{" needs to take on the value of ¢, leading to the loss being 0—a+a = 0. In
this scenario, the margin is perfectly maintained. In practice, this is hard to achieve,
as it requires all positive samples from the same class to be in the exact same place
in the embedding space in order to have a distance of zero. If « is increased, the
network needs to compensate by lowering d;” or increasing d¢".

In order to calculate the distances between the embeddings, a forward-pass through
the deep network is required in order to calculate the embeddings themselves. This
can be a costly but necessary step in the training process. In order to improve the
convergence of a triplet network, quality, informative triplets should be sought. Ini-
tially, certain triplets might already have a low loss, due to the random initialization
of weights. Therefore, care should be taken to select hard triplets: those triplets with

26 2. Theoretical background

Figure 2.6: The multi-label triplet loss allows a deep network to learn an embedding
space separately for each attribute, at the same time. Two images that are positives
for one attribute may be negatives for another [4].

alarge anchor-positive distance d;” or a small anchor-negative distance d?", referred
to as hard positives and hard negatives, respectively. These triplets will have a large
loss and will allow the network to learn the most. There are different selection strate-
gies for triplet selection, also called triplet mining. An often used strategy of triplet
mining is online mining: selecting good triplets from images within a mini-batch,
instead of gathering them from the entire training dataset, which significantly re-
duces computation time [3].

Instead of learning only one embedding, the triplet loss can be extended to learn
multiple embeddings at once. In a multi-label setting, such as with attribute learn-
ing, an embedding can be learned for every class at the same time. For each at-
tribute, an embedding is learned such that both positive and negative instances of
the attribute are closer to instances of the same class and further away from the op-
posite class [4]. An example is illustrated in Figure In this case, the triplet loss
can be referred to as a multi-label triplet loss function. Since the three images in a
triplet may have different attributes, the anchor-positive-negative roles are depen-
dent on the specific attribute. Therefore, for each triplet, the triplet loss is calculated
for each attribute separately, then averaged. The multi-label triplet loss for each
triplet is given as follows:

IR i
H(cio x5, %), 0) = — D Jwifldi — dig + o, (227)

for some triplet with images z;, «; and z. n, is the number of attributes in the
dataset. Applying online mining for multi-label triplet loss would require even
more computation time than learning a single embedding, as the quality of a triplet
varies for the same triplet of images varies for each attribute. Instead, a triplet
weighting scheme can be used to significantly speed up the training [4]]. This weight-
ing scheme uses a heuristic that removes the need for computing the embeddings
for triplet selection. A triplet weight for each attribute a under triplet (i, j, k), wi;;,

2.2. Explainable artificial intelligence 27

is computed by measuring the similarity of the attribute labels of the images within
the triplet: 3%, 4/ and y*. This is done using the Jaccard index:

|A N B|
J(A,B) = , 2.28
B AT iE- 1A B 229
which measures how many elements of set A overlap with B, normalized by the
total amount of elements. wy;;, is then computed as follows:

wle = J(yhyD A = J(yhyi)) (1 = Jy"\{yi b Y\ y2 D) (T v} (" \{ye}))
(2.29)

which contains four terms. The first two terms are binary and make sure that the
triplet is valid. If the anchor and positive do not have the same label for attribute
a, or the anchor and negative do not have a different label, the triplet weight for
attribute a will be zero. The other two terms measure the overlap in the entire at-
tribute labels between anchor-positive and anchor-negative without the current at-
tribute a. A low similarity between anchor and positive will lead to a higher triplet
weight and a higher similarity between anchor and negative also leads to a higher
triplet weight. The intuition is that if two images have the same attribute label for
one attribute but they have barely any other attributes in common, then the content
of the two images is quite dissimilar and the embeddings may be quite different
as well. The same heuristic is applied to the negatives, which effectively identifies
those triplets that contain hard positives and hard negatives, which will allow the
network to train on informative triplets for better convergence. This way of search-
ing for good triplets without actually computing the embeddings beforehand can
be viewed as a way of soft triplet mining [4].

After the network is done learning, classification can be performed by first com-
puting the average embeddings of the training set for each attribute for both the
positive and negative label. This leads to both a positive and negative centroid in
embedding space for each attribute. For a new image, attributes can be predicted
by first mapping the image into the attribute sub-spaces. Then, for each attribute,
the distance in the sub-space is computed between the new image and both of the
centroids. The attribute is then classified as the closest centroid, which is either 0 or
1.

2.2 Explainable artificial intelligence

2.2.1 Introduction

A famous urban legend in the Machine Learning community is the story of a group
of researchers using a Neural Network to learn whether a tank is visible in a photo,

28 2. Theoretical background

by presenting photos of tanks and photos without tanks. While the network was
able to perform well on images that the researchers had collected and trained the
network on, the network failed spectacularly when presented with novel images. It
turned out that the tank photos were taken under different conditions, such as time
of day, compared to the non-tank images. The network did not learn to detect a
tank, but instead learned to detect the time of day. This story shows potential prob-
lems of recklessly applying black-box algorithms such as Neural Networks, without
understanding what the underlying model has learned. In the medical field, black-
box machine learning algorithms may be quite powerful for detecting certain dis-
eases, but without understanding why the algorithm has made a specific diagnosis
or detection makes it tricky to use. XAl is a relatively new field that tries to make
black-box models more interpretable. Various different types of algorithms are and
have been developed in order to facilitate the use of deep Neural Networks. Some
of these methods attempt to visualize the information and structure that a CNN has
learned, for example by generating images that maximally activate a given CNN
filter, which shows the types of patterns that the filter reacts to [31}32]. These types
of methods are useful to check whether the network has learned features that are
relevant to the task at hand, but they do not provide insight into decisions made by
the model at inference time. Instead, this thesis focuses on methods such as rule ex-
traction that extract simple to understand rules from network attribute predictions
and methods that can trace network decisions back to the initial input images, in
an attempt to visualize the attention of the network towards certain parts of the in-
put. Such an attention heatmap can indicate which pixels contribute the most to a
prediction, allowing insight into why a network makes a decision. In the case of un-
known dataset bias, attention heatmaps may be a way of discovering this bias. For
example, in the tank story, such heatmaps might have focused on the background
instead of the tanks, indicating that the network is focusing on the wrong features
for the task at hand.

2.2.2 Rule extraction

Unlike Neural Networks, other machine learning algorithms have been developed
that offer a more human-interpretable explanation of its decisions. One example of
such a “white box” algorithm is the Classification and Regression Tree (CART) [33].
Such a decision tree is trained and constructed on a set of examples, resulting in a
tree with multiple nodes where each node represents an if-then-else rule that tests
one of the features from the input example. At the bottom of the tree the leaf nodes
reside, which represent the outcome classifications. When given a new example, the
first rule on the top of the tree is checked. One of the child nodes of the top node is

2.2. Explainable artificial intelligence 29

then visited, based on the answer to the rule. This process repeats until a leaf node is
reached, which results in the classification that the leaf node is associated with. Such
a decision tree therefore allows for extracting classification rules, which determine
precisely how an example should be classified based on a set of simple if-then-else
tests concerning the features of the example. Decision trees can be constructed for
classification and regression and can handle both continuous and categorical input
features. The focus in this thesis is on classification decision trees operating on bi-
nary input features. Therefore, the nodes in such a tree will have a positive branch
(feature is equal to 1) and a negative branch (feature is equal to 0).

To construct a decision tree, a greedy algorithm is often employed. Given a
dataset D with input samples x’, each with N features, at each iteration of the al-
gorithm a split is proposed using one of the N features. A measure of impurity is
defined, which measures the uncertainty of classification at that point in the tree. A
commonly used impurity measure is Gini impurity, which is defined as follows in a
multi-class setting:

C
Gini(p) =1 - p3, (2.30)
J

where p; represents the fraction of examples x’ belonging to class j. If all examples
within a node belong to the same class, the Gini impurity reaches its minimum of
zero in that node.

Given n training samples, the initial Gini impurity is computed. Afterwards,
each of the N features is selected for a split one by one. After every potential split,
two child nodes are created and the training examples are distributed to these nodes
according to the condition in the parent node. The impurity can then be computed
for the child nodes separately and weighted by the proportion of training examples
falling into these nodes:

. nt .. nT oo
Ginispiit(p) = ?sz(pﬂ + 7sz(p) (2.31)

where n* and n~ represent the amount of examples falling into the left and right
branch, respectively. p* and p~ are the class proportions of examples falling into
the left and right branch, respectively. The impurity reduction can then be com-
puted due to splitting on each of the N features as the difference between impurity
before and after the split. The feature that results in the biggest impurity decrease
is chosen as the feature to be used for the rule at the current node. This process is
repeated recursively for every child node, until every training example ends up in a
leaf node and every node, except the leaf nodes, tests the input for a specific feature.
The algorithm can be considered greedy, as the best step forward in reducing the

30 2. Theoretical background

7] 2 8\>o "
i/ o |

Class Activation Mapplng

Class
Activation
Map

ratam to

Figure 2.7: Generating class activation maps. For a specific class, this method lin-
early combines the feature maps that are most relevant for that class in order to gen-
erate an attention heatmap, by looking at the weights from that class to the feature
maps [5].

