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Abstract

Machine learning (ML) methods are becoming increasingly popular in the identification

of biomarkers in medical imaging data. While these methods provide superior predictive

accuracy, their models can be hard to interpret. More conventional statistical methods

lack the predictive accuracy of the ML models, but are able to identify regions in which

the difference between a patient group and healthy controls is statistically significant.

We attempted to strike a middle ground between these two extremes by employing

supervised dimensionality reduction (SDR) methods in the identification of useful dis-

criminative patterns for the differential diagnosis of various parkinsonisms based on

FDG-PET scans. Additionally, a new SDR method based on margin maximization in a

lower-dimensional space has been developed. Results indicate that our method performs

on-par with existing methods in terms of accuracy, while at the same time providing an

intelligible model through the generation of features that improve the performance of a

radial kernel support vector machine. In addition, we are able to demonstrate that our

method is able to learn an efficient low-dimensional representation of high-dimensional

data.
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Chapter 1

Introduction

Any introductory machine learning textbook will devote its first few pages to the distinc-

tion between supervised and unsupervised learning. Supervised techniques try to learn

from labelled examples. A classification model might be trained to make the best guess

whether a person is male or female based on their weight and hair length. A regression

model might be able to predict the price of a house based on its number of rooms, the

lot size and the average income in the neighborhood. Unsupervised techniques on the

other hand, work with unlabelled data. Here, the aim is to find regularities in the input.

Clustering techniques such as k-means are able to find groupings in the input space to

the extent that such groupings are present. Dimensionality reduction is another form

of unsupervised learning that tries to find a small number of underlying factors on the

basis of which the input can be represented reasonably well.

In recent years, semi-supervised [51] methods have been used to solve supervised learning

problems in which labelled examples are scarce while an abundance of unlabelled data

is available. There the idea is that if we can gain insight into the underlying distribution

of the data, we can generalize on the basis of just a few labelled examples.

The focus of this thesis is another cross-breed of supervised and unsupervised learning:

supervised dimensionality reduction (SDR). Informally, SDR can be said to find the un-

derlying factors in the data that best explain the class differences. It thus performs

dimensionality reduction while taking class information into account. We illustrate the

possible benefits of SDR here using, perhaps somewhat counterintuitively, an example

of what it is not. In [36] Novembre et al. present the results of applying principal com-

ponent analysis (PCA, an unsupervised dimensionality reduction technique) to genetic

samples of 1,387 Europeans. The genetic samples consisted of about 200,000 loci on

the DNA sequence. PCA finds the directions – principal components – which explain

most of the variance in the input data. Finding the position of each sample along the

first two directions and displaying them in a 2D scatter plot yielded the figure shown

in fig. 1.1. As the figure shows, the projection onto the first two principal components

1



2 1. INTRODUCTION

Figure 1.1: Projection of genetic samples of 1,387 Europeans onto the first two prin-
cipal components of the dataset. Small coloured labels represent individuals and large
coloured points represent median PC1 and PC2 values for each country. Figure from

[36].

correlates with the geographical location of the country of origin of the subjects after

rotation and scaling. Because of the way PCA works, the first two principal components

now indicate at which loci the measurements covary the most across the data set. Be-

cause these components attribute relevancies to locations on the DNA sequence, they

also show which loci are useful in predicting the country of origin of the person to which

the sample belongs. That last property was never an explicit goal of the PCA procedure

however, while it would be in SDR if we consider the countries of origin the class labels.

In a way, Novembre et al. can be considered to have stumbled upon “discriminative

components” – SDR tries not to leave such a discovery to chance.

A discriminative component indicating which of 200,000 loci have discriminative value

might be hard to interpret. However, if the dataset we are working with is comprised

of images, we can visualize such a component to show which regions of an image are

relevant to the classification. This idea of “intelligible classification” is the theme of

this thesis, and we will consider in particular the merits of supervised dimensionality

reduction techniques in the differential diagnosis of parkinsonisms based on FDG-PET
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scans. In brain imaging analysis, there is a big difference between a classical statistical

approach and a machine learning based approach. Making somewhat of a generalization,

the difference between the two approaches can be characterized in the following way:

Statisticians will be interested in a model that can be traced back to reality, enabling

them to interpret a parameter in terms of a corresponding quantity. They do so at the

expense of predictive power of the model, which is the focus of machine learning prac-

ticioners. The last-mentioned group will provide a model whose predictions are highly

accurate, but which can’t be easily interpreted. The idea of intelligible classification is

to strike a middle ground between these two extremes.

The problem of finding discriminative components is inherently ill-posed. One of the

properties we might seek is that the classes are well separated in the projected space.

Starting from this insight, we propose a new supervised dimensionality reduction method

using the margin-maximizing support vector machine algorithm. We will compare our

“support vector components analysis” (SVCA) to more established techniques as neigh-

borhood components analysis [27], local Fisher discriminant analysis [46] and Limited

Rank Matrix LVQ [10].

Structure of this thesis This research attempts to answer two loosely coupled re-

search questions:

1. How does support vector components analysis compare to other supervised dimen-

sionality reduction methods?

2. What are the merits of supervised dimensionality reduction methods in the differ-

ential diagnosis of parkinsonisms based on FDG-PET scans?

In the second chapter we will review a number of supervised dimensionality reduction

methods. The SVCA algorithm will be presented in the third chapter. Chapter 4

considers all particulars to the problem we are working on: we discuss the basic idea

of a PET scan, the background and symptoms of the various parkinsonisms and review

earlier work. The fifth chapter presents and discusses the results we obtained using our

method on both an artificial dataset, a dataset from the UCI repository and two datasets

of parkinsonian patients’ PET scans. We discuss our findings in the sixth, concluding

chapter.





Chapter 2

Supervised Dimensionality

Reduction

There exists a variety of dimensionality reduction methods that take class labels into ac-

count. In this chapter we will review on three such methods: neighbourhood components

analysis (NCA) [27], local Fisher discriminant analysis (LFDA) [46] and Limited Rank

Matrix Learning Vector Quantization (LiRaM LVQ) [10]. We consider these three algo-

rithms in particular for the following reasons: 1) Conceptually, they share similarities

with the SVCA algorithm and thus set the stage well for the remainder of this chapter;

2) two of the three methods are considered classical tools in the relatively young field

of supervised dimensionality reduction [10]; and 3) for each algorithm an optimized im-

plementation is available online, enabling us to easily compare them with SVCA in the

experiments of this thesis.

Suppose we have a labeled dataset consisting of P real-valued input vectors x1, . . . ,xP

in RN and corresponding class labels c1, . . . , cP . A matrix T ∈ RK×N defines a linear

map from RN to RK by mapping x to Tx. At the most general level, the methods in this

section all try to find a transformation matrix T that emphasizes the class differences.

2.1 Neighborhood Components Analysis

In NCA [27], we try to find a mapping to a vector space in which a nearest-neighbor

classifier would perform well. When a k-nearest-neighbor classifier is presented a novel

pattern x, it considers the classes of its k nearest neighbors and assigns the new pattern

the label of the majority of those neighbors. Here, the nearest neighbor of x is the

training pattern xi to which it has the smallest distance. The most common distance

measure is the Euclidean distance:

dEuc(x,y) = ||x− y||. (2.1)

5



6 2. SUPERVISED DIMENSIONALITY REDUCTION

In NCA we measure the Euclidean distance in the transformed space that we map to

using matrix T, resulting in a measure which takes the form of a Mahalanobis distance:

dΛ(x,y) = ||T(x− y)||

=
√

(x− y)′T′T(x− y) (2.2)

=
√

(x− y)′Λ(x− y) (2.3)

where Λ = T′ ∗T. Note that we can skip taking the root for computational simplicity,

since we are only interested in finding the minimal distances. Conceptually, the idea

of NCA is to find a transformation matrix T that maximizes the leave-one-out cross

validation performance of a k-nearest-neighbor classifier. Since that performance w.r.t.

T is piecewise continuous rather than differentiable, NCA formulates an alternative

objective. This alternative estimates the performance of a classifier that assigns the

left-out pattern xi the class of training pattern xj with a probability related to the

transformed distance between xi and xj . Using a softmax over the Euclidean distances in

the transformed space, the probability that xi has xj as its nearest neighbor is expressed

by

pij =
exp (−||T(xi − xj)||2)∑
k 6=i exp (−||T(xi − xk)||2)

, (2.4)

where pii (the probability that left-out pattern xi will be xi’s nearest neighbor) is set to

zero. The probability that xi will be correctly classified is then expressed by

pi =
∑

j:cj=ci

pij . (2.5)

In NCA, the objective being maximized is expected number of points correctly classified :

JNCA(T) =
∑
i

∑
j:cj=ci

pij =
∑
i

pi. (2.6)

NCA tries to maximize this objective using gradient-based methods. Working out the

matrix calculus yields the following derivative w.r.t. T:

∂JNCA

∂T
= −2T

∑
i

∑
j:cj=ci

pij(xijx
′
ij −

∑
k

pikxikx
′
ik) (2.7)

2.2 Local Fisher Discriminant Analysis

LFDA builds on the classic Fisher linear discriminant analysis (FDA) [18, 22]. In this

section, we start by describing two-class FDA. Then we show how the method can be

used for more than two classes prior to discussing the adaptations made in LFDA.



