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Abstract

One of the hot topics in current Artificial Intelligence research and in society are
outdoor unmanned systems and their recent applications. Development in sensor
output processing and computer vision is one of the main reasons for the rapid
growth in the abilities of such systems to operate autonomously. Detecting and
recognizing objects and humans has been a prominent subject in research since
computer vision originated. Combining the field of outdoor unmanned systems with
computer vision yields interesting new research topics. Reactive vehicle behaviors
and possible human recognition opposed to solely detections from such systems is a
fairly unexplored side of the scientific field.

The current research focuses on autonomous human detection and recognition in
real-time sensory data from unmanned ground vehicles (UGV) and unmanned aerial
vehicles (UAV) through dynamic navigation. Additional information and heightened
perception can be gained by creating intelligent navigational behaviors combined
with well performing object classifiers. More specifically, the autonomous vehicles
in the architecture search for test subjects in a field and react upon those detections.
If a person is detected in the camera imagery, a vehicle will dynamically stray off
its initial search pattern to gain more information on the subject. The dynamic
navigation is used to approach the subject and to attempt facial recognition using a
data set of the test subjects. Through the deployment of a heterogeneous swarm of
multiple UGVs and UAVs individual search spaces can be decreased and detection
rates increased.

The research was built upon a software architecture called CongreGators that
controls a swarm of autonomous vehicles. A complete system for the autonomous
detection and recognition of human subjects through dynamic navigation with a
heterogeneous swarm of autonomous agents was implemented and tested. Dynamic
navigation patterns were created and optimized to increase the perception and in-
formation gain of the robotic systems at hand. The CongreGators architecture was
created at the University of Florida’s Machine Intelligence Laboratory, where the
current research was conducted as well.
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Chapter One

Introduction

Unmanned autonomous robotic systems are a very hot topic in today’s society and
these systems are becoming increasingly important and popular in the economy. The
unmanned autonomous control of robotic systems has many benefits over full human
control or task execution by humans, i.e. robotic systems have a more structured way
of behavior, handle situations without putting humans at risk, and free up time and
resources for human beings. Unmanned vehicles also often have the ability to reach
locations which are unreachable or hazardous for human beings. These benefits are the
reason why unmanned vehicles have gained such a great economical feasibility these
days.

The autonomous detection and recognition of humans from sensory data of unmanned
robotic systems can improve the use and performance of these systems significantly.
Although the detection of humans in an outdoor environment by autonomous agents has
been investigated, intelligent responding agent behaviors and actual human recognition
(opposed to solely detection) is a much more unexplored side of the scientific field. The
detection of a (human) object is defined as the classification of a newly seen object to be
part of a predetermined class, while recognition is defined as classifying a new object to
be a specific individual of that class that was seen before. The goal of the current research
was to create a complete system for the autonomous detection, investigation and finally
recognition of human subjects in an outdoor environment through dynamic navigation
by a heterogeneous swarm of autonomous agents. The main research questions that
drove the current research were which human classifying algorithm would perform best
on raw video imagery from the available vehicles, could UGVs or UAVs use dynamic
search patterns to autonomously approach detected subjects, and would they be able
to recognize those subjects in a robust and reliable fashion from a created database. In
order to create a behavior with the mentioned capabilities, three dependent modules were
implemented in an existing architecture that handled the coordination of the swarm.
These three modules were the human detection module, dynamic navigation module,
and the facial recognition module, which all combined created a behavior achieving the
previously mentioned goal.

The types of agents functioning in the swarm were “Unmanned Ground Vehicles”
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2 CHAPTER 1. INTRODUCTION

(UGVs) and “Unmanned Aerial Vehicles” (UAVs). All hardware and resources were
provided by the Machine Intelligence Laboratory of the University of Florida, where the
current research was executed. To provide the agents with a setup to provide live video
imagery, two cameras were tested in a benchmark test and the optimal camera setup was
mounted on the vehicles. Using the existing ‘CongreGators’ architecture (Weaver, 2014)
the agents could make practical use of the swarm property to increase effectiveness of the
entire robotic system by deploying multiple vehicles at the same time, which leads to the
agents splitting up search areas for faster completion of their search. The CongreGators
architecture and all of the software for the current research was developed within the
Robotic Operating System (ROS) (Quigley et al., 2009).