{

<200
Z00

impurity is selected by considering only the local information at a given node. Fully
growing a decision tree until every training example falls into a leaf node is prone
to overfitting, as many rules and branches can be created just to accomodate specific
examples, which will not generalize well to unseen examples. Common methods of
reducing overfitting in decision tree learning are early stopping and setting a maxi-
mum tree depth. Early stopping can be achieved by not doing any further splitting
in a node once the impurity within the node reaches a certain minimum, instead
of always splitting until impurity reaches 0. The maximum depth of the tree stops
the splitting process if this split will result in a tree depth that exceeds the maximum
depth. Both the optimal minimum impurity threshold and optimal maximum depth
can be determined by cross-validation.

2.2.3 Class activation maps

Class Activation Maps (CAM) are attention heat maps that attempt to localize the
presence and extent of a certain object in the input image. By using learned weights
or gradient information, the activations of the network can be used in combination
with learned filters to localize objects. These types of methods are related to weakly-
supervised object localization [34], where only class labels are present and no expen-
sive bounding box annotations have to be used. One method [5] to compute CAM
utilizes CNNs with a global average pooling layer. As described in section 2.1.8, the
resulting feature vector from the global average pooling results in a mean value for
each feature map of the last convolutional layer, which are subsequently mapped
to output classes by means of a fully-connected layer. This means that each output

2.2. Explainable artificial intelligence 31

Male Mouth_slightly_open

(a) CAM for the attribute ‘male’. As can be (b) CAM for the attribute ‘'mouth_slightly_-
seen, the heatmaps are concentrated mostly open’. The attention maps are concentrated
around the chin and a bit around the hair or around the mouth region. The second person

headwear. For the first image, the CAM is con- does not have her mouth open and the net-

centrated mostly around the tie, indicating a work has a low activation for this attribute.

possible bias in the dataset that mostly men The CAM for this attribute for this image is

wear ties. all zeros, because all pixels contributed neg-
atively to the activation of the corresponding
unit.

Figure 2.8: Examples of CAM for two different attributes. The heatmap shows the
importance of each pixel to the attribute prediction. Visualisations were generated
using the predictions of an Inception V3 [6] model trained on the CelebA dataset [7].

unit of the CNN contains exactly one weight for each of the final channels. As de-
scribed in section 2.1.7, the deeper layers of a CNN capture more complex, higher
level domain-dependent features, such that the final convolution layer contains the
highest level of concepts. By combining the activation of filters that detect these
concepts, an attention heat map can be created. For example, to localize a dog, we
can combine the activation of a filter that detects dog faces, another filter that detects
dog tails and another filter that detects a dog’s paws. The importance of a feature
map for the activation of an output unit is measured by the weights connecting it to
the GAP layer. The activation map is computed by taking a linear combination of
the final feature maps and these weights:

nd
CAM® =) w(S,;, (2.32)

where CAM? is the class activation map for some class ¢, S; is feature map channel
i from the output of the final convolution layer, n, is the total amount of feature
maps in the final convolution layer (2048 in Inception V3) and w*® € IR™*"¢ contains
the weights from the GAP features to class c. This method is visualized in Figure

272

Class activation mapping can also be extended to CNN architectures that do not

32 2. Theoretical background

utilize a global average pooling layer, by using a method called Gradient-Weighted
Class Activation Mapping (Grad-CAM) [35]. Without a global average pooling
layer, the weights from output units to final feature maps needs to be calculated
in a different manner. This can be done by calculating the gradients of an output
unit with respect to the final convolution layer feature maps. The positive gradients
indicate a positive contribution towards the activation of the output unit of interest.
Therefore, for each channel, the gradients of the output unit of interest to the feature
maps are computed and averaged, resulting in weights w®, where a higher weight
indicates a higher importance of a feature map:

1 & X 500
e gy S5 &

where wj is the gradient weight of class ¢ for channel d. H is the height of S and W
is the width of S. o? is the output unit corresponding to class c. After calculating
the weights, the CAM is computed as in equation 2.32. After generating CAM?®,
all negative values are set to zero, as we are only interested in the input pixels that
positively contribute to a prediction. With both CAM and Grad-CAM, the computed
map is a combination of final feature maps, which usually have smaller height and
width compared to the original input image. In order to create an attention map for
overlaying the original image, the CAM is upscaled to the original input resolution
by using bi-linear interpolation. While CAM and Grad-CAM have been applied in
a multi-class setting, not much research has been done on applying these methods
in a multi-label setting. This setting can be more interesting, as it can highlight the
attention of a network to multiple areas of the same class. Two examples of the CAM
method are shown using the CelebA dataset [7] in Figure All heatmaps in this
thesis use the "heat’” colormap, which ranges from low values to high values in the
following order: black-red-yellow-white.

2.3 Zero-shot recognition

2.3.1 Introduction

Zero-shot methods aim to recognize unseen categories by transferring knowledge
gained from seen categories. While normal classification models are usually stuck
to a set of classes, zero-shot classification attempts to bridge the gap between arti-
ficial classification and human-like classification. Theories have been developed on
how humans are able to recognize unfamiliar objects by combining familiar compo-
nents that are present in these objects [16]]. Similarly, instead of recognizing objects

2.3. Zero-shot recognition 33

directly, it might be more useful for machine learning models to recognize the com-
ponents that visual categories are made up of. When an unfamiliar image is then
presented to the algorithm, the components detected within can be combined in
order to predict the new category. This can also be used when data of certain cate-
gories is sparse. In this scenario, component classifiers can be trained on images that
are plentiful, which are then used to classify new classes that can not be properly
classified by training on them directly.

In order to realize this, a shared component space has to be defined for each cat-
egory. Usually, these components are visual and/or semantic attributes [17], which
this thesis is focused on. By annotating data with not just the class but also the at-
tributes they contain, we shift the problem from a multi-class to a multi-label classi-
fication task, where the attributes are not mutually exclusive. Alternative zero-shot
methods have also been studied, where semantic information is not learned per im-
age but are instead treated as auxiliary information, such as a deep visual-semantic
embedding model that uses both visual content of images and semantic information
from text [36].

2.3.2 Lexicon-based classification

Given a dataset D with classes ¢ € IR™*C and a set of attributes a € IR***, each of
the C classes needs to be labeled with an attribute representation y2 € IR and
a class label y¢ € IR™C, where A is the fixed number of attributes in D. A lexicon
LP e R4 that maps classes to attributes can then be defined as the collection of
class-attribute labels. The attributes should be defined such that each class can be
uniquely described by their attribute vector y§. With binary attributes, A attributes
can theoretically uniquely describe 24 different classes. In practice however, many
attributes can be heavily correlated, which reduces the uniqueness of many of the
labels. Attributes can be a mixture of visual and semantic attributes. While visual
attributes are recognizable from an image, semantic attributes can also be detected
because of their correlations with visual properties [8].

Two standard ways of classifying attributes and performing lexicon-based zero-
shot recognition are Direct Attribute Prediction (DAP) [8] and Indirect Attribute
Prediction (IAP) [8], which are illustrated in Figure The DAP method first di-
rectly learns for each image the attributes that it is annotated with. Classically, this is
done by considering the learning of each attribute as a separate binary classification
task. Therefore, a separate classifier is used for learning each attribute. For a new
image x, the probability of each attribute a; occurring in x is computed with its re-
spective classifier: p(a;|z). Doing this for each classifier results in a set of predicted

34 2. Theoretical background

(a) Flat multi-class classification (b) Direct attribute prediction (DAP) (c) Indirect attribute
prediction (IAP)

Figure 2.9: The DAP and IAP methods [8] visualized. From an image x, DAP pre-
dicts a set of attributes p(a|x), which maps deterministically to classes via the class-
attribute lexicon. The IAP method first predicts classes, then computes the attribute
set p(a|x) with a weighted sum of class probabilities and class attribute representa-
tions from the lexicon. Figure taken from [8].

attribute scores, p(a|x):

p(alx) = {p(a;|z), p(az|z), ...,p(aA|x)};4:1 (2.34)

The IAP method takes a different approach and first directly predicts the class ¢;
instead of the attributes: p(c;|z). This is also done with separate classifiers, where
each class is learned in a multi-class setting. This leads to a predicted class vector

plefz):
p(clx) = {p(e1z), p(ez|x), ... plec|x)} i, (2.35)

After computing p(c|x), p(alx) is computed with a linear combination of the pre-
dicted class scores p(c;|x) and their respective lexicon attributes LP;:

c
p(alx) = ZP(%W)LDi (2.36)

The IAP method may have an advantage in that it considers only valid class-attribute
combinations, which are then summed [8]]. With the DAP method, attributes can be
detected that do not occur at all in the correct class. However, a disadvantage of IAP
is the fact that classes have to be learned directly, which is not effective when certain
classes are rare. Both the DAP and IAP methods are illustrated in Figure

When p(alx) is computed using either the DAP or IAP method, classification can
be performed using either a distance metric or by using a probabilistic approach,
which both use the prior knowledge stored in the lexicon. Distance functions like