LOCAL FISHER DISCRIMINANT ANALYSIS 7

In two-class FDA, we project all patterns x onto a line with direction vector t by taking

the scalar dot product

y = t′x. (2.8)

We are interested in finding the vector t such that the projections y show great separa-

tion between the two classes. Such a t is found by maximizing the following objective

function:

JFDA-2 =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

(2.9)

where m̃` is the mean of the projected points belonging to class `

m̃` =
1

n`

∑
i:ci=`

t′xi = t′m` (2.10)

with n` the number of patterns with label ` and m` the mean of patterns with label `

in the input space. In equation 2.9, the s̃2
` ’s refer to the scatter of patterns with label `:

s̃2
` =

∑
i:ci=`

(yi − m̃`)
2. (2.11)

where yi denotes the projection of xi according to equation 2.8. Maximizing equation

2.9 means we seek a linear function t′x for which the difference between class means is

large while the scatter within a class is small. In other words, we want tight clusters

that are far apart. Rewriting equation 2.9 in terms of scatter matrices in the input space

we obtain

JFDA-2(t) =
t′SBt

t′SWt
(2.12)

with between-class scatter matrix

SB = (m1 −m2)(m1 −m2)′ (2.13)

and within-class scatter matrix

SW =
∑
`

∑
i:ci=`

(xi −m`)(xi −m`)
′. (2.14)

The derivative of 2.12 w.r.t. t is given by

∂JFDA-2

∂t
=

2(SBt · t′SWt− SWt · t′SBt)

(t′SWt)2
(2.15)

so we know that the t that maximizes equation 2.12 must satisfy

SBt =
t′SBt

t′SWt
SWt

= λSWt (2.16)

with λ a positive scalar. Equation 2.16 takes the form of a generalized eigenvalue
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problem, and can be simplified to a normal eigenvalue problem if SW is singular by

pre-multiplying both sides with S−1
W :

S−1
W SBt = λt. (2.17)

From equation 2.17 we can see that the transformation vector t we are looking for is

an eigenvector of the matrix S−1
W SB. Since SB as in equation 2.13 we can reason that

m1 −m2 has to be SB’s only eigenvector, and hence SBt will lie in the same direction

as m1 −m2. Additionally, since we do not care about the scale factor of t but only

about its direction, we can drop the λ and obtain the following expression maximizing

equation 2.12:

t = S−1
W (m1 −m2). (2.18)

When the number of classes M is larger than 2, the within-class scatter matrix is still

defined according to 2.14 [18]. The multi-class generalization of between-class scatter

matrix SB is not as obvious:

SB =
∑
`

n`(m` −m)(m` −m)′ (2.19)

where m is the mean of all patterns, regardless of class. The multi-class equivalent of

2.12 is defined as

JFDA(T) =
|TSBT′|
|TSWT′|

(2.20)

where T ∈ R(M−1)×N . Here, the determinant of the scatter matrices in the transformed

space serves as a scalar measure of the scatter. An alternative definition can be encoun-

tered in the literature as well and yields the same solution for the optimal value of T

[46]:

J ′FDA(T) = tr
(
(TSWT′)−1TSBT′

)
(2.21)

Generalizing the two class case, an optimal T is formed by the generalized eigenvectors

that correspond to the largest eigenvalues in

SBti = λiSWti (2.22)

where the t′i’s form the rows of T.

Local Fisher Discriminant Analysis redefines the scatter matrices in the following way:

SW =
1

2

∑
i,j

W
(i,j)
W (xi − xj)(xi − xj)

′ (2.23)

SB =
1

2

∑
i,j

W
(i,j)
B (xi − xj)(xi − xj)

′ (2.24)
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where

W
(i,j)
W =

{
A(i,j)/n` if ci = cj = `

0 if ci 6= cj
(2.25)

W
(i,j)
B =

{
A(i,j)

(
1
n −

1
n`

)
if ci = cj = `

1/n if ci 6= cj
. (2.26)

Here, A ∈ [0, 1]P×P is the affinity matrix, where A(i,j) expresses the affinity between xi

and xj . A(i,j) is large if xi and xj are close to each other in the input space, and small

if they are far apart. Several definitions of A are possible.

2.3 Limited Rank Matrix LVQ

Limited Rank Matrix LVQ [10] builds on Generalized Matrix LVQ [42], which in turn is

based on learning vector quantization [30]. The idea of LVQ is fairly simple: initialize a

number of prototypes, each associated with a class label (it is possible to have multiple

prototypes per label), then (stochastically) iterate through all training patterns updating

the nearest prototype mν using the following procedure when visiting pattern xi

mν = mν + ∆mν (2.27)

where

∆mν =

{
η(xi −mν) if xi and mν have the same label

−η(xi −mν) otherwise
(2.28)

In other words: prototypes are locally pushed towards patterns with which they share a

label and pushed away from patterns with a different label, the ‘force’ of this push being

proportional to the distance between the pattern and the prototype. In [41] another,

more flexible approach is introduced in which training is guided by minimization of a

cost function

JGLVQ =
∑
i

Φ(µi) where µi =
dTJ − dTK
dTJ + dTK

(2.29)

where the quantity dTJ (dTK) corresponds to the distance of pattern xi to its nearest

correct (wrong) prototype. In equation 2.29, Φ is a monotonic function. In [10] and the

following, Φ is simply the identity function Φ(x) = x. As in NCA, the distance function

takes the form of a Mahalanobis distance defined in equation 2.3.

The aim of the GMLVQ algorithm is to minimize equation 2.29 both with respect to the

prototype configuration and the transformation matrix T in equation 2.3. In GMLVQ,

T lies in RN×N . LiRaM LVQ adapts this procedure by searching for T in RK×N , with

K < N .



10 2. SUPERVISED DIMENSIONALITY REDUCTION

During training, LiRaM LVQ minimizes equation 2.29 through stochastic gradient de-

scent. Relevant derivatives are

∂dTL
∂mL

= −2T′T(x−mL), (2.30)

γ+ =
∂µ

∂dTJ
=

2dTK
(dTJ + dTK)2

, (2.31)

and

γ− =
∂µ

∂dTK
=

−2dTJ
(dTJ + dTK)2

. (2.32)

Here, we use the same notation as in [10] by having L ∈ {J,K} and J (K) denotes the

index of the closest correct (wrong) prototype. Prototypes mJ ,mK are then updated

according to

mJ ←mJ + λ1 · γ+ ·T′T(x−mJ) (2.33)

and

mK ←mK + λ1 · γ− ·T′T(x−mK) (2.34)

The corresponding matrix update is given by

T← T− λ2 ·
∂µ

∂T
(2.35)

with
∂µ

∂T
= γ+∂d

T
J

∂T
+ γ−

∂dTK
∂T

(2.36)

and
∂dTL
∂T

= 2T(x−mL)′(x−mL). (2.37)

After updates according to (2.35), T is normalized such that the sum of its elements

squared equals 1.

Concluding remarks In this chapter we have reviewed three supervised dimension-

ality reduction algorithms. NCA tries to optimize the performance of a nearest neighbor

classifier in the transformed space. LFDA makes the classic Fisher’s discriminant analy-

sis non-linear through the introduction of an affinity matrix. LiRaM LVQ is a prototype

based method which minimizes an error function both through optimization of the pro-

totype configuration and the transformation matrix. Both NCA and LiRaM LVQ are

iterative algorithms without the theoretical guarantee that they will converge to a global

optimum, so the initial T will influence their final performance. When using LFDA an

initial T does not have to be provided, but in that case the definition of the affinity

matrix is important. The next chapter will introduce a novel supervised dimensionality

reduction algorithm called Support Vector Component Analysis.



Chapter 3

Support Vector Components

Analysis

In this chapter we will introduce Support Vector Components Analysis (SVCA). Since

SVCA builds uses the same concept as the support vector machine (SVM), we will start

by describing the main theory behind SVMs.

3.1 The Support Vector Machine

In this section we treat the basic derivation of the objective function of the support

vector machine algorithm [11, 43, 49]. Then we show how the decision surfaces of the

algorithm can be made non-linear through the use of a kernel function.

Again consider training patterns xi ∈ RN now with corresponding binary class labels yi ∈
{±1}. Support vector machines are firmly rooted in statistical learning or VC (Vapnik-

Chervonenkis) theory [49]. VC theory considers the properties of learning machines

whose parameters α are optimized during training. Such a machine can be characterized

by a function f assigning a label to a pattern x, i.e. f(x,α) ∈ {±1}. The risk or test

error of a machine defined by α is given by

R(α) =

∫
1

2
|f(x,α)− y|dP (x, y). (3.1)

where P (x, y) is the joint distribution function of x and y. As long as we don’t have an

estimate of P (x, y) this expression is not very useful. A measure we can obtain is the

empirical risk or training error :

Remp(α) =
1

2P

P∑
i=1

|f(xi,α)− yi| (3.2)

11
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where P is the total number of training patterns. VC theory shows that the following

bound on the test error holds with probability (1− δ) [49]:

R(α) ≤ Remp(α) + φ(h, P, δ) (3.3)

with VC confidence φ defined as

φ(h, P, δ) =

√
1

P

(
h

(
log

2P

h
+ 1

)
+ log

4

δ

)
. (3.4)

and where h is the so-called VC dimension that measures the ability of the system to

learn any training set without error. Intuitively, we can understand the role of h in the

upper bound in (3.3) in the following way: if our system is able to explain any structure

it encounters in the training data perfectly, it is very sensitive to small changes in that

training data and thus has a high variance. A low training error should not lead us to

think the system will generalize very well in that case and indeed, for high values of h

the upper bound on the test error is large, regardless of the training error. Classifiers

with a low VC dimension will have a lower VC confidence, but if a classifier is less able

to explain any training set without error we can expect its training error to increase. In

training the system, we want to obtain the optimal trade-off between low training error

and low VC confidence. Vapnik has shown that the parameters α of such an optimal

classifier maximize the margin of that machine [49]. The margin is defined as the distance

between the decision boundary and the instance(s) closest to it, as illustrated in figure

3.1.

3.1.1 The Support Vector Objective Function

Following the example of other SVM tutorials [11, 43], we start by explaining the train-

ing of a support vector machine that tries to linearly discriminate one class from another.

