
Migrating robot control systems, towards the universality of
robotic brains

Paul Neculoiu
Department of Artificial Intelligence

University of Groningen

August 30, 2012

Supervisors:
Dr. Marco Wiering (Artificial Intelligence, University of Groningen)
Dr. Tijn van der Zant (Artificial Intelligence, University of Groningen)

Contents

Abstract 9

1 Introduction 11
1.1 Related work . 12
1.2 Research question . 14
1.3 Motivation for research . 16
1.4 Outline of thesis . 16

2 Theoretical framework and methods 17
2.1 Hardware/Software setup . 18
2.2 Issues of development . 18

2.2.1 Data acquisition . 19
2.2.2 Input-input mapping . 20
2.2.3 Learning controllers . 21
2.2.4 Matching outputs . 21

2.3 Proposed learning methods . 23
2.3.1 Feedforward Neural Networks . 23
2.3.2 Recurrent Neural Networks . 25
2.3.3 Echo State Networks . 26

2.4 Methods discussion . 28

3 Learning behaviours 29
3.1 Introduction . 29
3.2 Related work . 29
3.3 Methods . 30

3.3.1 Proposed approach . 30
3.3.2 Experimental setup . 30

3.4 Results . 37
3.4.1 Approach behavior . 37
3.4.2 Avoid behaviour . 39
3.4.3 Combining behaviours . 40

3.5 Discussion . 41

4 Learning the input correspondence 43
4.1 Introduction . 43

3

4 CONTENTS

4.2 Related work . 44
4.3 Methods . 44

4.3.1 Proposed approach . 45
4.3.2 Experimental setup . 45

4.4 Results . 47
4.5 Discussion . 50

5 Learning the output equivalence 51
5.1 Introduction . 51
5.2 Related work . 52
5.3 Methods . 52

5.3.1 Model based learning . 53
5.3.2 Model free learning . 54
5.3.3 Experimental setup . 55

5.4 Results . 57
5.4.1 Model based learning . 57
5.4.2 Model free learning . 58

5.5 Discussion . 61

6 Conclusions and future work 63
6.1 Summary . 63
6.2 Conclusions . 64

6.2.1 Results . 64
6.2.2 Research questions . 65

6.3 Future work . 65

Acknowledgements

Foremost I would like to express my sincere gratitude to my advisors Dr. Marco Wiering and Dr. Tijn
van der Zant for the support in my study and research, for their help and their patience in guiding
me throughout this thesis and for the countless talks we’ve had on science and philosophy that have
contributed to me coming out smarter out of this study than when I first started.

Secondly, I owe my loving thanks to Ning for having been there for me throughout this turmoil, as
well as my parents who birthed and raised me and supported me in my endeavours.

Finally I would like to thank God for being just a fairy tale. Had this not been my realization at a
young age I would likely not have questioned reality as I had known it, walked the path of science and
wanted to play god myself with robots.

Thank you everyone for making this thesis possible!

5

A new age of robotics may soon be upon us

7

Abstract

Currently robot control systems are specifically designed, engineered and fine tuned for particular
problems on particular robots. This leads to a significant waste of man-hours of engineer and Phd
level work to implement and reimplement or adapt controllers for similar tasks on different robots
resulting in an inefficient robotics industry as a whole. Thus the need to automate or at least semi-
automate controller reusability arises. In this project we investigate the hurdles that need to be
overcome in attaining controller universality and look into possible methods to bootstrap controllers
to the different robot sensors and actuators. A case study was conducted on performing the migration
of a controller from a wheeled robot with no mobile vision system (The Pioneer robot) to a legged
robot with a mobile head mounted camera (An Aldebaran Nao). The two robots’ different modalities
makes the task challenging. What does it mean for two different robots to perform the same task?
Machine learning methods were deployed using artificial neural networks (ANN) to learn the entire
sensor abstraction - decision system - robot motor API tree, leaving just sensor feature extraction
and low level motor controls in the hands of engineers. The method works reasonably well, effectively
linking a number of controllers designed for a Pioneer onto the Nao’s sensors and actuators. While
preliminary, these methods provide insight into the future prospects of robots programming themselves
and learning from each other with the help of humans.

9

Chapter 1

Introduction

The field of artificial intelligence, as applied to robotics [1], today faces two grave problems: scalability
and portability of control systems. Often systems work well on small problems but fail to scale up
to real world applications, either due to the combinatorial explosion [2, 3, 4, 5, 6], making the com-
putational requirements for larger problems not achievable in practice, or the curse of dimensionality
[7, 8, 9, 10], which makes solutions that work well for toy problems be severely stuck in local minima
when attempting to scale them up. Solutions for complex problems, when found, however are usually
problem specific. This is true not just for robotics but for the whole field of AI. Teams across the
world consisting of Phds, Post-docs, other graduate and undergraduate students, programmers and
engineers, spend numerous man-hours building and rebuilding robot control structures virtually from
scratch every time these structures need to be implemented on a different robot. This leads to an
overall unproductive robotics industry as a whole, making a surge in robot development difficult and
unlikely.

It would be desired to save on all the specialized man-hours of work in favour of automatic or human
assisted semi-automatic systems of transplanting controllers. The differences between different robots
trying to perform similar tasks are not big problems logistics-wise, but since solutions are so problem
specific, performance hinges on even the slightest detail of the implementation. This makes transferring
solutions to different contexts complicated.

At its basis a robot control system for an autonomous robot can be roughly described as follows:

Sensory inputs (pixel values from cameras, joint angles from robot limbs, sonars and other sensors) are
processed via predetermined computer vision, sensor extraction and pattern recognition techniques
and converted into a more knowledge rich format (SIFT [11] features, object detection, location and
size, etc). This processed data is then used to drive a high level robot behaviour that decides how the
system should behave as a whole (move towards, away, turn left, right, grab, speak, change memory
state, etc). The result of this behaviour is then passed on to the low level controller that turns the
decision into motor and actuator commands (turn left wheel, move head, move arm, do nothing, etc).
This is later on picked up by the robot hardware API to physically control actuators. This can be
expressed in a graph as shown in Figure 1.1.

Variations may exist on the schema (in particular systems some sub-ensembles may differ, be merged

11

12 CHAPTER 1. INTRODUCTION

Figure 1.1: Basic robot control system schema.

or missing altogether) but most robotic systems follow a similar implementation. What we aim to
transfer between robots is the high level controller. This is where the bulk of AI research goes to, the
rest being predetermined methods that may be very hardware dependent. One cannot perform visual
object detection on a robot that does not have a camera, although the same object can be detected
using, for example, a depth sensor. Should this sensor abstraction be possible, at the controller level,
there is no difference between sensors. Conversely, from a controller’s point of view, actuators are
equivalent if they can perform the same action. Namely it doesn’t matter whether the robot has legs
or wheels as long as the effects of the locomotion process are considered equivalent. What exactly
defines the equivalence in either sensor or actuator space is to be decided by the evaluator of the
respective task.

This gives the input-action pipeline a layered structure, with each layer representing a certain abstrac-
tion of data processing. The current thesis investigates at which layers of abstraction does the robot
specificity stop and the generality of the high level controller, the decision making unit, begin. It also
investigates machine learning methods to bootstrap transplanted controllers and reattach them to the
abstraction layers of the new receiving robot. Such a methodological baseline is necessary in order to
establish a starting point for further research into control system portability.

1.1 Related work

Abstraction layers are not a new concept, computer systems are usually represented as consisting of
five abstraction levels: hardware, firmware, assembler, operating system and processes [12]. These
abstraction layers encode the processes taking place at the abstraction layers above, and are usually

1.1. RELATED WORK 13

not transparent to those higher layers and at their core, the different layers perform very different
functions.

The TCP/IP stack [13, 14] also implements abstraction layers, namely the link layer, internet layer,
transport layer and application layer. Each of these layers contribute to the overall performing of the
data transfer function in networks.

Abstraction layers do not reduce only to hardware interpretation, the Python interpreter [15] and the
Java Virtual Machine [16] literally function as software abstraction layers, interpreting the program
code themselves and translating the instructions into run-able byte code. This allows nearly any type
of program written in those respective languages to be run independently of the operating system,
and to some extent, of hardware architecture.

We desire a similar feature, a series of robot abstraction layers to allow for replacement and inter-
operability of components from within the robot processing structure. However, no such structure
is currently in existence, although there have been some attempts at creating universally applicable
robotics methods.

For example, in [17] the authors present a framework that facilitates integration of action, detections
and interactions with human subjects. The aim is to facilitate adaptive human robot interaction in
open-ended tasks. This establishes an ”EgoSphere”, an internal modelling framework of the robotic
framework to perform robust object and action learning and recognition on distinct robotic platforms
with the goal of importing the respective feature from one robot to another.

The authors of [18] criticize the low degree of code reusability in robotic systems and the focus
on manipulator-level programming and not task level programming. They then propose a robot
independent programming environment (RIPE). The environment attempts to separate the task-level,
supervisory control, real-time control and device drivers into separate entities and program them in
an independent manner. The system relies heavily, however on direct interoperability of the various
subsystems.

The greatest importance seems to be placed on the advancement of level programming in [19]. Here the
authors define a set of primary actions or primitives to simplify robot programming. They propose a
solution that involves decomposing a goal into subtasks so that it can be resolved using those respective
primitives. The system, however, relies on faultless implementation of those primitives and does not
facilitate adaptability.

Later they propose a task matrix framework for programming humanoid robots [20] in a platform-
independent manner. However, they still do not facilitate learning and adaptability. Their compo-
nents, do, however contain no robot specific code and are truly robot-independent. However, experi-
ments were only run in simulation, so the different sensor experiences of the two robots were not taken
into account. Correct sensor abstraction and action performance were taken as a given. In addition,
the two robots were relatively similar humanoids.

Robot independence has been achieved to some extent in mostly logistics tasks such as navigation
[21]. In this scenario, the authors used directed graphs to provide a landmark-based representation of
maps. These landmarks are then used to provide language-based directions to enable a robot to steer
between landmarks. These use a motion description language and not actual motor commands, thus
making this respective subsystem robot independent.

14 CHAPTER 1. INTRODUCTION

Most of these approaches, however, perform significant degrees of modelling, thus making a wide
range of assumptions regarding the world. Robots that operate in real-unconstrained environments,
are not closed systems however. They are part of their environment. Robots interact with their
environment and observe the changes that occur. Research including these issues exist but is relatively
limited. In [22], a framework for online learning of outdoor robot control systems is presented. The
authors make use of genetic programming to learn controllers for robot navigation, while ensuring the
parameters of their training methods were robot independent, so that the algorithm can be moved
between different robots with minimal changes. While not an actual controller in itself, it is a learning
method for controllers that can be transported and generate the required controller. This can be very
versatile.

1.2 Research question

This raises the following question: How can robot controllers be scaled, adapted and trans-
ferred between different robots?

The problem is relatively trivial when confronted with identical machines, all one needs to do is copy the
entire controller to the new robot. However, once the machines begin to differ in sensors and actuators
the question takes on a whole new scope. Different sensors lead to different sensor abstractions, if such
abstractions even exist for both robot modalities in the first place. Some abstractions may not even
be directly interpretable by the controller. Robots can differ in such a way that arbitrary controller
transfer may not be directly possible. A number of possible causes may be:

1. Sensor abstractions have different scales and domains of definition.

For instance both robots can have cameras mounted, but if the cameras are not identical, then
recognized objects will not be in the same location in the image for both robots. Or objects
recognized on one camera might not always be recognized on another because colors are slightly
different or one camera has more noise or a different focal depth for example. One robot could
detect an obstacle, for example, while a different robot in a similar position but different sensory
capabilities cannot. See Figure 1.2 for such an example.

Figure 1.2: A robot with a narrow angle camera (left) sees objects further away from the center of
the image than a robot with a wide angle camera (right).

2. Having the same sensor abstractions is not even possible.

Suppose one robot abstracts data, like recognizing objects from one sensor modality such as
cameras, while the other robot does not have a camera and thus can not recognize that object

1.2. RESEARCH QUESTION 15

in the same manner. In such a case, either alternatives need to be sought out or the attempt to
migrate the controller should be abandoned since it’s not technically feasible.

3. Differences between robot motors and actuators exist.

These lead to complications. High level commands such as ”move forward”, ”turn right”, etc
are valid for all mobile robots and ”grab object” is valid for all robots with grippers, but actual
implementation differs. A robot with larger wheels can turn just as well as a robot with smaller
wheels, it just needs to spin its wheels slower. In this case merely the scale of the actuator
function differs and the robot behaves similarly both on a large scale (turning) as well as on a
low scale (turning smoothly). On the other hand a legged robot may move and turn by using
its legs. Legs are a more complicated piece of machinery than wheels. A two wheeled robot can
be commanded with just two control vectors (setting the speed of turning for each wheel) while
a biped robot for example is more complex in both degrees of freedom as well as dynamics. A
robot with 2 legs and 6 degrees of freedom per leg leads to a total of 12 values to be controlled.
Preprogrammed mappings exist at times simplifying this phenomenon, reducing for example the
amount of variables needed to control the robot to three denoting walking straight, strafing and
turning. Out of which, strafing is not a behaviour that wheeled robots can perform as well.
Where is the line drawn? How do you judge what is an equivalent action and what is not? The
effect of walking is also different. While turning with legs on a larger scale is similar as on a
wheeled robot, the end effect of pointing in a different direction being the same, on a smaller
scale it’s very different. While wheeled robots keep turning in a smooth manner, a legged robot
will jog and jolt all of the sensors while in action creating noise and possibly influence its own
behaviour.

4. There are differences in processing power on the robots as well as differences in software APIs.

These differences can affect the way the robots perceive not only their sensory inputs but how
these sensory inputs evolve and thus how time passes and motion takes place. Do the robots
function in continuous time? Or can they only physically take input and give output at predefined
intervals? Can both robots do more than one action at the same time? All of these are issues
that need to be taken into account when attempting to transfer controllers.

A number of rules and procedures need to be set up and the problem needs to be divided into semi-
independent subproblems. While having independent subproblems would be ideal to solving such
tasks, due to the reasons stated above this is not exactly feasible. Sensors are influenced by different
actuators, while behaviours control actuators by using input from sensors. While some distinction
can be made, these ensembles can not be separated fully. Thus a secondary research question rises:
How to define the different abstraction layers to fulfil the previous research question?
It is clear that some layers of abstraction need to be defined, some similarities between robots found
and some differences acknowledged. What does it mean to perform a similar action? What does it
mean to sense the same thing? Does the behaviour need to change on a new robot to obtain the same
effect?

And in the end we reach the last issue we want to tackle. How to perform robot to robot
controller migration with the least amount of modelling? Thus far, most research attempts
to create an inner environment for the robots to abstract observations and actions to. However, this
still requires qualified man-hours of work for every robot that one wants to bring into the respective

16 CHAPTER 1. INTRODUCTION

framework. Modelling is rigid, modelling is most of the time non adaptive, modelling is hard to scale
and transfer. Modelling makes assumptions. In this work, we want to perform controller migration
without the use of heavy world and context modelling.