2.3. Zero-shot recognition 35

the Hamming distance can be used to compare p(alx) with all attribute vectors in
LP [37]. The closest class is then assigned to x. Since the elements of p(a|x) are
probabilistic, an appropriate threshold has to be applied to each, since the Hamming
distance compares two binary vectors. Alternatively, a Bayesian approach can be
adopted for finding the most likely class [8]]. The probability of each unseen class z
given image x is computed as follows:

|a%|

p(zbe) = [] 55, 2.37)

where p(a”|x) is the predicted attribute vector, except only the attributes belonging
to class z are taken into account, which is specified by LP . |a?| is the length of the
attribute vector and is thus the number of attributes for class z. p(a®) is the vector
of attribute priors, where again only attributes of class z are used. Therefore, the
posterior of class z is computed as the product of the probabilities of the attributes
of class z, divided by the priors of those attributes. This reduces the importance
of attributes with a higher prior, as they occur often in many classes and thus are
less discriminative for a specific class. The priors p(a”) can be computed from the
distribution of attributes over classes, found in LP. The image is then assigned to
the class with the highest posterior. Alternatively, a different Bayesian approach can
be taken that takes every attribute into account, not just the occurring ones for a
specific class:

_ 4 p(a;|x)
p(zx) = [| oo (2.38)

where p(a;|x) = 1 — p(a;|x) when attribute a; does not occur for class z. The setting
described above is known as standard or closed-set zero-shot recognition, where
training and testing classes are completely distinct and at testing time only test
classes occur. When training and testing classes both occur at testing time, per-
formance drops drastically [15]. This setting is called generalized zero-shot learning
and is thought to be more practical than closed-set zero-shot, as in an actual ap-
plication of zero-shot recognition it may be difficult to determine whether only test
classes occur at test times and which ones. Generalized zero-shot learning is beyond
the scope of this thesis.

2.3.3 Attribute labelling

While datasets with attribute labels have been constructed, the way images are
annotated can vary. One of the standard ways of attribute labelling is to specify

36 2. Theoretical background

labels for each class, then assign each image containing that class its correspond-
ing attributes. This is done in datasets like the Animals with Attributes 2 (AwA2)
dataset [[15]. This significantly reduces the cost of labelling, as there are typically a
lot fewer classes compared to images. Moreover, a lexicon with deterministic class-
to-attribute relationships can easily be built with this kind of labelling. However, a
downside to this annotation type is that the attribute labels will not always corre-
spond to the actual content in the image. It can be argued that labelling images in
this way will hamper attribute recognition [38]. No visual evidence for specific at-
tributes can be found in images with class-level attribute labels instead of instance-
level attribute levels. For example, every image belonging to the class “cat” will
have the "tail” attribute, even if no tail is present in a specific cat image. This might
force deep models to learn correlations between attributes instead of learning spe-
cific visual features for attributes, as these visual features are often not present de-
spite the annotation indicating that the attribute is present. These correlations may
be weaker or non-existant in unseen classes, possibly leading to a lower zero-shot
performance. It has been shown that the DAP and IAP methods perform badly in a
generalized zero-shot setting [15], possibly as a result of this problem.

Chapter 3

Methods

3.1 Introduction

In this section the experiments that are performed are described in detail. These
experiments attempt to answer the research questions that were proposed in sec-
tion 1.3. To study the effects of attributes on standard classification, classification
experiments with and without attributes are described in section 3.4. Zero-shot clas-
sification experiments are described in section 3.5. In section 3.6 the explainability
experiments are described, which involve the techniques discussed in section 2.2.
First, before describing the experiments, the next sections describe the datasets and
CNN architecture used in this thesis.

3.2 Datasets

Three datasets of different sizes are used for the experiments, ranging from small
to large. The SUN attributes dataset [39,40] is a small dataset consisting of 14,340
images of 717 different scene categories with 20 images per category. Each image is
annotated with 102 attributes, so the dataset has instance-wise labelling instead of
class-wise labelling. Due to the small number of images but large amount of classes
and attributes, it is expected that achieving good recognition performance on this
dataset is difficult. The Animals With Attributes 2 (AWA2) dataset is a medium-size
dataset containing 37,322 images of 50 animals, where each animal is annotated with
85 attributes. Therefore, this dataset contains class-wise labelling. Finally, the Large-
Scale Attribute Dataset (LAD) [41] is one of the biggest publicly available attribute
datasets for zero-shot learning, containing 78,017 images of 230 classes, which are
divided into 5 superclasses: animals, fruits, vehicles, electronics and hairstyles. The
dataset is labelled in a class-wise fashion and has a total of 359 different attributes.

38 3. Methods

Inception-v4
80 b 4 .
Inception-v3 gy ResNet-152
. ResNet-500) VGG-16 VGG-19
51 g ResNet-101
. ResNet-34
£ 70 ResNet-18
=
@ °° GooglLeNet
3 ENet
b= 65
:oL © sBN-NIN
= 60 - 5M 35M 65M 95M 125M - 155M
BN-AlexNet
55 1 AlexNet
50 v v v r v v v "
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Figure 3.1: Operations versus accuracy on ImageNet of different CNN architectures
[°l.

3.3 Model and hyper-parameters

The architecture that is used for each experiment is the Inception V3 network, as de-
scribed in section 2.1.8. This network has been shown to perform well on ImageNet
and has a relatively low amount of operations compared to newer and deeper mod-
els, as can be seen in figure Due to limited computational resources, this net-
work seems like a good choice. Another reason for choosing Inception V3 is the size
of the datasets that are available for zero-shot learning. Common datasets used for
zeroshot are typically not very large, ranging roughly from 10,000 to 80,000 images,
which are all relatively small when it comes to training very deep models. Employ-
ing a model with a lot of layers is not used to prevent overfitting. Because of the
small dataset sizes, transfer learning is employed using an Inception V3 network
pre-trained on ImageNet. The pre-trained network will have already learned a lot
of useful features in its many layers, which may alleviate some of the problems that
occur when the amount of data is limited. Also, some of the classes of AWA?2, SUN
and LAD occur in ImageNet, so certain class-relevant features may have already
been learned.

3.4. Standard classification experiments 39

Both the Tensorflow [42] and Keras [43] deep learning frameworks are used for
training the models. Inception V3 is fine-tuned with a learning rate « of 0.00001.
Every time the loss on the validation set does not improve for 3 epochs, the learn-
ing rate is halved. If the loss on the validation set does not improve for 10 epochs,
the entire training is stopped. This encourages the network to reach a low mini-
mum validation loss. Every time the model reaches a lower minimum compared to
before, the network’s weight are saved. After training, the model with the lowest
validation loss is selected. No regularization techniques besides those intrinsic to
Inception V3 are used. No data augmentation such as cropping, shearing or adding
noise is added, as these methods did not seem to improve the performance of the
network based on preliminary experiments. Cropping can be especially harmful for
multi-label classification, as generating crops that are too small might obscure parts
of the image that are important for certain attributes. Images are normalized with
min-max scaling by dividing each image by 255, assuming that the global minimum
and maximum pixel intensities are 0 and 255, respectively. Standardization by sub-
tracting the mean and dividing by the standard deviation of the training images was
also tried, but this did not improve the network’s learning behavior. Since the pixel
means and standard deviations have to be computed and stored for every train-
ing set, it is much more convenient to use the alternative min-max scaling method,
which seemed to work just as good. The images are resized to 299 x 299, as these
are the standard input dimensions for Inception V3. The Adam [44] optimizer is
used for training. The settings described apply to each experiment, unless explicitly
stated otherwise.

3.4 Standard classification experiments

In the standard classification experiments, various models are trained to distinguish
between categories, both with and without attributes, to see whether classification
accuracy can be improved when including attributes in the training process. Since
the SUN dataset has a small amount of images and a large amount of classes, learn-
ing the classes directly or indirectly with attributes does not lead to satisfactory
results. Therefore, no standard classification experiments are performed on this
dataset. However, the attribute recognition performance will be computed in all
settings for all datasets, including SUN, as the attributes can be recognized. The
attribute recognition is measured using the accuracy, precision, recall and fl-score
performance measures, which are computed for each attribute separately and then
averaged. The accuracy is measured by computing the accuracy separately on the
positive and negative class of each attribute and then averaged.

40 3. Methods

For classification, classes will first be directly learned and attribute annotations
will be ignored. The 1000-way softmax layers of the pre-trained Inception V3 model
are discarded. The 2048-dimensional global average pooling feature vector is kept
as the final layer from the original model and a dense layer of perceptron units is
added on top of it. The amount of units is equal to the number of classes. The
activations of the final layer are squashed into a probability distribution by using
the softmax function:

a(o?) = (3.1)
Vxfey |

where 0f is the output of output unit i and C is the number of classes. The categori-
cal cross-entropy loss is the multi-class cost function employed in this setting. Since
the occurrences of the classes are not uniform, a weighted categorical cross-entropy
loss is employed. First, the count of the most frequent class, V,,, is computed. Then,
the weights are computed proportionally to the maximum count:

(3.2)

where w; is the weight for class i and N; is the amount of images of class i.