The support vector machine algorithm realizes a decision function through the construc-

tion of a decision hyperplane

w · x + b = 0 (3.5)

corresponding to a decision function

y(x) = sgn(w · x + b). (3.6)

As explained in the introduction of this section, we aim to maximize the margin between

the two classes in support vector classification. It can be shown that the problem of

maximizing the margin is the same as that of minimizing

1

2
||w||2 (3.7)
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Figure 3.1: Illustration of the separating hyperplane and the margin of a support
vector machine. The circled points in the scatter plot are support vectors. Image from

[11].

subject to constraints

yi(w · xi + b) ≥ 1. (3.8)

where yi is the predicted label of xi according to (3.6). So far we have assumed that the

two classes can be completely separated by the hyperplane defined by equation 3.5. Of

course, this might not be the case. We want to decrease the influence outliers might have

on the algorithm by relaxing the constraints in (3.8). This can be done by introducing

the slack variables ξ. The problem now consists of finding

min
w,ξ,b

1

2
||w||2 + C

∑
i

ξi (3.9)

subject to constraints

yi(w · xi + b) ≥ 1− ξi and ξi ≥ 0 (3.10)

with C a constant determining the trade-off between margin maximization and training

error minimization. The problem defined by equations 3.9 and 3.10 is a constrained op-

timization problem. Such a problem can be rewritten through introduction of Lagrange

multipliers α ≥ 0 and a Lagrangian

min
w,ξ,b

max
α,η
L(w,ξ, b,α,η) =

1

2
||w||2 + C

∑
i

ξi −
∑
i

ηiξi −
∑
i

αi(yi(w · xi + b)− 1 + ξi)

(3.11)

As we can see from equation 3.11, L has to be minimized w.r.t. primal variables w, ξ

and b and maximized w.r.t. the dual variables α and η. That means we are looking for

a saddle point of L.

The following might provide an intuition as to why a saddle point provides a solution

to the problem [43]: Suppose a certain training pattern xi violates the constraint that

yi(w · xi + b) ≥ 1 − ξi. Then L can be increased by increasing the corresponding

αi. Simultaneously, w and b will have to change such that L decreases. To prevent

αi(yi(w ·xi+b)+1−ξi) from becoming an arbitrarily large negative number, the change
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in w and b will be such that the constraint will eventually be satisfied. Additionally,

one can see from equation 3.11 that for training samples which don’t exactly meet the

constraint, i.e. yi(w · xi + b) > 1− ξi, the corresponding αi must be 0, since that is the

value by which J is maximized in that case.

Since we are looking for a saddle point, we are looking for a point at which the derivatives

of equation 3.11 with respect to the primal variables vanish,

∂L
∂w

=
∂L
∂ξi

=
∂L
∂b

= 0 (3.12)

which means that at the saddle point

ηi = C − αi,
∑
i

αiyi = 0 and w =
∑
i

αiyixi. (3.13)

Substituting the expression for w into equation 3.6 we can rewrite our decision function

as a linear combination of a subset of the training patterns xi:

f(x) = sgn

(∑
i

yiαi(x · xi) + b

)
. (3.14)

Equation 3.14 is the so-called Support Vector expansion, with training patterns cor-

responding to a non-zero α value being dubbed the support vectors. Substituting the

expression in 3.13 into equation 3.11 we eliminate primal variables w, ξ and b and arrive

at the dual optimization problem, which is the problem that is usually solved in practice:

max
α
Q(α) =

∑
i

αi −
1

2

∑
i,j

αiαjyiyj(xi · xj) (3.15)

subject to constraints

0 ≤ αi ≤ C and
∑
i

αiyi = 0. (3.16)

3.1.2 Non-Linearity in Support Vector Machines

Barring outliers, we have thus far assumed that the two classes can be separated by

a hyperplane. One way to make the SVM have a non-linear decision boundary is to

preprocess the training patterns by some map Φ and then applying the support vector

algorithm on the mapped patterns. For instance, training an SVM on patterns mapped

by Φ : R2 → R3 with Φ(x) = (x2
1,
√

2x1x2, x
2
2) will correspond to a quadratic decision

boundary in the original space. While this approach seems reasonable in this particular

example, it can easily become computationally infeasible for both polynomial features

of higher order and higher dimensionality [43].

A key observation is that SVM training only depends on labels and inner products

between patterns. Rather than explicity defining some mapping to a feature space, we



THE SUPPORT VECTOR MACHINE 15

can implicitly map to another space by plugging in a similarity measure different from

the inner product. Such a similarity measure K(xi,xj) between patterns xi and xj

is called a kernel function. Mercer’s theorem states that for every continuous positive

definite function K(xi,xj) there exists a corresponding mapping Φ such that K(xi,xj) =

Φ(xi)
′Φ(xj). The most popular kernels are the polynomial kernel and the radial basis

function kernel.

3.1.3 Extension to Multiclass Problems

By definition, support vector machines solve binary classification problems. There are

multiple ways to extend them to problems where the number of classes M is greater

than two [43].

One-versus-rest The most straightforward way is to train M classifiers f1, . . . , fM ,

each trained to distinguish one class from the rest. The actual classification is

then performed by assigning a new pattern x the label of the system with the

highest output, i.e.

arg max
`

g`(x), where g`(x) =
∑
i

y`iα
`
iK(x,xi) + b` (3.17)

with y`i being 1 if ci = ` and -1 otherwise. The drawback of this method is that it’s

somewhat heuristic and supposes that the outputs of the separate classifiers are of

a comparable magnitude. If that assumption does not hold, the system might be

biased towards the class whose associated classifier has a larger output overall.

Pairwise classification In pairwise classification (M − 1)M/2 binary classifiers are

trained, one for each of the possible combinations of two of the classes. For exam-

ple, a three-class problem will be learned through use of a 1 vs. 2, a 1 vs. 3 and

a 2 vs. 3 classifier. Classification consists of each of the separate systems taking a

vote on the label of the presented pattern, and the majority vote determines the

predicted label.

Error-correcting output coding The basic idea of error-correcting output coding

[4, 16] is to define a decoding matrix D ∈ {±1}M×L that assigns each class a

unique vector in {±1}L. Then, we train L binary classifiers with training set labels

defined by the columns of D. During classification, the concatenated outputs of all

L classifiers can be considered to be a code. The class associated with the column

of D to which this output code has the closest Hamming distance is the predicted

class. In [16] a few heuristics for defining D are suggested. Additionally, domain

knowledge might be useful in defining the class-related output codes.

Multi-class objective functions The most elegant solution to the multiclass problem

is to modify the SVM objective in such a way that it simulataneously allows
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the computation of a multi-class classifier. In [13] the notion of the margin is

generalized to multi-class probems.

In [43] it is noted that there is no multi-class approach that generally outperforms the

others. In most cases, the simple one-against-rest approach produces acceptable results.

3.2 Support Vector Components Analysis

The basic idea of SVCA is to learn a transformation matrix T such that the margin

between classes in the transformed space is maximized. If we train a one-versus-rest

SVM for each class in the transformed space, the primal objective of each machine is

equal to that of the normal SVM:

min J `(w,ξ) =

[
1

2
||w||2 + C

∑
i

ξi

]
(3.18)

now subject to constraints

y`i (w ·Tx + b) ≥ 1− ξi and ξi ≥ 0. (3.19)

Correspondingly, the new ‘dual’ objective is defined as:

min
T

max
α
Q`(α; T) =

∑
i

αi −
1

2

∑
i,j

αiαjy
`
iy
`
j (Txi ·Txj)

 (3.20)

subject to constraints

0 ≤ αi ≤ C and
∑
i

αiy
`
i = 0. (3.21)

Finally, the kernelized counterpart of (3.20) is given by

min
T

max
α
Q`(α; T) =

∑
i

αi −
1

2

∑
i,j

αiαjy
`
iy
`
jK(Txi,Txj)

 (3.22)

subject to the constraints in (3.21) as well.

3.2.1 Training Procedure

We use the following procedure to find the “support vector components”: First, we solve

the quadratic programming subproblem of finding the α` that maximizes the expression

in (3.22) for each of the one-versus-rest support vector machines. Since that expression

is equal to the objective being maximized in normal support vector machine training, we
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Kernel Kernel function K(Txi,Txj) ∂K/∂T
linear x′iT

′Txj T(xix
′
j + xjx

′
i)

polynomial (x′iT
′Txj + 1)d d(x′iT

′Txj + 1)d−1T(xix
′
j + xjx

′
i)

RBF exp(−γ||Txi −Txj ||2) −γ exp(−γ||Txi −Txj ||2)T(xi − xj)(xi − xj)
′

Table 3.1: Linear, polynomial and radial basis function SVM kernels and their deriva-
tives in SVCA.

can use tried and tested optimization methods such as sequential minimal optimization

(SMO) [38] to do so.

Then, for the optimized α`’s, we can try to minimize the sums of all dual-objectives

w.r.t. T using stochastic gradient descent. In stochastic gradient descent, we minimize∑
`Q` by minimizing the gradients of single examples. Writing the expression in (3.22)

as

Q` =
∑
i

q`i with single example terms q`i = α`i −
1

2
α`iy

`
i

∑
j

α`jy
`
jK(Txi,Txj)

(3.23)

we find the following derivative of q`i w.r.t. T:

∂q`i
∂T

= −1

2
α`iy

`
i

∑
j

α`jy
`
j

∂K(Txi,Txj)

∂T
. (3.24)

Table 3.1 lists the derivatives of the three most popular kernels.

We alternate between optimizing all α`’s and T a preset number of times. The entire

training scheme is expressed in algorithm 3.1. Alternatively, we can use batch gradient

descent and adjust T using
∑

` ∂Q`/∂T instead of its single example based estimate.

A quick glance at table 3.1 reveals a problem for the SVCA algorithm: the sizes of

the updates are proportional to the magnitudes of the transformed vectors. Since the

magnitudes of transformed vectors tend to grow during training, this results in a positive

Algorithm 3.1 Support Vector Components Analysis – Stochastic

initialize T and SVM parameters
repeat

For each one-versus-rest support vector machine, solve the QP subproblem:
α` ← arg maxα′

[∑
i α
′
i − 1

2

∑
i,j α

′
iα
′
jyiyjK(Txi,Txj)

]
0 ≤ αi ≤ C∑

i αiyi = 0
repeat

Randomly draw ν from {1, . . . , P}
T← T− λ

∑
` ∂q

`
ν/∂T

until executed nT times
until executed nmax times
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feedback loop causing erratic learning behavior. We have considered two solutions for

this problem:

1. Divide the update steps by the norm of the transformation matrix, ‖T‖. The

norm of the transformation matrix provides an upper bound on magnitudes of

transformed vectors, so this division compensates for the increasing magnitudes.

2. Only use the sign of the gradients. Resilient backprop (RPROP, [39]) is an op-

timization technique originally developed for training multi-layer perceptrons. It

defines update-values ∆ij for each of the elements of our transformation matrix.

