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Abstract

Kalooga is a small internet company specialized in providing photo galleries
relevant to search queries. This relevance is completely deduced from web-
text surrounding the image, giving the image certain labels. One source of
information about the image is left untapped: the image content itself. This
information could also be used to label images, which is the essential goal of
this project: to improve image labeling by exploiting image-content. Content-
based image labeling, however, is a difficult task. Automatically applying every
possible label to every possible image is far too much to ask. To find realistic and
usable results, instead this project focuses on solving problems that Kalooga’s
current system cannot solve. Such problems are classifying more manageable
subdomains of images and detecting or filtering certain types of images.

To this end, an image classification tool was developed, encompassing an
entire image classification pipeline allowing quick experimentation and testing
on any dataset. The tool implements different classification algorithms, the
most successful of which is a Support Vector Machine, and several types of
image descriptors like the Histogram of Gradients (HoG). These methods are
tested on the Caltech101 dataset as well as a new dataset created from Kalooga’s
data on soccer. The system performs well, but does not improve on scientific
benchmarks.

An interesting alteration was introduced to the HoG, shifting the orientation
bins of its histograms. This improves the descriptor’s performance and allows
it to remain descriptive when greatly decreasing its length. This reduction
is useful to classification algorithms, storage and descriptor extraction speed.
Simply increasing the number of bins also improves performance when using
the HoG descriptor. Thus, when extracting HoGs, not only the number of
histograms should be considered but also the binning method.

Comparing results on both datasets shows HoG to work well on Caltech101,
but poorly on Kalooga data. This is because the Kalooga dataset’s images
have much higher inner-class variability. To achieve better results, the problem
was scaled down to a detection task instead of a multi-class classification task.
Detecting action scenes in the Kalooga soccer dataset, a task useful to Kalooga’s
presentation, the system performs well and is promising for use on real data.

For this task, combining color and texture descriptors also proves to be just
as useful as variations of the HoG descriptor. So when deciding which descriptor
to use, the target image domain should be well tested.
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Chapter 1

Introduction

A picture is worth more than a thousand words. Visual information grabs
our attention: the images are often the first thing we look at when opening a
newspaper. Visual information also helps us understand concepts more quickly.
Directions to a particular location remain cryptic and confusing until even the
simplest map is drawn besides it. Visual information evokes emotions. Images of
young children and creatures make many of us smile involuntarily, while graphic
scenes of the human drama, war or disaster may just as easily tear at our hearts.
Visual information is able to give a better scope of raw facts and information.
We often seem to make estimates and summaries from visual information all
the time. At any rate, it is clear that the visual modality is very important to
human thinking.

As a result of this, our perceptual environment has become flooded with
imagery. Every day we are bombarded with art, diagrams, maps, photography
and brightly colored advertisements depicting everything from sports-cars to
sweating beer-glasses. We find them on massive billboards, the sides of buses
and practically every product we buy.

The same has become true for the internet. With the development and
popularization of digital photography, the web and online photo sharing, a large
and ever growing amount of digital imagery has now become instantly accessible.
This has also created a need for a way to organize these images and retrieve
them for a given query.

Kalooga is an internet company that aims to provide such a service and
specializes in gallery based image retrieval. Image galleries are different to
regular images randomly found on the web. In image galleries, the images
themselves are the primary concern. They tend not to be simple illustrations
or auxiliary elements to a story like non-gallery images found on the web do.
These images are generally of higher quality, both in fidelity and esthetic value.
When crawling important gallery sources on a regular basis, it is easier to find
recently created galleries with great news value. Galleries are also more likely to
be relevant to a certain topic or event and are generally more newsworthy. This
separates Kalooga from other online image services, along with the specialized
services Kalooga offers to publishers.

Kalooga offers widgets, small software applications that can be executed in-
side a webpage, to publishers. These widget automatically illustrate the articles
they are placed in. This is done by composing an image query from the article’s
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title and body and automatically selecting the most appropriate images from
this query for display in the widgets, though sometimes these need to be filtered
by hand. These widgets are meant to enrich the user experience with quality
images relevant to the article.

Currently, Kalooga achieves its search results by labeling images and gal-
leries using textual information such as the image’s URL, its tags, and the text
surrounding the image. This works sufficiently well, however, no visual content
is exploited towards their cause. Kalooga and the University of Groningen have
decided to work together to research possibilities in exploiting image content
to improve Kalooga’s search results. This master’s project has aimed to im-
prove the results of image database queries by applying content-based image
classification.

The field of computer vision has come a long way, and may help harness the
information present in the images themselves. There is no definitive solution to
the general problem of image classification yet, but the field has produced and
applied many methods that are effective in solving more specific image-related
problems. The following section will explore these methods.

1.1 Related Research

The problem of finding labels or categories to go with images based on the
image’s content and other related tasks have received a lot of attention in the
last decade. The research topic has received several names over the years;
to name a few: image annotation, image retrieval, image classification, image
categorization, object recognition and scene recognition. While the purpose,
emphasis and approach of these different studies addressing this problem vary,
they all come down to the same fundamental problem: the identification of some
semantic properties of an image given only the content of an image.

This project’s main goal is to create a system that can be used to improve on-
line image query results. This is a somewhat overwhelming problem because the
number of labels applicable to web imagery is very large and grows constantly.
Labels can describe image features ranging from low level image features, ob-
jects present in the image or scene identifications. Furthermore the images to
be annotated are extremely variable. Because of this some simplifications need
to be made to the problem to make it more manageable.

Many previous works do this by limiting the labels assigned to images. Some
make matters even simpler by avoiding object names and only use general de-
scriptions based on color and texture such as sky, people and grass. This kind
of simplification is mainly due to what is called the semantic gap (Datta et al.,
2008). The semantic gap is the gap between the information extractable from
an image and the information as interpreted by a person viewing the image.
This is a deep problem in image classification and annotation that has not yet
been solved.

Another simplification is to limit the domain of an annotation system, to
either a very limited amount of classes or to a set of images that share many
visual properties. This not only limits the number of labels to be used but also
the variability of the images.

Once the domain and complexity of the task have been decided on, one can
focus on the task itself. One important aspect of this task is extracting an image
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signature from either the entire image or one or more segments of the image.
This image signature is a numerical description of the image composed of one
or more features extracted from the image describing its color, texture, shape
or key-points. These signatures are then used to learn from a training set and
later to classify new images using machine learning techniques.

Many features describe an object class more efficiently when extracted from
the image area containing the object. Extracting features from the image at
different scales and segments can help in extracting more descriptive features.
Such segments can be selected regularly, randomly, using saliency maps (Itti
et al., 1998) or by segmenting the image. Some approaches cluster segmentations
and describe a single image by which clusters are represented in them (“bag of
words” description) (Harchaoui, 2007). This approach is referred to as region-
based image retrieval (RBIR) and has been shown to be generally effective at
classifying scenes (Liu et al., 2007).

A shared requirement of content-based image annotation systems is a nu-
merical description of images. Such a description can be obtained by extracting
a range of useful features from the image. These features either exploit the
image’s color composition, textural properties, its shapes or the salient points
within the image (Datta et al., 2008). Deselaers et al. (2008) give an overview
and comparison of popular features used for content-based image retrieval. Pop-
ular features are color histograms, various implementations of SIFT features,
MPEG7 features, features obtained from the wavelet transform and the Gabor
histogram.

The Scale Invariant Feature Transform (Lowe, 1999, 2004) (SIFT) is a pop-
ular algorithm that is able to detect visual patterns regardless of size, scale and
rotation. It detects important keypoints in an image and is able to match them
to similar keypoints in other images based on a keypoint descriptor. When ex-
tracted in a grid, instead of from a selection of keypoints, this keypoint descrip-
tor has been shown to be effective at object recognition and image classification.

The image signature, i.e. the extracted image description, can be used as
the input to a classifier for training and classification. There is a wide variety
of classification methods that have been used and could be used as classifier.
Support Vector Machines (SVMs) (Cortes and Vapnik, 1995), have been shown
to be effective in image recognition (Zhang et al., 2001; Datta et al., 2008). Their
performance can be further improved using ensembles like stacking techniques
(Abdullah et al., 2009a) and other ensemble methods (Abdullah et al., 2009b).

1.2 Research Question

This brings us to the central question of this research: how can computer vision
methods aid in improving online image query results?

Finding all applicable labels to an image using only its visual content is
simply not feasible with computer vision as it is today. Firstly, a single image
can be labeled by an overwhelming number of words, due to the versatile and
replaceable nature of language. On top of that, many of these labels are abstract
and represent a non-visual aspect of the image, such as proper names, locations,
action etc.

This requires the scope of the problem to be reduced to a more manage-
able size. Instead, this research focusses on creating a system that may solve
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problems a company like Kalooga might come across. Such problems could
include the need to detect images with a certain visual property that makes
them preferable over other images. Inversely, Kalooga may wish to filter out
unwanted images from a certain group of images based on visual information.
Furthermore, as Kalooga mostly deals with serving query results of some way or
form, it will also be interesting to sort images according to some visual quality.
That way users can be presented with the most relevent, high quality images
first.

To achieve this, a general image classification pipeline has been developed
with a full range of visual descriptors, described in the next chapter. The use
of this entire pipeline will be supported by a user friendly tool, allowing quick
composition and testing of image classification pipelines on any user dataset.
Furthermore, a dataset has been assembled out of Kalooga’s data composed
completely of soccer related images. This dataset poses a far greater challenge
to the implemented methods and gives a more realistic view of their performance
on a real problem.

1.3 Approach and Pipeline

The approach to the problem of this project will be that of image classifica-
tion. The image classification pipeline as it was implemented in this project has
been illustrated in figure 1.1. To train a model on a database of categorized
images, the image description is first extracted using a certain visual descrip-
tor algorithm. These visual descriptions are then used in conjunction with the
image classes to train a classification model using a certain machine learning
algorithm. When new images are to be classified, their image descriptions are
also extracted in the same fashion. These can then be used by the classifier
in conjunction with the trained model to predict the class to which the image
belongs.

In figure 1.1 one can see that machine learning algorithms and visual de-
scriptors are central to the system. Much of this thesis is about these methods
and their effectiveness on different datasets. These functions will be fulfilled by
a number of machine learning and computer vision methods.

For the machine learning algorithm, there are two classification algorithms
that have been applied. The first is the K-Nearest Neighbor algorithm which
makes up a baseline classifier for the system. This algorithm was chosen as
it complements the nature of the problem. The second are Support Vector
Machines, which are expected to achieve a higher performance. This method
was chosen as other studies have managed to achieve good results in image
classification using SVMs.

For the visual descriptor element, a range of descriptors will be applied
to contain at least one of each type: color, texture and shape. The first to
be implemented was a color histogram, which is a simple baseline descriptor.
Secondly, the Histogram of Gradients (or HoG) was created, which is based
largely on the SIFT keypoint descriptor. This descriptor will also be altered in
two ways. Lastly, four descriptors defined in the MPEG7 standard are used,
namely the Edge Histogram, Color Layout, Dominant Color and Scalable Color
descriptors.

There are two main exceptions to this pipeline, namely: visual keyword
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descriptors and feature combination methods. A visual keyword approach is
used in which a codebook is first made, by clustering patches of images using
k-means clustering. The images are then expressed in terms of this codebook,
by creating visual keyword descriptors.

Image descriptors will also be combined using two feature combination meth-
ods. The first is a simple naive approach, concatenating visual descriptions. The
second is an SVM classifier pyramid approach, training SVMs for each feature
and using their posterior probability outputs as input for a final SVM.

1.4 Outline

In the next chapter, chapter 2, the machine learning methods used in this project
are described. This includes k Nearest Neighbor Classifiers, the use of Support
Vector Machines as well as K-means clustering and classifier stacking techniques.
After that the input for these methods, the visual descriptors are discussed in
chapter 3. This includes the color histogram, MPEG7 features and the His-
togram of Gradients and the alterations made on this descriptor. These ma-
chine learning and computer vision methods have been combined into a user
friendly tool for quick development and testing of image classification pipelines.
This tool is discussed in chapter 4. The system has been tested on the Caltech
dataset (Fei-Fei et al., 2004) and the Kalooga dataset. These datasets and the
results of the system on them are discussed in chapter 5. Finally a discussion
and conclusion is given in chapter 6.
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Chapter 2

Machine Learning

In this chapter we discuss the machine learning algorithms implemented in this
project.