In the second setting, category labels are ignored and instead the attribute an-
notations are used to learn to predict the attributes. The architecture is the same as
described above, except the amount of units in the final dense layer is equal to the
number of attributes instead of classes. The attributes are learned in a multi-label
setting, so output categories are not mutually exclusive. While attributes can be
learned independently, learning them together by sharing the same layers may help
with attribute recognition due to correlations and relationships between them. The
activation of the attribute units in the final layer are first squashed into the range
[0,1] with the sigmoid function, then the binary cross-entropy loss is used for each
unit. Since certain attributes are quite rare, a weighted binary cross-entropy loss is
used. First, the proportion of positive samples of each attribute is computed:

1 X
pi = N;Y?i, (3.3)

where p; is the prior for attribute i. N can be the number of classes or the total
number of images in the dataset. yf; is the label of attribute i for image or class
Jj. Several weighting schemes exist and perform differently depending on the data
itself. For the AWA2 and LAD datasets, a weighting scheme is used that increases
the weight of rare attributes but does not define weights separately for the positive

3.4. Standard classification experiments 41

and negative class of the attribute. The weight for each attribute i is computed as
follows:

w; = —2log(ps), (3.4)

which will assign a larger weight to rare attributes and a relatively lower weight to
attributes that occur frequently.

In the third experiment, all available labels will be used by learning both classes
and attributes at the same time. The model will contain two output layers and share
the same GAP input layer. Learning attributes in addition to learning classes can
lead to improved recognition [45]. Both the classes and attributes use their respec-
tive weights as described above. The loss function is computed as the sum of both
the categorical and binary cross-entropy losses. After training, the class output layer
is extracted and used for classification.

The third type of model is a similarity learning model that learns an embedd-
ing for each attribute with the multi-label triplet loss as described in section 2.1.11.
The anchor « is empirically set to 1.0, but preliminary results have shown that the
value of o does not seem to impact the results all that much. Each attribute em-
bedding is normalized by dividing it by its norm, as this has shown to lead to better
convergence [3]. The maximum distance between two points in the d-dimensional
hypersphere is 2, so a margin « of 1.0 means that the loss tries to enforce a distance
between positives and negatives equal to half the embedding space. The attribute
embeddings themselves consist of one dense layer of perceptron units per attribute.
The embedding size is set to 10. All embeddings take as input the 2048-dimensional
feature vector as described before. Triplets are generated by uniformly sampling
them together in the current batch. The batch size is set to 189. The 189 images are
divided into 63 triplets, which are subsequently fed to the network in a batch of 21
images. Each batch therefore requires 3 forward and backward passes to the net-
work. Since the triplet generation is random, some potentially useful triplets may
not be generated at all. To increase the usage of the data in a batch, the procedure
described above is repeated a number of times, to try and sample as many possible
triplets as possible in the batch. This number of re-sampling is fixed to 20. This
increases the number of forward and backward passes to the network in each batch
to 60.

After training, the attribute embedding centroids for both the positive and neg-
ative class are computed by first feeding all training images to the network. The
attribute embeddings are then extracted and averaged for both the positive and
negative classes separately, resulting in a positive and negative centroid that are
subsequently stored. During testing, test attribute embeddings are extracted from
the network from images. The distance of each attribute embedding to its respective

42 3. Methods

positive and negative centroid is computed using the squared Euclidean distance
function, which is the same distance function used in the triplet loss. If the test
embedding for some attribute is closer to the positive centroid than the negative or
vice-versa, it is likely that the attribute falls into that category.

A mapping from the embedding to a binary attribute prediction would disallow
the use of Bayesian approaches. Instead, The two distances are normalized using
the softmax function to compute attribute prediction p(a;|x;) given test image x;
and attribute a;:
expllf 6a)i=ni II?

(3.5)

plailx;) =1~ B

expllF6)i=F 117 4 expllf)i 127

where || f(x;); — pi7 || and || f(x;); — p; || are the distances from the ith embedding
to the ith positive centroid p; and ith negative centroid y; , respectively. Lexicon
classification then proceeds as usual. It is expected that the triplet models perform
better when the amount of images is low, such as for the SUN dataset. For learning
using a standard loss function such as cross-entropy, each image only contributes
one data point to the classifier in each training iteration. With the triplet loss, the
same image is used multiple times in different combinations with other images and
in different positions in the triplet, within the same iteration. This increases the
usage of the limited data available.

For the standard classification experiments, the data is randomly split into five
different folds. The model is then trained and evaluated in a 5-fold cross validation
setting, where 4 folds are used for training and 1 fold for testing. Additionally, the
testing fold is split in half. One halve serves as the validation set and the other halve
as the test set, leading to a 80%-10%-10% train-validation-test split. The performance
metrics used depend on the specific model. For class-only models, the mean class
accuracy is measured instead of the overall average accuracy on the test set. Since
some classes are more rare compared to others, computing the accuracy per class
should give a better indication of model performance. For the attribute models, the
mean class accuracy metric is also used. Additionally, the accuracy, precision, recall
and fl-scores are computed for each attribute.

One method to compute the class accuracy with attributes is to use the predicted
attributes together with the lexicon. For lexicon-based classification, both the Ham-
ming distance and the two Bayesian approaches described in section 2.3.2. are used.
Since the Hamming distance requires two vectors with binary elements, two differ-
ent kinds of thresholds are applied. The first threshold is a simple 0.5 threshold,
where everything below 0.5 is set to 0 and everything above or equal to 0.5 is set to
1. The second threshold takes into account the positive proportion of each attribute
by setting the threshold equal to the prior. Therefore, the thresholds differ among

3.5. Zero-shot experiments 43

the attributes. For example, if an attribute is quite rare and only occurs in 10% of
the images/classes, its threshold is set to 10%, where everything below it is set to 0
and everything equal to or higher is set to 1. The intuition is that predictions for rare
attribute may be lower than more common attributes, so a more lenient threshold
may be necessary to still detect them. Conversely, a very common attribute receives
a high threshold, such that the attribute prediction is only set to 1 if the network is
very certain that the attribute is present, as the predictions for a common attribute
might be high for many test images.

A second method of computing class accuracy is using the learned attributes as
high-level features that serve as input to another learning algorithm. Both a deci-
sion tree and an MLP will be trained to map attributes to classes. The amount of
hidden nodes and learning rate for the MLP and the maximum depth and early
stopping threshold for the decision tree are determined with cross-validation. The
raw attribute predictions are used as input for the MLP, while the predictions are
binarized for the decision tree.

Since a pre-trained network is used, many of the layers already contain learned
features. A decision has to made which layers to finetune and which layers to freeze.
Finetuning weights that can not be improved further might disturb the learning
of the network. The right amount of layers to train is also determined by cross-
validation. For all AWA2 experiments, Only the top 2 Inception blocks and the
layers afterwards are trained, while all other layers are frozen. For both the SUN
and LAD experiments all layers are trained.

3.5 Zero-shot experiments

In the zero-shot experiments, the same kinds of models are trained as described in
the section above: a model that directly learns the classes of images, a model that
directly learns the attributes, a model that learns both attributes and classes and a
model that learns attribute embeddings. For the model that learns both classes and
attributes simultaneously, the attribute layer is extracted instead of the class layer for
zero-shot classification. The performance measures and distance functions used are
the same as in the standard classification experiments. Attribute recognition perfor-
mance is also measured, to see if attributes on unseen classes can still be recognized
adequately. The same four performance measures as in the standard experiments
are used, with one exception. Since classes are distinct between train, validation
and test set, it’s possible that for some data folds certain attributes do not occur at
all. For example, the 'bat’ class from the AWA2 dataset is the only category con-
taining the flies” attribute. This means that in the fold that contains the ‘bat’ class

44 3. Methods

images in the test set, the model in this setting only encounters the negative class
of "flies’. During testing, the model will only predicts zeros for this attribute, which
will unfairly lower the attribute recognition performance. Conversely, if the ‘bat’
class is in the validation set, the attribute is neither trained nor tested upon. In this
case, the labels for the ‘flies” attribute will be all zeros and the model will also predict
all zeros, which will unfairly increase the prediction performance. To resolve these
issues, before computing the performance on the test set, the amount of attributes
which have at least 1 positive in the test set is counted. The performance is then
summed per attribute and divided by the amount of these "valid” attributes, instead
of dividing by the total number of attributes. All four performance measures are
set to zero for ‘invalid” attributes, effectively ignoring them when computing this
adjusted average.

For zero-shot recognition, 5 train/validation/test splits are again created to test
the models on different folds of the data. However, in this setting the classes within
the train, validation and test set are distinct, as no classes from the test class are
allowed to be seen by the model, to evaluate performance on unseen classes. To
measure how the models’ cross-class generalization is improving during training,
the classes in the training set and validation set are also distinct. The zero-shot
classification is done in a closed-set manner, such that only testing classes are con-
sidered in the testing phase. AWA2 has 50 different classes, of which 35 are put into
the training set, 5 into the validation set and 10 into the test set. Only 5 validation
classes are used to allow for more training data. 10 test classes are used, which al-
lows comparison to other zero-shot results on AWA?2 from the literature. One of the
five folds is the original train/test class split that was proposed by the creators of
the dataset [8,/15,[18]], to allow for better comparison with previous methods, except
that 5 training classes are put into the validation set. The other four folds are created
randomly in a such a way that each of the 50 classes occurs exactly once in one of
the test sets. The overall performance is computed by averaging the performance
over the 5 folds.