1.3 Motivation for research

Why is this type of research needed? There is only so much we can do to teach the machines in the long
run. If we are to have truly intelligent machines they need to learn and teach themselves, and carry on
the knowledge they gain to different machines and different bodies. They need to learn together and
share the knowledge, without having to learn it again from scratch once they get a physical upgrade.
Success of this approach could prove vital for robot independent AI and for the long term development
of intelligent machines.

While attempts at controller universality do exist, something of this scale and scope has not been
previously attempted. This approach is new and, as a consequence, it lies at the forefront of universal
robot controller research. While of an exploratory, incipient nature, the results of what this thesis
presents, can set the basis for what could one day redefine machine intelligence and reshape the world
of robotics for ever. This alone is more than enough motivation.

1.4 Outline of thesis

In the next chapter, chapter 2, the methodology and the architecture proposed to solve the research
question is presented along with a presentation of the various machine learning methods used through-
out the thesis. In chapter 3 we investigate possible methods to learn a subsection of the proposed
architecture, namely the controller part. This is followed by chapter 4, presenting a method to learn a
different component of the proposed architecture, namely finding equivalences between inputs. Learn-
ing equivalent outputs is presented in chapter 5, while chapter 6 discusses the performance of the
approach and the overall applicability of the architecture proposed.

Chapter 2

Theoretical framework and methods

A robot control system for an autonomous robot is the decision making unit responsible for processing
input and memory states and making decisions about actions and new memory states. The aim in this
thesis is to transfer controllers from one robot to a different robot of a different modality. This puts
us face to face with the issues presented in section 1.2. Around the controller lies an entire framework
that connects it to the various parts of the robot, bringing information from sensors to it and taking
information from it to actuators. In the typical robot, the information flows as follows:

1. The robot acquires raw data from the sensors (pixel values from cameras, joint angles from limbs,
sonar values and other sensors).

2. The data gets processed into salient, intelligible information for the controller (detected obstacle,
recognized object, distance to an item).

3. The controller uses that information to make high level decisions (moving forward, grabbing an
object, avoiding an obstacle, talking to a person).

4. The values of those decisions are transformed into low level control vectors (movement translates
into wheel rotation, joint values, parameters for speech synthesis, etc).

5. The control vectors are fed into the robot’s API which applies them to motors and actuators to
generate the specified action.

Of these, steps 1 and 5 are robot specific, depending on the hardware/API/middleware of the robotic
platform. What the robot can or cannot see or do is unavoidably limited by its physical and middleware
capabilities.

Step 2 generally depends on the problem being tackled. Knowledge is extracted from the data sources
using pattern recognition techniques [23] to detect objects, people, faces, recognize speech, etc. Any-
thing that can turn raw data into salient information. Some techniques are already standard, while
others are the focus of ongoing research. Depending on the method of deployment, some can be
scaled up and used on multiple sensors and multiple types of sensors while others are fine tuned to be
sensor and even vendor specific. Some detection systems may work on a wide variety of cameras, for
example, while others may be so fine tuned they only work on one type of camera and any fluctuation
in parameters might make it break down. Since this is not the focus of the current thesis, details of

17

18 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

knowledge extraction from sensor data will not be covered here. This step is partly robot specific,
depending on circumstance.

Step 3, the controller designed to generate a standardized policy is not robot specific, or at least it’s
not supposed to be so since this is the item of interest that we desire to be transferred between robots.
The final, outward manifestation of the controller’s outputs is what we aim to make universal.

The inputs to the controller are pretty much standardized on one robot from what step 2 outputs.
However, running step 2 on a different robot may yield different values (Perhaps from having different
sensors or running different information extractors on the raw sensor data). However, if those values
still contain the information required for step 3 but in a different format, then this can be remapped
into the proper encoding. For example if a detector returns the corners of a detection, this contains
roughly the same information as when a detector returns the detection’s center, width and height.
One can be mapped to another with relative accuracy.

Step 4 is a more complicated issue of control. Considerable fine tuning is required to attain the desired
effect. The robots need to be both physically as well as API-wise capable of performing the action
intended by the controller. If that is indeed possible, a feat best estimated by a human controller then
there remains only the issue of determining what action, or what combination of actions, on one robot
is the equivalent of what combination of actions on the other robot.

2.1 Hardware/Software setup

For this project two distinct robotic platforms are used: an ActiveMedia Pioneer 2 robot and an
Aldebaran Nao seen in figure 2.1. The Nao robot is a bipedal humanoid robot 58 centimetres tall and
weighing 4.3 kilograms. It is equipped with two cameras mounted in the head, two ultrasonic sonar
sensors mounted in the chest, a microphone and various touch sensitive sensors. It is usually used in
the Robocup [24] soccer standard platform league competitions, as well as in various bipedal research
activities and human-robot interaction. The Pioneer robot is used for various research activities
regarding mobile robots and it is usually modified to carry various payloads. The particular Pioneer
robot used in this thesis is the one deployed by the University of Groningen’s RoboCup@Home team
[25]. For this task it has been equipped with an immobile Logitech webcam at height of around 70
centimetres and was stripped down of other sensory functionality.

Both robots are controlled through a software architecture developed in Python [26] that can acquire
sensor information from different sources, implement a behaviour based [27] control structure and
control multiple robotic platforms (simultaneously if required). The architecture was successfully
deployed in the RoboCup@Home competition on behalf of the BORG team [25].

2.2 Issues of development

The component we wish to transfer is the high level controller, the decision maker. This is the
heart of the system. Since a controller was originally constructed to work with a particular robot,
the input abstractions and decisions it requires have been fine tuned specifically for that robot by its

2.2. ISSUES OF DEVELOPMENT 19

(a) Nao robot. Pic-
ture taken from
http://www.sais.se

(b) Pioneer 2 robot. Picture taken from
http://cs.brynmawr.edu

Figure 2.1: Nao and Pioneer robots.

designers. Since a new robot may have different inputs and therefore different input abstractions, these
abstractions would not be compatible with what the controller requires. Controller outputs would also
be transformed later on into API commands for the robot. After the controller has migrated, though,
the new robot would require new API commands. Thus, controller outputs also need to be adapted
for this task. We therefore come to the conclusion that the problem needs to be split up into a number
of distinct sub problems.

2.2.1 Data acquisition

Proper sensor data acquisition is of paramount importance. While information can take many shapes
and sizes, it is vital that the information the controller requires is indeed there. Thus, making sure that
the robot can extract the required information either in the form of carefully constructed detectors or
large information extractors, with sufficient data to find the required correlations.

For this case, simple color blob detectors were constructed and deployed for object detection. The
video stream from either robot’s camera is captured, processed, evaluated and converted into input
vectors for the controllers. Since the focus of this research is not object detection, simple red and green
blob detectors were constructed and deployed. Due to differences in pixel values in the cameras, the
detectors are slightly different for the different robots in order to facilitate similar detections.

A schematic of the sensor acquisition and processing can be seen in figure 2.2.

The detector outputs the relative position of the object on the screen, with (0,0) being the center,
(-1.0,0) being maximum left side, (1.0,0) maximum right side, (0,-1.0) maximum top side and (0,1.0)
maximum bottom side. The size varies with the percentage of the total image that the object takes
up (from 0.0 to 1.0). A variable denoting whether the object is visible (1) or not (0) was also added
to the input vector.

20 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

Figure 2.2: The sensory data acquisition pipeline. Raw images are used to detect the target (red
notebook) and its properties (relative position on the screen and size) extracted to be used as input
vector.

2.2.2 Input-input mapping

While the outputs of the detectors may vary and cause complications for transferring the control
systems, this does not mean that the task is utterly impossible. As long as the information is there
or is obtainable, it should not matter what form it takes. It is irrelevant if the robot with the larger
field of view sees its target while the one with the smaller field of view doesn’t if the latter is able to
reorient parts of its body (namely the head) to bring its target back into sight. The two robots would
still be in the same state and require the same high level decision to perform the task. The different
informational modalities describe, in essence, the same state and can thus be mapped onto each other.
See Figure 2.3 for an example.

Figure 2.3: The state of a wide angle view robot with a fixed head is equivalent to the state of a narrow
angle view robot with a moving head with regards to a particular set of actions, such as deciding which
way yo turn the body. The state in this example is expressed through a 3-valued vector for the robot
on the left side (x,y coordinates of the object and the size denoting the distance) and a 5 valued vector
for the one on the right (x,y,size and the yaw and pitch angles of the robot’s head).

If the information required to perform the task exists in both robots, regardless of sensor modality,
then is is possible to create an adapter that allows the use of one robot’s (the transfer robot) sensors
with the controller of another robot (the original). The controller’s outputs can then be mapped back
onto the transfer robot’s motor interface instead of the original one (Figure 2.4).

By using machine learning techniques, it is possible to provide the baseline for a full behavioural
reproduction and optimization on the new body using these adapters. As long as the information
is sufficiently correlated between sensor abstractions and both bodies are capable of performing the

2.2. ISSUES OF DEVELOPMENT 21

Figure 2.4: The new robot’s input abstraction is mapped onto the original one’s and later processed by
the controller. Here the mapping is performed using Artificial Neural Networks (described in further
detail in section 2.3)

required task this is possible.

The challenge lies in finding ways to define equivalent states for the two robots and to find a way to
map between the states in a fashion that is stable and sufficiently general. Since there is no literature
available on this topic, this section of research is largely exploratory.

2.2.3 Learning controllers

The next major issue involves learning the controller itself. While not directly necessary, as the
original controller can still work quite well, it does benefit the final full system assembly. Doing so
would have two major advantages: 1) The learned controller in the end fits in better with the entire
architecture, allowing for the entire system to be optimized later and 2) it turns the controller from a
hard controller into a soft controller. This allows for some hard definitions which in the original robot
function as designed but in the new robot can no longer attain the same functionality, to perform
an approximation of the original function. For example, if the controller tests an if clause on a hard
value, for example: ”if x == 1.0” , but the sensor input, being an approximation of the input that
the controller expects, is not exactly 1 but 0.98 then the entire controller will fail. However if we
also learn an approximation of that statement then it is easier to fit within the range at which the
controller outputs an approximation of what is required. The controller could even not be defined or
hard-coded itself, but learned from a human demonstration. This boils down to using apprenticeship
learning to learn the state-action mapping, which is an established domain and has been researched
extensively.

A schematic of the entire control scheme can be seen in figure 2.5. Here, processed sensor data in
the form of object detections are fed through a controller who’s outputs are fed as a control vector
into the API of the robot and generates actions. This controller can then be approximated and, when
combined with the results from 2.2.2 and 2.2.4 form one integrated control pipeline on the new robot
that can later be globally optimized.

2.2.4 Matching outputs

The end goal is to perform actions that have the same effect on the new robot as on the previous one.
Thus, some action equivalence needs to be drawn between the different robots. Action equivalence

22 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

Figure 2.5: The controller on the original robot (Pioneer) gets replaced by an approximation. In
this case performed with Neural Networks (described in further detail in section 2.3). The defined
controller (right) is approximated with Neural Networks (left) to perform a softer approximation of
the same function.

between all possible actions would be preferable, but at the very least, action equivalence between
actions displayed by the controllers is necessary. To obtain such action equivalence, we are required to
obtain corresponding control vectors for the API between robots. Since the information regarding the
action already exists in the controller output, it is not actually required to map API control vectors
to API control vectors. It is sufficient, and not more technically challenging to just map the controller
output to the required API values. The full migration scheme can be seen in figure 2.6.

Figure 2.6: The complete migration scheme. The controller gets approximated by soft computing
approaches and equivalences are found between the inputs and outputs (actions) of the secondary
robot (Nao) and those of the primary robot (Pioneer). In the end a Neural Network approximation
of the entire processing pipeline activates on the new robot to perform the same behaviour.

2.3. PROPOSED LEARNING METHODS 23

However, a context in which these action and control vector equivalences can be drawn is harder
to define. What exactly does constitute equivalent actions when the modalities are so different? In
the paradigm employed by this thesis, two actions are equivalent if they both cause the same state
transition. If taking action 1 gets you from state A to state B and action 2 also gets you from state A to
state B then these two actions are equivalent. However, questions arise as to how does this paradigm
function in a non-discrete environment such as the real world, where observations are continuous or
discrete but of high density? Literature on this topic is scarce, but this thesis explores two possible
solutions to the problem.

2.3 Proposed learning methods

Artificial neural networks [28] have proven to be versatile learning tools and have been used to solve
a wide variety of problems including robot control [29, 30, 31, 32]. They use a number of units
(neurons) that compute nonlinear (typically sigmoid) functions of weighted sums of their inputs.
Networks with sufficient such neurons and proper parameters have been proven to act as universal
approximations. Neural networks come in different flavours. The ones deployed and examined in this
thesis are presented below.

2.3.1 Feedforward Neural Networks

Feedforward neural networks (FFNN), seen in figure 2.7, are the evolution of Rosenblatt’s perceptron
[33]. FFNNs have one or more hidden layers which take an input vector and compute a non linear
function of weighted sums of these vectors:

hiddenj = f(
∑
i

(weightij ∗ inputi) + biasj) (2.1)

Figure 2.7: Typical feedforward neural network structure with 1 hidden layer. Image taken from
http://statsoft.com

24 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

If there are several hidden layers, their activations get computed by applying nonlinear functions of
the previous hidden layer:

tophiddenk = f(
∑
j

weightjk ∗ bottomhiddenj + biask) (2.2)

The function f is usually a smoothed step function such as hyperbolic tangent:

f(x) = tanh(x) (2.3)

or the logistic function:

f(x) = s(x) =
1

1 + e−x
(2.4)

Outputs are computed in a similar manner except the function is usually the identity function
f(x) = x

The preferred method of training for neural networks is backpropagation [34]. The algorithm tries to
minimize the error

E = desiredvalue− actualvalue (2.5)

by using a process of gradient descent for which we need to calculate the gradient of the error with
respect to each of the weights that leads to the respective unit

∇E = (
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wn
) (2.6)

and each weight is updated with the increment

4wi = −γ ∂E
∂wi

(2.7)

where γ represents a learning constant, a proportionality parameter which defines the step length of
each iteration in the negative gradient direction. The learning problem now reduces to the question of
calculating the gradient of a network function with respect to its weights. Once a method to compute
the gradient is found, we can expect to find a minimum of the error function where ∇E = 0. This is
done by computing the contribution of each weight to the total output error. This is relatively simple
for output units which are generally linear (thus the error is also linear), but for hidden units the
derivative of the transfer function must be computed. Luckily, for both tanh and sigmoid functions
these are relatively easy to compute:

tanh′(x) = 1− tanh2(x) (2.8)

2.3. PROPOSED LEARNING METHODS 25

and

s′(x) = s(x)(1− s(x)) (2.9)

The method works by first forward computing the network outputs, calculating the error at the outputs
and at all the hidden units then adjusting all of the weights in the direction opposite to the error.
Then repeating the process until an adequate stopping criterion has been reached (usually a very low
error or a sufficient number of iterations).