The problem this project intends to solve is the classification of images.
Such classification problems are addressed by a number of fields such as pat-
tern recognition and machine learning. In this project, several machine learning
algorithms have been implemented and applied. Machine Learning covers al-
gorithms that allow machines to generate or learn useful behaviors from data.
This data may be anything from a live recorded stream of sensory input, to
a prerecorded database of information. The behaviors that are generated are
forms of automated decision making that can range from classifying a set of in-
puts, to controlling a complex interface. In our case, the data are simple digital
images and the desired behavior is assigning these images an appropriate label.

As machine learning algorithms attempt to learn they often rely on human
knowledge of some form to provide them a measure for their success. The
manner in which any human knowledge is presented to an algorithm allows us
to distinguish three different types of Machine Learning: Supervised Learning,
Reinforcement Learning and Unsupervised Learning.

In Supervised Learning, each problem is presented as inputs paired with
the corresponding correct response, forming examples. A learning algorithm
is supervised by providing it with the correct answer to each problem it tries
to solve. This is a popular approach to the problem, image classification, as
image-label pairs are readily available as datasets and can be easily generated.

Reinforcement Learning is mostly applied to problems for which it is difficult
to produce observation-decision pairs. This is often because there are long term
effects for short term decisions. When for instance navigating a maze, a short
term decision will not get you to your target directly but may be essential to your
eventual success. Describing such problems with simple observation-decision
pairs is often inappropriate and ineffective. Instead of the observation-decision
pairs used in supervised learning, the reinforcement learning algorithm requires
a cumulative reward. This cumulative reward summarizes the performance of
multiple decisions taken by the algorithm, each decision being made with its
own local observations. No use will be made of such methods in this project.

Unsupervised Learning is applicable when the desirable behavior to be ex-
hibited by the algorithm can neither be described by labeling examples on a
case by case basis nor by summarizing it in a final cumulative reward value.
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Unsupervised learning, instead, extracts information from only the input data
itself, for instance by clustering. In this project one clustering methods will be
used: k-means clustering.

The focus of this project, image classification, encourages the use of Super-
vised Learning methods, because it is very easy to create training sets. Images
are readily available and it is not hard to create groups of images with similar
content to function as training data. Within supervised learning algorithms, a
distinction that can be made is in their pro-activeness. On one hand a learning
algorithm may actively use the data it has been given to learn with, creating
a model that generalizes these examples in some way. These algorithms have
a time and resource intensive training phase in which the example data are
processed. However, due to their generalizing nature they often are resource
friendly when used on new inputs. Thus, the ’work’ done by the algorithm,
learning a pattern, is done in its training phase. Such learning algorithms are
called Eager Learning algorithms, as they are proactive.

On the other hand a learning algorithm may not really have a training phase
and only store the given examples. These algorithms will use the examples at
classification time, without previously creating an explicit model. Such algo-
rithms are called Lazy Learning algorithms, as they are not proactive but are
’lazy’ and wait until a classification is required.

The goal of classification is identifying the class an object belongs to by the
object’s characteristics. These characteristics can be a full description of the
object itself or a summary of certain properties of its content. Either way a
finite, numeric description of the object is required called the object’s features,
or its description. The objects to be classified in this project are images. Fea-
tures extracted from images summarize certain properties of images and help
by reducing the description size for machine learning algorithms. The features
extracted from the images are explained in chapter 3.

2.1 K-Nearest Neighbors

A simple solution to the problem of classifying new datapoints using a set of
examples is as follows: one simply finds the labeled example closest to that
datapoint, its neighbor, and uses that example’s label for the target. A gen-
eralization of this technique is called the k-nearest neighbor algorithm (KNN)
(Cover and Hart, 1967).

KNN is a supervised learning algorithm as it expects a clear input-decision
pair: in this case a description and a label. The KNN algorithm processes
each training example when classifying a new datapoint a. For each training
example b it has stored it calculates a certain distance measure d between b and
a, which are N -dimensional. Any distance measure can be used, of which the
most popular is the Euclidian distance shown in equation 2.1. This is also the
distance measure used throughout this project.

d(a, b) =

√√√√ N∑
i=1

(ai − bi)2 (2.1)

The algorithm selects the k datapoints that are closest to a. These k ex-
amples are then used to find a label for a by letting them vote for their own
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Figure 2.1: Given a k of 1, each training example in the KNN will produce
its own space around it in which datapoints will be classifier as that class. This
creates a Voronoi diagram. When k increases it acts as a smoothing factor on
the decision boundaries.

label. In this project the votes are weighted by dividing them by the distance
to a because of the great number of categories to distinguish. Thus k nearest
neighbors are used to determine a label for unlabeled data.

When k is set to 1, a new input will be assigned the same label as its
closest neighbor. Each input can be considered a point in a space that has as
many dimensions as the input has values. The KNN defines decision boundaries
separating this space for each of its examples. Inputs within the area around
a datapoint will be classified as belonging to that datapoint’s class. In this
way these boundaries define the implicit, instance-based model described by
the KNN. This model in a two-dimensional feature-space is visualized in figure
2.1, showing a Voronoi diagram for k = 1. Increasing the k value, allowing more
neighbors to vote on the input’s label, will cause the decision boundaries to be
smoothed.

The algorithm is ’lazy’ as it uses its training data at classification time,
directly using the instances provided as training set without training a model.
Though simple, this algorithm is very effective given enough data.

2.2 Support Vector Machine

Support Vector Machines (SVM) (Cortes and Vapnik, 1995) are eager supervised
learning methods for classification. The Support Vector Machine is a linear
classifier. To explain how an SVM works, first linear classification and support
vector machines in the case of a two-class classification problem will be discussed.
Next the problem will be expanded to the classification of datasets having an
arbitrary number of classes.

2.2.1 Linear Classification

A two-class linear classifier classifies new datapoints given a set of example
datapoints belonging to either of two classes. Each datapoint is described with
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Figure 2.2: Each circle represents a datapoint within a 2d feature space. The
lines represents hyperplanes, that all separate the datapoints.

an N -dimensional feature vector, and so each datapoint can be represented as
a point in an N -dimensional feature space.

The task of the linear classifier is to find a suitable hyperplane, a N − 1 di-
mensional space, that separates the example datapoints. Given a 2-dimensional
feature space for the datapoints, the feature space could be represented by
a surface. The separating hyperplane would in turn be represented by a 1-
dimensional space, i.e. a line, in this feature space. Such a feature space is
depicted in figure 2.2 along with a set of datapoints and a set of possible hyper-
planes separating the two classes.

A linear classifier uses a linear combination of its input values to make a
classification decision by defining an output value g(~x) for a new input ~x. g(~x)
includes a threshold parameters b to offset the hyperplane from the origin of
the feature space. In a two-class problem, datapoint ~x will belong to one class
when g(~x) is greater than zero and to the other class when smaller than zero.
Any linear combination of input values can be realized by a dot product with a
chosen weight vector ~w shown in equation 2.2 .

g(x) = ~x · ~w + b (2.2)

Given this output value, the hyperplane it creates to separate the feature
space is defined in equation 2.3.

g(x) = ~x · ~w + b = 0 (2.3)

For this hyperplane to separate the datapoints in two classes it needs to
fulfill two requirements for each training example xi with label yi:

g(~xi) = ~w · ~xi + b ≥ 1 if yi = 1; (2.4)

g(~xi) = ~w · ~xi + b ≤ −1 if yi = −1; (2.5)

or, in a single equation:

g(~xi) = yi(~w · ~xi + b) ≥ 1 (2.6)
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Figure 2.3: An SVM tries to maximize the margin of its decision boundary.
In this figure, non-zero alpha valued datapoints, the support vectors, have been
given a larger, blue outline. The line represents the separating hyperplane,
while the dotted lines are the same line with different offsets going through the
support vectors. The arrows point out one half of the maximum margin.

This only leaves a weight vector ~w and offset b to be constructed that ful-
fill equation 2.6 for each training example. The type of linear classification
algorithm used defines how ~w is constructed.

2.2.2 Maximum Margin

In general there are two main approaches to find b and ~w: generative models and
discriminative models. Generative models are probabilistic models that specify
a probability density function and are able to generate random samples within
feature space. Discriminative models are not required to be probabilistic but
cannot generate random samples within feature space. Discriminative models
generally have a greater performance on classification tasks while generative
models are often more flexible.

An SVM is a discriminative non-probabilistic linear classifier. The SVM
tries to find the hyperplane that separates the datapoints with the largest pos-
sible margin. Given a hyperplane separating the dataset, we can define the
hyperplanes that lie on the border of its margin:

~w · ~x+ b = 1 (2.7)

~w · ~x+ b = −1 (2.8)

The optimal hyperplane can then be defined as the hyperplane that max-
imizes the distance between these two hyperplanes. A representation of the
maximum margin decision boundary in a two-dimensional feature space and
the two border hyperplanes is given in figure 2.3. This distance between these
hyperplanes is 2

||~w|| , which means to maximize the margin we need to minimize

||~w||.
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2.2.3 Support Vectors

However the ~w vector still needs to be constructed. The SVM algorithm does
this by choosing its set of support vectors. These define the weight vector ~w
and with it the hyperplane g(~x) = 0. Support vectors are found by evaluating
each datapoint dx in dataset D for their relevance αx to the eventual decision
boundary. The datapoints most important to the decision boundary should
become support vectors while others should receive a zero value for αx. Each
non-zero value is considered a support vector. The α value is a real positive
value that denotes the relevance to the decision boundary of a training example.
Using the α values, the weight vector ~w can be constructed:

~w =

l∑
i=1

αiyi~xi (2.9)

Where l is the number of support vectors, ~xi is support vector i and yi is
the label {−1, 1} of datapoint ~xi.

As shown before, to find the maximum margin hyperplane, ||~w|| should be
minimized while w still fulfilling 2.6. As calculating the norm ||~w|| requires a

square root, we can change this to 1
2 ||~w||

2
for convenience. This brings us to:

minimize
1

2
||~w||2 subject to yi(~w · ~xi + b) ≥ 1 (2.10)

This representation is the quadratic programming problem known as the
primal form (Nocedal and Wright, 2006).

2.2.4 Dual Form

We can find our ~w using the optimization method of Lagrange multipliers (Rock-
afellar, 1993). A specific optimization problem can be defined as follows:

minimize f(x, y) subject to g(x, y) >= c (2.11)

where f(x, y) is the function to be optimized, and g(x, y) and c define the
constraints. Given this optimization problem and its definition in equation 2.11,
the Lagrange function is defined as:

Λ(x, y, α) = f(x, y)− α(g(x, y)− c) (2.12)

min ~w,bmaxαΛ(x, y, α) subject to α ≥ 0 (2.13)

The Lagrange function introduces a new variable, the Lagrange multiplier
α.

Our optimization problem was defined in equation 2.10. Applying the La-
grange function to this problem gives us the following equation:

min ~w,bmaxα
1

2
||~w||2−

∑
i

αi(yi(~w · ~xi + b)− 1) subject to αi ≥ 0 (2.14)

The Lagrange multipliers introduced in this equation will eventually become
our support vectors, the α described in equation 2.9.
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α should maximize Λ where ~w and b should minimize it. That leaves us to
find the saddle points for ~w and b, which can be found by deriving. Minimizing
b leads to the following constraint:

δΛ

b
= 0 =

∑
i

αiyi (2.15)

δΛ

~w
= 0 = ~w −

∑
i

αiyi~xi (2.16)

Which leads to:

~w =
∑
i

αiyi~xi (2.17)

which corresponds to equation 2.9. By substituting this in the maximization
problem, the following is found:

maxα
1
2

∑
i αiyi~xi

∑
i αiyi~xi −

∑
i αiyi~xi

∑
i αiyi~xi +

∑
i αi

subject to
∑
i

αiyi = 0, αi ≥ 0 (2.18)

Or, shorter:

maxα

n∑
i

αi −
1

2

∑
i,j

αiαjyiyj(~xi · ~xj) subject to
∑
i

αiyi = 0, αi ≥ 0

(2.19)
This is known as the dual form.