During training, these update-values themselves are adapted in the following way:

∆
(t)
ij =


η+ ·∆(t−1)

ij if ∂
∑
Q`

∂Tij

(t−1)
· ∂

∑
Q`

∂Tij

(t)
> 0

η− ·∆(t−1)
ij if ∂

∑
Q`

∂Tij

(t−1)
· ∂

∑
Q`

∂Tij

(t)
< 0

∆
(t−1)
ij otherwise

(3.25)

where 0 < η− < 1 < η+. Elements of the transformation matrix are then adjusted

according to

Tij ← Tij − sgn(∂
∑
Q`/∂Tij) ·∆ij (3.26)

In the case that the partial derivative w.r.t. Tij changes sign, the last change to

Tij is made undone.

Both solutions have been extensively used during explorative experiments. In the ex-

perimental section of this thesis, we have used the RPROP algorithm since that has an

additional benefit: During the first few update steps, the number of support vectors will

strongly depend on the value of γ if using a radial kernel. The value of
∑
Q` will be

large with a lot of support vectors, which means the initial update steps will be large

when using the value of the gradient. This introduces a strong dependency between γ

and the learning rate if using the value of the gradients. Similarly, the value of
∑
Q`

will depend on C. RPROP’s update sizes do not depend on the value of
∑
Q`, making

it much easier to optimize parameters C and γ. Note that RPROP is a batch-based

algorithm.

3.2.2 Comparison with Other Methods

In this subsection, we show that the objective maximized in neighborhood components

analysis is closely related to the SVCA objective using an RBF kernel. In addition, we

review similar work on learning SVM kernels.
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Similarity to the NCA objective If we rearrange terms we can obtain the following

expression for the multi-class dual objective:

JSVC =
∑
i

[∑
`

α`i −
1

2

∑
`

∑
i

α`iα
`
jy
`
iy
`
jK(Txi,Txj)

]
(3.27)

where the scalar product y`iy
`
j can only take the following two values:

y`iy
`
j =

 1 if (` = ci ∧ ` = cj) ∨ (` 6= ci ∧ ` 6= cj)

−1 if (` = ci ∧ ` 6= cj) ∨ (` 6= ci ∧ ` = cj)
(3.28)

Plugging these values into (3.27) we obtain the following expression:

JSVC =
∑
i

∑
`

α`i −
1

2

∑
j:cj=ci

αcii α
ci
j K(Txi,Txj) +

1

2

∑
j:cj 6=ci

αcii α
ci
j K(Txi,Txj)

+
1

2

∑
6̀=ci

∑
j:cj=ci

α`iα
`
jK(Txi,Txj)−

1

2

∑
`6=ci

∑
j:cj 6=ci

α`iα
`
jK(Txi,Txj)

 . (3.29)

To show the similarity of our method to NCA, we fix the α coefficients to the following

values:

α`i =

2A if ci = `

0 otherwise
(3.30)

which yields the following expression:

J ′SVC = 2A
∑
i

nci −A ∑
j:cj=ci

K(Txi,Txj)

 . (3.31)

If we would use the RBF kernel with γ = 1 we would see that the minimization of (3.31)

is very similar to the maximization of (2.6), save for the normalizing denominators in

the NCA objective. In fact, we should be able to choose individual scaling factors Ai

such that they perform the same role as those normalizing constants. The difference

between our method and NCA is that rather than fixing these values beforehand, we

optimize them during training using the support vector machine algorithm. In addition,

by being able to plug in a different kernel than the radial basis function, we are able

to control the complexity of the hypotheses proposed by the system in the transformed

space.

Related work in SVM kernel learning In [37], Pietersma et al. suggest to learn

an RBF kernel by minimizing the objective with respect to feature-scaling parameters.

This is equal to optimizing a square transformation matrix T with non-zero elements

on only the diagonal. While this “weighted RBF” (WRBF) kernel learning is able to



20 3. SUPPORT VECTOR COMPONENTS ANALYSIS

obtain significantly higher accuracies than an RBF SVM on a noisy dataset, it does not

learn a mapping to a lower-dimensional space since the corresponding transformation

matrix T is square. At best, it can perform some sort of dimensionality reduction by

only using those features with high weights.

Wiering et al. [50] propose a “neural support vector machine” that uses an ensemble

of neural networks to learn a non-linear mapping that minimizes an SVM’s objective.

Each neural network learns a single feature node, and its weights are adjusted such that

the learned representation minimizes the objective. While the system performs on par

with state-of-the-art machine learning methods, it is less suited to perform supervised

dimensionality reduction since it runs the risk of learning strongly correlated feature

nodes. The outer products in the update step of SVCA learning (see tbl. 3.1) make

SVCA less prone to this pitfall.

SVCA shares many of its keywords with the large margin nearest neighbor algorithm

(LaMaNNA) [17]. LaMaNNA’s goals are quite different however. It trains an SVM on

a dataset, and when it is presented a new pattern finds the support vector which in

the input space is that pattern’s nearest neighbor. Then, it supposes that the direction

through that support vector, perpendicular to the decision boundary is the most relevant

to the class difference and uses that direction to estimate feature relevances specific to

the test pattern. It then uses the obtained relevances to perform k-nearest-neighbor

classification. Unlike SVCA, LaMaNNA calculates a transformation matrix T for each

new test pattern so it does not provide a fixed map for the entire dataset. Additionally,

its transformation matrix is square so it does not learn a mapping to a lower-dimensional

space.

Concluding remarks In this chapter we have introduced the SVCA algorithm. Build-

ing on earlier work on SVM kernel learning, SVCA optimizes the objective of an SVM

in the transformed space. Like NCA and LiRaM LVQ, the performance of SVCA will

depend on the initial T. SVCA and the SDR algorithms discussed in the second chapter

will be put to the test in the fifth chapter of this thesis. The next chapter will focus

on earlier work on the identification of significant patterns in PET-scans of people with

various parkinsonisms.



Chapter 4

Finding Parkinsonian Biomarkers

in PET-Scans

This chapter starts with a brief discussion of the workings of positron emission tomog-

raphy (PET). We then treat the different parkinsonisms prior to reviewing conventional

techniques in brain imaging analysis and earlier machine learning work on Parkinson’s

disease.

4.1 Positron Emission Tomography

Tomography is the practice of imaging by virtual sectioning through the use of a pen-

etrating wave. In the case of PET, these waves are gamma ray photons emitted from

inside the scanned object [8]. Positrons are emitted from a radionuclide according to:

1
1p −−→

1
0n+ 0

1β + ν

After emission, positive charge ν is carried away with a positron 0
1β. The positron then

loses kinetic energy by interaction with the surrounding matter. Once it is essentially at

rest it collides with an electron. When a positron and an electron collide both particles

annihilate and two photons are produced. The directions at which the photons are

given off have an angle between them close to 180◦ as shown in figure 4.1. The photons

are emitted in opposite directions to conserve momentum, which is close to zero before

the annihilation. In coincidence tomography, the object being scanned is at the center

of a circle of gamma sensitive detectors. When two detectors both detect a photon

within a certain time window these two quanta are assumed to have been the products

of the same annihilation. Together, the locations of the excited sensors define a line of

response. The annihilation can be assumed to have taken place somewhere along this

line, but since exact photon arrival times are not compared it is unclear where exactly

21
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Figure 4.1: Illustration of annihilation radiation. Figure taken from [8]

along the line the positron collided with an electron. However, by applying tomographic

reconstruction algorithms [15] to the entire set of lines of response collected during the

scan, estimates of the locations of the nuclei releasing the positrons can be retrieved.

For the locations of the annihilations to provide a decent clue to the locations of the

emitting nuclei (since it are those location that we are interested in) it is important that

the distance travelled by the positron before colliding is small.

The positron-emitting radionuclide in PET is called a tracer. Two popular tracers are

fluorodopa (FDOPA) and fluorodeoxyglucose (FDG). In both tracers the fluorine ra-

dioisotope 18F is the source of positrons. One of the benefits of 18F is that its positrons

have a relatively low energy, resulting in a small distance between nucleus and annihil-

iation locations. The difference between FDOPA and FDG is the type of activity they

map, since each tracer will tend to concentrate in a different type of location. FDOPA

quantifies the deficiency of dopamine synthesis and storage in nerve terminals. FDG

allows for the measurement of cerebral metabolic rate of glucose.

4.2 Parkinson’s Disease

In 1817 James Parkinson published a monogograph titled “An Essay on the Shaking

Palsy” in which he described six individuals with a neurological condition characterized

by a resting tremor and a progressive motor disability. Today we know this condition

as Parkinson’s disease [40]. The prevalence of the disease in industrialised countries is

estimated to be 0.3% of the general population and about 1% of the population older than

age 60 years. The mean age of onset is early to mid 60’s. The parkinsonism syndrome

is characterized by rigidity, tremor and bradykinesia. A 3-5 Hz resting tremor is the

first sign in 70% of PD patients. Rigidity is the raised resistance noted during passive

joint movement. Bradykinesia refers to a slowness in the execution of movement, and
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Figure 4.2: Light microscopy shows a surviving neuron full of Lewy bodies in the
substantia nigra of a patient with Parkinson’s disease. Image from [31].

initially manifests itself by difficulties with motor tasks. Idiopathic Parkinson’s disease

(IPD) is the main cause of parkinsonism. At a neurological level, IPD is characterized

by a reduced number of dopamine neurons in the substantia nigra. In addition, Lewy

bodies and Lewy neurites are present in the remaining neurons. Figure 4.2 displays a

microphotograph of a PD patient which shows the presence of Lewy bodies in a remaining

neuron.

While parkinsonism is mainly associated with Parkinson’s disease, there are a few

“Parkinson-plus” diseases that include parkinsonism with other clinical signs. The most

prevalent of these atypical parkinsionian syndromes are multiple systems atrophy (MSA)

and progressive supranuclear palsy (PSP). About 80% of patients misdiagnosed as having

idiopathic Parkinson’s disease actually have MSA or PSP [47]. Accurate early diagnosis

of parkinsonian disorders is important for at least three reasons. First, prognoses of the

various parkinsonism vary greatly: IPD does not significantly shorten the lifespan while

MSA and PSP patients are expected to live only a few years after diagnosis. Second,

the variations require different treatments. Finally, for the results of clinical trials of

disease-modifying drugs on patients in an early phase of the disease to be reliable, pa-

tients’ diagnoses have to be reliable. In recent years, analysis of PET scans obtained by

using the FDG tracer has been particularly effective in identifying metabolic patterns

that discriminate between the various parkinsonisms.