The algorithm can be effectively summarised as:

1. Initialize the weights in the network (often randomly)

2. Compute the forward pass: Output = neural-net-output(network,input)

3. Knowing the desired output (Target), calculate the error E = Target − Output at the output
units.

4. Compute 4wh for all the weights from the hidden layer to the output layer (Backward pass)

5. Compute 4wi for all the weights from the input layer to the hidden layer. (Backward pass)

6. Update the weights of the network

7. Return to (2) until the stopping criterion has been satisfied (low enough error or enough training
epochs have been attempted)

2.3.2 Recurrent Neural Networks

Recurrent neural networks [35] or RNNs are an extension on FFNNs that also include recurrent
connections between hidden units within the same layer or from different layers and in some instances
even from the output units back to the hidden units. An example can be observed in figure 2.8. These
connections store information from previous time steps the network was run. In this way, past states
of the inputs are also considered when computing the network’s outputs. This can be beneficial in,
for instance, partially observable environments where integrating the current data with data from the
past acs as a form of internal memory. Training with backpropagation [36] is done in much the same
way as with FFNNs by unravelling the network through time, effectively flattening it to become a
larger FFNN. The issue with training RNNs is that the error gradient becomes zero for far back time
steps. For the current problem, however, this is not a major issue as the controllers deployed do not
usually make use of data from previous steps in their decisions and when they do the relevant data is
a relatively small number of time steps in the past.

The activation of a hidden unit for example is

hiddenj(t) = f(
∑
i

(weightij ∗ inputi(t)) +
∑
l

(weightlj ∗ hiddenl(t− 1)) + biasj) (2.10)

in the case of one single fully connected hidden layer. Depending on the actual implementation of the
structure this may differ.

26 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

Figure 2.8: Recurrent neural network with 1 hidden layer and output to hidden connections. Picture
taken from http://www.information-management.com/

2.3.3 Echo State Networks

As a departure from the traditional school of thought, echo state networks [37, 38] or ESN (see figure
2.9), are recurrent neural networks with a sparsely connected hidden layer known as a ’reservoir’.
Connectivity is typically 1% according to the original literature, however, other researchers [39] have
obtained good results with significantly higher connectivity, and for the current implementation this
restriction on connectivity is not considered as connectivity is allowed to emerge out of the training
method. The connectivity and weights are typically randomly assigned and fixed, while the weights
of the output neurons can be learned so that the network can reproduce the desired patterns. Usually
a simple linear readout function is used as the reservoir is generally highly non linear in itself.

Figure 2.9: The Echo state network. The ’reservoir’ is a sparsely connected fully recurrent neural
network that does multiple nonlinear dynamic transformations of the input vector and potentially the
output or other results. Only the output connections are trained in this case, the rest remaining static.

The activation states of the reservoir units are updated using

2.3. PROPOSED LEARNING METHODS 27

reservoir(t) = f(W in ∗ inputs(t) +W ∗ reservoir(t− 1) +W back ∗ outputs(t− 1)) (2.11)

where f is the transfer function for the reservoir units, W in are the weights from the input to the
reservoir, W are the recurrent reservoir weights and W back are the weights connecting back from the
output to the reservoir. The output is calculated using

outputs(t) = fout(W out(inputs(t), reservoir(t), outputs(t− 1))) (2.12)

where fout is the output activation function (typically the hyperbolic tangent or identity function)
and (inputs(t), reservoir(t), outputs(t − 1)) is the concatenation of the input, reservoir and output
vector. W out are the output weights.

W in, W and W back are generated randomly, and W is scaled to have spectral radius of α where
α < 1. This is to ensure the echo state property, meaning the signal decays with time. Failing to do
so eventually leads to large oscillations or the neurons entering saturation.

The reservoir is initialized arbitrarily, and the states are updated for t = 0, 1, ...T using equation 2.11.
Network states before a washout time T0 are discarded due to their dependency on the initial state.
The rest of the network states are collected in a matrix M and the correct outputs for the respective
inputs are collected into a matrix T . The output weights are computed by evaluating the pseudo
inverse matrix of M and multiplying it by the transpose of the targets T .

W out = M+T T (2.13)

While this works relatively well, results are still dependent of the network’s initialization. In here a
method to optimize the network structure is used derived from simulated annealing [40]:

• The network is initialized randomly, with a spectral radius lower than one.

• Training proceeds as in a typical environment. States are collected and the output weights are
computed using the pseudo inverse method for linear regression.

• Gaussian (initially µ=0 and σ=1) noise is added to the input and recurrent weights and the
network states are collected again, the outputs recomputed and performance re-evaluated.

• If the new error is smaller than the previous error then the new reservoir is retained as the
network of choice and the old reservoir is discarded. There is also a small chance that the new
network is retained regardless of the improvement in error. In the current implementation, this
starts at 10% and decreases with the same factor as the noise (see below). This probability thus
takes the shape of p(a) = 0.1σ.

• Decrease the σ of the noise by a certain factor (in this case 0.99 of its previous value). Thus the
added noise σ follows a function of σ = 0.99t where t is the current epoch (starting at 0).

• Repeat from the third step until the error no longer decreases or the maximum number of
training epochs has been reached.

28 CHAPTER 2. THEORETICAL FRAMEWORK AND METHODS

While there is no available literature elaborating this method, it has shown to work well in practice
for optimizing reservoirs. Learning performance is compared in section 3.4.

2.4 Methods discussion

In this chapter an integrated mechanism for migrating controllers between robots was proposed, and
the methods for deployment of this mechanism have been presented. This constructs the theoretical
basis for the implementation and experiments conducted in chapters 3, 4 and 5. Building upon the
proposed framework, we explore the performance of these methods to learn controllers (chapter 3),
establish input equivalence between the different robots (chapter 4) and learning models of robot
dynamics and learning equivalent outputs from such models (chapter 5). Each section builds on top of
the results of the previous one, leading to fully working robot control mechanisms in the later sections.
While a separation of the three sub problems is attempted, these are ultimately, intrinsically, linked
as embodiment is, even philosophically still, not an inherently modular concept.

Chapter 3

Learning behaviours

3.1 Introduction

Robotic controllers are systems that make decisions regarding actions that the robot needs to take,
potentially based on input from sensors or the state of internal memory. These are often referred to
as behaviours or policies. The decisions then transform into signals for motors and actuators in order
to set the robot in motion and thus produce the desired effect. Policies are often hand programmed
by researchers and engineers and fine tuned to achieve the desired effect.

It may be the case, though, that programming policies by hand is not a feasible endeavour. Coding
may either take too long, or be too difficult to perform or the static nature of the method may not
suit the needs. Policy designers may want to further autonomously refine or optimize their controllers
after their initial implementation and this cannot be done with simple, hard coded methods. One may
possibly want to avoid defining rules and processes by hand. To that end, learning from demonstration
(LFD) [41, 42, 43], or apprenticeship learning is the process of learning policies by observing examples
of application of the policies by outside sources or demonstrators. Robots will then try to imitate
or reproduce the demonstrated policy using machine learning techniques. The method is a proven
alternative, receiving growing investigation from the scientific community.

3.2 Related work

LFD has seen various successful implementations. Initial research has focused on simple optimisation
tasks such as teaching a robot to perform the inverse pendulum swing up task [44]. This was carried
out by means of learning a task model and a reward function from human demonstration in order to
compute an appropriate policy.

More complex tasks have been demonstrated in [45] where several external cameras were used to
observe a human demonstrator showing a robot how to serve water in cups. The robot then added the
motions to its motion library and reproduced the task. The framework was also able to generalize its
actions to some extent and pour water at locations previously not shown demonstrations for.

29

30 CHAPTER 3. LEARNING BEHAVIOURS

In [46] the authors use multiple demonstrations to teach a task as the robot learns just the corre-
spondence between his own possible actions and the actions performed by the human demonstrator.
After the robot has learned to generalize they use the teacher’s feedback to refine the particular task
knowledge.

In [47] the robot is taught actions by a human demonstrator in a specially designed learning center.
By making use of extra sensors such as data gloves for precise finger position measurements they
guide the learning process of a grasping task in order to facilitate robot grasping and external cameras
recording actions at all times.

Connectionist approaches have been explored in [48]. Here authors constructed a model of human
imitation of abstract, two-arm movements. The model constructs a hierarchy of artificial neural net-
works, which are abstractions of brain regions involved in visio-motor control. Human demonstrations
of arm movements were collected using video and marker based tracking systems and the model was
then validated in simulation.

Apprenticeship learning has also been demonstrated on autonomous cars for path planning tasks [49].
Here, a number of possible good trajectories were demonstrated for a car to follow in a parking lot by
learning the respective trade-offs to make in various situations. The car was then able to reproduce
various trajectories, retaining to some extent the driving style of the demonstrator.

The authors of [50] used reinforcement learning to learn different walking styles from demonstration
by determining the appropriate reward function and showed that the particular reward function can
be also applied to different environments and scenarios. The implementation is also adaptive, as the
demonstrator can refine the process with just a few additional examples.

A group of researchers even went one step further to demonstrate to the robot how not to perform
actions [51]. A teacher fails to demonstrate a particular behaviour and the robot learns a policy
that tries not to reproduce those results by using those demonstrations as constraints on the search
space.

3.3 Methods

3.3.1 Proposed approach

The controllers are learned using LFD, by running the original controllers from various locations in
front of their targets and recording state(observation)-action(controller outputs) pairs. Feed Forward,
Recurrent and Echo state networks are then trained on the datasets previously acquired. See section
2.3 for details. Only the Pioneer robot was used in this case, as it is the only robot a controller was
defined for.

3.3.2 Experimental setup

The task at hand is to learn controllers facilitating the Pioneer robot equiped with a webcam as its sole
sensor to 1) navigate towards a target on its screen, 2) avoid a target on its screen and 3) both.

3.3. METHODS 31

Acquisition of observable states takes place as described in section 2.2.1. Usually a human demonstra-
tor would show the robot its desired behaviour. However, to ease the experimental process a controller
has been programmed by hand and used as a demonstrator. The controller outputs a force vector
based computed from the size of the object on the screen and its position. The force vector represents
an abstraction of the strength of the forward movement and turning of the robot.

Approach behaviour

For this experiment, a controller has been designed that tries to keep its target object in the middle
of the screen and taking up a size between 35% and 50% of the total visible area. If the target is more
to the left it will turn left, if it is more to the right, it will turn right. If it is smaller than 35% of
the screen size it will move forward with a speed of approximately 0.3m/s. If it is larger than 50%
it will move backward with a speed of approximately 0.06m/s. 35% and 50% correspond to roughly
60 to 40 cm away from the target. The distance was chosen for safety reason so the robot does not
accidentally collide with its intended target.

The robot was placed in 9 positions in front of the target (see figure 3.1). These positions are aligned in
a square grid of roughly 35cm apart. The controller was run from those positions, and the robot moved
towards its target and stopped when the stopping condition was achieved. Input (target parameters)
and output (control vectors) data was collected during the runs (5 runs for each point to ward off
potential noise in the system).

Figure 3.1: The robot is placed in front of the numbered markers and faces the target. Two possible
robot placements and the robot’s field of view are presented here.

The data collected (input-output pairs) was then used with the various learning methods to learn new
controllers in the following manner:

1. The demonstrator controller was run from the 9 locations and input-output pairs were recorded.
Namely, object parameters, (x position, y position, size, visibility) and control vectors (move-
ment vector, turning vector). A total of 8254 such data pairs were collected from the 9x5
demonstrations.

32 CHAPTER 3. LEARNING BEHAVIOURS

2. The data pairs are divided into 40 training demonstrations (6891 training data points) and 5
testing demonstrations (1363 testing data points).

3. Run the learning methods: FFNN (with one fully connected hidden layer and 5, 10 and 20
hidden units), RNN (with one fully connected recurrent hidden layer and 5, 10 and 20 hidden
units) and ESN (with reservoirs of size 50, 100 and 200 units) to learn the policy demonstrated.
Do so in two modes: 1) One network for all the outputs and 2) One network for each of the
policy outputs(reported below as mFFNN for structures consisting of more than one FFNN per
output for example with an appending number denoting number of hidden units ”-5h” for 5
hidden units). Due to the different nature of the respective outputs (one is a motion vector, the
other a rotation vector), the possibility that the different hidden units interfere with one another
is investigated.

4. The networks of each type with the lowest testing error are retained to be run on the robot.

5. Evaluate the time required to complete the policy for each of the 18 controllers and compare
them to the original demonstration. Run the robot with the newly learned controller from all 9
positions 4 times and measure the time taken until a full stop. A run was considered completed
when the robot no longer moved in any observable fashion after the stopping criterion was
reached (target size between 35% and 50% screen occupancy). The results were averaged and
reported in section 3.4.

Learning was conducted using the pybrain [52] framework for FFNN and RNN and a python [26] +
numpy [53] implementation for the ESN. Learning was conducted on an Intel core i7 2.1 GHz laptop
for 100 epochs of learning for FFNN and RNN and 1000 epochs for ESN (ESN needs more steps to
search through the neighbourhood, however it does so much faster since it does not need to compute
gradients). A learning rate of 0.05 and 0.8 momentum was used for FFNN and RNN and a starting
temperature of 0.9 (gaussian noise multiplier) with a decay of 0.99 for the ESN.

Avoid behaviour

For this experiment a controller has been designed to steer away from a target on the screen, which
in this case consists of a human fist sized green ball. The controller is designed to turn away from the
ball (if the ball resides on the left side of the screen, the controller will turn the robot right, if it resides
on the right side of the screen the controller will turn the robot left). This turning speed increases
with the square of the size of the obstacle on the screen, thus closer to the robot (if the obstacle is
larger the robot will turn faster). Since this is a rather simple, purely reactive behaviour to learn only
basic feedforward networks have been tested. Only one demonstration of 1880 datapoints (observation-
action pairs) has been collected for training and another one of 1248 was used for testing. The network
instances in an epoch with the lowest testing errors were saved and used on the robot.

Training was conducted for 500 epochs for each of the networks (feedforward with 5, 10 and 20 hidden
units) using the same machine, software and parameters as in the previous behaviour. However, since
this is a purely reactive behaviour that functions on a relatively short term, it is difficult to obtain
measurable statistics. The duration of reaction is shorter than the noise induced by the sampling itself
(time to get control architecture, camera initialization and initial detections and robot movements
started up). As such, the only errors reported are those stemming from the training process (the

3.3. METHODS 33

(a) Simple abstraction of an
approach behaviour represented
here as an attraction field.

(b) Simple abstraction of an avoid
obstacle behaviour represented
here as a repulsive field.

(c) Combination of approach tar-
get and avoid obstacle abstrac-
tion computed as a sum of its con-
stituent fields.

Figure 3.2: Robot behaviour abstraction, shown above as vector fields representing the direction the
robot must head towards seen here from a top down perspective.

error resulting from the testing set) and not from actual deployment of the methods on the robot
itself.