The SUN dataset contains 717 classes. A similar approach to previous work is
taken, where 580 classes are used for training, 60 for validation and 72 for testing
[15]. Again, 5 different folds with different train/validation/test classes are created
to improve the robustness of the results. Unlike AWA?2, a weighting scheme is used
that takes into account both the positive and negative class of each attribute [46]:

wi = el P (3.6)
1— — epi7 (37)

where w;" is the weight for the positive class of attribute i and w; the negative one.
As the prior of an attribute gets closer to 1, the positive weight approaches 1 as

3.6. Explainability 45

well, such that its weight in the binary cross-entropy is weighted as normal. If an
attribute is rare such that its prior gets closer to zero, the negative weight tends to
e. This multi-label weighting scheme outperformed the weighting scheme used for
the AWA?2 dataset. To determine this, it does not help to look at the loss curves of
two models trained using different weighting schemes. This is because the weights
have a large impact on the error and the local minima that the model is able to
reach and is not very indicative of model performance. A model without weighting
is able to achieve a very low cross-entropy loss on SUN, but performs poorly on
new data and zero-shot recognition as attributes are predicted as the majority class
due to the imbalanced attribute distribution. Instead, the weighting schemes were
compared by performing zero-shot classification on the validation set. The labels
of SUN are labelled per image and not per class and both the class-attribute matrix
and the attribute prior probabilities have to be computed. The labels from SUN are
not binary but contain four values: 0, 0.333, 0.666 and 1. Training directly on these
labels did not lead to improved results, so these labels were instead binarized with
a threshold of 0.5. After binarization, the lexicon is built by computing the average
occurrence of each attribute for each class. These averages are then binarized again.
The priors are computed by averaging the attributes over each class in the lexicon.

3.6 Explainability

The explainability experiments that are performed include rule-extraction and gen-
erating visual attention maps. For rule extraction a decision tree is employed, which
takes as input the binarized attribute predictions from the attribute model described
in the standard classification experiments section. The decision tree uses the at-
tribute predictions to predict the class. On a test image, the attribute network first
predicts the attributes, which are then binarized with a 0.5 threshold and provided
to the decision tree, which learns to map the predicted attributes to classes. The
thresholding is done to allow for simple binary rules that specify whether the at-
tribute is present or not. Additionally, the nodes in the decision tree leading to the
classification are extracted, such that the rules are shown which specify which at-
tributes and which rules were used for classification. This leads to a conjunction
of binary rules for each class. The same 5 training, validation and testing folds as
those in the standard classification experiments are used for the decision tree. The
parameters are selected by evaluating the average performance of the decision tree
on the 5 validation folds. The decision tree is then trained on both the training and
validation data with the best parameters. This is repeated for all 5 five folds and
the average accuracy is measured. The mean class accuracy for the decision tree is

46 3. Methods

reported. Rule extraction is applied on both the AWA2 and LAD dataset.

For the attention maps Grad-CAM is used to visualize for certain attributes
whether the network can give a pixel-wise explanation for a specific attribute pre-
diction. Both of these methods are related to weakly-supervised localization meth-
ods and the datasets do not have ground-truth annotations for attribute locations.
Therefore, no objective measure of quality can be assigned to these visualisations, so
these will instead be subject to subjective analysis. The attention map experiments
are conducted on all three datasets.

For each of the five folds of the SUN dataset, one test class is selected. The at-
tention heatmaps will only be generated for the zero-shot setting, to see whether
the weakly-supervised methods work on unseen classes. For the AWA2 and LAD
datasets, only two examples will be shown, as they are expected to be less inter-
esting due to their class-wise labelling. For decision tree rule-extraction, 5 classes
are selected from both the AWA2 and LAD datasets. This is done only for the stan-
dard classification setting, as explicit attribute-to-class mapping is not possible for
zero-shot classification.

Chapter 4

Results

In this section, the results of each of the three types of experiments, as described
above, are displayed. The results are compared to earlier studies done on zero-shot
learning on the datasets used in this research. The explainability results will be
discussed and interpreted.

4.1 Standard classification

All standard classification results of AWA2 where attributes are predicted are visu-
alized in Figure The three methods are quite similar in their performance, with
the DAP method having a slight edge, while the other two methods have lower vari-
ance, especially the triplet model results. The triplet model also has a slightly lower
performance compared to the other two methods. The highest classification perfor-
mance is achieved with the DAP model using the standard Bayes method [8,[18],
resulting in an average performance of 90%.

The results of models that predict classes without using the lexicon are shown
in Figure The highest performing model is the one that directly predicts the
classes, but this method also has higher variance compared to the other models.
The model that learned both attributes and classes at the same time has a slightly
lower performance but is more stable. One explanation for this is that its embedding
is more generalizable since it has learned to facilitate two different tasks. The MLP
that learns to map from predicted attributes to classes was not able to outperform
directly learning the classes. It seems that the high-level attribute predictions are
worse features compared to the GAP features. The decision tree has the lowest
performance of the four methods, but still performs adequately. The "direct’ method
results in an average performance of 91%, which is slightly higher than any of the
indirect, attribute methods from Figure

The attribute classification performances of the three attribute methods are shown
in Table All three methods achieve a high performance on attribute recognition,
which seems to be why their lexicon performances are similar to each other.

While no SUN standard classification is done, the attribute recognition is still

48 4. Results

AWA: Average class accuracy versus zero-shot method

= threshold

IS

g

=50~ . 0.5 threshold
8 B oaes 1

= _

o bayes 2

<

prior threshold

DAP IAP
method

!
Triplet

Figure 4.1: Standard class recognition accuracy on the AWA2 dataset for the three
different attribute classification methods. The results for the two threshold methods
and two Bayesian methods are also shown.

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.97 0.98 0.96 0.97
IAP 0.97 0.98 0.97 0.97

Triplet 0.97 0.97 0.97 0.97

Table 4.1: Attribute recognition performance on the AWA2 dataset averaged over 5

folds for the DAP, IAP and multi-label triplet methods. Best results are shown in
bold.

measured and shown in Table[.2] The DAP method outperforms the triplet method
when it comes to attribute recognition, as the triplet method falters when it comes
to precision but has a higher recall than the DAP method. This indicates that the
triplet method makes too many positive predictions, leading to a lot of false posi-
tives, which reduce the precision of the classifier but are not taken into account in
the calculation of the recall. Since the SUN dataset has less images but more at-

4.1. Standard classification 49

AWA: Average class accuracy versus method

= -

oy method

=

g :
550_ . Combined

© . Decision Tree
3

[Direct

(=]

<

MLP

Figure 4.2: Standard class recognition accuracy on the AWA2 dataset for directly

learning the classes both with and without attributes, using a decision tree and an
MLP.

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.77 0.45 0.58 0.50
Triplet 0.78 0.3 0.64 0.38

Table 4.2: Attribute recognition performance on the SUN dataset averaged over 5
folds for the DAP, and multi-label triplet methods. Best results are shown in bold.

tributes than the AWA?2 dataset, it could be the case that the triplet network was not
able to separate the positive and negative centroids for each attribute well enough
due to the lack of data.

Similar to the AWA2 results, the lexicon-based results on the LAD dataset are
shown in Figure Here, the IAP method seems to outperform the other two
methods, leading to an average highest performance of 87% with the 0.5 attribute
thresholding. This is higher than previous research on standard classification on
this dataset, which resulted in a recognition accuracy of 79.52% [41], also using the

50

4. Results

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.98 0.96 0.95 0.96
IAP 0.97 0.97 0.97 0.96

Triplet 0.96 0.87 0.93 0.9

Table 4.3: Attribute recognition performance on the LAD dataset averaged over 5
folds for the DAP, IAP and multi-label triplet methods. Best results are shown in

bold.

LAD: Average class accuracy versus standard method

Accuracy (%)

DAP

e
method

Triplet

threshold

B o5 ivreshoia
. bayes 1

bayes 2

prior threshold

Figure 4.3: Standard class recognition accuracy on the LAD dataset for the three
different attribute classification methods. The results for the two threshold methods
and two Bayesian methods are also shown.

Inception V3 architecture. The possible improvement in this thesis could be due to
the class weighting used. The triplet method seems to perform the worst out of the
three. In Figure .4 the direct class-prediction model results are shown for the LAD
dataset. The MLP model and decision tree model perform worse than the other two.
Possibly, the same weakness of the high-level attribute prediction features versus
GAP features that was also mentioned before might be the case here. The highest

4.2. Zero-shot recognition 51

LAD: Average class accuracy versus method

e

= method

=

50~ . Combined
2y

© . Decision Tree
3

o Direct

<C

MLP

Figure 4.4: Standard class recognition accuracy on the LAD dataset for directly
learning the classes both with and without attributes, using a decision tree and an
MLP.

recognition performance is by the model that learns both attributes and classes to-
gether and achieves an average performance of 89%, which is slightly higher than
the highest-performing lexicon-based method. In Table[4.3] the attribute recognition
performance is shown. Again, the triplet method seems to perform the worst due
to its low precision, which is also observed in the SUN results. One possible expla-
nation for this bad performance is that the LAD dataset contains 359 attributes. It
might be the case that not enough data is present in the dataset to properly train
359 10-dimensional embeddings. Since the attributes are not as correctly recognized
compared to the other two methods, the lexicon-based classification also suffers.