4.3 Statistical Parametric Mapping

The main paradigm in brain image analysis is statistical parametric mapping [5, 23,

24]. Statistical parametric mapping (SPM) is a voxel-based approach which identifies

regionally specific responses to experimental factors. The procedure consists of the

following steps:
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1. Spatial processing

2. Estimating the voxel-by-voxel parameters of a statistical model

3. Making inferences about those parameters with appropriate statistics

In PET studies, the most important step of spatial processing is spatial normalization.

This normalization ensures that scans of different people can be compared to each other

in a sensible way. Subjects’ anatomies will differ. Some voxel might record activity

in one subject’s substantia nigra and activity in another subject’s subthalamic nucleus.

By estimating a set of warping parameters each individual scan can be mapped to a

standard anatomical space [24]. This step is not unique to SPM, the other methods

described in this chapter perform it as well.

Once voxel values are mapped to a common anatomical template, SPM builds statistical

parametric maps (SPMs) by estimating voxel-by-voxel parameters of a statistical model.

In one of the most simple cases, this might amount to calculating the t-statistic at each

voxel:

t =
X̄1 − X̄2

sX1X2

√
1
n1

+ 1
n2

(4.1)

where X̄1, X̄2 will be the mean value of that voxel for two groups (for instance PD

patients and a control group), n1, n2 the sizes of the two groups and sX1X2 an estimator

for the common standard deviation of the two samples.

In a normal univariate t-test, we would look up what t-value would constitute a signifi-

cant difference between the two groups. For instance, we could want that the probability

that we incorrectly reject the null hypothesis that the two groups actually have the same

means in an experiment with 30 degrees of freedom is not greater than 5%. This cor-

responds to a t-value larger than 1.70. Now suppose we are considering 1000 voxels

in total. By the definition of the t-value, any separate voxel will have a 5% chance of

having an associated t-value larger than 1.70. That means if the two samples are drawn

from the same distribution, we can expect to find about 50 voxels with a significant t-

value. Seeing one or more t-values above 1.70 in this familiy of tests is not good evidence

against the family-wise null hypothesis [9] that all these values have been drawn from a

null distribution. Instead, we would like to find a threshold such that in a family of 1000

t-values there is a 5% probability of there being one or more values above that threshold.

We can obtain such a threshold through Bonferroni correction. The family-wise error

rate PFWE is the probability that one or more values will be greater than α:

PFWE = 1− (1− α)n (4.2)

Where n is the total number of voxels measured. Since α is small, PFWE can be approx-

imated by

PFWE ≤ nα (4.3)
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so the threshold value given a family-wise p-value is given by

α = PFWE/n. (4.4)

In most cases, the threshold in 4.4 will be much too conservative. In calculating the

family-wise error rate, we have assumed that all voxels are statistically independent. In

imaging studies this will hardly be the case. In PET scans particularly, voxels are related

because of the way in which the scanner collects and reconstructs the image. Due to this

spatial correlation, the number of independent observations is smaller than the number

of voxels.

In random field theory (RFT) [9, 25] a measure similar to the family-wise error rate for

smooth statistical maps has been formulated. Due to the spatial correlation in brain

images, they can be considered to be smooth statistical maps and results from RFT

can be used in their analysis. Rather than aiming for a certain family-wise error rate,

most SPM studies try to find a threshold value yielding the desired Euler characteristic.

In addition to the threshold this characteristic depends on the smoothness of the map,

which is a measure that can be estimated. The Euler characteristic can roughly be

interpreted as the probability that the two sample groups would have at least one region

above the threshold under the null hypothesis [9].

Recent SPM based research into differential diagnosis of parkinsonian disorders using

FDG-PET found that all IPD, MSA and PSP patient show significantly lower metabolic

rate in the cerebral neocortex compared to the control group [28]. The MSA group

showed a significantly lower metabolic rate in the putamen, pons, nucles, the thalamus,

midbrain and the cingulate gyrus compared to the normal controls, the IPD and the

MSA groups. The difference between each condition and the control group are depicted

graphically in figure 4.3. In another study [19] similar patterns were obtained for the

different parkinsonisms using SPM. These patterns were subsequently used to train

a non-expert in performing a diagnosis based on an image. Both these non-expert

diagnoses and expert diagnoses obtained by visual assessment were compared with 2-

year follow-up clinical assessments. It was found that the SPM-assisted non-experts

were better in distinguishing the various parkinsonisms than experts who drew on their

knowledge and experience.

4.4 Scaled Subprofile Modelling

Scaled Subprofile Modelling (SSM) uses principal component analysis (PCA) to identify

abnormal functional patterns in multivariate imaging data by analyzing the combined

patient and control group mean values [3, 34, 45]. After spatial normalization and initial

smoothing, the procedure consists of applying the following steps to the combined group

reference (REF) image data [44]:
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Figure 4.3: Characteristic parkinsonian metabolic patterns obtained using SPM in
[28].

1. Mask the brain data to reduce low values and noise. This can be done by using

predefined maps of gray matter. Another method is to define a mask for each

subject such that only voxels with a value higher than 35% of the maximum are

included, and then multiply these masks elementwise to obtain a mask for the

entire group.

2. Take the log transformation of the combined group reference.

3. Center each subject’s scan data by subtracting mean voxel value for that subject.

4. Center the value of each voxel by subtracting its mean over all subjects. In SSM,

the resulting data matrix is called the subject residual profile (SRP).

5. Apply principal component analysis to the SRP data.

SSM then tries to find a linear combination of principal components that can be used to

project the data on a line on which the patient group can be linearly discriminated from

the control group. Such a vector of voxel-weights is called a Group Invariant Subprofile

(GIS) and the dot product between a subject’s scan and a GIS is called that subject’s

score. A GIS can be considered a disease-related pattern if the scores of the patients

and the scores of the control group are separated at a pre-specified threshold, typically
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p ≤ 0.001. There are multiple strategies to select the principal components which make

up the linear combination [44]:

• Select only the single components with the lowest p-value.

• Combine components whose p-values are less than a fixed value

• Select the combination of components with the lowest Akaike information criterion

value [2, 48].

• Only retain the first few successive principal components that explain a pre-defined

amount of the variance in the data and then apply an additional selection criterion.

Once the relevant principal components have been found, the corresponding coefficients

in the linear combination are typically determined by logistic regression [44]. Once such

a discriminatory metabolic pattern is obtained, new subjects are evaluated as deviations

from the REF group score mean offset by the REF control mean score µCTRL divided

by the REF score standard deviation σREF:

Z =
y − µCTRL

σREF
(4.5)

Finally, an appropriate cut-off value θZ is determined by maximizing the corrected total

likelihood ratio and the sign of patterns will be such that the Z-scores of the patient

group will be higher than those of the control group.

The metabolic pattern thus obtained shows which regions are typically (in)active in

patients with a certain parkinsonism when compared to a control group, but that does

not necessarily mean that it allows us to discriminate between the different varieties.

Ideally, the Z-scores of a patient whose condition was in the j-th combined group would

satisfy

Zj > θZj

and

Zi ≤ θZi if i 6= j

where we use Zi to denote the Z-score of that patient with respect to the i-th group

and θZi to denote the threshold of the i-th group. However, due to the fact that the

characteristic metabolic patterns of the different parkinsonisms might show overlap w.r.t.

(in)active regions, a scan might score positive on multiple tests. A diagnosis can be

singled out by choosing the patterns with the highest Z-score or the highest Z-score to

cut-off ratio Z/θZ . Alternatively, it has been proposed to apply discriminant analysis

to Z-scores alone and use the classifier obtained this way to make new predictions [45].

In [45], a number of strategies are listed to decrease the false positive ratio when using

SSM to perform a differential diagnosis. In addition to improving the reference group

selection, these strategies include:
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Figure 4.4: Characteristic metabolic patterns of PD, MSA and PSP obtained in
[48]. Red (blue) regions shows statistically significantly more active (inactive) regions

(p < 0.001) in comparison to healthy controls. Image from [48]

.

Unique sign effects The MSA pattern initially found in [45] mainly emphasized metabolic

decreases. By repeating the whole SSM sequence on the subset of voxels that

showed a metabolic decrease in the pattern, the overlap between the different

patterns was reduced.

Elimination of similar voxels Similar to the unique signs procedure, the SSM se-

quence can be repeated on just that subset of voxels that have different signs

between conflicting groups (i.e. eliminating the voxels which have the same signs).

Generate a new discriminatory network A new network discriminating two con-

flicting conditions can be trained by using one of the two conditions as the control

group.

In recent years, SSM has been used to obtain disease-related patterns for various parkin-

sonisms. In [33] a PD-related pattern is obtained that shows relative increases in palli-

dothalamic, pontine and cerebellar metabolism and relative decreases in the premotor

and posterior parietal areas. In [21] typical patterns for parkinsonisms MSA and PSP

are presented. The MSA pattern is characterized by metabolic decreases in the puta-

men and the cerebellum. The PSP pattern shows covarying metabolic decreases in the

medial prefrontal cortex, the frontal eye fields, the ventrolateral prefrontal cortex, the

caudate nuclei, the medial thalamus and the upper brainstem. These patterns were

validated in [48] (see fig. 4.4). In [20] it was shown that the “network score” linearly

correlates with the progression of the disease. Aforementioned patterns were used in

[47] as well: patients from the New York area with parkinsionian features but without

a clear diagnosis were classified using the metabolic networks. When these predictions
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were compared with a final clinical diagnosis ∼ 2.6 years later they proved to be highly

accurate.

4.5 Machine Learning Methods in Brain Imaging Analysis

This thesis is by no means the first research to use machine learning methods in the

analysis of brain images. This section provides a brief review of earlier work.