Combining behaviours

Because both controllers above output the same data format (a movement and a turning force), they
can be combined relatively easily. According to [27] much of a robot’s actions can be represented as
a vector field. A conceptual representation of this can be seen in figure 3.2.

Figure 3.2 is an abstract global interpretation of behaviour composition. The final composed behaviour
is obtained by summing up the outputs of its constituent controllers. In this case a move-while-avoid
behaviour’s output is the summation of the outputs of a move behaviour’s output and the output of
an avoid behaviour). In reality the span of the vector field would be greatly reduced due to non-global
sensors. If you do not know where you are and where your targets and obstacles are your policy
cannot deduce a control vector. Thus your policy is restricted to your observable space. This can
be detrimental but can still be achieved with some minor approximations based on the last observed
state to quite some degree of accuracy.

Figures 3.3 and 3.4 show the progression of the output/control vectors with regard to the input vectors.
Adding up the points on the landscapes leads to an overall complex meta-behaviour solution. A thing
to take into account is that different behaviours have different targets of different sizes and possibly
leading to different sensory changes. Thus the size and position used in one behaviour is different from
the one used in the other behaviour since they reflect different inputs.

The approach behavior described earlier (and its neural network approximator) estimates the required
vector field within observable space. It does so straight from sensor space without any transition
through models or global representations. This can be quite a powerful behavioural composition tool.
However, this does give rise to some complications given the current models. Because the state is
only partially observable, required vector values cannot be computed in every spot such as when the
robot’s target and/or obstacle is outside the camera’s field of view. This is more thoroughly described

34 CHAPTER 3. LEARNING BEHAVIOURS

(a) Forward force for the approach target be-
haviour as a function of size and position on
the x axis. The position on the x axis does
not influence approach speed at all while the
size determines whether the robot is to go
forward, back or stand still.

(b) Turning force for the approach target
behaviour as a function of size and position
of target on the x axis. The more to the
left the target is the higher the turning speed.

Figure 3.3: Plots of the force functions for the approach target behaviour (3.3a for the movement force
and 3.3b for the turning force) with regards to the size taken on screen and position on the x axis of
the desired target.

(a) Turning force for the avoid target be-
haviour.

(b) Turning force for the avoid target be-
haviour.

Figure 3.4: Plots of the turning force function for the avoid obstacle behaviour as a function of the
x position and size taken up on screen. The robot tends to turn faster the closer the obstacle is to
its center and slower if closer to its periphery. Upon crossing the middle line, the direction of turning
reverses. Both plots express the same function, just from different perspectives. The move vector is
null in this instance so there is no plot to show (The robot’s wheels turn in different directions in case
of a turn command so there is no induced movement from the turning behaviour).

3.3. METHODS 35

in figures 3.5, 3.6 and 3.7. As such, some approximations need to be made for such scenarios and
extend a behaviour’s domain of definition.

Figure 3.5: Faced with an obstacle the robot turns away from the obstacle (a). The turning strength
increases the closer the robot is to the obstacle (b). The robot keeps turning away from the obstacle
as long as the obstacle is on screen (c). This process breaks down if the obstacle moves outside the
robot’s field of view (d).

Figure 3.6: The robot generates force vectors to approach the target (a). If the robot is close enough
to the target then the force vectors are null (b). The turning force increases as the target deviates
from the center of the field of view (c). The process breaks down when the target is outside the robot’s
field of view (d).

The behaviours were expanded as follows:

For the approach behaviour, the target’s position is retained in its last observed position for another
30 seconds. Thus the robot somewhat remembers the object is still in the same position as its last
observation (roughly to the utmost left or right of the image and roughly the last observable size thus
distance). As a consequence, once the robot ceases to see its target, it will still continue heading
towards where it last saw it. While this is not bound to happen when running the approach behaviour
itself (unless the target is moved by a human agent) it is very plausible in the instance where one
combines the behaviours such that one behaviour pushes the other one outside of its domain of
definition.

36 CHAPTER 3. LEARNING BEHAVIOURS

Figure 3.7: Placed in front of both an obstacle to avoid as well as a target to approach, the robot
sums up the two impulses. Since the robot is far away the obstacle repulsive force is minimal thus the
robot will try to approach its target as usual (a). Getting closer, the robot gets pushed away from
the obstacle with increased force while still being attracted to its target (b). As the robot turns, it
attempts to turn both towards the target as well as away from the obstacle. Since the obstacle force
is stronger when closer, this suppresses the desire to turn towards the target (c). The process breaks
down once both move outside the robot’s field of view (d).

For the avoid behaviour, the obstacle’s position is retained in its last observed position for another
5 seconds. However, the turning rate reduces during this interval by 5% of its previous value every
100ms (equal to multiplying by 0.95). This lets the robot turn increasingly slower over time for the
respective 5 seconds.

In both scenarios, once the robot has elapsed its ”memory” time, and the objects move out of the
visual memory, the target registers as not visible and that controller ceases output (outputs zero
for both vectors) and no longer adds to the final solution (the final solution being the sum of the
partial solutions). In this manner we have extended the behaviours’ domain of definition for an area
beyond its initial domain. However, at least for the avoid behaviour, the resulting outputs are time
dependent. Initial experiments have shown that recurrent networks perform suboptimal for this sort
of tasks and feedforward networks are better suited. Thus the concept of ”time”, or in this case, ”time
elapsed since the last observation took place” is simply added as an extra input to the controllers
being trained.

This is beneficial for the task in several ways. Unlike regular recurrent networks which must be
recomputed at fixed time intervals (for example 10 times per second) to keep consistency, and time
delay feedforward neural networks (use several time steps from the past as input for the feedforward
network) simply adding time as a variable can sometimes be a way to provide the time component
while not significantly altering the reactive nature of feedforward networks. This can to some extent
transcend variable time lags which, given our task of ultimately transferring controllers between robots

3.4. RESULTS 37

with different actions that may take place over different time periods (actions on one robot (Nao) may
be slower than on the other robot (Pioneer), mostly for physical reasons). Using time as an input for the
new input vector (x position, y position, size, time, visibility) can facilitate the later learning of these
different mappings also over time. Preliminary testing shows that this works well in practice.

Two extra demonstrations were given to both behaviours. One for the training set and one for the
testing set. For the approach behaviour, the object was presented to the robot then taken out of the
image through both the left and the right side of the visual field. The robot would follow the object’s
trace for the determined time until it either saw it again or the time would elapse and it would stop
turning. The original 9 demonstrations from 3.3.2 had to be shown again. For the avoid behaviour,
the object would be presented to the robot from various distances and the robot would turn until
the object would be outside of the visual field. Then the robot would keep on turning, slowing down
by a factor of 0.95 each 10th of a second for another 5 seconds. Once the five seconds elapse the
behaviour stops and begins to output null vectors unless the obstacle is presented again to the robot.
This is repeated several times on both sides of the visual field within one single long demonstration.
All demonstrations are then learned again, using the best performing network structures from the
previous experiments but with the new demonstrations and the extra temporal input.

The two targets: approach (red) and avoid (green) were both placed in front of the robot as to create
an obstacle that the robot is to avoid on its way to its target location. The composed controller was
then run for the demonstrated and learned behaviours on the robot. This was done for 30 times each
from different starting positions and the success rates (reaching the target and not crashing into the
obstacle) were measured and compared.

3.4 Results

3.4.1 Approach behavior

All of the multiple RNNs (mRNN - one RNN per output) failed to reach the target at all. This was
the same with the simple RNN with 20 neurons as well as the multiple ESNs with 50 and 200 neurons.
All of the simple ESNs simply produced controllers that did not move the robot at all. The best
performance was observed with FFNNs and, to some extent, multiple ESNs. A comparison of testing
errors can be seen in table 3.1. Some examples of the progression of the training progress can be seen
in figure 3.8.

FFNN-5h FFNN-10h FFNN-20h mFFNN-5h mFFNN-10h mFFNN-20h RNN-5h RNN-10h mESN-100h

0.0033 0.0033 0.0037 0.0036 0.0035 0.0036 0.0233 0.045 0.042

Table 3.1: Testing mean square error of successful policies. The feedforward network with 10 units in
the hidden layer had the smallest unrounded error.

The mean times over 4 runs were recorded and are presented below in table 3.2. Every controller
completed the behaviour in times slightly different from the original controller, due to external factors
outside of experimental control (camera noise, robot start-up time, evaluation of behaviour comple-
tion). Some controllers such as the one derived from multiple feedforward networks with 10 hidden
(mFFNN-10h) units even completed it faster, 0.54 seconds faster on average. This was to be expected

38 CHAPTER 3. LEARNING BEHAVIOURS

(a) FFNN with 10 hidden units. (b) FFNN with 10 hidden units,one per output.

(c) RNN with 10 hidden units. (d) RNN with 10 hidden units, one per output.

(e) ESN with 100 hidden units. (f) ESN with 100 hidden units, one per output.

Figure 3.8: Progression of training (blue) and testing (red) errors (MSE) for several neural network
models tested for the approach behaviour. 3.8a through 3.8d were trained for 100 epochs while 3.8e and
3.8f for 1000. 3.8e is hard to optimize since usually improving the reservoir for one output decreases
performance for the other and the testing error for 3.8c only gets worse with further training. 3.8d
could still improve but training was cut short due to time constraints.

3.4. RESULTS 39

as the original implementation was not a perfect demonstration and rounding errors in the learning
method could lead to less overshooting of the target.

Position Position Position Position Position Position Position Position Position Average
9 8 7 6 5 4 3 2 1 time

Original 22.8 23.2 22.9 19.5 18.0 19.6 13.2 11.5 12.0 18.1

FFNN-5h 28.8 28.1 26.1 22.4 25.5 25.3 15.3 20.2 13.2 22.8

FFNN-10h 21.3 20.1 19.1 19.2 22.0 23.2 13.3 10.3 14.4 18.1

FFNN-20h 23.9 24.6 25.2 19.2 22.1 23.2 13.3 10.3 14.4 19.6

mFFNN-5h 25.1 23.1 26.1 21.7 18.9 24.8 21.4 12.9 16.6 21.2

mFFNN-10h 22.5 20.5 22.7 15.4 18.2 21.1 13.8 10.8 12.8 17.5

mFFNN-20h 23.5 23.1 22.8 20.4 19.5 21.3 11.6 11.9 14.1 18.7

RNN-5h 29.6 20.4 26.4 22.6 13.7 19.2 14.9 11.5 10.9 18.8

RNN-10h 24.4 24.2 24.4 28.7 23.9 24.6 14.6 23.8 21.0 23.3

mESN-100h 25.0 26.1 26.8 21.2 21.1 20.0 16.9 14.2 12.6 20.4

Table 3.2: Mean time to task completion of the successful controllers, averaged over the 4 runs.
Numbers at the top represent the 9 positions the robot was started from. See figure 3.1 for the
respective positions. One network with 10 hidden units for each of the outputs (mFFNN-10h) seems
to have performed the quickest.

However, with regard to actually reproducing the demonstrated behaviour itself, the multiple feed-
forward neural network with 20 hidden units (mFFNN-20h) performed slightly better. The extra
neurons allowed it to learn the demonstrator function more accurately, with mFFNN-10h leading to a
smoother policy that did not overshoot as much as the original demonstration thus leading to shorter
times of completion.

A possible method of improving the error and results would be to perform a weighted average of the
output of two or more controllers. However, mFFNN-20h (one FFNN per output with 20 hidden units
each) performs sufficiently well in practice so it is not attempted here.

3.4.2 Avoid behaviour

Extrapolating from the successes of the approaching behaviour, the avoidance behaviour was also
learned using the same methodology. However, due to the success of the purely reactive controllers in
the previous, more complex scenario, only feedforward networks were learned this time. A comparison
of their performance can be seen in table 3.3.

FFNN-5h FFNN-10h FFNN-20h

0.0128 0.0114 0.064

Table 3.3: Testing mean square error of learned policies. This being a turning only task, the movement
vector was constantly zero but was kept in the network for ease of assembly with the previous controller.
The feedforward network with 10 units in the hidden layer had the smallest error.

Learning was successful as the robot was able to properly turn with all three networks. However, the
network with 10 hidden neurons was able to reproduce the behaviour more accurately.

40 CHAPTER 3. LEARNING BEHAVIOURS

3.4.3 Combining behaviours

The controllers presented above were relearned with the extra input and the extra demonstrations
marking the extended domain of definition. They were then rerun for the first two experiments and
no significant differences (compared to the original learned behaviours) were found between runs. The
extra input added to extend the domain of definition of the behaviours does not appear to influence
the activity in the initial domain.

In the extended domain (when the robot does actually not see the objects and the time counter since
its last observation increases) the robot performs very similar to its original demonstration. For the
avoid behaviour, adding the time elapsed since its last observation allows for the time dependent
decrease in turning speed. Preliminary experiments showed that this was not possible without a time
component.

Due to the fact that the initial behaviours and the enhanced behaviours (both defined/hard coded
and learned by networks) are not defined on the same spectrum of inputs it is difficult to compare
them. Also, the environment that the extended controllers function in is more dynamic and harder to
get objective measures from. However, for the avoid behaviour, the robot using the behaviour learned
by neural networks stops roughly facing at the same angle as the original hard coded behaviour to
within a +/- 10 degree accuracy level if run from the same spot.

The combined controllers (original defined and learned) were run for 30 times each from various
positions in front of the obstacle-target configuration. The robot starts off seeing both target and
obstacle and takes actions to approach it. It then gets close to the obstacle which prompts it to take
action to avoid. Since the outputs of the controllers are summed up, at first the approaching actions
are dominant until the obstacle is reached causing the avoiding actions to be dominant. Upon turning
and avoiding it no longer sees anything and the counters since its last observations begin to increment.
This leads to the turning to avoid obstacle vector (which is initially significantly bigger) to decrease
while the turning towards target vector (pointing in the opposite direction) remains the same. Thus
over time the robot will have turned towards its target to the point of seeing it again at which point
it is already proven above that it knows what to do. The advance/move forward component of the
vector keeps running as usual for the approach behaviour (the avoid behaviour has no such component)
making the robot perform an arch around its obstacle. The performance of these runs is presented
below in table 3.4.

Defined Learned

81% 87%

Table 3.4: Success rates of the combination of the approach and avoid behaviours. Success is counted
when the robot reaches its target without having crashed into its obstacle.

The implementation (defined) is not flawless as it is very difficult to get all parameters right to attain
perfect results but it reflects well on its neural network (learned) equivalent. The learned behaviour
retains many of the imperfections of the original implementation (mainly when starting from a rather
far away position there isn’t sufficient turning). However, it does seem to be performing relatively
better than the original. This might be due to some extent from sampling noise, but it is likely a
result of the rounding effect of the neural network that doesn’t have the jaggedness of if-then-else

3.5. DISCUSSION 41

statements of the original demonstration. The smoothness allows for the turning behaviour to begin
sooner, rather than wait for the time based confirmation that the object is no longer observable.