2.2.5 Soft Margin

The training data may not be linearly separable because of noise or an inherent
property of the class. One would want the SVM to still find a hyperplane that
separates the datapoints as cleanly as possible. The cleanest cut would be the
cut having the fewest possible errors which themselves are as close to the margin
as possible. To achieve this, the Soft Margin SVM was introduced by Cortes
and Vapnik (1995). The soft margin SVM introduces an error cost term to the
optimization objective. This term is defined using the distance of each datapoint
to its target class, εi. When the datapoint is already classified correctly under
the current ~w then this distance will be 0. Thus εi ≥ 0. This changes equation
2.10 to:

minimize
1

2
||~w||2 + C

∑
i

εi subject to yi(~w · ~xi + b) ≥ 1− εi, εi ≥ 0

(2.20)
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2.2.6 Kernels

The size of the feature vectors provided as training examples defines a feature
space in which these feature vectors are points. However, linear separability of
given classes in this feature space is quite unlikely to occur in standard feature
space. More likely the datasets used will be very complex. To solve this problem
the feature vectors are projected into a higher dimension using a kernel function
K(x, y) (Boser et al., 1992). Intuitively, a kernel adds another dimension for
every point. This dimension is constructed from the values already available in
the feature vector. This new dimension then allows the separation of subsets of
points that were previously not linearly separable.

The kernel used by the SVMs is a gaussian Radial Basis Function as de-
scribed in equation 2.21.

K(xi, xj) = e−γ||xi−xj || (2.21)

2.2.7 Multi-class SVM

Up until now the problem discussed was limited to that of two-class classifica-
tion. It is also possible to distinguishes more than two classes in the feature
space. This is done by defining the multi-class classification problem as a com-
bination of two-class classification problems. There are two main approaches to
this:

In the one-versus-all approach, the problem is divided into a binary classi-
fication problem for each available class. Each binary classifier distinguish the
proper class against all other classes. The class belonging to the classifier giving
the highest output value will then be assigned to a new datapoint.

In the one-versus-one approach, a binary classifier is built for each unique
combination of classes. The ultimate classification in this approach is achieved
by letting each classifier vote toward one of two classes. The absolute value of
each classifier’s output is added to the vote of the favored class of that classifier.
The class with the greatest vote becomes the classification of the instance.

In this project the one-versus-one approach is employed.

2.2.8 Parameter Selection

The performance of an SVM is dependent on certain parameters used. In the
case of the current setup these include the γ parameter, which is used by the
kernel and the C parameter, which defines the soft margin. To find values for
these variables that suit the system best, i.e. result in the highest performance,
a grid search is employed. The grid search iterates a certain domain of values
for each of n variables it optimizes, forming an n-dimensional grid. For each set
of variable values the system is tested, storing the best results and the belonging
variables. The system is tested the same way it is eventually evaluated: using
randomly selected datapoints.

This fairly standard grid search has been altered using statistical methods
in two ways to increase efficiency without significantly increasing the chance of
missing performance peaks. These alterations are original to this project. The
first assures a low pooled variance of each sample made in the grid search. The
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second aborts low expectation experiments prematurely. Each is described in
its own section below.

Dynamic Estimation of Required Sample Size

Each experiment needs to be repeated a sufficient number of runs depending on
the standard deviation to assure that parameters are not selected or discarded
based on biased data. This is done by requiring the standard deviance of the
sampled mean, σmean, to be below a certain threshold, c. Whenever a set of
parameters are being tested in the grid search, runs are added to minimize the
standard variance of the mean until the following is true:

σmean =
σ√
N

< c (2.22)

Where N is the number of samples, i.e. runs for this particular parameter
setup so far an σ is the standard deviation of the current sample aggregated in
the N runs. This equation can be simplified to avoid divisions:

σ < c ·
√
N (2.23)

Which can be further simplified to prevent having to find a square root,
which is a costly operation.

σ2 < c2 ·N (2.24)

This prevents us from calculating square roots for both the variance σ2, and
the number of runs in the sample N . In the optimization done for this project,
c has been set to: 0.004.

Experiment Abortion by Hypothesis Testing

In practice, the grid search quickly became too time consuming when using the
visual keyword method or stacked SVMs. To save on time, runs which very
likely will not improve the system’s maximum improvement can be prematurely
aborted. This can be safely done by estimating the chance that the new sampled
mean given its variance will exceed the current best performance. There are
already a number of statistical methods readily available for this purpose. The
one used in the grid search was Student’s t-test.

Per each run added to the sample mean, Student’s t-test (Fisher, 1925) is
performed for unequal sample sizes and unequal variance. The t-value tc,b for
the current sample c and the best sample so far b is as follows:

tc,b =
Xc −Xb

SXcXb
·
√

1
nc

+ 1
nb

(2.25)

Where the pooled variance SXcXb
is defined as:

SXcXb
=

√
(nc − 1)S2

Xc
+ (nb − 1)S2

Xb

nc + nb − 2
(2.26)

The degrees of freedom can be defined using the Welch-Satterthwaite equa-
tion (Satterthwaite, 1946) as follows:
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DOF =
(s2c/nc + s2b/nb)

2

(s2c/nc)
2/(nc − 1) + (s2b/nb)

2/(nb − 1)
(2.27)

The chance of the current sample to exceed the best previous sample P (Xc >
X2) is P (T (DOF ) < tc,b). In the grid search, finding the performance of a
current parameter setup is abandoned when this chance falls below 0.25.

A flaw of this approach is that the standard deviation σ is in itself also a
stochastic variable. For this reason, the sample is first filled up with at least 5
examples to assure some accuracy of the standard deviation.

This improvement in optimization time is promising. Optimizations that
had earlier taken 42.3 minutes to complete with the standard grid search can
now be completed in 12.4 minutes.

2.3 Bags of Visual Keywords

The bags of Visual Keywords approach is widely popular and has been tested to
work with impressive performance on image categorization tasks (Csurka et al.,
2004). It works as follows: Patches of a certain constant size are first extracted
from an image database. Local image features, like any of the features to be
described in chapter 3, are extracted from these patches. These patches are
then clustered by a clustering algorithm, creating a codebook. In the case of
this project, this will be done using the k-means clustering algorithm. This
codebook will then be used to describe the images in the dataset, using bags
of visual keywords. There are many ways to express a given image in terms of
this codebook (Nowak et al., 2006). In this project the Hard Bag of Features is
described and the Minimum Distance map by Abdullah et al. (2010) is used.

2.3.1 K-Means Clustering

The k-means clustering method partitions a set of datapoints into clusters. The
number of clusters k needs to be defined up front. These clusters are represented
by cluster centers µ, vectors with the same size as a datapoint x. Initially each
cluster center µi is set to the value of a randomly selected datapoint. After
initializing the cluster centers, two steps are alternated: the assignment step
and the update step.

In the assignment step each datapoint is assigned to its closest cluster center,
dividing our dataset into k clusters. Which cluster center is closest is defined
by some distance measure, which in our case is the Euclidean distance measure,
described in equation 2.1.

The cluster centers are then recalculated in the update step. The new cluster
centers are defined by the mean of all the points assigned to that cluster center
in the assignment step, hence the name k-means.

These two steps are repeated until the cluster centers no longer change. The
entire process is visualized for a 2d feature-space in figure 2.4.

2.3.2 Sliding Window

To create a visual keyword histogram of an image, a sliding window is passed
over that image. This is simply a region that is moved in constant increments
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(a) datapoints (b) cluster center initialization (c) assignment

(d) update (e) assignment (f) update

Figure 2.4: The k-means algorithm clusters a set of datapoints (a) in a certain
feature space, in these figures a 2d feature-space. k cluster centers are chosen
from the datapoints randomly (b), represented by stars. Each datapoint is then
assigned to its closest cluster center in an assignment step (c and e). The means
of the datapoints assigned to a cluster center then define the new cluster centers
in the update step (d and f). The assignment and update steps are repeated
until they converge.
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through the whole body of the image. Each increment, the local region selected
by the window is analysed by a certain visual keyword descriptor scheme. This
scheme influences the visual keyword histogram for each region the window
passes, summarizing the image in terms of the codebook. This histogram is the
eventual descriptor vector and its size is the same size as the codebook. It has
a value for each word in the codebook. In section 2.3.3 and 2.3.4 the two visual
keyword descriptor schemes used in this project are discussed.

2.3.3 Hard Bag of Features

The Hard Bag of Features visual keyword scheme (Nowak et al., 2006) is a
simple winner-takes-all scheme and is widely used. A given patch is assigned to
the single closest mean in the codebook. The histogram value of this codebook
entry is thus incremented by one for each image patch that finds itself closest to
that center. This is shown more explicitly in equation 2.28, where HBOF (w) is
the value of the bag of words descriptor for word w, c is the cluster-center in the
codebook that corresponds with word w, n is the number of patches extracted
from the image and ri is the local feature vector of the ith patch.

HBOF (w) =

n∑
i=1

{
1 if w = argminc(dist(c, ri))
0 otherwise

(2.28)

This scheme has been implemented, but is not used in the results section,
because of time restraints. The Minimum Distance map scheme provided signif-
icantly better results and was preferred over the Hard Bag of Features Scheme.

2.3.4 Minimum Distance map

The minimum distance map, introduced by Abdullah et al. (2010), is also a
visual keyword descriptor scheme. The value for each word c in vocabulary V ,
is defined by the minimum distance of a patch in the image to that given word,
as shown in equation 2.29.

MIN(w) = minr(dist(c, r)) (2.29)

where MIN(w) is the minimum distance map value for word w, c is the
cluster-center corresponding with word w and r is a description of a given patch.

2.4 Feature Combination

As described in previous sections, our images are described by feature vectors.
These feature vectors are used to classify the datapoints. How these feature
vectors are constructed and what they describe is further discussed in section 3.
There are different features that describe different properties with each their own
expertise and performance. It has been shown that combining several features
for a single classification can significantly increase performance. This can be
done in different ways, two of which will be implemented in this project:

Firstly there is the naive approach. In this approach features vectors are
simply combined into a single large feature vector with which to train. This
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Image

Visual Descriptor 1 Visual Descriptor 2 Visual Descriptor 3

Image Descriptor Image Descriptor Image Descriptor

SVM SVM 2 SVM 3

Posterior Probability Posterior Probability

Final SVM

Predicted Classes

Posterior Probability

Concatenated Posterior Probabilities

Figure 2.5: 3 visual descriptors are combined by stacking SVMs. An SVM is
trained for each image description. The posterior probabilities of the SVMs are
calculated and concatenated into a single vector. This vector is used to train
the final SVM, which eventually provides class prediction.

method is effective, but it causes feature vectors to become very long, thus
training classifiers becomes more time consuming.

Another approach is stacking SVMs. This is done by training an SVM on
each feature. The predicted posterior probabilities for each class predicted by
each SVM are then taken and combined into a single vector. This vector is
then used by a final SVM, which is provided the eventual class prediction. A
flowchart of this method is depicted in figure 2.5.

2.5 Information Retrieval

The methods described will not be strictly used in a traditional multiclass clas-
sification fashion. They may also be used for information retrieval, or in this
case image retrieval. The distinction here is that not all datapoint are required
to be classified. Kalooga might wish to extract a certain kind of image from a
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given set of images, either to filter an unwanted image type out, or to select an
image type that is particularly interesting to Kalooga. This is achieved in this
project with SVMs by using the SVM’s posterior probability output to decide
whether to classify a datapoint or not. Given an SVM’s posterior probability
PPj (x) for datapoint x as class j and a cutoff value c , it will only be classified
as class j, when the following is true:

PPj (x) > c (2.30)

Otherwise the value will be left unclassified. This way, classification can be
expected to be more accurate while sacrificing the total number of images the
system will classify.