Support vector machines have been used in a straightforward manner to recognize early

Parkinson’s disease [32] and Alzheimer’s disease [29]. In [35] it was found that a support

vector machine outperforms Fisher’s discriminant analysis in distinguishing two groups

of fMRI data obtained under different experimental conditions. A multi-layer perceptron

is trained to distinguish PD patients from a control group using dopaminergic images in

[1]. In that research, the system was only trained on voxels in the striatum by using an

explicit striatal mask. While the classification was fairly accurate, it should be noted

that it was not possible to visualize the regions of interest within the striatum found by

this method. The authors emphasize the point we raised in our introduction by noting

that “as with all application of [artificial neural networks], it was difficult to interpret

precisely what triggers in the images were detected by the network.”

The recursive feature elimination (RFE) algorithm is presented in [14]. RFE trains

a two-class, linear SVM and subsequently eliminates the voxels whose corresponding

weights have a low absolute value. This process is repeated until some stop criterion is

met. Finally, in [26] relevance vector machines are combined with error-correcting output

codes (see section 3.1.2) to solve the multi-class classification problem of distinguishing

PD, MSA, PSP and corticobasal syndrome patients based on FDG PET scans.

Concluding remarks This chapter has treated PET scans, Parkinson’s disease, con-

ditions associated with Parkinson’s disease and two strands in brain imaging analysis:

Statistical Parametric Mapping and the Scaled Subprofiling Model. We also gave a brief

review on earlier work on using machine learning in brain imaging. The next chapter

will report on the experiments we performed using the techniques described in chapter

two. The final part of the next chapter will report on what the merits of supervised

dimensionality reduction methods are in the classification of various parkinsonisms.





Chapter 5

Experiments and Results

This chapter treats the results obtained in experiments performed with Support Vector

Components Analysis and the other SDR techniques described in chapter 2. The first

part of this chapter will show some general properties of the algorithm discovered empir-

ically using both a toy problem consisting of artificial data and a dataset from the UCI

repository. The final part will concern experiments conducted on datasets of FDG-PET

scans of subjects with various parkinsonisms.

Implementation The SVCA algorithm was implemented in Matlab. We use SVM

implementations as provided by LIBSVM [12]. Matlab implementations of Li-

RaM LVQ1 and LFDA2 were retrieved from the Web. We implemented NCA

ourselves, also in Matlab.

Metaparameter values For SVCA, we use the RPROP algorithm to optimize the

transformation matrix as explained in chapter 2. In all experiments (η−, η+) =

(0.5, 1.2). Initially, all ∆ij ’s are set to 10−3. We limit the range of learned ∆ij ’s

by setting (∆min,∆max) = (10−6, 1). Other metaparameter values differed per

experiment and will be explicitly stated.

5.1 Experiment on Artificial Data

The first problem we consider is more of a sanity check than a thorough experiment.

Inspired by the concentric ring data in [27], we create an artificial dataset in the following

way: First, we create patterns x1 . . .xP in R8 by drawing from N (µ,Σ) where µ = 0

and Σ is the 8 × 8 identity matrix. Then we assign labels based solely on the distance

from the origin in the first two dimensions, i.e.
√
x2

1 + x2
2. This results in classes that

take the shape of concentric rings in the class-relevant subspace. In total, we create 200

1http://matlabserver.cs.rug.nl/gmlvqweb/web/
2http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LDA/
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Figure 5.1: The artificial dataset of concentric rings. Shown are scatter plots in which
both features are relevant to the labels (a), only one feature is relevant (b) and none

of the features are relevant (c).

patterns belonging to four different classes. In defining class boundaries, we ensure that

each class has about the same number of patterns. Figure 5.1 shows the dataset thus

generated.

We stress two important properties of this problem: First, the underlying structure of the

data is based solely on the class labels. Without those labels, the data is simply Gaussian

noise so an unsupervised technique such as PCA will never discover the underlying

structure. Second, the class boundaries in the class-relevant subspace are non-linear, so

classical Fisher’s discriminant analysis will not perform well either.

We compare the performance of SVCA with the three other SDR technique introduced in

chapter 2: NCA, LiRaM LVQ and LFDA. The LiRaM LVQ algorithm was not designed

with this type of problem in mind, although in principle it should be able to solve it if

it has enough prototypes for each class. We have tried to give LiRaM LVQ the fairest of

chances by setting the number of prototypes per class in the following way: We observe

that the ratio between the areas of the three inner rings A1 : A2 : A3 is about 5 : 8 : 13.

It seems reasonable that each class should have about the same prototype density, so we

initialized the number of prototypes of the first three classes as 5, 8 and 13 respectively.

Since the area of the “outer ring” is infinite in principle, we observe that the sequence

(ak) = (5, 8, 13) is modelled by k2 +4 and set the number of prototypes of the outermost

class to 20.

In chapter 2 we stressed the importance of the initialization of the transformation ma-

trix for the LiRaM LVQ, NCA and SVCA algorithms. To be able to compare their

performances in a sensible way we generated 100 initial matrices with elements drawn

from N (0, 1) that were subsequently made orthonormal. During each separate run of

the experiment, a new dataset was generated and the three initialization-dependent al-

gorithms were supplied the same initial matrix. The four algorithms were then tested

on the problem just created. We emphasize that in each run, both the dataset and the

initialization matrix were different. The experiment consisted of a total of 100 runs.

Figure 5.2 shows the projections obtained by the algorithm in one particular run. It is

illustrative of the general results in that LiRaM LVQ and LFDA never succeed in finding
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Figure 5.2: Projections obtained by LiRaM LVQ, SVCA, LFDA and NCA on the
concentric ring problem in one particular run. LiRaM LVQ, SVCA and NCA used the

same orthonormal random initialization matrix.

the underlying structure. For SVCA and NCA, we have simply counted the number of

times each algorithm finds the right projection, resulting in the contingency table shown

in table 5.1. Under the null hypothesis that NCA and SVCA have the same error rate,

we expect e01 = e10 and these to be equal to (e10 + e01)/2. Using McNemar’s test

we obtain a test statistic χ2
1 = 6.5, corresponding to a p-value of 0.011. We therefore

reject our null hypothesis and conclude that SVCA significantly outperforms NCA in

this experiment.

SVCA
incorrect correct

NCA
incorrect e00 = 30 e01 = 20

correct e10 = 6 e11 = 44

Table 5.1: Contingency table of SVCA and NCA error rates in the concentric ring
experiment.
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Figure 5.3: Left panels: learning curves of the SVCA algorithm for K = 2 (top) and
K = 16 (bottom) averaged over ten runs on the UCI image segmentation dataset. Right
panels: eigenvalues, diagonal values and a heatmap of the learned metric for K = 2
(16) on top (bottom) in the best run. Diagonal values in heat maps are set to zero. In

all experiments, (C, γ) = (1, 10−3).

5.2 Experiments on UCI Image Segmentation Dataset

In [10], Bunte et al. illustrate properties of the LiRaM LVQ algorithm by presenting

the results obtained in experiments on the UCI Image Segmentation dataset [6]. In this

section we will do the same for the SVCA algorithm.

The UCI Image Segmentation dataset consists of 19-dimensional feature vectors that

have been constructed from regions of 3 × 3 pixels, randomly drawn from a set of 7

manually segmented outdoor images. The class of each pattern indicates the object or

material shown in the corresponding 3×3 image patch, with the set of classes consisting

of “brickface”, “sky”, “foliage”, “cement”, “window”, “path” and “grass”. The dataset

has been pre-split into 210 training patterns and 2100 test patterns, with each class

occurring an equal number of times in both subsets. We follow [10] in not using features

3, 4 and 5 because they have zero variance. We preprocess the data using a Z-transform

based on training set mean and variance.

Influence of K We first compare the dependence of the performance of SVCA on

the dimensionality of the range K. Figure 5.3 shows the learning curves of the SVCA
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Figure 5.4: Accuracy dependence on the number of rows K of T on the test split
of the UCI image segmentation dataset. Boxplots on top (bottom) correspond to the
performance obtained by the SVCA algorithm (decomposition method) averaged over
ten runs of 100 epochs each. For each value ofK, the same ten orthonormal initialization

matrices were used. (C, γ) = (1, 10−3). Details in text.

algorithm for K = 2 and K = 16. The curves in figure 5.3 were obtained by averaging

the test and training accuracies over ten different runs. Like in the concentric ring

experiment we pre-generated orthonormal random initialization matrices and used the

same ten initialization matrices for the two values of K, where in case of K = 2 only the

first two rows were used. In these particular experiments, we optimize the objectives of

radial kernel SVMs with (C, γ) = (1, 10−3).

For both values of K SVCA shows typical learning curves: both the training and test

accuracies increase during training, with the train accuracy being higher than the test

accuracy. Overfitting does not seem to occur. Figure 5.3 also shows the diagonal ele-

ments, eigenvalues and heatmap of the distance metric Λ = T′T obtained in the best

run in terms of test accuracy for both values of K. Note that when using a radial kernel
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function a metric Λ appears in the following way:

K(xi,xj) = exp
(
−γ||Txi −Txj ||22

)
= exp

(
−γ(xi − xj)

′Λ(xi − xj)
)

(5.1)

Both metrics indicate the sixteenth feature (the hue of the image patch, as in HSV)

to be salient. The eigenvalues for K = 16 sorted in descending order rapidly decrease,

with only the first 5 being visible in the bar plot. This seems to suggest that even in

learning a full-rank distance metric SVCA finds a low-rank represenation of the training

data. Given this observation, we could also try to perform supervised dimensionality

reduction by reducing the rank of the full-rank metric Λ. Note that we can decompose

Λ in the following way:

Λ = VDV′ (5.2)

where V is a matrix with the eigenvectors of Λ as its columns and D is a diagonal

matrix with corresponding eigenvalues on its diagonal. We can obtain a transformation

matrix T from (5.2) by setting T to V′D1/2. Then, if we assume the values of D are

sorted in descending order, we can obtain TK mapping to a K-dimensional space by

only using the first K eigenvectors and eigenvalues.