This yet again shows that the learned behaviour can be optimized later on (by means of weight
alteration) as it is already a relatively optimized version of the original implementation.

3.5 Discussion

In this chapter, a number of neural network based approaches to learning from demonstration have
been tried and tested. A behaviour was demonstrated from various locations and then learned with
neural networks. Several topologies were tested including classical feedforward and recurrent networks
as well as newer echo state networks.

Unsurprisingly, feedforward networks had the most success at reproducing the demonstrated behavior.
The most successful one was mFFNN-20h with 20 hidden units and one network each per output. This
makes sense, as a higher number of hidden units leads to a higher fidelity of reproduction, and the
large number of data points (over 8000) made over-fitting difficult. The difference is not that large,
however, compared to mFFNN-10h with 10 hidden units. After a certain point increasing the number
of hidden units has less effect. Using different networks for each output in such circumstances seems
logical as the outputs are of different types and will tend to enforce their own biases on the weights
affecting the other outputs. Thus separating them would be a good idea in some instances.

More striking, however, was the failure of recurrent networks to perform beyond simple feedforward
networks. Their representational power is significantly higher than that of simple FFNNs. It was not
completely unexpected that FFNNs behave better, due to reactive, non-time dependent nature of the
demonstrated behaviour, however the complete inability to reproduce it was. Independent networks
especially were expected to perform better than coupled networks as it happened with FFNN, but due
to the non time dependent nature of the behaviour, as well as the difficulty that comes with discarding
the first few startup inputs (just as the robot starts, before the data collects in the recurrent neurons
properly) makes RNNs ill-suited for such short demonstrations. Recurrent networks are, thus, quite
likely to infer time dependencies where there should not be any.

Echo state networks, could to some extent reproduce the behaviour, provided their outputs were not
coupled together to the same reservoir thus making it difficult to optimize. Coupled outputs made the
robot unable to move, while uncoupled outputs made it hard for it to set itself within the acceptable
range from the target. It is theorized that further training would alleviate the effect.

Overall, this chapter shows, that, while the choice of learning method is still an important factor to
consider, depending on application, learning from robot high level controllers is indeed possible. It also
shows, to some extent, that learned controllers can even be better than the original implementation, as
one of the networks managed to be overall quicker than the initial demonstration. Further refinement
would increase performance. However, that is to be left up to future research.

The requirements for some tasks of a time dependent component prompted the introduction of a tem-
poral input. This was done in light of the poor performance of RNNs and the staggering performance
of FFNNs. While not guaranteed to work for all problems it has worked for the current one quite
well. It does also simplify the task of migrating controllers between robots that inherently function on

42 CHAPTER 3. LEARNING BEHAVIOURS

different time scales (the time taken to perform a similar action is unavoidable different), as a simple
temporal transformation can be performed.

Combining behaviours was also proven possible through the use of standardized, additive input on the
behaviour parts, although we suspect that this may not be the most scalable of approaches and for
some problems some multiplicative (switching) component might also be needed. Furthermore, learned
controllers (and controller mixtures) were performing sufficiently similar to their original demonstra-
tions and sometimes even better. Although the extent to which a better performance than the original
indicates a good learning method remains up for discussion. While a good controller never fails, a
good learned controller succeeds and fails exactly as much as the original one and does not actually
perform better than the original.

However, having a controller or a set of controllers that are adaptable is important in robot to robot
controller transfer systems and that is the ultimate goal of this thesis.

Chapter 4

Learning the input correspondence

4.1 Introduction

One of the main difficulties regarding the transfer of controllers from one robot to another lies in
the fact that the robots are often dissimilar. Different robots may sometimes have very different
sensors, as well as different sensor data extraction modules, to deal with. Since robot controllers often
require sensorial input to perform their required actions this leads to a complication regarding input
representation. In an ideal scenario, all input to a controller from any robot would be standardized, if
not at a sensor level (have the same types of cameras and the same number of cameras for example),
at least on a sensor abstraction level. This would mean that, regardless of the type of sensorial input
the robot possesses, the information extracted is the same and in the same format. In real scenarios,
however, that is often not the case.

Even within the same type of sensing and measuring devices, results outputted are often not identical
but differ by a small margin. To compensate for these margins sensors to be used are initially subjected
to various calibration procedures. The device that is known to function according to the required
standards is called the ”standard”. The device being calibrated to match the standard is usually
called the ”test unit” [54]. What the calibration procedure basically does is to perform a certain
transformation on the output of the test unit to match the standard. This can be as simple as
changing a bias value for a measuring scale or recomputing the focal distance for a camera. This sort
of test unit to standard mapping is what is required for the problem at hand.

This chapter investigates the calibration procedure required to match the inputs of one robot to the
standard of the controller constructed for a different robot. This is required to allow for controller
transferability between robots. The method deployed allows the robot to ”envision” itself as another
robot with a known functioning controller by finding the equivalence of its own sensors in the other
robot’s sensor space.

43

44 CHAPTER 4. LEARNING THE INPUT CORRESPONDENCE

4.2 Related work

Not much literature exists on the sort of sensorial mapping attempted in this thesis. However, extensive
work has been done on other calibration procedures.

In [55] the authors present a planar pattern to a camera from a few different orientations to perform
calibration. Either the camera or the pattern can be freely moved and the data collected is used to
extract metric information from 2D images to be used for 3D computer vision.

The authors of [56] derived formal methods to perform camera calibration for 3D vision and also
investigated to some degree the number of calibration points required.

Robot calibration has also been performed [57]. Here, several methods have been investigated to refine
the inverse kinematics accuracy of industrial robot arms.

Robot sensors in particular have also been calibrated in [58]. The authors used Lie theoretic methods
to determine the precise location of the sensor after performing a motion task.

Robot vision sensors have also been calibrated [59]. Here the authors present several extrinsic cali-
bration methods based on closed form algebraic methods.

None of the above robotics and sensor related works perform similar tasks to the ones attempted
in this thesis. It is suspected that this has not really been attempted before. Data mapping work,
however, can be seen in autoencoders [60]. Here, however, the task is to map the data onto itself
through a bottleneck to force compression through feature extraction. What is desired in this thesis
is mapping data from one modality to another as faithfully as possible. However, the basic concepts
deployed in autoencoders serve the task at hand well.

4.3 Methods

The task at hand aims to convert the processed input data of a robot (in this case the Nao robot) to
a representation compatible with the input for the controllers previously discussed in chapter 3. For
this task the Pioneer robot was used for the standard and an Aldebaran Nao robot for the testing
unit. Since the controllers were designed to be used with the Pioneer robot configuration, the Nao
sensorial input needs to be translated into a Pioneer format input so that the controllers give out the
similar responses given similar situations.

Due to the very different morphologies of the two robots, they can not be in exactly the same state,
either physical, sensorial or logistic. For example, a logistic state for the Nao robot would be the
act of grabbing a cup or a can with its arms, a feat physically impossible for the Pioneer robot that
does not posses arms or grippers. The two robots cannot be in a logistical state describing the action
of grabbing. Similarly the Nao has sensors that feed information not available to the Pioneer robot.
Such an example can be made from the sonars on the Pioneer that are more complex and numerous
than those on the Nao, providing a 360 degree sense of the world as opposed to the two frontal sonars
that the Nao has.

For the current task, however, we shall restrict the experiment to just the visual stimulus also used in
chapter 3. Namely the processed sensor abstractions of viewed objects, in this case a red and green

4.3. METHODS 45

blob. This can be performed on any machine equipped with a video camera and both the Pioneer and
the Nao have such sensors although some differences do exist. The Pioneer camera has a wider field
of view, but is immobile, while the Nao camera has a narrower field of view but can change pitch and
yaw with the movement of the robot’s head. Also, as with most cameras, colors differ and automatic
white balance and exposure correction alters colors and lighting in different ways on both cameras.
The lens distortion also varies to some degree. Some of these features can be controlled while others
cannot. As such, sensor acquisition software needs to be customized, for both robots and even after
extensive work, results can still fail to be 100% accurate. However, a working approximation can be
obtained, and irregularities between feature extractors can be later solved, to some extend by machine
learning.

4.3.1 Proposed approach

The Pioneer sensor outputs are the same as those presented in chapter 3, namely the object positions
on the x and y axis, the size and the object, a visibility value and the time since the last observation
occurred (x-pos, y-pos, size, time, visible). This is done for both objects, the red follow target and
the green avoid obstacle.

The Nao sensor outputs are similar in scope: The objects’ positions on the x and y axis, their size
and time elapsed since last observed. However, one thing is different. The Nao can move its head to
observe more of the surrounding world. Thus two extra variables were added to compensate for the
lower field of view of the robot: the yaw and pitch of the robot’s head. This gives a sensor output
vector seven values: (x-pos, y-pos, size, yaw, pitch, time, visible).

While the Nao sensor abstraction is likely to convey much of the same information as the pioneer sensor
abstraction, it is incompatible with the controller designed for the Pioneer which takes the Pioneer
abstraction format as input. Thus, it is important that a suitable transformation is found between the
Nao view and the controller input requirements. This thesis proposes the expansion of the feedforward
neural network paradigm presented in section 2.3 to construct an appropriate ”adapter” from the Nao
sensor abstraction to the controller. This is performed by using the knowledge of equivalence between
Nao and Pioneer states given the required tasks. For this problem, a Nao looking forward and seeing
its target in the middle of the screen and slightly up (The Nao is shorter than the Pioneer camera
height) is the same as the Nao looking to the right and seeing its target on the left side and up of the
screen and the same as the Pioneer looking forward (camera is immobile) and seeing the target in the
exact middle of the screen. Thus it is relatively straightforward to use a neural network to construct a
decoder from what the Nao sees to what the Pioneer would see under the same circumstances. After
training, the results of the decoder are used to feed the data into the robot controller and generate
appropriate movement vectors as described in chapter 3.

4.3.2 Experimental setup

To collect data for training, the robots were placed in 13 positions in front of the respective objects
and data was collected for a training set. Twelve of them arranged in a grid roughly 30cm apart
from each other and one in a position where the robot could not observe anything. Then the robots
were placed in another 9 positions and data was collected for a testing set. A schematic of this can

46 CHAPTER 4. LEARNING THE INPUT CORRESPONDENCE

be seen in figure 4.1. This was repeated for both objects used in chapter 3. We investigate whether
the different nature of the two objects (one is a red flat notebook, the other is a green round ball)
has a significant influence on the final output, despite coming from similar stimuli and using similar
abstraction methods. Sample observations can be seen in figure 4.2.

Figure 4.1: Equivalent states for the Pioneer robot (left) and Nao robot (center and right) turning
its head to look in two different directions. Equivalent states are states that yield the same action
output. In this picture the robots are in position number 4, with number 13 being visible in the image
depicting a state in which the robots never see anything. Notice that the Nao robot has a smaller
field of view but can turn its head.

The Pioneer data collection involved placing the Pioneer in the required positions and recording 10
observations for each position, within 1 second intervals of each other. While no variables were actively
changed during the recording, there was some noise in the observations that was deemed an important
factor for the training process.

The Nao data collection involved placing the Nao in the required positions and move its head in
successive iterations of 2.9 degrees each from 29 degrees looking up to 23 degrees looking down (pitch)
and from 52 degrees looking left to 52 degrees looking right (yaw) for a total of 720 observations for
one position. This provides an extensive local observation of the surrounding world for the Nao robot.
This is to some extent larger than the Pioneer observation because a Nao robot can turn its head and
observe places that the Pioneer robot cannot despite its larger native field of view.

For the purpose of performing the mapping, feedforward neural networks (see section 2.3 for details)
were tested with 5, 7 and 10 hidden units. Training was conducted on an Intel core i7 for 1000 epochs
each with a learning rate of 0.1, a momentum of 0.8 and a learning rate decay of 0.99 per epoch.
There were a total of 9320 data points for training and 6480 for testing purposes. Mapping from the
Nao’s observations of both its red and green targets was conducted onto the Pioneer’s observations
of the red and green targets respectively (acquisition described in more detail in section 3.3.2). The
networks with the best testing error were saved and their performance noted.

Afterwards, they were applied to the controllers trained in chapter 3. The robots were placed in the 13
positions and the outputs were recorded for both the original and best performing learned controller.
We repeat this both for strapping each observation adapter to its own source (red blob observation to
red blob observation, and green blob observation to green blob observation) as well as using just one
adapter for both objects. In particular using the one derived from training on just the red blob and
using the network to map both observations between robots. This gives an indication of the overall
effects of stacking several neural networks on top of each other. In the situation of the Nao, it is

4.4. RESULTS 47

(a) Pioneer with locked view (b) Nao looking up and to the left (c) Nao looking straight and to
the right

Figure 4.2: Samples of Pioneer and Nao robot views of the two color targets (red notebook and green
ball) simultaneously. Note the differences in color and the effects of lens distortion. This leads to
complications in extracting accurate world observations.

programmed to turn its head a tenth of the way towards the center of the observation from where it
is currently looking every time a new observation comes (approx every 100ms).

4.4 Results

Performance can be seen in table 4.1. Through several training attempts, results were quite consistent.
While smaller networks with 5 hidden neurons work better on the red target of a flat surface, the green,
round target’s dynamics can more easily be learned by more complex networks of 10 hidden neurons.
It is suspected that illuminations of a sphere cause the detected surface to vary more in size with
different angles of observation. However, it also is more resistant to lens distortions as opposed to a
flat observable surface. This indicates that observations are not the same, although it is probably not
a significant difference.

FFNN-5h FFNN-7h FFNN-10h

Red target 0.0074 0.0090 0.0087

Green target 0.0093 0.0096 0.0077

Table 4.1: Average testing error rates(MSE) for the different targets. The robot was placed in front of
two different targets in the positions seen in figure 4.1, and the observations were recorded. The red
target is a flat notebook, while the green target is a round ball. It is suspected that the differences
between detectors as well as targets lead to different detection dynamics and thus different degrees of
complexity required to obtain good approximations.

Of greater importance for the overall goal is that the output of the controllers is the same. Regardless
of how good the mapping is, it is worthless if the robot fails to follow proper action. The errors from
strapping the converters onto the controllers and comparing their outputs with the original output
from the pioneer controllers can be found in table 4.2.

As can be seen, all errors are at least one order of magnitude higher than those obtained from just
learning the controller and applying it to the Pioneer robot directly. However, observation showed

48 CHAPTER 4. LEARNING THE INPUT CORRESPONDENCE

Learned controller Nao with correct Nao with correct Nao with wrong Nao with wrong
on Pioneer converter and converter and converter and converter and

original controller learned controller original controller learned controller

Error 0.0017 0.0449 0.0657 0.0497 0.0535

STD 0.0038 0.1439 0.2076 0.1518 0.1648

Table 4.2: Mean output errors using the best controller for the approach behaviour obtained in chapter
3. This uses the red target as input, thus a red target converter was constructed. The wrong converter
implies using the green target converter to actually convert the input of the red target.

that while the scale of the output differs, the direction of the vector remains consistent. There seems
to be a lot of variability in controller output values, often ±20% of the mean value observed (at least
for the turning component). This appears to be due to observation noise amplifying with the errors
added in the transformation. For this controller, the converter does not seem to be as important.
Using the wrong converter appears to not increase error significantly and when also using a learned
controller it seems to even decrease the overall error. Due to the large errors adding up this does
indicate statistical significance. However, for the avoid controller, the errors of which can be seen in
table 4.3, things are different.