When dealing with information retrieval problems, the performance is mea-
sured in precision, recall and what is called an F-measure, (Davis and Goadrich,
2006). Precision, is defined as:

precision =
nr correctly retrieved relevant images

all retrieved images
(2.31)

While recall is defined as:

recall =
nr correctly retrieved relevant images

all relevant images
(2.32)

The F-measure is a score combining precision and recall in a single value.
The Fβ-value does the same, but allowing changing the importance of precision
and recall through β. When β is 1, the value of Fβ will be equal to the regular
F value. Values for β lower than 1 will place more value on the precision, for
instance value of 0.5 for β will place twice the importance on precision. Values
for β higher than 1 will place more value on the recall, for instance a value of 2
for the β will place twice the importance on recall. The Fβ-measure is defined
as:

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
(2.33)
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Chapter 3

Image Descriptors

In this chapter the algorithms used in this project that extract a visual descrip-
tion from images are discussed. To classify an image using any of the methods
described in chapter 2, a description of the image is required. In the case of
image classification, ideally, this is a visual descriptor that best distinguishes
between the available image classes. The role of visual descriptors to the image
classification system has also been represented in the pipeline, shown in figure
1.1 of page 6. A visual descriptor comprises all the information about the im-
ages the system is able to use in later processes and is crucial to the eventual
performance of the system.

When considering the problem naively, one could consider to simply use
the entire image. The pixels contained within the image themselves would
function as the description. This, however, proves both infeasible and inefficient.
The reasons for this illustrate the requirements of a good visual descriptor, so
the requirements of a good visual descriptor will be explained alongside these
reasons.

First of all, using the proposed method, images of different sizes would yield
descriptions of different lengths. Larger images would contain more pixels, and
thus longer descriptions, while smaller images would have shorter descriptions.
However, many eligible machine learning algorithms compare datapoints by
considering the descriptions to be points in a certain space: feature-space. The
length of the extracted feature dictates the dimensionality of that feature-space.
A variable feature length will thus disallow comparison of the datapoints, as each
datapoint will be expressed in a space with a different dimensionality. Thus,
a possible requirement of a visual descriptor is to define a description of any
image within the same feature-space, ensuring the same length.

This is often achieved by creating histograms. Many histograms are made
by dividing the range of a certain image property into a number of bins and
summing the total intensity of that property within each subrange. This is
the case for color histograms. Combining several histograms calculated from
subregions of an image is a good way to incorporate the spatial aspect as well.
This is the case for histograms of gradients (HoGs).

A descriptor including the color values of each single pixel would also be-
come very large, causing two problems. Firstly, it would make any application
using the descriptor very resource and time heavy. This may cause a descriptor
to become unmanageable when using more computationally complex machine
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learning algorithms such as SVMs.
Secondly, the higher dimensionality of a feature-space will make it harder for

any machine learning algorithm to learn from a training set. A visual descriptor
should summarize a visual property of an image in such a way that retains the
discriminative power of the visual property it describes but minimizes the length
and complexity of the description itself.

The qualities and features of images that a visual descriptor uses to distin-
guish images from each other can be almost anything. The final goal of an image
feature, in the given case, is to provide a basis to make high level semantic dis-
tinctions between images. The image features that can be extracted from just
the image information itself can only rely on the low-level information in the
image. An image feature helps in bridging the gap between the low-level image
information and high-level semantic information. Common image descriptors
focus on describing an image’s color, shape or texture (Liu et al., 2007). In this
chapter the visual descriptors used in this project will be explained in terms of
what they describe and how they describe it.

3.1 Color Histogram

The color histogram is a simple, widely used image descriptor. It describes the
color distribution within the image. Color histograms are often used in scene
recognition (Oliva and Torralba, 2006; Vailaya et al., 2001) and image indexing
(Deselaers et al., 2008; Datta et al., 2008).

As with any histogram, a certain space, in this case the color space, is
divided into a number of bins. Each pixel within the image is assigned to a bin
by its color value, which then serves as a description. As this image descriptor
was developed as a baseline and a placeholder in the pipeline, it has not been
optimized for performance. The color space used is HSV (Hue, Saturation and
Value), binning only for differences in hue and value. 10 bins are used for each of
both components, and the HSV-space is divided linearly leading to 10×10 = 100
color bins, c1 . . . c100, in total, which is also the length of the feature vector. This
allows us to define the histogram as follows:

HI(ci) =

∑
x

∑
y L(I(x, y), ci)

|I|
(3.1)

where HI(ci) is the histogram value of image I for the bin of color ci defined by
hue and value, |I| is the number of pixels in image I, I(x, y) is the color from
c1 to c100 that the pixel at x, y is closest to and L(a, b) is a function which is 1
when a = b and 0 if not.

As described here the color histogram is useful as it is invariant to any
spatial transformation of the image. However, the distinguishing power of the
color histogram in detecting objects and scenes is very limited. Often categories
and scenes are too variable to separate them using color alone.

Novak and Shafer (1992) show however that modeling histograms may lead
to useful description of the image representing surface roughness and geometry.
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3.2 Histograms of Gradients

The Scale Invariant Feature Transform, or SIFT (Lowe, 1999, 2004), is a very
successful and popular computer vision algorithm designed to detect and de-
scribe important features in an image. Points of interest within the image,
which are called key-points, are located. These are points that often occur in
high energy places within the images and are therefore more recognizable. Af-
ter locating them, the keypoints are described by histograms of the orientation
and magnitude. This is done in such a manner that found keypoints can be
compared with those of other images.

In this project an image descriptor is used that is similar to the descriptor
created by the SIFT algorithm to describe keypoints. The descriptor is not used
to describe keypoints however, but patches from the image extracted in a regular
grid. This way the image is described in a uniform way, encompassing the entire
image and not just points of interest. More importantly, this ensures a constant
length of the feature vector, which is required by the classifying algorithms
described in the previous chapter. This promotes changing the descriptor in
several ways that are of more use in this setup than when using it for keypoint
comparison. The changes to the descriptor and the difference in use to SIFT
are such that the name SIFT is no longer appropriate. For this reason this
descriptor will be referred to as Histograms of Gradients (HOG).

3.2.1 Original Sift Descriptor

The original sift descriptor is extracted as follows. After a keypoint has been
designated it is rotated to achieve rotation invariance of the descriptor. An area
of 16 × 16 pixels around the keypoint is then selected. A gradient of this area
is created by calculating the magnitude and orientation for each pixel. This is
done by using the pixels adjacent to that particular pixel:

Ix(x, y) = I(x+ 1, y)− I(x− 1, y) (3.2)

Iy(x, y) = I(x, y + 1)− I(x, y − 1) (3.3)

M(x, y) =

√
Ix(x, y)

2
+ Iy(x, y)

2
(3.4)

Θ(x, y) = tan−1
Ix(x, y)

Iy(x, y)
(3.5)

where Ix(x, y) and Iy(x, y) are the horizontal and vertical component of
the gradient belonging to pixel < x, y > in horizontal and vertical directions
respectively and M(x, y) and Θ(x, y) are the magnitude and orientation at that
pixel. This gradient is visualized in figure 3.1(b).

These orientations and magnitudes are then used to create a set of 4 by 4
orientation histograms. Each histogram’s bins the 16 orientations and magni-
tudes of the 4 by 4 patch into 8 equally distributed bins. The final description
becomes the vector 8 bin values of each of the 16 histograms, making for a total
of 128 values.
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(a) original (b) gradient (c) HoG

Figure 3.1: A visualisation of an image (a), its gradient and the HoG de-
scription computed from that gradient. The image gradient visualisation (b) is
white at high magnitude areas emphasizing edges and noisy areas. Along with
these magnitudes, an orientation for each pixel is calculated, not visualized in
this image but it is visualized indirectly in the HoG descriptor visualisation (c).
To calculate the HoG description, the image gradient is divided regularly into
a number of rectangular regions. In this example the image was divided into
4×4 = 16 areas for the sake of visibility, for the actual description however it is
divided into 8×8 = 64 segments. In (c) these histograms are visualized by a set
of vectors for each histogram. Every region has 16 vectors, each representing a
bin of the histogram, the length of that bin representing the magnitude in that
direction within the area.

3.2.2 Changes to Sift Descriptor

In this section the changes made to the original sift descriptor are described.
There are two in total: a phase shift for the orientation bins and the use of
diagonal gradients when calculating the orientation of a pixel.

The descriptor used in this project is different to the original SIFT descriptor
in a number of ways. First of all there are no keypoints, instead the entire image
is divided into a number of segments. The height and width of the image are
evenly divided among the number of segments creating rectangular patches with
no overlap. As the magnitude and orientation of almost each pixel will be used
eventually, the gradient is precomputed. A histogram of each of these segments
is then extracted and combined into the final description.

The number of bins is parameterized, any number of bin directions can be
chosen instead of just the 8. Fewer may be used for a smaller descriptor size and
more may be used to achieve a higher resolution. In image 3.1 a visualization
is shown of the image gradient and the HoG feature extracted from an image.

Phase Shift

A more important change to the original sift keypoint descriptor is a phase shift
of the bins distribution. The original sift descriptor has orientation bins that
split the range of orientations at all of the orthogonal and diagonal angles. To
alleviate this, the bins can be shifted half the length of a single bin as shown in
figure 3.2.

Many shapes in nature, architecture and design place special emphasis on
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Figure 3.2: An illustration of the phase-shift on histogram bin alignment. The
left image shows a 4 bin histogram in the standard alignment, each bin centered
on a diagonal angle. On the right, the same bins are shown but shifted in phase
such that the bins are now aligned to be centered around the horizontal and
vertical angles.

diag_rdiag_l

Figure 3.3: The two diagonal vectors added to infer pixel magnitude and
orientation.

the 4 primary directions: up, down, left and right. Think of horizons, win-
dows, roads and houses for example. Using phase shift, the orientation bins
may more correctly match the these dominant directions. This could create a
more accurate summary of the gradient and make the final feature vector more
descriptive.

Use of Diagonals in Gradients

Another change made is the way in which the gradient is made. In the original
descriptor the image’s gradient is computed by deducing horizontal and vertical
components. These horizontal and vertical components are then used to deduce
the orientation. However it could be considered that the pixels diagonal to the
center pixel are just as representative of the orientation and magnitude of the
edge on that pixel.

In the modified SIFT descriptor, the diagonal components Idiag r(x, y) and
Idiag l(x, y), as shown in figure 3.3 are calculated. These are derived from the
pixel’s diagonal to the center pixels as shown in equations 3.6 and 3.7. The
value of the diagonals are then translated into the simple x and y components
as shown in equations 3.8 and 3.9

Idiag r(x, y) = I(x+ 1, y + 1)− I(x− 1, y − 1) (3.6)

Idiag l(x, y) = I(x− 1, y + 1)− I(x+ 1, y − 1) (3.7)
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Ix(x, y) =
1

2
I(x+ 1, y)− 1

2
I(x− 1, y) +

1

4
Idiag r(x, y)− 1

4
Idiag l(x, y) (3.8)

Iy(x, y) =
1

2
I(x, y + 1)− 1

2
I(x, y − 1) +

1

4
Idiag r(x, y) +

1

4
Idiag l(x, y) (3.9)

This way, all the bordering pixels are accounted for without having to deal
with angles.

3.3 Mpeg7 Features

MPEG-7 is a standard for the description of images (Manjunath, 2002). It
defines a number of descriptions based on the actual content of the images
itself. The standard was designed to facilitate searching within the content
of the images. A set of four commonly used descriptors contained within the
MPEG-7 standard are used in this project.