4.2 Zero-shot recognition

The zero-shot results on the AWA?2 dataset are shown in Figure Compared to
the standard classification results, the classification performance drops from 90% to
58% when dealing with unseen classes. The variance of each method is also signifi-

52 4. Results

cantly higher. This is because the results are averaged over the 5 data splits, but the
data splits in the zero-shot setting have entirely different train/validation/test class
splits. Each of the five splits therefore has a different distribution of attributes and
this can have a big impact on performance. The best performing methods on aver-
age are the DAP and triplet method in combination with the "bayes 2" lexicon match-
ing method. The DAP method has an average classification performance of 59%.
Learning both attributes and classes can lead to the highest performance on some of
the data splits, as can be seen by the error bars. Previous works have used the tradi-
tional DAP method (individual classifier per attribute) with Resnet-101 [47] features,
which achieved a classification performance of 58.7% on the standard split from the
dataset and 46.1% on a different split [[15]. The ‘combined’ network from this thesis
achieves a zero-shot classification accuracy of 67% on the original AWA?2 train/test
split, which shows that sharing a global representation input with all classifiers and
training the classifiers end-to-end together with the rest of the network can signif-
icantly outperform the traditional method. It is not known which train/test class
split is present in the different split. The ‘combined” network achieves an accuracy
of 54% on the 'hardest’ data split, which is the lowest accuracy of all the five data
splits. While this is most likely not the same split as the one from the paper, it is the
closest approximation, as the different split is proposed as a harder split compared
to the original one. However, the methods from this thesis are outperformed by
some of the other zero-shot methods, which are described in that paper.

The zero-shot attribute recognition performance is shown in Table[4.4] The high-
est average Fl-score is 0.61 and is achieved by the triplet method. This is a signifi-
cant drop from the Fl-score of 0.97 on the attribute recognition performance of the
standard setting. When the network encounters unseen images, recognition of at-
tributes takes a large hit, most likely because the test images are very different than
what the network is used to. The triplet method performs well but still has a slightly
lower average precision compared to the DAP and IAP methods.

Next, the zero-shot performance on the SUN dataset is shown in Figure The
best performance is achieved by the DAP method with an average zero-shot classifi-
cation accuracy of 30%. This is unfortunately lower compared to the standard DAP
method, which was able to achieve a classification performance of 38% using the
pre-trained Resnet-101 architecture as feature extractor [15]. It seems that the stan-
dard method, which uses individual classifiers that are not trained together with the
deep feature extraction module, has an advantage over the end-to-end learning ap-
proach used in this thesis when the amount of images is low. The IAP performance
on the SUN data is very low, as this method requires directly learning all 717 classes
with only 20 instances each, which proves to be too challenging for the model. The
attribute recognition performance on the SUN dataset is shown in Table The

4.2. Zero-shot recognition 53

AWA: Average class accuracy versus zero-shot method

ml II

—40- threshold

=

= B o5 thresnoia
&

@© . bayes 1

3

[bayes 2

< prior threshold

0-

combined DAP AP Triplet
method

Figure 4.5: Zero-shot class recognition accuracy on the AWA?2 dataset for the three
different attribute classification methods. The results for the two threshold methods
and two Bayesian methods are also shown.

same problems with regards to the triplet method as in the standard classification
setting can be seen here as well. Unfortunately, the theory about the triplet method
working well when the amount of images is low seems to be false. Interestingly,
the Fl1-score of the DAP method only drops from 0.5 to 0.47, which is not nearly as
significant as the drop observed on the AWA2 and LAD dataset.

Lastly, the zero-shot classification results on the LAD dataset are shown in Fig-
ure[£.7] The method that learns classes and attributes simultaneously outperforms
the other 3 methods, unlike the AWA?2 results, resulting in an average zero-shot ac-
curacy of 44%, possibly due to the larger amount of images which may be required
to learn a strong, generalizable GAP embedding for both tasks. Again, the triplet
method falters due to its low precision, which can be seen in Table Similar
to the AWAZ2 results, the Fl-score takes a big drop from 0.96 to 0.56. 7 zero-shot

54

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.7 0.71 0.6 0.6
IAP 0.68 0.7 0.59 0.59

Triplet 0.7 0.68 0.62 0.61

Table 4.4: Zero-shot attribute recognition performance on the AWA2 dataset, aver-
aged over 5 folds for the DAP, IAP and multi-label triplet methods. Best results are

shown in bold.

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.76 0.43 0.55 0.47
Triplet 0.76 0.31 0.59 0.38

Table 4.5: Zero-shot attribute recognition performance on the SUN dataset, averaged
over 5 folds for the DAP and multi-label triplet methods. Best results are shown in
bold.

methods were tested on LAD in previous research [41], which did not include the
DAP/IAP methods. The DAP model from this thesis outperforms two of the seven
zero-shot algorithms and is on par with 1 on them, which shows that deep attribute
learning should not be written off as an ineffective zero-shot method. Furthermore,
it seems that the Bayesian approaches are the most effective way of classifying with
the lexicon, as they can be used in their raw form and do not need a well-chosen
threshold to be found.

Method | Accuracy | Precision | Recall | Fl-score
DAP 0.78 0.64 0.57 0.56
IAP 0.71 0.65 0.44 0.49

Triplet 0.83 0.52 0.7 0.56

Table 4.6: Zero-shot attribute recognition performance on the LAD dataset, aver-
aged over 5 folds for the DAP, IAP and multi-label triplet methods. Best results are
shown in bold.

4.3. Explainability 55

SUN: Average class accuracy versus zero-shot method

a0-

.20~ threshold

=

= B osthresnoio
> [

© . bayes 1

8 bayes 2

(&)

< S prior threshald

10-

=

DAP AP Triplet
method

Figure 4.6: Zero-shot class recognition accuracy on the SUN dataset for the three
different attribute classification methods. The results for the two threshold methods
and two Bayesian methods are also shown.

4.3 Explainability

4.3.1 Attention heatmaps

First, the 2 attention heatmaps are shown for the AWA?2 dataset. The original image
is shown at the top, while the Grad-CAM heatmaps for three different predicted
attributes are shown below it. In Figure a sample from the Cat class is shown.
As can be observed, the heatmap is distributed over the entire body of the cat, with
the highest values near the face region, regardless of the attribute. This would make
sense for the "Meatteeth” attribute, but the attention map for the attribute ‘tail’ is
also focused on the head and not on the actual visible tail of the cat. This seems to
imply that the network has learned to detect these attributes mostly based on the

56 4. Results

LAD: Average class accuracy versus zero-shot method

40-
20- I I
threshold
B o5 thresnoia
. bayes 1
bayes 2
20-)
prior threshold
10~
Q-

combined DAP AP Triplet
method

Accuracy (%)

Figure 4.7: Zero-shot class recognition accuracy on the LAD dataset for the three
different attribute classification methods. The results for the two threshold methods
and two Bayesian methods are also shown.

face of the animal and slightly based on the body and/or fur. A similar pattern can
be seen in Figure The attention maps are mostly concentrated around the face
and body/fur of the animal, with some slight variations between the three maps.
Given that the images from the AWA2 dataset are labelled per class and not per
image, the unexpected attention of the network could be explained intuitively by
speculating about what the network learns in this setting. When images are labelled
per class, it can often be the case that an image is annotated with specific attributes
that are not visible in that specific instance, as discussed in section 2.3.3. This may
weaken the correspondence between visual evidence of an attribute (e.g. a tail) and
the annotation (e.g. "tail present’), as many images without the attribute visible will
contain the corresponding attribute label. However, the network will still try to
learn to predict the attribute correctly to reduce the loss and has to resort to learning

4.3. Explainability 57

Meatteeth

Figure 4.8: Attention heat maps of the 'Persian Cat’ class from the AWA2 dataset.
The heatmaps show that the attention of the network is not what one would expect
given these three attributes.

different features that are not visibly correlated with the attribute, but still co-occur a
lot together with the corresponding label. This is possible, as section 4.1 shows that
the attributes on AWA2 and LAD can achieve a very high accuracy and fl-score.
This theory explains why the attention of the network visualized by the Grad-CAM
method is focused on the face and body /fur of the animal, as these features are often
in most images and are probably the most visually discriminative features for the
classes.