Learned controller Nao with correct Nao with correct Nao with wrong Nao with wrong
on Pioneer converter and converter and converter and converter and

original controller learned controller original controller learned controller

Error 0.0722 0.0478 0.1692 0.2697 0.5319

STD 0.1142 0.0916 0.2153 0.2252 0.5316

Table 4.3: Mean output errors using the best controller for the avoid behaviour obtained in chapter
3. This uses the green target as input, thus a green target converter was constructed. The wrong
converter implies using the red target converter to actually convert the input of the green target.

Errors in this case seem to be 4 to 5 times bigger if the wrong converter is used. Because this controller
is more sensitive to the size and position of the respective object (see figure 3.3) than the previous one,
this makes an accurate converter, tuned to the object in focus, preferable. This is despite the fact that
both objects stem from the same sensory source and use similar data extraction techniques.

What is even more interesting, however, is the fact that there is high variability even with regard to
mapping from the Nao to the Pioneer while in equivalent states, depending on the direction the Nao
looks in. This contributes to the error in the final stages of the vectors. Figure 4.3 is a plot of the
error varying with the yaw and pitch of the Nao’s head for the robot placed in position 4 (in front of
the target, with body facing it).

As can be seen, the error when the robot fails to see its target, looks relatively smooth, although
it usually is one or two orders of magnitude higher than the area where observation actually takes
place. There is a region where error spikes even higher when the robot is looking down and to the left.
It is suspected that the network structure used lacked the representational power to accurately map
the entire area, despite it being in the training set. Collecting more data points might mitigate the
process. Error is also non-uniform even in the region where observation does take place, although the
error difference here is relatively low. If the robot does see the target, regardless of where the target is
on its image, its decision of action is sufficiently accurate. If however it does not see the target, then

4.4. RESULTS 49

Figure 4.3: Controller output error landscape, for the learned approach controller, using a red target
and a Feedforward Network with 5 hidden units, for the entire Nao head movement range (left) and a
region zoomed into the area where observation actually takes place (right). Negative yaw values mean
head turned right and negative pitch means head looking up. Note that the target is slightly higher
than the Nao’s head. This exact sample as taken with the Nao placed in position 5 (figure 4.1) The
’peak’ in the upper left hand side is likely an artefact of the particular learning run as a consequence
of the representational power of just 5 hidden units. The error on the outskirts, when the robot sees
nothing is 0.0087 (excluding the peak), while the minimum error in the visible area is 0.00029.

50 CHAPTER 4. LEARNING THE INPUT CORRESPONDENCE

it has difficulties knowing where it is thus what action to take. This is understandable as conditions
are ambiguous in this instance. Not seeing the target while being in a certain state overlaps with all
other states.

4.5 Discussion

In this chapter a method for mapping different sensor abstractions onto the format required by the
controllers was demonstrated. Also a simple calibration procedure for constructing such converters
was demonstrated. Performance was shown also in conjuncture with the controllers developed in
chapter 3 in light of the ultimate goal of migrating full systems.

While not optimal, the method works sufficiently well, drawing equivalences between Nao and Pioneer
states to be usable with the controllers. Feedforward networks have proven to work well for the task.
Using one network per output was also attempted in preliminary testing, but performance was below
that of the ones presented above, due to overfitting, so they were not expanded on.

In theory, data extracted from other modalities can also be used, as long as it conveys the same
information. As could be seen, in the case where the Nao could see its target, error was low, as
information received was in accordance to the one received from the Pioneer. Once the robot could
no longer see the target, error went up. However this cannot be helped short of reducing a robot’s
field of exploration. Granted, with proper thought, more complex calibration strategies can also be
devised, but that infringes on the universality of the approach.

Another task that raises questions is reverse mapping. Mapping from the lower dimensionality of
the Pioneer sensory perception to the higher dimensional Nao sensors. This task would be more
complicated but not impossible given sufficiently accurate data. However whether some tasks are
indeed feasible to even be attempted is left up to the judgement of the one trying to implement the
task. From Nao vision (including the head angles) to Pioneer vision some information compression is
performed, and in order to perform the reverse, that information would have to be recreated. While
to some extent possible with methods like Markov random fields [61] to generate possible instances
of your data equivalents in order to match your format, if the controller relies on information that
cannot be extracted from the actual world then it is an overall futile attempt. Granted one can try
to measure the error and if the error exceeds a certain threshold declare that the mapping has failed
and that sensory equivalence unattainable.

In this scenario the controllers were specifically designed for the Pioneer, so the Pioneer does not need
any adapter to fit into the behaviour. It is the baseline. However, should another robot appear, and
a Pioneer would not be available to provide the benchmark sensory input, another approximation
would be to map the new robot’s sensory input onto the Nao’s sensory input and then use the already
existing adapter to insert data into the controller. But one should always keep in mind the end goal
of the adapter, though, is to provide proper input to the controller. If not possible, this may lead to
some errors. These errors still have a possibility to be corrected in the end by finding a correspondence
between the erroneous controller output and the actual robot API motor commands.

Chapter 5

Learning the output equivalence

5.1 Introduction

Humans, as well as several types of animals can mimic each other’s actions. They observe another one
of their species performing an action and, sometimes with some training, can reproduce it. This is
generally rather simple as an action equivalence can be drawn between the two subjects, the demon-
strator and the reproducer, based on knowledge of body equivalence. However, what about performing
the same action with different species? A dog fetching a ball is a good example of that. A human
can use his or her hand to pick up the ball and transport it from one place to another. However,
dogs do not have hands that they can possibly grasp objects with. They pick up the ball in their
mouth and relocate it from point A to point B. Within the scope of ”ball fetching” that action is
roughly equivalent. It changed the world from state A to state B regardless of the exact mechanism
that enacted the change.

The problem is similar in the current setting. Equivalent actions must be found between the two
different robots, or in this case, since there is no logistic difference between the controller output and the
API requirements, a method to map from the controller output to the new robot’s API control vector
must be found. However, unlike in the previous experiments, it is extremely difficult and impractical to
construct a dataset by hand to conduct supervised learning from. Rather, we desire that this dataset
be constructed automatically from the robot’s own interaction with the environment. Two approaches
have been tested in this thesis: The first involves learning models of the two robots’ dynamics and
then using these models to learn offline the actions that perform the same state transitions. The
second skips the model learning stage and learns associations directly from a nearest neighbour [62]
approach to detect similar state transitions and thus associate similar actions.

In this section we learn the equivalence between outputs, more specifically between the output of the
controller designed for the Pioneer and the Nao’s control vector for the API. In order to achieve this
we build on top of the results from chapters 3 and 4. We use the best learned controller previously pre-
sented, namely the multiple feedforward neural network with 10 hidden units each, and the best input
to input converter for the red target and the green obstacle, namely the feedforward neural network
with 5 hidden units and the feedforward neural network with 10 hidden units respectively. Training
is only conducted once, using the red target as a reference, but the resulting output correspondence is

51

52 CHAPTER 5. LEARNING THE OUTPUT EQUIVALENCE

used for both actions coming from the red target as well as the green obstacle. Actions are considered
equivalent regardless of what triggered them. In the end, the performance of the final meta controller
developed in chapter 3 but applied through the architecture developed throughout this thesis onto
the Nao robot instead of the Pioneer is evaluated and compared to its Pioneer counterpart. The
meta controller consists of the overlapping of the learned approach and avoid controllers developed
previously.

5.2 Related work

Work directly dealing with the current task is scarce. Most action learning in literature is conducted
using reinforcement learning [63, 64]. This works by assigning rewards to state transitions and rein-
forcing actions that lead to desired state transitions while penalizing actions that lead to unwanted
state transitions. The main challenge involves balancing exploration and exploitation of discovered
policies.

In [65] a comprehensive overview of system identification techniques is given. The authors show that
black box modelling can be used to describe even nonlinear dynamical systems. However, the systems
are purely mathematical.

The authors of [66] demonstrate how neural networks as black box models can be used effectively for
the identification and control of nonlinear dynamical systems. The systems they analyse, however are
pure mathematical systems not directly applied to real world problems.

In [67] system identification was performed on a robotic arm using mathematical models. The authors
use least square estimates to determine the parameters for the first degree polynomial (thus linear)
state-space equations.

A more assumption free modelling attempt was made in [68] where the authors use Support Vec-
tor Regression [69] to describe the behaviour of a hydraulic robotic arm and improve on previous
methods.

No work has been found on modelling robot sensor input dynamics from actions, or learning actions
from such models. We do not understand why, as it is this author’s consideration that internal model
building and offline search based on those models can be a powerful tool to generate novel robotic
actions.

5.3 Methods

Building on the results from chapters 3 and 4, we now aim to complete the architecture described
in chapter 2 by developing a method to learn its last component: the mapping of abstract controller
outputs to actual physical actions. Since this is far from a trivial task, we have attempted two possible
methods to attain the feat, which are discussed bellow.

5.3. METHODS 53

5.3.1 Model based learning

A neural network based model of the robot’s dynamics is constructed. This model takes as input both
the sensorial input (the observed values of the detected target) as well as the output resulting from the
controller’s decisions or API commands to the robot and predicts the future sensorial input at the next
timestep. Note that the use of the word ”timestep” here is more out of literary convenience, in real
time systems it is impossible to divide computations into exact quanta, but usually approximations
are arbitrarily close enough to the desired division. Such models would learn to represent the evolution
of a robot’s senses with regards to its actions. Care must be taken, however, as the effects of noise,
overfitting and underfitting, as well as insufficient or inconsistent data can lead to poor models and
poor representations.

The reasoning behind learning models, is that, given a good enough model, if the inputs describing
the states are the same (which should be the case, considering the results from chapter 4) then simple
search algorithms can iterate through possible actions in the model to describe the same or otherwise
similar state transitions given by a known set of actions coming from the original robot. All of this
can be done offline following the creation of the model, making use of the larger computing power
available off the robot and without the need for real-time processing of data required by, for example,
reinforcement learning approaches.

Models can be constructed out of data. Time series prediction methods [70, 71, 72] perform similar
tasks. Data gets collected from observations of the state-action space and models get constructed out
of the collected data that represent the respective dynamics. Due to the success of feedforward Neural
Networks in previous sections and the reactive nature of the controllers implemented, this has been
made the method of choice to model the robot dynamics as well.

The method presented above can be structured in the following fashion (see figure 5.1):

1. Let both robots perform actions randomly (within reasonable limits, such as avoiding crashing
into objects), ensuring observation of the target by the human supervisor, and collect observation
states and the actions given.

2. Use Neural Networks to learn to predict the next observation given the values of the current
observation and actions for the second robot (the one the controller is being transferred to).

3. Initialize a randomly generated Neural Network that maps from one robot’s output actions to
the other.

4. Use generated actions and the first robot’s observations to compute a predicted future observa-
tion through the second robot’s model.

5. Compare the output of the prediction to the new actual state. Compute the errors from the
outputs (predictions) to the inputs of the prediction model denoting the actions. These inputs
are in fact the outputs of the neural network performing the action converter.

6. With knowledge of the errors added by the actions, we can now backpropagate them through
the converter network and perform the action to action learning. (Note, that the output of the
controller from chapter 3 in the original contains the same information as the actual control
vector provided to the API. Therefore these can also be used as actions to map from thus
skipping an extra layer of non essential mapping).

54 CHAPTER 5. LEARNING THE OUTPUT EQUIVALENCE

7. Repeat from step 5 until predictions consistently match the dataset.

Figure 5.1: Pioneer observations and actions mapped through the neural network are fed through
the Nao model and predict future observations. The error function (seen here in purple) from these
observations then propagates back through the networks and is used to learn the controller output -
control vector mapping.

5.3.2 Model free learning

Since prediction is a complicated affair, a benchmark solution has also been tested. Because the final
aim of this section is to map from actions on one robot to actions on the second robot, all we really
need is to collect these actions and correlate them both with the similar state transitions. To that
end, because the observation space is continuous, a degree of similarity must be computed between
the state transitions on both robots.

The method can roughly be described in the following manner:

1. Let both robots perform actions randomly (within reasonable limits, such as avoiding crashing
into objects), ensuring observation of the target by the human supervisor, and collect observation
states and the actions taken.

2. Iterate through the observations of the first robot and compute the distance between two con-
secutive observations to all pairs of consecutive observations in the second robot’s list.

3. If the minimum distance between one set of consecutive observations from the first robot and
another set of consecutive observations from the second robot is lower than a certain threshold
then retain the actions associated with the state transitions on both robots and add them to a
dataset.

4. Perform supervised learning using a simple feedforward neural network to learn mapping of
action values from one robot to another. Note that these do not have to be the exact API
command values, and can also be the values of the controller output in the case of the standard

5.3. METHODS 55

robot (the one who’s controller we are migrating), but not in the case of the test robot (the one
to which the controller is being transferred).

5.3.3 Experimental setup

Data collection

For these experiments, the same red target and red blob detector was used as in chapters 3 and 4.
Both The Nao and the Pioneer were placed in 4 locations in a straight line in front of the target
at a distance 0.3, 0.8, 1.3 and 1.8 meters from it. The robots were then given random commands
by adding Gaussian noise of mean 0 and unit variance to the controller output for the Pioneer (the
movement and turning force normally outputted by the controller) and to the API control vectors for
the Nao (these consist of a vector denoting forward movement, one denoting a strafing movement and
one denoting a turning action). The exploration procedure works as follows:

1. Generate a Gaussian noise vector. Use the vector as a control vector to command the robot. For
the Pioneer, the vector consists of controller output values that then get transformed into API
values by the original conversion system. For the Nao, the control vector is generated directly
for the API. Do so for 4 seconds continuously.

2. Stop the robot and wait for another 4 seconds. This is done in order to shake off any inertia
that can risk damaging the motors.

3. Apply the opposite of the control vector above to return roughly to the starting position.

4. Stop the robot again and wait for another 4 seconds.

5. Repeat from step 1. Gather observations every 0.1 seconds. Stop when enough observations
have been gathered or various errors accumulated until the robot no longer sees its target.

Note that applying the opposite control vector does not always return you to the original spot, this is
highly dependent on robot architecture, API and situation. For example, if you drive forward and left
in a car, to return to your original spot you have to drive backwards and left, not backwards and right.
Luckily for this scenario, the two robots’ dynamics allows for control vector reversal. However, for
various reasons, network delay, non-even computation and physical deformities of the robots and/or
their environment, noise accumulates and the robots no longer return to their original position. Once
the robot deviates sufficiently that the data collection is no longer deemed useful, collection is stopped
and the robot is returned to its initial position or is moved onto the next position.