3.3.1 Edge Histograms

The Edge Histograms descriptor is a popular textural MPEG-7 feature.
To create this feature, the image is divided into 4x4 subimages (Won et al.,

2002; Lux et al., 2003). Of these 16 subimages a histogram is created summa-
rizing the occurrence of 5 types of edges in a histogram with a total of 5 bins.
These edge-types can be vertical edges, horizontal edges, either of two opposite
diagonal edge and a non-directional edge class. Each histogram is created by
dividing the subimage into a number of yet smaller subimages. If an edge is
present in the subimage, the edge is classified as one of the 5 edge types in-
crementing the corresponding bin value by one. If the subimage contains no
edge, none of the bins is incremented. Finally the bins are normalized, leaving
a compound histogram descriptor of 4× 4× 5 = 80 values.

3.3.2 Scalable Color

The Scalable Color Descriptor (SCD) creates a description of the color content
of an image extracted in the HSV color-space (hue, saturation and value) (Man-
junath et al., 2001). The three-dimensional HSV space is uniformly divided into
256 bins, up out of 16 for the hue dimension, 4 for saturation and another 4
for value. This descriptor owes its name to the fact that it can equally well
represent images of both high and low resolutions.

3.3.3 Color Layout

The Color Layout Descriptor (CLD) gives a more spatial representation of the
color distribution of an image (Manjunath et al., 2001). This is done by first
dividing the image into 8 × 8 = 64 parts. These parts are then described by
the average color present in that part. The color-space in which this average is
found is Y CbCr. In this space Y , or luma, is a measure of the luminance. Cb
and Cr are the blue and red differences from the chromatic center respectively.
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3.3.4 Dominant Color

The Dominant Color Descriptor or (DCD) gives a distribution of the most salient
colors found in an image, much like the Color Layout feature does. The dom-
inant color descriptor creates a flexible feature, having a larger feature size as
there are more dominant colors. For this project however, description length is
required to be constant, and so up to 8 dominant colors are given. If the feature
turns out to be smaller than 8, the remaining values are set to be 0.
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Chapter 4

Implementation

In this chapter, the implementation of the methods described in the previous
chapters is discussed. This includes the choice of programming language, the
software libraries used and the way parameters, descriptors and datasets are
managed. Furthermore, this chapter discusses a Computer Vision Tool that
was made to facilitate the use of these methods and the motivation behind its
creation.

4.1 Programming Language and Approach

The software that was written especially for this project was written in the STL
C++ programming language (Musser and Saini, 1995) and compiled using the
GCC 4.2.1. compiler (Gough and Stallman, 2004). This language was chosen
as it would ease the use of the many libraries involved in image processing and
feature extraction. It also provides a fast performance which is vital to the pro-
cessing of experiments. The processing time required for these experiments can
become very large when constantly recalculating descriptors or when optimizing
SVM parameters. This is most important for the clustering and SVM stacking
experiments, especially considering some experiments will have to be repeated
for different parameter settings. The required processing time was also reduced
by making use of threading while extracting features.

The program design follows an Object Oriented approach. Classifiers and
Features are described generically and are easily accessible for customization of
existing classifiers and features as well as the insertion of new objects. This
not only facilitates adding new features or classifiers, but also using these new
objects when clustering and stacking classifiers. The Object Oriented approach
has also aided greatly in creating the vision tool discussed in section 4.3 and
the graphical user interface it provides.

4.2 Libraries

A large range of libraries was used for image handling, the extraction of image
features and classification. Each library that was used can be run and compiled
on most popular platforms, making the application portable.
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First of all the ImageMagick Library (Still, 2005) was used for most image
conversion and handling. It provides access to most popular image formats,
conversions to different color representations and access to low level pixel infor-
mation. Its image writing functions were also used to create simple visualiza-
tions of image descriptors and clustering results, two of which are available in
the tool.

For threading the Boost thread library was used (Demming and Duffy, 2010).
Another boost library that was used is the boost filesystem library, giving uni-
versal access to filesystems of different operating systems.

The OpenCV Library (Bradski and Kaehler, 2008) was also used for this
purpose, as well as some classification and face recognition provided by the
library. To reduce memory usage, it has been made possible to access the same
imagedata as ImageMagick dataobject and the OpenCV dataobject without the
need to copy it.

For the Support Vector Machines, the libsvm library (Chang and Lin, 2011)
was used. Java code for the MPEG7 features was at first provided by code
from Emir and Caliph (Lux et al., 2003). This Java code had to be accessed
externally by the main application whenever MPEG7 descriptors were required.
Later however, it was replaced by a C++ code provided by Bastan et al. (2010).

4.3 Computer Vision Tool

As discussed in the introduction, the task of finding high-level semantic images
from low-level pixel data is a hard problem to solve. There is currently no
complete solution for it yet. This is especially true for the broad range of
pictures Kalooga deals with, and the labels that are popular in queries. First
of all, there is a very large number of different labels. The greater the number
of distinctions to be made, the harder the task becomes. Secondly, the most
interesting and useful of these labels are often high-level and semantic in nature.
Labels may refer to the picture’s abstract qualities or the names of people and
locations. Some labels are even hard for humans to discern from the image alone
and often require some knowledge of the domain.

These limitations make it unfeasible to find every correct label for any image
automatically. However, methods that use only low-level data are not necessarily
without merit for parties like Kalooga. The problem becomes easier to solve by
making the number of labels the system concerns itself with smaller and more
manageable. This way, the problem becomes more of a categorization task,
rather than an identification task. Groups of images can be subdivided into a
relatively small number of meaningful groups of which the semantic distinction
is still useful.

Another way to make use of these methods is as tools to solve more specific
problems. Information within the image could for instance be used to filter
out unwanted images: product images, banners and logos. Given a particular
subset of images sharing a property one can also subdivide the images further.
This way existing categories could be subdivided into more visual categories:
out of a set of tourism photos, photos containing landscape, nature, culture and
architecture could be grouped.

To supply a way to quickly arrange and test an image classification pipeline,
a Vision Tool was written. The goal of this tool is to be able to quickly make an
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estimation of the performance of a feature and classifier on any dataset. This
way one could easily find out to what extent the visual information of an image
can be used to solve a problem.

4.3.1 Graphical User Interface

The vision tool has a graphical user interface (GUI) which allows for easy access
to its functionality. OpenGL (Shreiner et al., 2005) was used to display the im-
ages in conjunction with the GLUI (Rademacher, 2006) graphical user interface
library for the buttons. The layout of the interface is shown in figure 4.1.

The GUI allows users to quickly load any custom dataset or images. The
dataset may be explored, showing each image on screen on its own or several
at once. After the images are loaded, categories may be selected at will to be
included while training and testing. The user may select and modify which
descriptors to extract and use for classification. Each of the parameters used
when extracting the descriptor may be altered.

The user may also view an image through one of the visualizations avail-
able. These include the image gradient used to create a sift descriptor or a
visualization of the sift descriptor itself.

The GUI allows its user to extract features, train a KNN classifier or an
SVM on them and test the results. K-fold cross validation may also be used
to test the system for a more accurate prediction of performance. The results
are displayed as statistics, giving the performance and a breakdown of how
many instances of which class were classified correctly. The user can view the
classification results, showing the images per class, when classifying a test set
or when performing cross validation.

The GUI also allows the user control over clustering. The user may create a
clustering descriptor by selecting any descriptor setup and the preferred cluster-
ing parameters. After clustering is completed, the corresponding bag-of-words
histogram may be calculated using the found cluster centers. This means of de-
scribing an image then becomes available for use like any of the other features.
The cluster centers may also be saved and loaded for later use. A visualization
is also available for the cluster descriptor, showing for each patch within an
image to which cluster it belongs by number and color code.

4.3.2 Datasets

The Vision Tool provides an environment in which any dataset can be loaded. A
dataset can be any directory which contains one or more directories containing
images of any popular image format (png, jpg, gif). The images can be browsed
visually, and each category may be turned on or off for use in training and
testing.

4.3.3 Parameters and Descriptors

Parameters are stored using xml files. Within these files, all parameters that
are needed for feature extraction and classification are stored.

When using a descriptor a hashtag is made for that particular kind of de-
scriptor. This hash tag is based on every setting relevant to the descriptor itself.
When calculated, the descriptor outputs are stored in binary files labeled for
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Figure 4.1: The Computer Vision Tool allows the user to load his own single
images, image datasets or scientific image datasets. The loaded images are
then displayed in the image-window, and can be selected in a class selection
window. The user may freely browse the database, extract any of the available
low-level visual features, display available visualizations of these features, specify
classification methods to be used when training, change any available parameter
in the parameter-window, train on, classify or cross-validate on sets of classes,
directly evaluate test results statistics and create a hard bag of words feature
extractor using the k-means clustering algorithm which in turn can be used as
a low-level image feature.
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filename and descriptor hash. The next time a descriptor needs to be calculated
with the same filename and descriptor hash, the stored descriptor output is used
to save processing time.

Combining features is defined by selecting a combination method and the
parameter files of the features to be combined. As of yet feature-combination
through naive concatenation or SVM stacking is not supported by the GUI.
However, these methods can be accessed through the use of arguments before
starting the application.

4.3.4 Using the Vision Tool

There are six basic commands to give the application as arguments which cor-
respond to the three basic modes of the application: the GUI, performing an
experiment, creating a Visual Keyword Histogram, and classifying or estimating
the classes of new images. The syntax of these is explained in the following:

Start Graphical user interface:

./machineVisionTool gui

Start an exeriment:

./machineVisionTool experiment {nn,svm} DATASET NR_REPETITIONS

Create a Bag of Words feature by kmeans clustering:

./machineVisionTool cluster DATASET OUTPUT_FILE

Optimize SVM parameters:

./machineVisionTool optimize [OUTPUT_XML]

Classify new datapoints:

./machineVisionTool classify NEW_IMAGES

Estimate class probability

./machineVisionTool estimate NEW_IMAGES

DATASET can be any directory containing subdirectories with images

to be used as dataset, each subdirectory constituting a catagory and

the images within belonging to that catagory.

You can also choose one of the following predefined datasets:

abdullah2010: Dataset used by Abdullah et. al. (2010)

kalooga: A Dataset composed of images from the web

crawled by Kalooga about soccor.

actionkalooga: The same Kalooga dataset, only reorganised

to be a 2-class problem: Action vs. Rest

Additional Datasets may be added by editing datasets/index.xml

Along with the command a number of options may be given. Different sets
of parameters may be used or a previously created visual keyword histogram
feature can be included for use as feature. The syntax of these is as follows:
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-p PARAMETER_FILE ; use parameter file

-c CLUSTER_ROOT ; include cluster histogram feature

defined by CLUSTER_ROOT.xml and

CLUSTER_ROOT.clustercenters

-C CLUSTER_ROOT ; same as -c but also activates the feature

-d DATASET ; use DATASET as the preferred dataset in

every task

-naive FEATURES_ROOT ; concatenate the parameters files contained

in the folder FEATURES_ROOT to create a new

feature.

-svmstack FEATURES_ROOT ; Combine the parameter files contained

in the folder FEATURES_ROOT to create an

svm_stack ensemble.

4.3.5 Discussion

The vision tool described in this chapter provides an entire image classification
pipeline. It allows this pipeline to be quickly modified and tested. It gives access
to a range of image descriptors, describing color and texture as well as shape.

This makes it easy to predict the efficiency of a certain classification pipeline
on that particular image domain. There are user friendly applications that
provide easy access to machine learning methods or computer vision methods.
However no applications are known to us that focus on image categorization and
image features and provide an entire modifiable pipeline. The tool can currently
run on Linux and Mac systems and may easily be ported to a Windows operating
system. It provides a good environment to be used in the development of image
descriptors.

During the development of the tool, the use of libraries quickly became
tedious. Both the ImageMagick library and the OpenCV library have been used
for the handling and manipulation of images. The former was used initially,
and the latter was added later. However, both libraries are not necessarily
needed. In future work the ImageMagick Library could be fully replaced by the
OpenCV library, which would reduce the number of dependencies and the tool’s
portability.