Figure 5.4 shows the dependencies of the test accuracy on K for both SVCA and the

decomposition method described above. As expected, the performance barely increases

for K > 5. More interestingly, we find that for low K the performance of SVCA is better

than that of the canonical decomposition method. For K = 2, the mean test accuracies

differ by 4%.

Influence of γ When using the radial kernel, the parameter γ determines how the

similarity measure of two patterns scales with the distance between those patterns. For a

low γ even patterns far away from each other are considered relatively similar. In support

vector components analysis, the transformation matrix determines the magnitude of the

vectors in the low-dimensional space and thus influences the distances between patterns.

During training, we hope the magnitudes of the patterns in the low dimensional space are

optimized with regard to γ which is fixed beforehand. The norm of the transformation

matrix, ‖T‖, can serve as a measure of the magnitude of the transformed vectors by

providing an upper bound on transformed vector lengths:

‖Tx‖ ≤ max
x′
‖Tx′‖ ≤ c‖T‖ (5.3)

Since the argument of the exponentional function in equation 5.1 is the product of γ and

the length of a difference vector squared, we expect optimized transformation matrices

for different values of γ to yield a roughly constant product

γ‖Tγ‖2 = c (5.4)
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γ 10−5 10−4 10−3 10−2 10−1

‖T‖ 1.077× 103 360.2 134.9 44.71 13.16
γ‖T‖2 11.61 12.98 18.21 19.99 17.31

Table 5.2: Dependence between γ and norm of T in the experiment on the UCI Image
Segmentation dataset. Shown are the average values obtained over ten runs of 1000

epochs each, using the same initialization matrices for different values of γ.
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Figure 5.5: Learning curves for different values of γ in experiments on the UCI Image
Segmentation dataset. In all experiments, C = 1.

where we assume that c is specific to the classification problem. To test this hypothesis,

we optimize the same orthonormal initialization matrices for five different values of γ

logarithmically scaled between 10−5 and 10−1, again setting C to 1. Table 5.2 shows

the results of this experiment for K = 2. While γ‖Tγ‖2 is not identical for all values of

γ, the products are still rather similar given the strongly varying values of ‖T‖.

The fact that the magnitude of transformed vectors is adjusted to γ might lead us to

think that the value of γ is unimportant for the eventual performance of the system.

However, we find that this is not the case. Figure 5.5 shows the learning curves of the

experiments with the logarithmically scaled values of γ. It can be clearly seen that for

lower γ values, the performance converges to a higher accuracy. This actually illustrates

an interesting property of SVCA with a radial kernel: given normalized data and an

orthonormal initialization matrix, a relatively small γ will make the initial adjustments of

T only be based on coarse structures in the data such as the structural difference between
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SVCA LRMLVQ NCA LFDA
K = 2 0.9078± 0.0114 0.8441± 0.0527 0.8554± 0.0121 0.7165
K = 16 0.9418± 0.0004 0.8953± 0.0114 0.9228± 0.0000 0.9313

Table 5.3: Average test accuracies on the UCI Image Segmentation Dataset over 100
runs (except for LFDA). In experiments with SVCA, LiRaM LVQ and NCA the same

initialization matrices wered used.

the two most dissimilar classes. Then, as the norm of T becomes larger, increasingly fine-

grained differences will start to influence the training process until training converges.

Setting γ too high will result in skipping the phase in which the algorithm only uses the

most coarse class differences, and might emphasize noisy differences due to noise in the

data or the random initialization. Figure 5.5 illustrates that setting γ too low has its

drawbacks as well: the training procedure will take more epochs until convergence.

As a final experiment on the UCI dataset, we compare the performances of SVCA,

LiRaM LVQ, NCA and LFDA. Like in the concentric ring experiment, we pregenerate

100 initial matrices to be able to compare the three initialization-dependent algorithms.

Since NCA and LFDA do not provide an explicit classification, we perform k-nearest-

neighbor classification in the range of the learned transformation. Comparing different

values of k we found that both NCA and LFDA perform best when setting k to 1. The

results of these experiments for both K = 2 and K = 16 are shown in table 5.3. Running

paired t-tests, we find that the performance is SVCA is significantly better than each of

the other algorithms for both K = 2 and K = 16 using a significance level of p = 0.05.

Somewhat surprisingly, the experiments with NCA for K = 16 always yield the same

accuracy while the transformation matrix found is not necessarily the same for each

experiment.

5.3 Experiments on FDG-PET Scans

Here we apply the algorithms dicussed in chapter 2 to the same set of PET scans as

used in [26]. These scans were obtained in two different locations between 1993 and

2009 and are comprised of 42 PD patients, 31 MSA patients, 26 PSP patients and 21

corticobasal syndrome (CBS) patients. In all of the experiments we preprocess the data

through through the SSM routine:

1. Define a gray matter mask by only using those voxels which are above 35% of the

maximum of each individual scan

2. Take the log transformation.

3. Center each subject’s scan data by substracting the mean voxel value for that

subject.

4. Center the value of each voxel by subtracting its mean over all subjects.
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RVM Classification Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 38 6 2 2 .79/.94
MSA 1 14 5 1 .67/.83
PSP 1 7 14 5 .52/.87
CBS 2 4 5 13 .54/.92
Class accuracy .90 .45 .55 .62

Table 5.4: Confusion matrix obtained in [26] using bootstrap aggregating with rele-
vance support vector machines. Details in text

5. Apply principal components analysis and determine principal component scores

for each pre-procesed scan.

We stress that any of above steps that require some measure of the whole data set (such

as PCA or the mask definition), only use the training part of the dataset to calculate

that measure when the dataset is split into a test part and a training part. After these

five steps, we normalize the principal component scores such that they each have zero

mean and unit variance.

5.3.1 Assessing Accuracy

If we want to compare the classification accuracy of dimensionality reduction methods

the results presented in [26] provide a benchmark. However, their way of assessing the

accuracy of their classifier is a bit unorthodox: They create 100 bootstrap samples by

drawing – with replacement – 84 scans from the dataset, ensuring that each sample

has the same number of scans for each class. The bootstrap sample is used to train a

classifier, and then the class predictions for the scans not in the sample are determined.

Finally, they determine the final classification of a particular scan by a majority vote

among all the classifiers in which that scan was not part of the bootstrap sample. This

differs from the usual bootstrap procedure in which you would report the average clas-

sification accuracy on test splits, not the accuracy of the ‘average’ classification. Nor is

it the usual bagging procedure in which you would report the performance on a split of

the data which in no part was part of the training. Still, we adopt this procedure to be

able to compare results. Table 5.4 shows the confusion matrix obtained in [26].

We note that in [26] the classifier is trained on pre-processed voxel values rather than

principal component scores. With 120 scans in total and each scan consisting of 153,594

voxels, the risk of overfitting seems very high. The bagging scheme described above

is one way to smooth the hypothesis of the classifier, effectively retaining only those

voxel relevances which were discovered in all of the bootstrap samples. Using principal

component scores (like we do) is another way to prevent overfitting. We can set an

upper threshold on the variance explained by the principal components by only using

the first n scores. In the experiment, we set this threshold to 90% of the total variance.
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In this experiment, we are interested in transformations to a 2 or 3-dimensional space,

since in that case we can make a scatter plot of the transformed data that might lead

to new insights. Tables 5.5 and 5.6 show the confusion matrices for each dimensionality

reduction methods for K = 2 and K = 3, respectively. NCA and LFDA do not provide

an explicit prediction for new patterns. We have chosen to assign labels according the

nearest neighbor classification in the transformed space, where the number of nearest

neighbors was determined through cross-validation.

Metaparameter values and other specifics In these experiments, we use one pro-

totype per class in LiRaM LVQ. We use the ‘local’ definition of the affinity matrix in

LFDA. The parameters of SVCA have been coarsely optimized through cross-validation

and are set to (C, γ) = (1, 10−4). For NCA, we use a majority vote among the nearest

9 neighbors and for LFDA among the nearest 11 neighbors. Initialization-dependent

algorithms are supplied with the identity matrix appended with zeros, meaning that

the initial transformed representation is the same as the first two principal components

scores of each pattern. In the case of NCA we multiply this initialization matrix by 0.01

since we find that that increases the performance, for reasons similar to the advantage

of a low γ in SVCA.

To give an idea of relative performances, we report the accuracies of the various al-

gorithms in table 5.7 in addition to the accuracy of the results reported in [26] and

that of an RBF SVM with coarsely optimized parameters (C, γ) = (29, 2−7) used in the

same bagging prodedure on the same bootstrap samples. The RBF SVM uses the pair-

wise multiclass extension described in chapter 2. While it is nice to see that all SDR

algorithms have a better accuracy than that reported in [26], it is hard to draw any

statistically sound conclusions since this is just the accuracy of one particular prediction

and because contrary to [26], we use principal component scores rather than direct voxel

values. Comparing the confusion matrices of the SDR methods we find that they have

similar accuracies overall but that their accuracies per class differ, especially for K = 2.

However, since these results are ultimately based on particular prediction we are unable

to draw any conclusions from these differing class accuracies.

To be able to at least compare the SDR algorithms to each other, we also run a series of

experiments in which we try to get a better idea of the test error of each algorithm. We

predefine 100 splits of the data. In each split, 10% of the patterns has been randomly

assigned to the test set, the rest of the patterns are used for training. We report

mean test accuracies and their standard deviations in table 5.8. Running paired t tests

on the different fold error rates, we find no significant difference between the various

algorithms. However, we do find that the performance of the SDR algorithms rivals

that of the optimized RBF SVM for K = 3, all while the RBF SVM does not have to

push the data through a 3-dimensional bottleneck.
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LFDA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 34 4 1 1 .85/.90
MSA 7 20 8 5 .50/.86
PSP 1 5 15 6 .56/.88
CBS 0 2 2 9 .69/.89
Class acc. .81 .65 .58 .43

(a)

SVCA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 33 4 2 1 .83/.89
MSA 9 24 10 8 .47/.90
PSP 0 1 13 2 .81/.88
CBS 0 2 1 10 .77/.90
Class acc. .79 .77 .50 .48

(b)

NCA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 35 5 1 1 .83/.91
MSA 7 21 6 6 .53/.88
PSP 0 4 17 4 .68/.91
CBS 0 1 2 10 .77/.90
Class acc. .83 .68 .65 .48

(c)

LRMLVQ Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 37 5 3 2 .79/.93
MSA 3 19 4 1 .70/.87
PSP 2 6 15 9 .49/.88
CBS 0 1 4 9 .64/.89
Class acc. .88 .61 .58 .43

(d)

Table 5.5: Confusion matrices for K = 2 for LFDA (a), SVCA (b), NCA (c) and
LiRaM LVQ (d).