Towards the creation of the human detection module multiple algorithms were im-
plemented, applied, and compared. The collection of classifiers for human detection
consisted of four pedestrian detection classifiers using Haar-like features (Viola & Jones,
2001), one custom created top view Haar classifier, and one Histogram of Oriented Gra-
dients pedestrian classifier (Dalal & Triggs, 2005). The custom created top view classifier
was created for the detection of humans from a top view, i.e. the view from a UAV, since
no such classifier was known to exist yet. All classifiers were compared in benchmark
tests on four separate datasets on their performance.

To have the agents respond in an intelligent investigating fashion to human detec-
tions a dynamic navigation module was created. The dynamic navigation combined
information from the vehicle and the detection into the localization of the subject and
a dynamic approach pattern towards the subject. This dynamic approach pattern was
executed by agents through diverting from their original static search paths to a dynamic
approach of the subject. This approach would subsequently lead to checking whether the
subject’s face could be detected and recognized. To segregate false-positives from the
detections and to increase ‘confidence’ in the agent’s detections and subject localizations,
a clustering algorithm was incorporated in the module alongside subject representation
using prototypes.

To provide the agents with facial recognition capabilities, a facial recognition module
was added to the system. This module was only activated after dynamic driving patterns
were completed and was therefore heavily dependent on the previous detection and
approach stages of the behavior. The facial recognition module is based on the work by
Baggio et al. (2012), and modified to function within the current research. This module
makes use of a combination of a Haar face detector, conversion to Eigenfaces (Turk
& Pentland, 1991), and a support vector machine (Cortes & Vapnik, 1995; Joachims,
1998). The output of the facial recognition module consisted of a confidence value which
represents the certainty of the module that a certain face was in view and the label
accompanying that face. The model of the recognition classifier was created from a
dataset of the test subject’s faces.

To determine the performance of the modules towards the goals of the current re-
search, two types of experiments were set up. The type of experiments differed in human
subject search methods by the agents. One experiment type was set up to search for
multiple human subjects in a search area to determine the overall performance of the
behaviors, while not having a certainty that the subjects would appear in the camera’s
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view. The second type of experiment was set up to increase the certainty of a subject
being in view of the camera by having an agent search along a straight path for one sub-
ject positioned on that path. The latter experiment type was created to test individual
agent behavior performance, while including a higher certainty of the activation of the
facial recognition module.

The scientific relevance for the field of Artificial Intelligence lies in the fully au-
tonomous intelligent behaviors that are created for the agents to detect, dynamically
approach, and even recognize human subjects in a noisy outdoor environment. Possible
applications of the created system are to search, find and recognize people in search and
rescue missions of victims in large or non-traversable areas for humans. Areas that are
too hazardous for humans to enter could also be investigated by this system for human
occurrences, and even specific human occurrences through the facial recognition capa-
bilities. Recognizing and logging all the human subjects in an area for security purposes
would be another application of the created system.

This thesis consists of the following chapters. The theoretical framework in which
the current research is embedded is described in chapter 2. The description of the
CongreGators architecture and its capabilities on which the current research builds is
discussed in chapter 3. Chapter 4 includes the description of all the methods used for the
three main modules created in the current research, namely human detection, dynamic
navigation, and facial recognition. In chapter 5 the results from the classifier benchmark
tests and experiments are discussed. And concluding, in chapter 6 all the conclusions
drawn from the current research will be discussed along with proposals for future work.





Chapter Two

Theoretical Background

2.1 Swarm robotics

Reactive groups of robots were first studied at the end of the 1940’s by Walter (1950)
through observing the behaviors of light and touch sensor equipped turtle-like robots.
The swarm robotics approach for the coordination of a group of robots is inspired by
observations of group dynamics of social insects, e.g. ants or locusts. Swarm intelligence
produces in many cases behaviors and solves problems, which an individual would not
be able to perform by itself. Both centralized and decentralized types of swarm robotic
systems have been implemented nowadays with different advantages per type (Beni,
2005). The main advantages of swarm robotics are robustness, flexibility, and scalability
(Şahin, 2005), all even more advantageous if a heterogeneous swarm of agents is used.