The inherent architecture of the system also imposes restrictions on the al-
gorithms that may be implemented. The system can be expanded with features
and classifiers that adhere to a classical input-output layout. A feature may
only use an image’s visual information, and a classifier simply receives labeled
feature vectors. Any more involved methods, making a complex and specialized
use of the information available would be incompatible with the current system.
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Chapter 5

Experiments and Results

This chapter describes the experiments that were designed to test the perfor-
mance of the methods described in chapters 2 and 3 and their results. The
experiments were designed for two purposes. Firstly, to test the performance of
the implemented methods and the changes made to the HoG descriptor. These
methods include the color histogram descriptor, the HoG descriptor, MPEG7 de-
scriptors, visual keyword descriptors, classifier combination and stacking meth-
ods. Secondly, to test the system’s performance on a specialized Kalooga
dataset.

This chapter begins by discussing both datasets. After this, each experiment
will be described along with its results and a relevant discussion.

5.1 Datasets

Two image-datasets were used for the experiments. The first is the Caltech101
dataset, a dataset intended for research in Computer Vision. The second
dataset, the Kalooga Dataset was compiled from web-images crawled by Kalooga.

5.1.1 Caltech101

The Caltech dataset (Fei-Fei et al., 2004) is well-known and often used in testing
object recognition and categorization algorithms. It contains 101 categories,
each category containing from 40 to 800 images. Each image is roughly 300×200
pixels large. There are annotations provided which will not be used, only the
image category will be used in training.

To yield results comparable to other studies a category selection is used
identical to the one used by Abdullah et al. (2010). In this setup 10 classes
of the Caltech dataset are used, namely: airplane, camera, car side, cellphone,
cup, helicopter, Motorbike, scissors, umbrella and watch, shown in figure 5.1. In
most experimental setups that use this dataset, 30 images will be used per test:
15 training images and 15 test images. These 30 images are selected randomly
for each test, from a larger pool of images with varying number of images for
each category.

In figure 5.2 the Caltech images from the 10 named classes have been blended
together per class. This gives insight into the nature of these images and any
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Figure 5.1: 10 of the 101 classes from the caltech101 dataset used by Abdullah
et al. (2010): airplane, camera, car side, cellphone, cup, helicopter, motorbike,
scissors, umbrella and watch.

Figure 5.2: Composite images for each of the classes from the caltech101 used
by Abdullah et al. (2010): airplane, camera, car side, cellphone, cup, helicopter,
motorbike, scissors, umbrella and watch.

recurring shapes that are present in each class. For each class in the Caltech101
dataset a shape becomes clear that is particular to that class. Especially the
classes airplanes and motorbikes show a distinctive shape. Some classes also
give an indication of colors that are likely to occur for that class, such as the
blue sky in the airplanes class. These images help somwhat in understanding
the difficulty of classifying a dataset and which descriptors may be useful.

Caltech256

One experiment required classes with large datasets, however, Caltech101 only
contains a few classes with a great enough number for this purpose. Caltech
256 (Griffin et al., 2007) has more images per class, and thus 2 classes from the
Caltech256 dataset were used in that particular experiment.

5.1.2 Kalooga Dataset

Many of the publishers Kalooga serves its visualisation widgets to are specialized
in soccer. Kalooga provides these soccer news sites with relevant images to go
with the articles they post. This is done by automatically generating queries
from the articles to search their own gallery database. A set of images is then
chosen for display, sometimes automatically but often handpicked to assure
quality. To get the most attention and the best impression, it is important for
these images to be visually pleasing while still relevant to the subject at the
same time.
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Figure 5.3: 5 Images of every Category from the Kalooga-soccer dataset and
a composite image for each class as given for the Caltech101 dataset in figure
5.2.
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A way to classify or otherwise organize images which are already known to
concern soccer could be very useful to Kalooga. Studying the performance of
the system on this particular domain will gauge the practical applicability of
the system. For this purpose a dataset was composed out of images from the
Kalooga database concerning soccer. The images were collected from various
soccer-related queries, and ordered into categories. The categories into which
these images have been separated have not been chosen to assure a high per-
formance. Rather, the categories are meant to be useful in selecting images for
display in Kalooga’s widgets.

Figure 5.3 shows 5 images for each of the classes in the dataset and a com-
posite image as was given for the Caltech data.

This dataset will be used in two ways. One experiment will deal with the
classes similarly to the Caltech101 dataset, training and classifying each dat-
apoint with its named label. This experiment will be referred to as the 12
Kalooga classes problem. In the second experiment it will be tested how well
the system can extract the action class from the other classes by posing a 2 class
problem. The first of these two classes is the action class as it is in the 12 class
problem, while the second contains the images from all the other classes in the
12 class problem together. This use of the dataset will be called ActionKalooga
henceforth.

5.2 Parameter Optimization

Each of the results shown in this chapter was obtained after optimizing the
classifier’s parameters for the particular feature vector being used. The SVM
Classifiers were optimized for their γ and C parameters using crossvalidation.
The parameter γ was found between 2−20 and 2−

1
10 and C was found between

2−20 and 220. For the k nearest neighbors classifier, k was found between 1
and 30. The blur parameter for the HoG descriptor was also found for each
particular kind of HoG descriptor.

5.3 Experimental Setup

Before training an SVM on a set of image descriptions or classifying a set of
image descriptions, all descriptions are normalized to fall between −1 and 1.
Doing this sets the collective minimum and maximum of the descriptor group
to −1 and 1 as opposed to normalizing each descriptor separately.

Each result displayed in this chapter was obtained as a mean of 1000 runs
unless otherwise stated. This may be the case as some clustering experiments
become very time consuming. As each category contains at least 30 images,
this allows for at least 30!

(30−15)! > 2 · 1020 combinations of runs. Each of these

runs is performed with a new random subset of the database, again randomly
separated into equally large training and test sets. Thus, the surplus of images
in the categories containing more images than others will still be used.

Each performance result will be reported as percentage alongside its standard
deviation in percentage, in the style of ‘µ± σ’, in two decimal precision.
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Visual Descriptor SVM Perf. KNN Perf.

Color Histogram 41.71 ± 2.88 35.28 ± 2.81
MPEG7 Dominant Color 42.82 ± 3.20 35.14 ± 2.85
MPEG7 Scalable Color 50.33 ± 3.01 39.97 ± 2.81
MPEG7 Color Layout 65.84 ± 3.17 57.71 ± 3.06
MPEG7 Edge Histogram 76.00 ± 3.05 67.49 ± 2.84

Table 5.1: Results of the Color Histogram and MPEG7 descriptors on the
Caltech101 Dataset with 10 classes.

5.4 Color Histogram and MPEG7 Descriptor Ex-
periments

In this section, the MPEG7 descriptors discussed in section 3.3 are tested as
well as the color histogram described in section 3.1. Performance was tested
using Support Vector Machines as well as the k-nearest neighbors algorithm,
indicated as SVM Perf. and KNN Perf. respectively from here on. The results
are shown in table 5.1.

5.4.1 Discussion

It seems that the color related methods have problems describing the images of
the selected ten Caltech101 classes. This is to be expected as the classes are
intentionally selected on shape, which can be seen in figure 5.2. Each of the
classes exhibits a clear shape, but only some contain a defined color.

The best performing descriptor in this experiment was the MPEG7 Edge
Histogram. This is a texture descriptor that classifies subregions of the image
into 5 edge categories and stores it in a histogram. Such a descriptor is somewhat
capable of describing the image’s shape, which explains its higher performance
compared to the other methods.

Each SVM experiment outperforms its KNN counterpart by a significant
amount. This is the effect of the SVMs maximum margin, kernel, and soft
margin properties over the KNN.

5.5 HoGs experiments

In these experiments the performance of the Histogram of Gradients feature, as
described in section 3.2, is tested using the k-nearest neighbor algorithm and
an SVM classifier. There are two changes to the descriptor: phase shift and the
use of gradient diagonals, both described in section 3.2.2. The performance of
the two changes to the descriptor are also tested in this section.

5.5.1 Basic Performance

The original SIFT keypoint descriptor can be extracted at different levels called
pyramid levels (Lowe, 1999). These different SIFT pyramid levels can be achieved
with the HoGs feature by creating more histograms per image. The number of
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Level Histograms SVM Perf. KNN Perf.

L0 4× 4 82.99 ± 2.50 78.00 ± 2.53
L0.5 6× 6 84.16 ± 2.45 79.67 ± 2.50
L1 8× 8 84.55 ± 2.49 79.04 ± 2.73
L1.5 12× 12 83.90 ± 2.67 75.53 ± 3.05
L2 16× 16 83.22 ± 3.16 74.00 ± 3.06

Table 5.2: Results of the HoG descriptor on different pyramid levels (indicated
here as ‘Level’).

histograms per descriptor determines the detail in which an image is described
and the eventual size of the descriptor, much like the SIFT pyramid level does.
However it would be useful to compare the results of the HoG descriptor with
the SIFT keypoint descriptors of other studies. To do so, an analogue is made
for each of the SIFT descriptor pyramid levels that contains the same number
of histograms and share the same descriptor length. The lowest pyramid level,
referred to as L0, contains 16 histograms, in a 4 by 4 grid, and thus a total
of 128 feature values. A similar description can be made with HoGs by also
extracting 16 histogram in a 4 by 4 grid. Each higher pyramid level squares the
number of histograms, thus L1 contains 64 histograms in a 8 by 8 grid and L2

contains 256 histograms in a 16 by 16 grid.
Tests were also performed for histogram grids between these pyramid levels.

These setups are 6×6 and 12×12, effectively becoming L0.5 and L1.5 respectively.
The results of this experiment are shown in table 5.2.

Discussion

While Abdullah et al. (2010) managed to get a better classification performance
on this dataset using his SIFT descriptors, these results aren’t far behind and
are satisfactory for the purposes of this project. This difference in performance
may be due to a great number of aspects that influence the creation of the
descriptors. It might be the differences between the HoG implemented in this
project and the original SIFT descriptor. Gradient values in the original SIFT
descriptor were weighted for their proximity to the center of the keypoint. It
may also have something to do with the way in which images are blurred or
descriptors are normalized.

The HoG’s performance peaks at L1, apparently giving the best level of detail
for these images. At L1 the system performs significantly better than any of
the other setups, it’s closest competitor being L0.5: P (T (1997) ≤ −3.53051) =
0.00021 This level will be used henceforth, when using just a single setup of the
HoG descriptor.

A pattern that becomes clear in these results, is that the difference between
KNN and SVM become smaller as the results become higher. This is due to the
fact that, as the performances grow higher, increasing that performance even
further becomes harder. This is intuitive, as increasing performance from 90%
to 95% seems a lot more meaningful than increasing it from 60% to 65%.

In these results, the difference between SVM and KNN also becomes larger
as the total number of histograms increases. This is because KNN will have a
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Ori. Bins Shift SVM Perf. KNN Perf.

4 no 74.50 ± 3.07 66.26 ± 2.87
4 yes 82.34 ± 3.05 72.77 ± 3.05
8 no 84.55 ± 2.49 79.04 ± 2.73
8 yes 83.85 ± 2.45 73.04 ± 3.07
16 no 86.87 ± 2.40 79.12 ± 2.90
16 yes 87.05 ± 2.25 74.44 ± 3.22

Table 5.3: Results of the HoG descriptor when altering the number of orienta-
tion bins (indicated as Ori. Bins) and applying phase shift. In all experiments,
8× 8 histograms were extracted.

harder time dealing with a large feature size than an SVM will.

5.5.2 Phase Shift and Orientation Bins

In this experiment the phase shift alteration to the HoG descriptor, described in
section 3.2.2, was tested. The total number of orientation bins, i.e. the number
of directions a gradient is quantized into, is also varied to find out whether it
influences the effect of the alteration. The number of orientation bins itself may
also influence performance of the visual descriptor as a whole. The results of
this experiment are shown in table 5.3.

SVM performance using phase shift with 4 orientations is clearly significantly
better than when not shifting in phase. However using phase shift also causes
a significantly lower performance using 8 orientations: P (T (1997) ≥ 6.3368) =
0.00. Using 16 orientations with phase shift performs significantly higher than
performance without phase shift again: P (T (1989) ≤ −1.73025) = 0.0419, al-
though not by a large margin. Furthermore the results show a record high for
this system when using the HoG descriptor with 16 orientations while phase
shifting. These results are also shown even more strongly in the KNN counter-
parts of these experiments.