LFDA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 36 4 4 1 .80/.92
MSA 5 20 4 3 .63/.88
PSP 1 5 15 6 .56/.88
CBS 0 2 3 11 .69/.90
Class acc. .86 .65 .58 .52

(a)

SVCA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 40 4 3 1 .83/.97
MSA 1 19 3 3 .73/.87
PSP 1 5 16 6 .57/.89
CBS 0 3 4 11 .61/.90
Class acc. .95 .61 .62 .52

(b)

NCA Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 38 4 4 1 .81/.95
MSA 3 19 2 3 .70/.87
PSP 1 6 17 5 .57/.90
CBS 0 2 3 12 .59/.91
Class acc. .90 .61 .65 .57

(c)

LRMLVQ Diagnostic Classes PPV/NPV
PD MSA PSP CBS

PD 39 4 4 1 .81/.96
MSA 2 19 2 3 .73/.87
PSP 1 5 16 5 .59/.89
CBS 0 3 4 12 .63/.91
Class acc. .93 .61 .62 .57

(d)

Table 5.6: Confusion matrices for K = 3 for LFDA (a), SVCA (b), NCA (c) and
LiRaM LVQ (d).

SVCA LRMLVQ NCA LFDA
Bag-2 0.6667 0.6917 0.6500 0.6667
Bag-3 0.7167 0.7167 0.6833 0.6833

RVM [26]: 0.6583
RBF SVM: 0.7250

Table 5.7: Accuracies of the various algorithms when used in the bagging procedure
from [26] on the same 100 bootstrap samples. Accuracies of the RVM ensemble reported
in [26] and an optimized RBF SVM included for reference. Note that in [26] a different

preprocessing procedure is used.

SVCA LRMLVQ NCA LFDA
K = 2 0.5825± 0.1501 0.5617± 0.1322 0.5925± 0.1230 0.6133± 0.1205
K = 3 0.6842± 0.1180 0.6717± 0.1297 0.6567± 0.1215 0.6767± 0.1272

RBF SVM:
0.6842± 0.1250

Table 5.8: Average test accuracies and standard deviations of the various algorithms
on 100 test/train splits on the data from [26]. In each split, 10% of the patterns was
randomly assigned to the test set. Performance of an RBF SVM on the same 100 splits

included as a reference.
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5.3.2 Validation and Visualization

One of the goals of this thesis was to make classification to some extent intelligible.

To this end, we have developed a prototype classifier viewer of which screenshots are

displayed in figure 5.6. The prototype only works for transformations to a 2-dimensional

space. In the left panel of the GUI, a scatter plot showing patterns’ representations in

the lower dimensional space is displayed. By clicking in this scatter plot, users can draw

lines corresponding to discriminative patterns in the input space. These discriminative

patterns are displayed in the right panel interactively. A slider in the middle allows the

user to change the slice currently being displayed.

One of the applications of such a viewer might be the validation of patterns. To demon-

strate this, we use LFDA to learn a 2-dimensional representation of two datasets: the

PD, MSA and PSP patterns from [26] and scans with the same conditions used earlier in

[48]. We use LFDA since we estimated that algorithm to have the highest test accuracy

in our earlier experiments for K = 2. We load the transformation thus obtained into

our viewer and visualize the patterns distinguishing MSA from the other two conditions.

Interestingly, we find similar structures within the two classifiers as displayed in figure

5.6. In the visualization, red indicates areas relatively active in the first point clicked in

the scatter plot while blue indicates areas relatively inactive in the point first clicked.

For both plots, we first clicked in the MSA area.

Concluding remarks This chapter reported on all the experiments conducted on

SVCA and the other SDR algorithms. We found that SVCA is at least as good as NCA

in finding a low-dimensional representation of data with non-linear class boundaries. The

experiments on the UCI dataset illustrated two important properties of the algorithm:

Learning a low dimensional representation by limiting K beforehand is better than

limiting K by a canonical decomposition of a full-rank transformation matrix, and a low

gamma has the beneficial effect of first focusing on the most general class differences.

In the experiments on the PET-scans, we were unable to show that SVCA has a clear

benefit over other SDR algorithms. However, we were able to show that the decrease in

accuracy due to the low-dimensional representation in SDR is negligible, while it does

enable us the produce interactive visualizations such as those in the prototype displayed

in figure 5.6. We will discuss these results more generally in the next, concluding chapter

of this thesis.
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(a)

(b)

Figure 5.6: Screenshots of the prototype transformation visualization. On top, the
lower-dimensional representation obtained by LFDA of the scan data in [48] is displayed,
while on the bottom the same procedure has been applied to a subset of the dataset
from [26]. In both panels, the pattern on the right visualizes the structural difference
between MSA and the other two groups. A user has indicated his wish to see this pattern
by drawing the blue line from the MSA cluster to somewhere between the other two

clusters. While not identical, the two discriminative patterns do show similarities.





Chapter 6

Conclusion

This thesis has considered the idea of ‘intelligible classification’: using supervised di-

mensionality reduction methods on imaging data to obtain class-relevant differential

patterns. We have tried to answer two loosely related related research questions, and at

the momentboth of them can only be answered to some extent. How the performance

of SVCA compares to other SDR algorithms remains an open question. We do not

know yet which type of problems the SVCA algorithm is particularly well suited for.

In addition, the role of the cost parameter C has not been investigated yet. Although

we formulated SVCA to be able to work with any type of kernel, in practice we have

only used the RBF kernel. Linear kernels correspond to hyperplanes in the transformed

space, and thus aren’t very useful for multi-class problems. Intuitively, a polynomial

kernel is somewhere between a linear kernel and an RBF kernel in terms of complexity.

However, we found that the hypotheses suggested by SVCA when using a polynomial

kernel are much more complex than when using a radial kernel with sufficiently low γ.

Our implementation of SVCA leaves room for improvement. By optimizing the alpha-

values through SMO we introduced problems for our gradient-based method which we

subsequently had to work around by using RPROP. Earlier work on dual objective

optimization [50] used gradient ascent to optimize the alpha values. Doing so for SVCA

would give us more control over the alpha values for the initial projections, which in the

case of SMO are to some extent random since the classes can’t be separated well initially.

It also creates the possibility of a NCA/SVCA hybrid algorithm: We can initialize the

alpha values in such a way that the dual objective initially is similar to the objective

of NCA, and use the support vector machine algorithm to gradually identify boundary

patterns during training. In addition, optimizing alpha values through gradient ascent

would allow the algorithm to be made parallel and implemented on a GPU.

In the particular case of the differential diagnosis of parkinsonisms, there is a promise

on which the SDR algorithms did not deliver. In principle, it should be possible that

multiple clusters exist within one patient group. Such a discovery would be interesting

45
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and it is a disadvantage of LiRaM LVQ that the number of protypes per class have to

be defined beforehand, precluding automating such a discovery. However, in projections

with reasonable accuracies of any of the algorithms patient groups were always contained

within one cluster each.

We should note that there is also a clear disadvantage to the SDR approach in classifi-

cation in medical applications. Methods that find a single discriminative pattern distin-

guishing, for instance, a patient group from a control group can use various thresholds

on the manifestation of such a pattern. This allows them to investigate the character-

istics of the pattern by drawing ROC curves. In medical applications we often want to

be able to control the sensitivity/specificity trade-off, and this is not possible in SDR

methods considering more than two classes. We emphasize that SDR methods will be

particularly useful in the exploratory analysis of a dataset, they do not provide the most

flexible classification methods.

Using the results obtained in the previous chapter, we now return to the research ques-

tions posed in the introduction:

• Question How does support vector components analysis compare to other super-

vised dimensionality reduction methods?

Answer From table 5.8, we can conclude that that SVCA performs on par with

the SDR algorithms in terms of predictive accuracy for the FDG-PET scans from

[26]. From the experiment on the concentric ring data we can conclude that SVCA

is at least as able as NCA in finding a suitable low-dimensional representation for

data with non-linear class boundaries and where the structure is solely based on

class labels. LFDA and LiRaM LVQ seem unable to solve this type of problem.

SVCA significantly outperforms all the three other SDR algorithms in the experi-

ment on the UCI Image Segmentation dataset for both a low rank and a full-rank

transformation matrix.

• Question What are the merits of supervised dimensionality reduction methods in

the differential diagnosis of parkinsonisms based on FDG-PET scans?

Answer Table 5.8 shows that all SDR methods achieve predictive accuracies sim-

ilar to that of an RBF SVM when using a 3-dimensional representation of the

data. The SDR methods have a clear advantage over the RBF SVM in that their

transformations can be interactively visualized in an application such as depicted

in figure 5.6.

We have refrained from giving a neuroanatomical interpretation of the discriminative

direction found by the SDR methods since it is not within our expertise. In future work,

we would like to collaborate with PD experts giving their interpretation of the patterns.

From table 5.8 we know that classification results for the four-class problem are best

when using a transformation to a 3-dimensional space. Extending our viewer to three
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dimensions is non-trivial and introduces usability issues. In addition, our viewer should

be clearer about how the visualization corresponds to the line drawn in the scatter plot.

Adding visualizations of reconstructions corresponding to the endpoints of the line seems

to be an essential extension as well. The scatter plot can also be augmented by explicity

indicating which regions in the scatter plot will be classified in what way. Finally, the

visualization would also benefit from some contextual information such as a template

skull overlay.

In conclusion, the major achievement of this thesis has been to show that SDR methods

can achieve accuracies similar to ‘unintelligible’ classification techniques in the classifi-

cation of various parkinsonisms based on FDG-PET scans. Whether the discriminative

directions found by the methods provide any new insights remains an open question. In

addition, we have introduced a novel member in the family of dual-objective optimization

methods, SVCA, that performs on-par with existing SDR methods.
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