Secondly, the attention maps for the SUN dataset are discussed. Figure
contains three attention heatmaps for the ‘Cabin’ class. Compared to the AWA2
heatmaps, the ‘Cabin’ maps already show a significantly larger variety between the
three. The ‘Grass’ attribute map shows a concentration of attention to the left of the
cabin, around the patch of grass. This map seems to imply that the network actually
uses grass-like features for its ‘Grass” attribute prediction. However, it is not clear
why the grass in front of the cabin does not receive any attention. One possibility is
that the patch to the left is more recognizable as grass due to the lighting and absence
of shadow, unlike the other patch. Furthermore, there is some slight attention con-
centrated on the house. The 'Man-made’ attribute heatmap is mostly concentrated
around the cabin itself and mostly around the cabin door. The attention seems to
localize ‘man-made objects’, which is what one would expect. Most likely, the ‘'man-

58 4. Results

Figure 4.9: 3 attention heatmaps of the ‘Giant Panda’ class from the AWA2 dataset.
Again, the attention of the network does not seem to localize the specific attributes
in the image.

made’ attribute was annotated for objects such as tents, huts and cabin-like objects
in the SUN dataset. The network is thus able to weakly localize such objects with
only attribute annotations. The "Trees” heatmap seems to be mostly concentrated
on the large tree to the right of the cabin and the trees in the distance towards the
left. However, some attention is also distributed around the top of the house and
barely any attention is given to the top of the trees. It seems that the heatmaps are
not always exhaustive in that they do not fully cover all the parts of the image that
one would expect to be evidence for a specific prediction. A simple explanation for
these problems could be that the attribute recognition is just not good enough yet
and still has lots of room for improvement, due to the SUN dataset having a rela-
tively low amount of images. This can also be seen in Section 4.1 and 4.2, where
the average attribute recognition performance only achieves a maximum f1-score of
0.5. Regardless, even with the current attribute recognition, the attention heatmaps
are more discriminative for different attributes than the heatmaps for AWA2 and
LAD, but the actual quality of the maps can differ and also depends on how well
the specific attributes are recognized. The attention maps shown in section 2.2.3
on the CelebA dataset showed that Grad-CAM maps can be more discriminative.
The CelebA dataset contains around 200,000 images, so it’s likely that the attribute
recognition is better due to almost having twenty times as many images. However,

4.3. Explainability 59

Figure 4.10: Three attribute attention heatmaps on an instance from the "Cabin’ class.

the CelebA dataset arguably contains a smaller visual variety compared to the SUN
dataset, mostly showing photos of faces.

From these Grad-CAM maps, it seems that instance-wise labelling results in
more intuitive network attention compared to class-wise labelling. Figures
[A.12] [A£.13] and [£.74] show more examples from the other 4 data splits of the SUN
dataset. Figures and show two examples from the LAD dataset.

4.3.2 Rule extraction

In this section, rules are shown for 5 classes of the AWA2 dataset and 5 classes of
the LAD dataset. The rules are binary TRUE/FALSE rules and are shown here in
formal logic, where A stands for conjunction and — indicates negation. The rules
for AWA2 are shown in Table [£.7] and the rules for LAD are shown in Table 4.8
These rules can help in understanding which attributes are most discriminative for
the classes in the dataset. For example, the ‘longneck’ attribute is the first attribute
that is checked in the AWA2 decision tree, as this attribute can already filter a bunch
of classes depending on whether or not it’s detected. The same goes for the LAD
dataset, where the attribute “is_for_cleaning’ serves to distinguish between classes
in the electronics superclass and the classes in the other superclasses.

60 4. Results

’TheateL
outdoor

Figure 4.11: Attention heatmaps of an instance of the ‘Outdoor Theater’ class. The
‘Ocean’ and ’Sailing/Boating’ attribute both focus on the water and the boat and
are very similar. The ‘Sunny” heatmap is focused mostly on the air, especially the
left and right corners, but the reason for this is unknown. Possibly, the attention
for some attributes can be attributed to the locations that they often occupy in the
images, such that the network learns where to approximately expect these attributes.
Images with the attribute ‘Sunny’ often have the sun or clear blue skies near the top
of the image.

class rules
antelope —longneck n —hops A —desert A hooves A big A —smelly A —spots
sheep —longneck A —hops A —desert A hooves A —big A weak A —brown
rhinoceros —longneck A —hops A —desert A hooves A big A smelly A —active
otter —longneck A —hops A —desert n —hooves A —tusks A smart A ocean
horse longneck A gray A —paws A —arctic A —spots A buckteeth A —horns

Table 4.7: Example rules extracted from 5 AWA 2 classes. Rules have been shortened
to fit on the page.

4.3. Explainability 61

“"l.!'ﬁﬁ I--| ‘HLL '8
= et

Electric
lighting

Figure 4.12: Attention heatmaps of an instance of the 'Indoor Bank’ class. The atten-
tion of the network for the “Electric lighting’ is focused mostly on the light generated
by the lamps and the lamps themselves. The ‘Glass’ attribute attention map is fo-
cused mostly on the left and right glass parts of the entrance, but does not fully
cover them. The ‘Reading’ attribute attention map is very concentrated on the small
table and chairs in the middle of the image.

62 4. Results

Auto
showroom

Figure 4.13: Attention heatmaps of an instance of the "Auto Showroom’ class. The
‘Driving’ and "Asphalt’ attention maps are mostly focused partly on the ground
and lower parts of the surrounding cars and indicate that these two attributes are
correlated. The ‘Glossy” attention map is mostly concentrated on the glossy surfaces
of the cars in the image.

4.3. Explainability 63

Figure 4.14: Attention heatmaps of an instance of the "Abbey’ class. Both the
"Aged/worn’ and 'Rock/stone” are both focused on the abbey itself. The 'Clouds’
attention map is concentrated most strongly on the clouds behind the abbey, espe-
cially those to the right.

class rules
jellyfish —is_for_cleaning A —is_golden A is_transparent A is_smooth
washing machine is_for_cleaning A —is_for_of fice_use A —can_refrigerate
watch —is_for_cleaning A —is_golden A —is_transparent A has_wristband
wave hair —is_for_cleaning A is_golden A is_sexy A is_mature A is_cute
table lamp —is_for_cleaning A —is_golden n —is_transparent A —has_wristband

Table 4.8: Example rules extracted from 5 LAD classes. Rules have been shortened
to fit on the page.

64 4. Results

Figure 4.15: Attention heatmaps of an instance of the ‘Strawberry’ class. The 'Grows
on trees” and "Tastes sweet’ attention maps seem active in many areas of the image,
but most strongly on the plants. Interestingly, the ‘Red” attention map is focused
mostly on the strawberries and less on the plants, which actually seems plausible.

Figure 4.16: Attention heatmaps of an instance of the 'Laptop’ class. All three at-
tention maps are focused mostly on the keyboard, instead of on the screen as one
would expect for the first two attributes.

Chapter 5

Discussion

5.1 Answers to research questions
How does deep attribute learning affect standard classification?

As seen in the standard classification experiments, directly learning the classes with-
out attributes often outperforms or performs just as well as a deep model that learns
attributes. It therefore does not seem worth the effort of labelling a dataset with at-
tributes just to improve the classification performance of a deep learning system.
Attributes should be considered when the system needs to generalize beyond the
training classes for few-shot recognition, or when one desires more explanability
from their deep model.

How well does deep attribute learning allow zero-shot recognition?

The deep attribute learning experiments on AWA2, SUN and LAD resulted in an
average zero-shot classification of 58%, 30% and 44%, respectively. Besides the SUN
results, the zero-shot capability of attributes seems reasonable compared to other
methods, but there is still room for improvement, as the zero-shot recognition per-
formance is a big step down from standard classification. One problem is that the
attribute recognition of the deep model takes a nosedive when it comes to unseen
classes, which indicates that the attribute classification becomes biased towards the
attributes of seen classes, which is an observation that has been made in other re-
search [15]. As a result, the DAP and IAP methods have fallen out of favor in the
zero-shot community in favor of other zero-shot methods [15]. Another argument
that has been made in the zero-shot literature is that great care must be taken when
employing pre-trained deep models, as the dataset that the network has been pre-
trained on (Imagnet) might contain classes that also occur in the zero-shot test set,
which gives the network information about test classes that it shouldn’t have in the
zero-shot setting [15]. This seems reasonable, as 6 out of 10 classes (chimpanzee,
giant panda, leopard, persian cat, pig, hippopotamus) from the standard test set of

66 5. Discussion

AWA2 occur in Imagenet. While the results of this thesis on this specific data split
are among the highest, one other data split has similar results (hamster, ox, gorilla,
chihuahua, dalmatian, moose, walrus, weasel, dolphin, German shepherd), where
most of them also occur in Imagenet. It therefore seems that the pretraining on un-
seen classes indeed unfairly increases the results. The remaining 3 data splits used
in this thesis are harder to get good results on, compared to the other two. It is
possible that the DAP and IAP methods still have potential in a deep learning set-
ting, but the datasets available do not accommodate them due to either their small
size or their class-wise labelling. Looking at both the attribute recognition perfor-
mances of all three datasets in both a standard and zero-shot setting, it seems clear
that the attribute recognition on the SUN dataset, which has instance-wise labelling,
generalizes better to unseen classes. This can also be seen in the Grad-CAM at-
tention maps, where plausible explanations for predictions can be made for certain
attributes, even though the images are unseen by the deep model. The AWA2 and
LAD attention maps indicate that these networks focus mostly on the most discrim-
inative features of the class, such as the face and body of an animal, or the keyboard
and screen of a laptop. With class-wise labelling, it seems the network learns kernels
that detect features related to the classes for attribute recognition. When presented
with unseen classes, the network begins to falter and becomes confused because the
unseen classes may not resemble the training classes. Previous research on general-
ized zero-shot recognition (open set) has shown an extremely low zero-shot perfor-
mance for AWA?2, namely 0% on unseen classes when training classes can also occur
in the test set [15]. This makes sense, as instances from the training classes align
much more with the learned features, which are heavily biased towards the training
classes, as discussed before. With an instance-wise labelled dataset like the SUN, it
seems that the network learns kernels for the attributes themselves and not neces-
sarily the training classes. When presented with unseen classes, the attribute recog-
nition does not drop because the learned filters depend less on the training classes
and can therefore detect the attributes in the unseen instance. It therefore seems like
instance-wise labelled class datasets are the way to go to improve both zero-shot
recognition and explainability. The downside, however, is that labelling each indi-
vidual image with attribute annotations is quite expensive and this is probably the
reason why no big publicly available instance-wise labelled attribute dataset exists
at the time of writing.