Unlike the Pioneer whose camera is stationary, the Nao has a movable camera, To take advantage of
this feature without also adding unnecessary complexity to the model the Nao head is made to move to
look towards its target of interest at every new observation. To this end, 6203 observation-action pairs
have been collected for the Pioneer and 5770 state-action pairs for the Nao robot. The observations
consist of a vector made of the position on the x and y axis of the target, as well as its size and
whether it is visible or not. This is in line with the format that the controller designed in chapter 3
uses. For the Nao, the converter designed in chapter 4 is used to convert the Nao input vector to the
one required by the controller.

56 CHAPTER 5. LEARNING THE OUTPUT EQUIVALENCE

Model based learning

For this experiment feedforward neural networks were trained to learn the prediction function (the
model) for the Nao robot. Networks with one hidden layer and 5, 10, 20, 50, 100 and 200 hidden
units were tested and the results are reported in the following section. Training data was arranged in
pseudo-random order and consisted of 60% of the dataset, while 40% was used for testing. Stochastic
gradient descent was then performed to train the network, using a learning rate of 0.01 for 1000 epochs
each. Inputs consisted of the x and y position of the target and its size and visibility flag, and the
three control vectors the Nao robot uses: the forward, strafing and turning speed. Outputs consist of
the x and y positions and target size and visibility variable in the next time step 0.1 seconds ahead in
time.

We then initialize a random neural network that maps from the controller output vectors recorded
from the Pioneer to the Nao API output vectors. We iterate through the Pioneer data set and feed
it through the Nao model using the above neural network. The outputs of the prediction are then
compared to the actual future inputs from the Pioneer dataset. The error function is propagated back
to the action converter neural network where it is updated through gradient descent. A schema of
this is presented in figure 5.1.

Neural networks with 2, 5 and 7 hidden units are tested for the mapping. This action converter is
then run on the robot and performance is measured and presented in section 5.4.

Model free learning

The data sets are reconstructed for this task. This is done in two manners:

1. Sequential observations are grouped together to form a state transition. Thus two observations
now make up a new data set containing the observations at time t and at time t+1 for both
robots. A simple nearest neighbour algorithm is used to test for differences between transitions.
In this case the distance function between states is an euclidean metric.

2. The new dataset consists of the difference between two consecutive states, representing the
relative transition itself. In this scenario the distance between states is represented as the
mean pair-wise product of the robots’ state transitions. This defines similarity between state
transitions not as much by the states themselves but as the correlation between the relative shift
in observation values for each individual component. This is ensured by performing the product
of the component vectors. Similar changes will be strongly and positively correlated (product will
be positive and large) while dissimilar changes will be either close to null or negatively correlated.
Computing the mean of such a value ensures an unitary representation of all composing vectors.
The highest correlated pairs of observation changes will be given by the maximum value. The
higher this correlation is the more similar the actions are assumed to be as well.

This results in a list of associations between state transitions, and thus robot actions. Since these
associations can be based also on relatively large computed distances, only the points with a distance
lower than the mean distance between states is retained as a training set for the next stage.

5.4. RESULTS 57

The values of the correlated robot actions are then used to train an action converter from one robot’s
actions to another’s. Or in this case, since the pioneer recordings are based on the controller output,
from the controller output to the Nao API vector requirements. Neural networks with 1 hidden layer
and 2, 5 and 7 neurons in the hidden layer are tested and performance is indicated bellow. For this
task batch gradient descent was used for back propagation on a set of 4474 points.

The best performing neural network is then deployed on the Nao robot, together with the entire system
completed from chapters 3 and 4 and the robot’s performance is measured over 23 runs. We measure
the success rate of the robot performing the stacked behaviours presented in chapter 3. This can be
seen in section 5.4. The setup for the experiment is the same as the one in figure 3.2.

5.4 Results

5.4.1 Model based learning

Feedforward neural networks with 5, 10, 20, 50, 100 and 200 hidden units were trained. Mean squared
testing error is reported in table 5.1.

FFNN-5h FFNN-10h FFNN-20h FFNN-50h FFNN-100h FFNN-200h

0.000439 0.000452 0.000394 0.000415 0.000406 0.000423

Table 5.1: Testing mean square error of successful policies. The feedforward network with 10 units in
the hidden layer had the smallest unrounded error.

Errors are low, with the feedforward neural network with 20 hidden units holding the lowest error.
This network represents the prediction model of the robot’s dynamics and is then used to train the
action mapping. However, simple tests indicate that low error does not imply good prediction. By
defining a starting observation with the target in the center of the image on the x axis, a little above
the center on the y axis and a size roughly of 0.1, we tell the robot’s model to move forward and
backward. Expectation is that the observation’s size would grow as the robot approaches the target
and decrease as the robot gets away from the target. This does not appear to be the case, as can be
observed in figure 5.2.

The model fails to properly predict future observations. This is especially visible for longer numbers
of time steps. Parts of the observation vectors such as the target size vary widely with commands
that should give, for example, a steady increase. A number of factors have been identified for this
cause:

1. Errors from the Nao to Pioneer observation conversion seem to play a big role in deforming the
dataset, even if they are small. When the Nao performs no locomotion action, thus its control
vectors are 0, the head still moves to face its target. As a consequence, observation changes
as a function of noise, which adds noise to the overall prediction. The phenomenon also takes
place as the robot is moving but is less prevalent as at least there is some variability in motor
commands to correlate with observation changes.

2. The network is trained on a certain domain of observation vector values. As such, good gener-
alization can only be guaranteed within that domain (Note that prediction is more a regression

58 CHAPTER 5. LEARNING THE OUTPUT EQUIVALENCE

Figure 5.2: Target size on screen for moving forward (left) and moving backward (right) for a Nao
robot, as provided by the neural network model. This does not correspond with how the model should
be working.

and not a classification problem). Once values start exiting that domain, then results are out of
the model’s control.

3. Data collected from the robots is also very noisy. The cameras are not the best of qualities and
observation vectors at times vary to quite a considerable degree, even in the absence of action.
In the absence of action the errors are roughly evenly distributed around a base value, but in
motion, as the values change in a more dynamic fashion, these can lead to complication.

The three factors above both contribute to the failure of the model. Noise from both the initial
observation as well as the observation converter, drive the model outside its domain of definition and
thus predictions become unreliable. Attempts to limit the phenomenon have failed. It is assumed that
more data may help with some parts of the noise spectrum but the domain of definition may not be
extended.

Attempts to learn neural networks using the above described method, with any of the models above
have lead to non performing converters and, as a consequence a non performing robot. The method
has ultimately been abandoned.

5.4.2 Model free learning

Euclidean metric

The first approach using an euclidean metric and groups of two states yielded an average distance
between data points of 8.849 ∗ 10−4 while the standard deviation was 0.026. This leaves the similarity
to vary rather significantly. A plot of the minimum distance between observations for every data point
pair in the Nao dataset to the Pioneer points can be seen in figure 5.3.

5.4. RESULTS 59

Figure 5.3: The minimum distance between data point pairs and their counterparts in the Pioneer
dataset. As can be observed, some distances (and thus error) are orders of magnitude larger than
others.

Since the nearest similar state transition in some cases is rather far away, it makes sense that we
discard these data points from the neural network action mapping procedure. Thus, only the ones
lower than the mean of the dataset are counted towards training in the next step.

Neural networks with 2, 5 and 7 hidden units are trained on the actions associated to the state
transitions closest to each other. The testing error can be observed in table 5.2.

FFNN-2h FFNN-5h FFNN-7h

0.1417 0.1412 0.1404

Table 5.2: Testing mean square error of successful policies. The feedforward network with 7 units in
the hidden layer had the smallest error.

However, when deployed on the robot, neither of them manage to move the robot. All the converter
values are small, close to zero. The robot merely walks in place. The network with 5 hidden units
manages to get the robot to turn towards the target in the approach behaviour (section 3.3.2). How-
ever, forward locomotion is hindered. This appears to result mainly from the nonlinear progression of
the target size value during data collection. The linear and comparatively larger variations of the x
axis component make turning easier.

Product based metric

The second approach measured the pair-wise product between transitions of observation (pair-wise
difference of consecutive observation values) values for the Nao and Pioneer robot. A plot of the maxi-
mum product values for all observation transitions for the Nao robot to the Pioneer robot observation

60 CHAPTER 5. LEARNING THE OUTPUT EQUIVALENCE

transitions can be seen in table 5.4. We use the product, which is similar to an actual correlation
metric, but takes into account that it is better to match longer action vectors.

Figure 5.4: The maximum product between observation transitions of the Nao and their Pioneer
counterparts. Some observation transitions do not strongly correlate with anything and so it is better
to not use those points for training.

Only those products larger than the mean (those strongly correlated), a total of 4473 action pairs were
then used for learning the action mapping. Neural networks with 2, 5 and 7 hidden units are trained
on these action pairs with the controller outputs as inputs and the API control vectors for the Nao
robot as the outputs. The testing error can be observed in table 5.3.

FFNN-2h FFNN-5h FFNN-7h

0.2615 0.2600 0.2602

Table 5.3: Testing mean square error of successful policies. The feedforward network with 5 units in
the hidden layer had the smallest unrounded error.

The network with 5 hidden units had the lowest testing error after 1000 epochs of training. However
it is not significantly better than the other networks tested.

The successful network was then deployed on the Nao robot in addition to the other subcomponents
trained in previous chapters to reproduce the same target/obstacle navigation task the Pioneer robot
performed in chapter 3. The final results can be observed in table 5.4.

Of the 23 attempts, 5 failed. Mainly failures stemmed from too powerful turning triggers that forced
the robot to turn for 180 degrees while walking to avoid the obstacle. This sometimes leads to the
robot turning to not finish going around the obstacle before it’s ’seen’ timer expires and it no longer
remembers the target, at which point it stops.

5.5. DISCUSSION 61

Pioneer defined controller Pioneer learned controller Nao learned controller

81% 87% 78%

Table 5.4: Success rates of the combination of the approach and avoid behaviours. Success is counted
when the robot reaches its target without having crashed into its obstacle or veered off course and has
no chance of recovery.

5.5 Discussion

In this chapter we presented a way to construct the final converter for the robot controller migration
scheme presented in chapter 2. Several methods have been investigated and tested, and the complete
system was in the end evaluated and its performance compared to the performance of the original
controllers on the initial robot. While the error is slightly lower, the number of runs is not sufficient to
draw upon any statistical difference, as results are relatively dependent also on starting position and
environmental conditions that cannot be controlled such as poor lighting leading to poorer observations
which lead in the end to a somewhat different behaviour.

In addition, due to the different nature of the robot, the final behaviour cannot really be identical
but can only resemble it to a certain degree. Success rate is only a gross approximation of controller
performance, as there are other less measurable factors that an observer can realize. For example, the
Nao robot predominantly went around the obstacle on the right side, while the Pioneer showed no
such preference it its demonstrations or in the learned behaviour. This is due, mainly to a defect in
the Nao robot that causes it to naturally veer to the right.

The controller outputs map onto the Pioneer in a typical move forward and turn manner. The Nao also
comes with strafing capabilities, which, to some extent, mimic the observational changes of turning.
Strafing or turning to the left, leads to the observation migrating towards the right of the screen. It is
likely that the turning effect also causes changes on the y axis due to lensing effect while strafing does
not. The cause can also stem from the sheer fact that turning causes larger changes in observations
while changes resulting from strafing are noisy and small. This was not an expected phenomenon
in the original concept, as it was expected that turning on the Pioneer would translate to a mixture
of turning and strafing on the Nao and that was not the case (Some strafing did occur as values
representing the strafing speed were non zero but the effect was not significant).

While not perfect, the actions are equivalent enough, in the sense that on a macroscopic level, the
macro end goal of reaching a target while avoiding an obstacle was reached, and as such, the system
was proven successful. Performance can, afterwards be improved by global optimization methods
looking to optimize the entire input-controller-action network structure.

Chapter 6

Conclusions and future work

6.1 Summary

In this thesis we tackled the task of transferring robot control systems between robots of different
modalities. We explored the possibility of transferring two controllers, one performing the task of
approaching a target and one performing the task of avoiding an obstacle, in combination, from an
ActiveMedia Pioneer robot to an Aldebaran Nao robot. We also investigated possible methods by
which this could be done in a perceptive, cognitive manner, without the rigorous world modelling
based on expert knowledge that is widely deployed in robotics today.

To facilitate this, we proposed a series of abstraction layers as part of the robot control schema
(figure 1.1), namely the raw data layer, the processed data layer, the decision layer, the interpretation
layer and the action layer. We theorized that by dividing the control pipeline in such a manner,
we would simplify the transfer process. Thus, we devised a series of simple calibration procedures
to match observations and actions between modalities and deployed machine learning techniques
based on neural networks to construct adapters that perform the transformations between the various
modalities. We also used learning from demonstration to abstract away the controllers, whose hard
if-then-else structure is susceptible to failure when dealing with approximations, into neural network
representations which coupled with the adapters, present a full neural network based processing and
control pipeline, that could later benefit from global optimization methods to optimize the whole
control structure. Finally we proposed that equivalences between action layers can be determined by
the effects those actions have on the inputs. Similar changes in inputs were theorized to result from
similar actions.

A series of experiments were conducted to investigate the effectiveness of the various components pro-
posed in the schema, and of the overall architecture. In chapter 3 we investigated various architectures
of artificial neural networks to learn controllers from demonstration on the Pioneer robot. In chapter 4
we looked into the calibration procedures required to train a converter from the Nao input to the input
required by the controller designed for and trained on the Pioneer. Finally, in chapter 5 we used one of
the converters from the previous chapters on the Nao and tested various methods that use the change
in inputs to learn equivalent actions. A final experiment compares the performance of the original
Pioneer composed behaviour to the Nao’s attempt to perform the same task using the architecture

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

through the input converter - learned controller - action converter processing pipeline.

6.2 Conclusions

6.2.1 Results

In chapter 3 we have shown that artificial neural networks can be used successfully to learn controllers.
We have tested various neural network structures with feedforward neural networks, in this case, having
had the best performance. Specifically, multiple neural networks, with one network per output. Echo
state networks came at a close second, while recurrent neural networks learned irrelevant correlations
and were not able to perform at all regardless of the size of the hidden layer. It is suspected that this
is largely due to the reactive nature of the controllers demonstrated, the initial starting position as
well as the irregular time intervals that observations are taken. We have shown this to work for both
tasks that implied approaching a target, avoiding one as well as demonstrated a method to perform
the superposition of tasks.

In chapter 4 we showed that equivalence between inputs of different modalities can be drawn if the
information is compressed or retained. In our situation, we had the Nao’s detection consisting of 6
values mapped onto the input for the controller designed for the Pioneer robot, which takes 4 values.
The information required to perform the action was there, however, and thus a coherent mapping was
possible. The reverse would have depended on whether the action a controller designed for the Nao
would have required the extra information (such as what direction is the head turned) to make its
decision. This is, however, still up to the operator in charge of calibration to decide. We have shown
that there is no significant difference, regarding controller output, between a Pioneer in a particular
position and a Nao using the converter and a learned controller. The result was not identical, and was
also susceptible to a certain degree of noise, but as long as the robot was able to observe the target
the controller outputs would be strikingly similar.