Discussion

The most dramatic difference is found when only 4 orientation bins are used.
Shifting phases in that case significantly improved the results. This is an in-
teresting result, also because the performance remains relatively high while the
description length is halved compared to the 8 histograms setup. This is prob-
ably because of the important role the angles up, down, left and right, play in
photography and thus the image descriptor. Humans instinctively align cameras
to assure the horizon is leveled and these orthogonal angles are found everywhere
in nature, human architecture and design. For these reasons, it is very possi-
ble that a better expression of these angles in a descriptor may improve its
performance.

Furthermore, when using 8 bins, the phase shift achieves a lower perfor-
mance, while strangely outperforming non-phase shift again at 16 orientations.
It is unclear why this is the case, but it is clear that phase shift is most beneficial
to low orientation bin counts. This is to be expected as with a large number
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Histograms Shift Desc. size SVM Perf. KNN Perf.

8× 8 no 256 74.50 ± 3.07 66.26 ± 2.87
8× 8 yes 256 82.34 ± 3.05 72.77 ± 3.05
4× 4 no 64 73.80 ± 4.80 59.62 ± 3.02
4× 4 yes 64 83.93 ± 4.08 75.60 ± 2.25
2× 2 no 16 64.69 ± 5.01 54.22 ± 2.98
2× 2 yes 16 76.09 ± 4.73 65.83 ± 2.95

Table 5.4: A followup experiment to expand on the result in table 5.3. The
performance difference when using phase shift is tested for low histogram counts,
from 8× 8, down to 2× 2, all using only 4 orientation bins.

of bins, the shift will only cause each bin to move a few radians. These experi-
ments have proven that, especially when using few values to do it, the way the
orientations are summarized is very important to the histogram of gradients.

Furthermore, using 16 orientation bins has achieved the highest performance
by the system yet. This performance comes at a high price however: doubling
the description length.

Small HoG Descriptors by Shifting Phase

A followup experiment was performed to find out how small descriptors could be
made using 4 phase shifted orientation bins. The results are found in table 5.4.
Using this alteration the performance of the descriptor remains relatively high
as the number of histograms decreases. Even at 2 histograms it outperforms
the unshifted descriptor at any other SIFT level.

It is also interesting to see that a description of only 16 values can still
perform so well. A smaller description is useful in many ways: it can often be
calculated and trained on more quickly. This may not directly be the case for
the HoG algorithm, as it still has to pass every pixel in the image the same
amount of times. But one could resize the image to a lower resolution and then
extract the description without changing the eventual content of the descriptor
too much. Small description size also helps classifying algorithms, as they will
have less dimensions to deal with comparing descriptors. It also limits the
storage space required, which makes storing the description for every image of
an online image database less of an investment.

5.5.3 Use Of Gradient Diagonals

In this experiment the results of the HoGs descriptor were tested using the
diagonal gradients as described in section 3.2.2. The results are shown in table
5.5. No significant differences were found in these experiments.

Discussion

It seems the use of gradient diagonals, does not affect the descriptor’s perfor-
mance. It is possible the use of gradient diagonals does improve the precision of
each single value in the gradient that is later used to make the HoG descriptor.

43



Sift Level Histograms diagonals SVM Perf. KNN Perf.

L0 4 no 82.99 ± 2.50 78.00 ± 2.53
L0 4 yes 82.81 ± 2.60 78.51 ± 2.54
L1 8 no 84.55 ± 2.49 79.04 ± 2.73
L1 8 yes 84.69 ± 2.49 78.88 ± 2.79
L2 16 no 83.30 ± 2.70 74.99 ± 3.01
L2 16 yes 83.22 ± 2.74 74.87 ± 3.02

Table 5.5: Results of the experiments that test the performance difference
when using diagonals when calculating the image gradient.

However, this increase in local precision either does not change: 1. the orien-
tation bin each pixel is assigned to, or: 2. the eventual averages found for the
orientation bins. Either way the description finally calculated comes out mostly
the same. Thus, the alteration only serves to make the extraction process more
complex without increasing performance.

5.6 Influence of Training-Set Size

In this experiment the importance of having a large amount of training data
is illustrated. To do this, a dataset with more images per class was needed, as
some of the Caltech101 classes only contained 39 images. Instead 2 classes from
the Caltech256 were used in addition to 3 of the original Caltech101 classes,
although these classes are also included in the Caltech256 dataset itself. The
class names are: Binoculars, Motorbikes, T-shirt, Watch and Airplanes. The
system was trained on training sets of varying sizes using the best performing
HoG descriptor setup, which happened to be using 16 orientations, 8 × 8 his-
tograms and phase shift. Performance was tested using the same number of test
images as were used for training. The results have been plotted in figure 5.4.

5.6.1 Discussion

From the graph in figure 5.4 it is clear that dataset size is very important to
the system’s performance. The Caltech101 experiments were all performed on
training sets of only 15 datapoints, so it is clear that the performance of the
system may improve greatly with large training sets.

When applying these methods to real problems, one can expect to be able
to use a great amount of datapoints per class. Especially the experiments per-
formed in this project, which almost all use a training set size of a mere 15
datapoints. These can be improved upon by simply enlarging the amount of
training data. This should always be kept in mind when evaluating the practi-
cal applicability of these methods.

Problems that Kalooga may wish to solve will deal with large amounts of
online images. This abundance of information should allow for the training
set to be continually enlarged by hand or perhaps even automatically. This is
an important advantage, easily overlooked by solely looking at benchmarks on
scientific data.
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Figure 5.4: A plot of experiments ran to illustrate the importance of train-
ing set size. Each experiment was performed using 5 classes from both the
Caltech101 dataset and the Caltech256 dataset, each containing over 200 data-
points. Test sets were used of identical size to those used when training.

5.7 Visual Keyword Descriptors

In this section the results that have been made using the clustering method and
visual keyword descriptors described in section are described. The codebook for
each test is created by converging a given number of means k using the k-means
clustering algorithm. The patches used for this are either 32 × 32 pixels or
64× 64 pixels, depending on the experiment, and are drawn randomly from the
dataset itself. The eventual descriptions were found using a sliding window of
the appropriate patch size, sliding 8 pixels at a time over the entire image. They
were constructed using the Minimum Distance map scheme proposed by Abdul-
lah et al. (2010). There were visual keyword descriptors created for a number
of HoG setups and the best color and texture feature of the MPEG7 features:
Color Layout and the Edge Histogram. The results of these experiments are
shown in table 5.6.

5.7.1 Discussion

The results found in this experiment are not very competitive in nature. Ab-
dullah et al. (2010) have achieved better results in comparable setups, going
up so high as 90.7 percent. There are many reasons for this difference in per-
formance due to the complex nature of these methods. However, optimizing
parameters and testing the system in different setups has proven to cost a lot of
time. Thus, finding optimal results for this particular method has become too
hard to realise.

All of the experiments have also shown that the results using the visual
keyword descriptors achieve poorer results than simply using the descriptors
themselves. Clustering and creating visual keyword descriptors already is very
time and computationally intesive, so this seems to exclude the method as it is
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Patch desc. Patch Size Nr. Means SVM Perf.

HoG 4× 4 32 300 70.11 ± 3.17
nr. of hists: 4× 4 32 600 75.12 ± 2.66

4× 4 32 700 75.61 ± 3.16
4× 4 64 700 76.52 ± 2.75
8× 8 32 700 77.16 ± 2.87
8× 8 64 700 74.31 ± 3.16
16× 16 64 700 76.51 ± 3.01

MPEG7 Edge Histogram 64 700 70.16 ± 3.23
type: Color Layout 64 700 65.60 ± 5.06

Table 5.6: Performance results of visual keyword descriptors on the Caltech101
dataset.

combination type SVM Perf.

Naive combination of HoG featuresL0 + L1 88.52 ± 3.52
Naive combination of HoG features L0 + L1 + L2 86.43 ± 3.45
SVM stack of HoG features L0 + L1 88.64 ± 3.69
SVM Stack of HoG features L0 + L1 + L2 89.03 ± 3.21
SVM Stack of all MPEG7 features 75.49 ± 4.42

Table 5.7: Results of the naive and SVM stacking experiments.

implemented here from practical use.

5.8 Descriptor Combination

In this section the feature combination experiments are described. These exper-
iments are also performed on the Caltech101 dataset, with 15 training images
per experiment. There are two feature combination methods to speak of: Naive
combination, and SVM stacking described in section 2.4.

The former simply concatenates the image descriptions before training the
classifier on them. The latter trains an SVM classifier on each of the features,
and uses the probability values of each of those classifiers to train a new SVM.
The results are shown in table 5.7.

5.8.1 Discussion

The SVM stack of all HoG features yields the highest performance on the Ab-
dullah et al. (2010) dataset found in this project yet. In earlier research, higher
values have been found, but these results indicate the efficiency of SVM stacking
none the less and are quite good.

Naive stacking methods also yield high performance. When combining too
many features, however, it seems to have problems with the descriptor size.
When using all pyramid levels of the HoG descriptor for instance, it begins to
perform worse where the SVM stack method would perform better.
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classifier SVM Perf.

SVM-Stack HoG L0 + L1 + L2 53.63 ± 4.88
SVM-Stack HoG L0 + L1 53.73 ± 3.88
SVM-Stack of all MPEG7 features 46.45 ± 4.32
HoG L1 16 orientations 53.53 ± 5.82
Visual Keyword Descriptor of HoG 4× 4 phase shift 50.57 ± 4.27
Visual Keyword Descriptor of HoG 8× 8 phase shift 48.68 ± 3.63
MPEG7 Edge Histogram 51.53 ± 5.81
MPEG7 Color Layout 46.17 ± 5.76
MPEG7 Scalable color 45.21 ± 5.55
MPEG7 Dominant color 29.10 ± 5.33

Table 5.8: Performance of the system as 12-class classifier on the Kalooga
data.

Stacking MPEG7 features yielded a performance lower than one of its mem-
ber features, the Edge Histogram. This is probably due to the low usability of
the color descriptors in the classification problem, only functioning as load on
the descriptor size.

5.9 Kalooga Dataset

The methods tested in the previous experiments are now tested on the Kalooga
dataset, described in section 5.1.2 of this chapter. The Kalooga dataset was
used in two different setups. One experimental setup resembles the use of the
Caltech101 dataset: a multiclass SVM was trained to classify all datapoints as
one of 12 classes. In the other setup, a 2-class SVM was trained to classify
datapoints as belonging to either of two classes. The two classes are composed
by combining the existing categories of the Kalooga dataset into two classes:
One being the Action class as it is, the Other being the combination of all other
classes. A selection of the methods tested in the previous section of this chapter
were tested for their performance on these classes

Because of time restraints, not all setups have been tested for performance
on the Kalooga dataset. Instead various setups were selected for testing based
mostly on their performance on experiments on the Caltech101 Dataset. Some
setups were also chosen as they were expected to perform differently on the
Kalooga dataset than they would on the Caltech101 dataset.

5.9.1 12 Classes

In this experiment the system’s performance was tested in a 12 class classifi-
cation task on the Kalooga dataset. The experiments were made to resemble
those on the Caltech101 dataset as training and test sets contain 15 images and
experiments were repeated 1000 times. The results are displayed in table 5.8.
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Discussion

Compared to the results of the 10 class subset of the Caltech101 dataset, the
results are quite low, with 53.73 being the highest performance achieved. This
considerable difference is probably due to the lack of inner class variability found
in the 10 classes from the Caltech101 dataset used by Abdullah et al. (2010)
and the great inner class variability in the Kalooga dataset.

The 10 Caltech classes share not only the same subject, but often also the
scene composition, object size and orientation. This selection of images is ideal
for shape based descriptors, and are easily classified by histograms of gradients.

The Kalooga dataset however is the result of many soccer related queries
sorted into visually recognizable classes. Images within any of these classes
often share compositions, angles, etc. but still vary greatly within their own
class. This variation is mostly due to the fact that the subject of the images is
not a single static object, but rather an abstract visual category.