How does deep attribute learning improve the explainability and interpretability
of deep learning models?

5.2. Conclusion 67

When it comes to scene understanding, learning attributes offers more insight
into what the network sees. By modeling the attention of the network, it is possible
to extract visual explanations of predictions with methods such as Grad-CAM, even
with an average recognition F1-score of 0.47. The clarity and explainability of these
maps are, however, strongly dependent on how well the attributes are recognized
and if the attributes are labelled per instance instead of per class. The attributes
themselves can also have an impact, as certain attributes are harder to visually at-
tribute to the specific parts of the image, such as the "agile’ attribute from the AWA2
dataset. As data volume increases and attribute recognition improves, it seems plau-
sible that the localisation capability of deep network attention also improves. These
attention maps can then be used to help users of the network to get a better under-
standing of why deep networks make certain predictions and even improve datasets
after inspecting faults of these predictions. While the attention maps from networks
trained on class-wise labelled attribute datasets are not useful for localization, they
were still able to intuitively help understand what the network focuses on and how
the different labelling methods influence the network, in the end.

Rule extraction can potentially help with attribute selection. By building a de-
cision tree that maps attributes to classes, the most important and least important
attributes can be identified. Some of the attributes on the lower parts of the tree
could then be pruned, as long as the lexicon entry for each class stays unique. This
could also improve a deep model that’s trained using the multi-label triplet loss, as
fewer attributes lead to fewer attribute embeddings that need to be trained, resul-
ting in fewer parameters and less data needed. Looking at the correlation statistics
of the attribute predictions in combination with the decision tree might help in this
pruning process.

5.2 Conclusion

Deep attribute learning can offer more explainability of deep models by allowing
predictions that are more informative than simple categorical predictions. The ex-
plainability is further enhanced by identifying the areas in the image that contribute
to specific predictions by visualizing the deep model’s attention, to understand why
the network makes certain predictions of what it sees in an image. This thesis shows
that these attention maps can work but are not perfect, as they do not always ex-
haustively cover the expected areas of interest and can sometimes cover more areas
than they should. However, this is expected to improve as the available datasets
also improve. When it comes to standard object classification, adding attributes
does not improve the recognition ability of the model. The main reasons for anno-

68 5. Discussion

tating a dataset for attributes is for more explainability and for zero-shot prediction.
Better attribute prediction on unseen classes may also help with generalized zero-
shot recognition. Zero-shot classification by using deep attribute learning shows
promise, but still leaves a lot of room for improvement and is outperformed by
other state of the art zero-shot algorithms [15]. With bigger and better datasets, the
full potential of deep attribute learning might be realized, leading to better unseen
class generalization and better interpretability of network predictions.

Bibliography

[1] Michael Biehl. Supervised Learning - An Introduction: Lectures given at the 30th
Canary Islands Winter School of Astrophysics, volume 01 /2019 of Machine Learning
Reports. Machine Learning Reports, 4 2019.

[2] Hassan Mohamed, Mohamed Zahran, and Oliver Saavedra. Assessment of ar-
tificial neural network for bathymetry estimation using high resolution satellite
imagery in shallow lakes: Case study el burullus lake. 2015.

[3] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 815-823, 2015.

[4] I Nigam, C. Huang, and D. Ramanan. Learning universal embeddings from
attributes. December 2018.

[5] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. CoRR,
abs/1512.04150, 2015.

[6] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

[7] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face at-
tributes in the wild. In Proceedings of International Conference on Computer Vision
(ICCV), 2015.

[8] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification
for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(3):453-465, March 2014.

70 BIBLIOGRAPHY

[9] Chris Kawatsu, F. Koss, Andy Gillies, Aaron Zhao, Jacob Crossman, Ben Pur-
man, Dave Stone, and Dawn Dahn. Gesture recognition for robotic control
using deep learning. In Conference: Ground Vehicle Systems Engineering and Tech-
nology Symposium, 2017.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C.]. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436 EP —, May 2015.

[12] R.B. Altman. Artificial intelligence (Al) systems for interpreting complex med-
ical datasets. Clinical Pharmacology & Therapeutics, 101(5):585-586, 2017.

[13] Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis, and Douglas B.
Kell. What do we need to build explainable Al systems for the medical domain?
CoRR, abs/1712.09923, 2017.

[14] H. Hagras. Toward human-understandable, explainable AL~ Computer,
51(9):28-36, September 2018.

[15] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning - a com-
prehensive evaluation of the good, the bad and the ugly. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1-1, 2018.

[16] Irving Biederman. Recognition-by-components: a theory of human image un-
derstanding. Psychological review, 94 2:115-47, 1987.

[17] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their
attributes. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1778-1785, June 20009.

[18] C.H.Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 951-958, June 2009.

[19] E. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65-386, 1958.

[20] D. E. Rumelhart, G. E. Hinton, and R.]. Williams. Learning representations by
back-propagating errors. Nature, 323:533-536, October 1986.

BIBLIOGRAPHY 71

[21] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann.
Math. Statist., 22(3):400-407, 09 1951.

[22] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist., 23(3):462-466, 09 1952.

[23] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks, 2011.

[24] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91-110, Nov 2004.

[25] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), volume 1, pages 886-893, June 2005.

[26] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698, Nov 1986.

[27] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? CoRR, abs/1411.1792, 2014.

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[29] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

[30] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR,
abs/1312.4400, 2013.

[31] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolu-
tional Networks. arXiv e-prints, page arXiv:1311.2901, Nov 2013.

[32] Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lip-
son. Understanding neural networks through deep visualization. CoRR,
abs/1506.06579, 2015.

[33] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regres-
sion Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor
& Francis, 1984.

72

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? -
weakly-supervised learning with convolutional neural networks. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 685-694,
June 2015.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. Grad-CAM: Why did you say that?
visual explanations from deep networks via gradient-based localization. CoRR,
abs/1610.02391, 2016.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc” Au-
relio Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic embedd-
ing model. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
2121-2129. Curran Associates, Inc., 2013.

Sheng He and Lambert Schomaker. Open set chinese character recognition
using multi-typed attributes. CoRR, abs/1808.08993, 2018.

Dangwei Li, Zhang Zhang, Xiaotang Chen, Haibin Ling, and Kaiqi Huang.
A richly annotated dataset for pedestrian attribute recognition. CoRR,
abs/1603.07054, 2016.

Genevieve Patterson and James Hays. SUN attribute database: Discovering,
annotating, and recognizing scene attributes. In Proceeding of the 25th Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The SUN attribute
database: Beyond categories for deeper scene understanding. International Jour-
nal of Computer Vision, 108(1-2):59-81, 2014.

Bo Zhao, Yanwei Fu, Rui Liang, Jiahong Wu, Yonggang Wang, and Yizhou
Wang. A large-scale attribute dataset for zero-shot learning. CoRR,
abs/1804.04314, 2018.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangging Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

BIBLIOGRAPHY 73

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaogiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[43] Frangois Chollet et al. Keras. https:/ /keras.io, 2015.

[44] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[45] Yutian Lin, Liang Zheng, Zhedong Zheng, Yu Wu, Zhilan Hu, Chenggang Yan,
and Yi Yang. Improving person re-identification by attribute and identity learn-
ing. Pattern Recognition, 95:151161, Nov 2019.

[46] D.Li, Z. Zhang, X. Chen, and K. Huang. A richly annotated pedestrian dataset
for person retrieval in real surveillance scenarios. IEEE Transactions on Image
Processing, 28(4):1575-1590, April 2019.

[47] Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

	List of symbols
	List of figures
	Introduction
	Introduction
	Visual attributes
	Motivation and research questions
	Outline

	Theoretical background
	Artificial neural networks
	Supervised learning
	Perceptron
	Non-linearity and the multi-layer perceptron
	Loss functions
	Backpropagation
	Activation functions
	Deep learning
	Deep architectures
	Deep metric learning

	Explainable artificial intelligence
	Introduction
	Rule extraction
	Class activation maps

	Zero-shot recognition
	Introduction
	Lexicon-based classification
	Attribute labelling

	Methods
	Introduction
	Datasets
	Model and hyper-parameters
	Standard classification experiments
	Zero-shot experiments
	Explainability

	Results
	Standard classification
	Zero-shot recognition
	Explainability
	Attention heatmaps
	Rule extraction

	Discussion
	Answers to research questions
	Conclusion

	Bibliography