Finally in chapter 5 we demonstrated that we can use the changes in sensor space to learn equivalences
in action space, namely from the output of the controller to the Nao API. Several methods had been
tested, such as predicting future sensor inputs from current sensor inputs and actions taken, and later
using exploration of the input-input space to determine equivalent actions, as well as learning action
equivalence directly from the distance or correlation between input transitions. Results show that
direct learning, especially from correlation performs better than first learning a model with neural
networks and then learning from the model. It is suspected that more data might have increased
performance, however it would have also increased data collection and training times. Finally, the
input converter - learned controller - output converter structure, deployed on the Nao to measure
the entire approach-avoid metacontroller performance, did so very well, having obtained success rates
similar to the ones of the original controller on the Pioneer robot. Artefacts existed, such as the robot’s
tendency to always go around the obstacle on the right side, but these did not affect performance and
are easily solvable with further optimization.

6.3. FUTURE WORK 65

6.2.2 Research questions

In this thesis, we started off with the following research questions:

1. How can robot controllers be scaled, adapted and transferred between different robots?

2. How to define the different abstraction layers to fulfil the previous research question?

3. How to perform robot to robot controller migration with the least amount of modelling?

After several experiments we are finally able to provide a series of answers:

1. Controllers can in practice be scaled and grown by building smaller controller for smaller tasks
and then combining them to form larger, more complex controllers. This is made easy by
standardizing their outputs (all controllers output results in the same format), which allows the
composition task to be as simple as adding out the results. For some tasks it is possible that a
more effective method of constructing metacontrollers exists, however it can also be done in just
such a simple manner.

Controllers need little adaptation to the new robot. Rather it is the connecting components
that require adaptation in order to function with both the controller as well as the robot’s basic
functions. We have shown that we are able to do this with neural networks. At best, the con-
troller may benefit from ”adaptation to the adapters”, to allow for working with approximations
(something the original controller may not natively support), and this we have shown to also be
a task that neural networks can tackle.

Once scaling and adaptation is completed, transferring is directly possible and the new control
structure can be directly run on the new robot, provided the programming environment supports
it.

2. In this thesis we have constructed our abstraction layers as follows: the raw data layer, the
processed data layer, the decision layer, the interpretation layer and the action layer. This is
described in figure 1.1. The overall success of the experiments conducted in this thesis have
shown that this is a viable division of abstraction layers.

3. Modelling was one thing we have thought to avoid as much as possible. Any expert knowledge
brought into the system is a hamper to its scalability. To that extent, we have shown that
black box systems, such as neural networks, combined with the proper calibration methods can
be a good way to avoid modelling. The only expert knowledge that has been brought into the
system was the set up of the calibration procedure and the parameters for training the neural
networks. The latter can, however, be automated. We have shown that we can construct the
transfer architecture using mostly just data and machine learning.

6.3 Future work

The main issue is that controller migration in itself is an ill-posed problem, as there is no clear definition
as to what exactly is an equivalent behaviour that one robot can perform and how accurate this needs
to be. One can only assume that those wishing to perform this controller transfer may use common

66 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

sense to determine the required threshold for that specific migration task. All in all this work was
exploratory into the field of robot independent artificial intelligence, which by the date of the current
work had seen little investigation from the scientific community. The current work can serve as a basis
for future research into the topic.

Future work may involve investigations into learning and migrating more complex controllers, as well
as more complex methods of combining controllers. Other areas of research exist also in searching for
better methods to learn action mappings, or investigating ways to use raw sensor data directly and
extract relevant features for each controller. In addition, global optimization methods can be used to
further refine the results of the proposed architecture after its full assembly. Current results can also be
improved, for example by using larger datasets, testing more parameters for training, or investigating
automated methods for parameter search. However, due to limited time for data collection, training
and testing, this had to be restricted for the current project. Hardware difficulties, typical of working
with robots had also to be overcome, but the ultimate success of the method despite various technical
difficulties showcases the potential performance of the method.

Bibliography

[1] R. Murphy, Introduction to AI robotics. The MIT Press, 2000.

[2] O. Lhomme, “Consistency techniques for numeric csps,” in International Joint Conference on
Artificial Intelligence, vol. 13, pp. 232–237, 1993.

[3] B. Leland, B. Christie, J. Nourse, D. Grier, R. Carhart, T. Maffett, S. Welford, and D. Smith,
“Managing the combinatorial explosion,” Journal of chemical information and computer sciences,
vol. 37, no. 1, pp. 62–70, 1997.

[4] K. Fenner, J. Gao, S. Kramer, L. Ellis, and L. Wackett, “Data-driven extraction of relative reason-
ing rules to limit combinatorial explosion in biodegradation pathway prediction,” Bioinformatics,
vol. 24, no. 18, pp. 2079–2085, 2008.

[5] N. Nilsson, Principles of artificial intelligence. Springer Verlag, 1982.

[6] J. McCarthy, “Generality in artificial intelligence,” Communications of the ACM, vol. 30, no. 12,
pp. 1030–1035, 1987.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of di-
mensionality,” in Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, ACM, 1998.

[8] S. Berchtold, C. Böhm, and H. Kriegal, “The pyramid-technique: towards breaking the curse of
dimensionality,” in ACM SIGMOD Record, vol. 27, pp. 142–153, ACM, 1998.

[9] J. Rust, “Using randomization to break the curse of dimensionality,” Econometrica: Journal of
the Econometric Society, pp. 487–516, 1997.

[10] F. Kuo and I. Sloan, “Lifting the curse of dimensionality,” Notices of the AMS, vol. 52, no. 11,
pp. 1320–1328, 2005.

[11] D. Lowe, “Object recognition from local scale-invariant features,” in Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1150–1157, 1999.

[12] A. Tanenbaum, Structured computer organization. Prentice Hall PTR, 1984.

[13] R. Braden, “Requirements for Internet Hosts-Communication layers. RFC1122, Internet Engi-
neering Task Force (IETF),” 1989.

[14] R. Braden, “Requirements for internet hosts-application and support,” RFC1123, 1989.

67

68 BIBLIOGRAPHY

[15] M. Sanner et al., “Python: a programming language for software integration and development,”
J Mol Graph Model, vol. 17, no. 1, pp. 57–61, 1999.

[16] T. Lindholm and F. Yellin, Java virtual machine specification. Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[17] S. Lallée, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek, T. Zant, F. Warneken, and
D. Ford, “Towards a platform-independent cooperative human-robot interaction system: I. per-
ception,” in International Conference on Intelligent Robots and Systems (IROS 2010), pp. 4444–
4451, 2010.

[18] D. Miller and R. Lennox, “An object-oriented environment for robot system architectures,” Con-
trol Systems Magazine, IEEE, vol. 11, no. 2, pp. 14–23, 1991.

[19] E. Drumwright, V. Ng-Thow-Hing, and M. Mataric, “Toward a vocabulary of primitive task pro-
grams for humanoid robots,” in International Conference on Development and Learning (ICDL),
2006.

[20] E. Drumwright, V. Hing, and M. Mataric, “The task matrix framework for platform-independent
humanoid programming,” in Humanoid Robots, 2006 6th IEEE-RAS International Conference
on, pp. 321–326, IEEE, 2006.

[21] D. Hristu-Varsakelis and S. Andersson, “Directed graphs and motion description languages for
robot navigation,” in Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 3, pp. 2689–2694, 2002.

[22] H. Hagras, V. Callaghan, and M. Collry, “Outdoor mobile robot learning and adaptation,”
Robotics & Automation Magazine, IEEE, vol. 8, no. 3, pp. 53–69, 2001.

[23] C. Bishop, Pattern recognition and machine learning, vol. 4. springer New York, 2006.

[24] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup: The robot world cup
initiative,” in Proceedings of the first international conference on Autonomous agents, pp. 340–
347, ACM, 1997.

[25] J. Chacón, T. van Elteren, B. Hickendorff, H. van Hoof, S. Knuijver, C. Lier, A. Nolte, D. Mutis,
P. Neculoiu, C. Oost, and F. Schimbinschi, “Borg-the robocup@ home team of the university of
groningen: Team description paper,” 2011.

[26] M. Lutz, Programming python. O’Reilly Media, Inc., 2006.

[27] R. Arkin, Behavior-based robotics. The MIT Press, 1998.

[28] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal ap-
proximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[29] W. Miller III, “Real-time neural network control of a biped walking robot,” Control Systems
Magazine, IEEE, vol. 14, no. 1, pp. 41–48, 1994.

[30] W. Miller III, R. Sutton, and P. Werbos, Neural networks for control. Bradford Books, 1995.

BIBLIOGRAPHY 69

[31] T. Hesselroth, K. Sarkar, P. van der Smagt, and K. Schulten, “Neural network control of a
pneumatic robot arm,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 24, no. 1,
pp. 28–38, 1994.

[32] S. Shuzhi, T. Lee, and C. Harris, Adaptive neural network control of robotic manipulators, vol. 19.
World Scientific Pub Co Inc, 1998.

[33] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization
in the brain,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[34] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Networks, 1989.
IJCNN, International Joint Conference on, pp. 593–605, IEEE, 1989.

[35] R. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural
networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[36] F. Pineda, “Generalization of back-propagation to recurrent neural networks,” Physical Review
Letters, vol. 59, no. 19, pp. 2229–2232, 1987.

[37] H. Jaeger, “The echo state approach to analysing and training recurrent neural networks-with an
erratum note,” tech. rep., Technical Report GMD Report 148, German National Research Center
for Information Technology, 2001.

[38] H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the
echo state network approach. GMD-Forschungszentrum Informationstechnik, 2002.

[39] K. Ishu, T. van der Zant, V. Becanovic, and P. Ploger, “Identification of motion with echo state
network,” in Techno-Ocean’04, vol. 3, pp. 1205–1210, IEEE, 2004.

[40] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated annealing,” Science,
vol. 220, no. 4598, pp. 671–680, 1983.

[41] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demon-
stration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009.

[42] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in cognitive sciences,
vol. 3, no. 6, pp. 233–242, 1999.

[43] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zollner, and M. Bordegoni, “Learning robot be-
haviour and skills based on human demonstration and advice: the machine learning paradigm,”
in Robotics research international symposium, vol. 9, pp. 229–238, 2000.

[44] S. Schaal, “Learning from demonstration,” Advances in neural information processing systems,
pp. 1040–1046, 1997.

[45] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of motor skills by
learning from demonstration,” in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pp. 763–768, 2009.

[46] M. Nicolescu and M. Mataric, “Natural methods for robot task learning: Instructive demonstra-
tions, generalization and practice,” in Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pp. 241–248, ACM, 2003.

70 BIBLIOGRAPHY

[47] R. Dillmann, “Teaching and learning of robot tasks via observation of human performance,”
Robotics and Autonomous Systems, vol. 47, no. 2, pp. 109–116, 2004.

[48] A. Billard, “Learning motor skills by imitation: a biologically inspired robotic model,” Cybernetics
& Systems, vol. 32, no. 1-2, pp. 155–193, 2001.

[49] P. Abbeel, D. Dolgov, A. Ng, and S. Thrun, “Apprenticeship learning for motion planning with
application to parking lot navigation,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pp. 1083–1090, 2008.

[50] S. Lee and Z. Popović, “Learning behavior styles with inverse reinforcement learning,” ACM
Transactions on Graphics (TOG), vol. 29, no. 4, p. 122, 2010.

[51] D. Grollman and A. Billard, “Donut as i do: Learning from failed demonstrations,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pp. 3804–3809, 2011.

[52] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmidhuber,
“Pybrain,” The Journal of Machine Learning Research, vol. 11, pp. 743–746, 2010.

[53] T. Oliphant, A Guide to NumPy, vol. 1. Trelgol Publishing, 2006.

[54] D. Skoog and D. West, Principles of instrumental analysis, vol. 5. Saunders College Publishing
New York, 1985.

[55] Z. Zhang, “A flexible new technique for camera calibration,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330–1334, 2000.

[56] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vision metrology
using off-the-shelf tv cameras and lenses,” Robotics and Automation, IEEE Journal of, vol. 3,
no. 4, pp. 323–344, 1987.

[57] Z. Roth, B. Mooring, and B. Ravani, “An overview of robot calibration,” Robotics and Automa-
tion, IEEE Journal of, vol. 3, no. 5, pp. 377–385, 1987.

[58] F. Park and B. Martin, “Robot sensor calibration: solving ax= xb on the euclidean group,”
Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp. 717–721, 1994.

[59] C. Wang, “Extrinsic calibration of a vision sensor mounted on a robot,” Robotics and Automation,
IEEE Transactions on, vol. 8, no. 2, pp. 161–175, 1992.

[60] G. Hinton and R. Zemel, “Autoencoders, minimum description length, and helmholtz free energy,”
Advances in neural information processing systems, pp. 3–3, 1994.

[61] S. Li, Markov random field modeling in computer vision. Springer-Verlag New York, Inc., 1995.

[62] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information Theory, IEEE
Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[63] R. Sutton and A. Barto, Reinforcement learning: An introduction, vol. 1. Cambridge Univ Press,
1998.

[64] M. Wiering and M. Van Otterlo, Reinforcement Learning: State-Of-The-Art, vol. 12. Springer-
Verlag New York Incorporated, 2012.

BIBLIOGRAPHY 71

[65] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson, and
A. Juditsky, “Nonlinear black-box modeling in system identification: a unified overview,” Auto-
matica, vol. 31, no. 12, pp. 1691–1724, 1995.

[66] K. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural
networks,” Neural Networks, IEEE Transactions on, vol. 1, no. 1, pp. 4–27, 1990.

[67] R. Johansson, A. Robertsson, K. Nilsson, and M. Verhaegen, “State-space system identification
of robot manipulator dynamics,” Mechatronics, vol. 10, no. 3, pp. 403–418, 2000.

[68] A. Gretton, A. Doucet, R. Herbrich, P. Rayner, and B. Schölkopf, “Support vector regression for
black-box system identification,” in Statistical Signal Processing, 2001. Proceedings of the 11th
IEEE Signal Processing Workshop on, pp. 341–344, 2001.

[69] J. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural pro-
cessing letters, vol. 9, no. 3, pp. 293–300, 1999.

[70] T. Martinetz, S. Berkovich, and K. Schulten, “Neural-gas’ network for vector quantization and
its application to time-series prediction,” Neural Networks, IEEE Transactions on, vol. 4, no. 4,
pp. 558–569, 1993.

[71] J. Connor, R. Martin, and L. Atlas, “Recurrent neural networks and robust time series predic-
tion,” Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 240–254, 1994.

[72] T. Masters, Neural, novel and hybrid algorithms for time series prediction. John Wiley & Sons,
Inc., 1995.