This difference seems to make it impractical to use a multiclass classifier to
classify each image in a query as a class in the Kalooga dataset similarly to what
can be done with the Caltech101 dataset. This could be remedied by doing two
things.

Firstly the number of classes could be reduced, by merging some of the
existing classes. This would simply make the problem easier, but of course
makes the results less useful. It’s important to make every class into which the
datapoints are sorted a useful one, as they each impose an incremental difficulty
on the system.

Secondly the number of images available as training data could be increased.
This is especially important to a dataset like this, as the inner class variability is
particularly high. There is much gain to be expected in expanding the training
set.

Doing these two things could ensure a certain acceptable level of perfor-
mance, though perhaps this approach to the problem is in itself inappropriate.
One would perhaps be better off using the same system for an information
retrieval or sorting task.

5.9.2 Action vs All

In this experiment the system acts as a binary classifier and is tested on the
ActionKalooga dataset. This dataset distinguishes between Action photos and
photos of any other class. Classes now have more than just 15 training point:
there are 65 training images per experiment. It was tested using the most
successful methods applied in the 12 classes experiment. The results are shown
in table 5.9.

Discussion

The results achieved on this dataset are higher than found in the 12 class ex-
periment, which is to be expected as there are now only 2 classes instead of 2.
Furthermore, there are now 65 images to train on, instead of just 15. Consider-
ing those advantages, the system does not perform exceedingly well. This is a
testament to the diversity of the Action Class, and it shows just how challenging
the ActionKalooga dataset is to classify compared to the Caltech101 dataset.
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classifier SVM Perf.

Visual Keyword Descriptor of HoG 8× 8 phase shift 77.91 ± 3.51
Visual Keyword Descriptor of HoG 4× 4 phase shift 75.57 ± 3.49
SVM-Stack of all MPEG7 features 76.16 ± 3.68
SVM-Stack HoG L0 + L1 75.80 ± 3.11
HoG L1 16 orientations 75.14 ± 5.37

Table 5.9: Results of the system as 2-class classifier on a the ActionKalooga
dataset, separating the Action class from all other classes.

It is interesting to see that on these images, the visual keyword descriptor
does perform better than the original descriptors it is based on. The shape
was found in the image as a whole, while in the ActionKalooga dataset, smaller
segments of the image may be found in other images. This is probably what
makes this feature more suitable to the ActionKalooga dataset than the Cal-
tech101 dataset. There is much to these features that could be improved for
performance on the ActionKalooga dataset, but has not been explored due to
time constraints and the scope of this project.

The combined MPEG7 features also scored relatively well, compared to the
other descriptors, which was previously never the case. This is probably due to
the combination of having fewer classes than there were in the 12 class prob-
lem and the fact that the Kalooga dataset is more defined by color than the
Caltech101 dataset. So it seems that descriptors that are useful to a multiclass
shape based problem like the Caltech dataset, are not necessarily as useful to a
2 class scene based problem like the ActionKalooga dataset.

5.9.3 Information Retrieval Approach: Detecting Action
Images

In this experiment the information retrieval approach described in section 2.5
was tested on the ActionKalooga dataset. The action class of the Kalooga
dataset are spectacular highlights of a soccer game, capturing impressive head-
ers, shots, struggles, etc. The main idea behind the ActionKalooga is that
when presenting an end user with a soccer related widget, Kalooga would prefer
showing the action images over any of the other categories. These action images
are detected within a query, sacrificing the number of action photos found, for
precision. This sacrifice can be suffered however, as such a widget would only
need to be filled with 5 or so photos.

In this experiment, the accurate detection of such images is achieved by
only classifying images that were given a posterior probability by the SVM
that exceeds a certain cutoff value. The cutoff value was used that achieved
the highest F0.25-value. The F0.25 was chosen as Kalooga would only require a
small amount of correctly classified images to fill a single widget. The results
are shown in table 5.10.
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classifier cutoff precision recall F0.25

SVM-Stack of all MPEG7 features 90.9 93.86 33.42 84.84
Vis. Keyword Desc. HoG 8× 8 phase shift 83.0 92.58 34.20 84.13
HoG L0 + L1 + L1 87.0 87.44 39.98 81.74
HoG L0 + L1 88.9 89.00 41.52 83.40

Table 5.10: Detection of the Action Category in the Kalooga dataset. Classes
with SVM Probability outputs below the cutoff value were ignored by the sys-
tem.

Discussion

The performance of the different classifier/descriptor setups used in this ex-
periment are hard to compare. It generally depends on the importance that is
placed on precision and recall. The F0.25-measure is the safest guideline for these
results in particular, as the cutoff value was optimized to maximize that value.
However, some methods may perform better on another kind of f -measure, that
may also be even more appropriate. It is safe to assume though, that all setups
work well enough.

An interesting observation is that in this problem, as in the previous, the
MPEG7 descriptors and visual keyword descriptors work just as well or bet-
ter than the HoG descriptor, where HoG would always outperform them in
the Caltech101 experiments. Apparently, color information can be more easily
exploited in classification problems on the Kalooga dataset than classification
problems on the Caltech101 dataset. This is an interesting point for companies
such as Kalooga, as it seems descriptor choice is very dependent on the nature
of the dataset and task, which seem to dictate what descriptors to eventually
develop and extract. It seems that to find out what descriptors are most useful
for a particular kind of problem, research on that problem, or a similar type
of problem is required to make a wise decision. It may be that investing in a
wide range of image descriptors is more useful than developing a descriptor that
scores well on scientific benchmarks on a single type of problem.

The results found show that the system is very usable in a detection task.
The precision and recall are relatively high and the system is able to detect a
good number of action images while maintaining a high precision. One should
also consider that the results can be sorted. If the purpose is to only find
a few images, those that are classified with high posterior probabilities will
more probably belong to their designated classes. This way, the precision will
probably be even higher if the number of images used is smaller than the number
of images classified.

It should be noted that the system still works generically, and can be used
to detect any preferred class on any problem. The action class is probably one
of the harder classes in the dataset to detect as the images in it can be very
different from each other. It may well be that similar results on other classes
are even higher.

The system may also be used inversely to this experiment, in a filtering task
instead of a detection task. In such a task the recall would likely become more
important that the precision value. The system would then be optimized to
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maximize an f-measure like F2. This way the system could be used to remove
unwanted images from a group of images. In the Kalooga Dataset discussed in
this thesis for instance, that would be the product category.
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion

In this project an entire generic image classification pipeline has been success-
fully assembled. It supports a number of machine learning algorithms: k-nearest
neighbors (KNNs), k-means clustering, Support Vector Machines (SVMs) and
SVM stacking. These operate by classifying data described by visual descrip-
tors extracted by a number of computer vision algorithms, namely: MPEG7
descriptors, a color histogram, histograms of gradients (HoG) and visual key-
word descriptors.

This system was also backed up by a user friendly graphical user interface
(gui), and together they allow the quick creation of a pipeline with different
visual descriptors and classifiers. This tool helps in quickly creating a classifica-
tion setup and testing the system on any choice domain of images. The tool is
useful, but somewhat bogged down for distribution and development purposes
by the libraries it requires.

These implemented methods were then tested on two datasets: a scientific
dataset, Caltech101, and a Kalooga dataset. The Kalooga dataset was especially
created for this project, and focusses on soccer. It was arranged by sorting im-
ages found by Kalooga soccer queries into useful visual categories. This dataset
serves as a more realistic approximation of the tasks a system like this would
face when being used to classify online images.

From the experiment on the Caltech101 dataset the HoG descriptor arose as
the most effective descriptor, as was expected. Its performance is satisfactory,
although it is somewhat poorer than results found earlier by Abdullah et al.
(2010).

Two changes were made to the HoG descriptor which were also tested. One
of these changes was dubbed phase shifting and entails rotating the orientation
bins so that the orthogonal directions (up, down, left, right) would also be
represented when using four orientation bins. The performance of the HoG
descriptor improved because of phase shifting, especially when only using four
orientation bins. This change allowed the HoG descriptor to become very small,
using as few as up to 4 × 4 = 16 total histograms, each with only four values,
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while maintaining a respectable performance.
Furthermore, when using more than the standard 8 bins, the descriptor

seemed to perform better while the orientation bins were shifted. When trying
to make an HoG more descriptive, not only the number of histograms (otherwise
known as its pyramid level) should be taken into account. The number and
arrangement of the orientation bins should also be considered for this.

The second change to the HoG was the use of a pixel’s diagonals when
calculating an image’s gradient. Using said diagonals proved to be unimportant
to the system’s performance, as no significant difference could be found. Thus
using diagonals when calculating gradients only serves to increase the method’s
complexity, without improving its performance.

Results employing feature combination techniques show that combining fea-
tures can improve performance, as different features are able to complement each
other. Using SVM stacks for this is more effective than using naive combination,
especially as the combined descriptor size becomes large.

After testing the system on the Caltech101 data, it was tested on the Kalooga
data. An important conclusion of the experiments on Kalooga data are that the
image domain is very important to an image classification system’s performance.
A dataset such as the Kalooga soccer dataset, is much harder to classify than a
scientific dataset such as the Caltech101 data. This is due to the shape based
classes in Caltech101 as well as the inner-class variability of the categories of
the Kalooga dataset. This difference in domain and difficulty also influences the
visual descriptors that are optimal for the system’s performance. For instance,
images from the Kalooga dataset were relatively more effectively classified using
color descriptors and visual keyword descriptors than the Caltech101 dataset.

The best approach to use the methods described in this master’s thesis
to practical image classification problems is to scale the problem down to a
manageable level. An instance of this is given, by creating the detection task of
detecting Action images from the Kalooga dataset. Using the SVM’s posterior
probability output, classifications of which the system is unsure can be ignored
to assure a high precision. These posterior probabilities can also be used to
sort the images on likeliness of containing the class. This way machine learning
methods and computer vision methods may be used to provide a useful function
for improving online queries.

This finally leaves the main research question stated in the introduction to
answered. This question was: how can computer vision methods aid in improv-
ing online image query results? Using just the methods described in this thesis,
the problem of image retrieval through image labeling itself can’t be entirely
solved currently. Nor can every multi class classification problem be solvable
by these methods for every given image domain. However, when the problem
is scaled down to a manageable size, these methods can very much provide a
meaningful contribution by solving specific image-classification problems.

6.2 Future Work

The results and the tool created in this project can be improved and expanded
on in many ways. Firstly, some of the features and methods implemented do not
perform as well as reported in other studies. These might be changed and im-
proved to match these higher performances. There are also many combination
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of classifiers, descriptors and parameters that have not been explored. These
may readily be explored and tested. More features and classifiers could also be
added to the system as it is. The system allows the easy extension of classes so
that new elements may be added. The tool could be further improved by re-
moving some of its dependencies. It may also be improved with better display of
information, adding additional functionality, and making existing functionalities
more easily accessible.

An approach that has not been attempted is using the system as a means to
filter out unwanted images. This resembles the detection task, however, in this
case, the recall is more important than the precision. This way images that are
not of interest to Kalooga could be filtered from a query.

Other datasets could be created that focus on other realistic problems like
the Kalooga soccer dataset created for this project. These problems should be
created in such a way that solving them is useful to parties like Kalooga. This
prevents the problem from becoming too easy and the system designed to solve
it from becoming too far removed from practical use.

Adding more images to such a dataset would improve performance as train-
ing size becomes larger. Exploring this would help understand the importance
and influence of training set size on domains such as the Kalooga dataset.

It would also be interesting to further explore the versatility of the HoG
descriptor while using the phase shift alteration. A HoG descriptor could be
created that’s extracted much faster than the current one by first resizing the
image and using the phase shift alteration to create a small descriptor while
keeping the descriptor descriptive enough to perform well.

This project shows that there is a basis for the practical application of Com-
puter Vision and Machine learning methods to the problem of image retrieval.
This basis is then best incrementally expanded upon in future work, using any
number of relevant, interesting new methods. Perhaps when the system’s per-
formance on more limited problems becomes more reliable, the system can start
being used for more general purposes as well.
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