Swarm intelligence in biological organisms can also be connected to object detection,
recognition, and gaining additional information through dynamic navigation by such
organisms. Biological organisms often use movement to collect additional information if
the currently obtained information is not sufficient for their goal, e.g. locusts use body
movement to obtain depth information for their jump (Sobel, 1990). Since the scientific
field of robotics has often made use of mimicking biological organisms to its advantage
in the past, this technique also seems to have potential for a performance increase in
autonomous robotic systems.

The current research builds upon an architecture that is created to coordinate a
swarm of heterogeneous autonomous ground and aerial vehicles (Weaver, 2014). Agents
deployed in the architecture could search for objects along a path or within a search
area, dividing such an area among the enrolled agents automatically.

2.2 Human detection

Since the 1990’s the field of computer vision has gained an increasing interest in the
detection of human beings as an object (Gavrila, 1999). The process of object detection
often involves the extraction of image features from datasets and matching those features
with the ones of new images. One of the most famous and widely used features for
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6 CHAPTER 2. THEORETICAL BACKGROUND

detection were proposed by Viola and Jones and are called Haar-like features (Viola
& Jones, 2001), which owe their name to their intuitive similarity with Haar wavelets.
Human detection is basically similar to the detection of any other object in most cases
since meaning is unimportant to an algorithm. For example, detection techniques that
train on a database of positive (and negative) examples for object detection work the
same for every object. Thus, such a technique can also be used for human detection.
However, one of the foremost problems with human detection is that the appearance of
humans in general changes very often, both in shape and in color. Therefore classifiers
have been tailored to perform human detection like specified Histogram of Oriented
Gradients (HOG) classifiers (Dalal & Triggs, 2005).

Developing computerized person detection in the past was primarily powered by
pedestrian detection and avoidance in on-board systems of automobiles (Breckon, Han,
& Richardson, 2012; Papageorgiou & Poggio, 1999), human detection in sensor output
from unmanned aerial vehicles (UAVs) (Rudol & Doherty, 2008), and person detection in
surveillance cameras for security purposes (Viola, Jones, & Snow, 2003). On a side note,
other objects related to human presence like cars or windows with people behind them,
can be detected by using various similar object detection techniques as well (Breckon,
Gaszczak, Han, Eichner, & Barnes, 2013; Gaszczak, Breckon, & Han, 2011). In some
cases general detection methods like the Scale-invariant feature transform (SIFT) algo-
rithm (Lowe, 1999) are used to detect objects or humans, which was subsequently used
to dynamically navigate through the surroundings of the recognized object (Mondragon,
Campoy, Correa, & Mejias, 2007; Campoy et al., 2009).

2.2.1 Human detection with unmanned aerial vehicles

Human detection is sometimes applied on sensor output like video, infrared, or thermal
imagery from UAVs. Rudol and Doherty booked some great results in geo-localizing
victims with regular and thermal imagery from an UAV, using a “classifier which is in
fact a cascade of boosted classifiers working with Haar-like features” (Rudol & Doherty,
2008). Leira has written a Master’s thesis on the comparison between a Boosted Cascade
Haar-like classifier and a Histogram of Oriented Gradients Support Vector Machine
(HOG-SVM) classifier for object detection and tracking in UAV infrared imagery (Leira,
2013). Flynn and Cameron have fused visible and infrared imagery and shown that by
“tracking detections over time, the false positive rate is reduced to a minimum” (Flynn &
Cameron, 2013). This study shows that multiple models can be used to detect one object
with higher performance, opposed to Breckon et al. who use multiple models to detect
several different objects in visual imagery (Breckon et al., 2013; Gaszczak et al., 2011).
For human detection in UAV imagery Andriluka et al. compared ‘monolithic models’,
like HOG detectors, with ‘part-based models’, like poselet based detection algorithms,
discriminatingly trained part based models, and pictorial structures with discriminant
part detectors (Andriluka et al., 2010).
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2.3 Facial recognition

Facial recognition within the computer vision research field has gained a lot of popularity
since 1990. Techniques based on Karhunen-Loeve expansion, neural networks, and fea-
ture matching have been widely investigated since then (Chellappa, Wilson, & Sirohey,
1995). Human face detection and the recognition of such a face in particular are valu-
able assets to a robotic system in any environment involving human beings. It is very
important that such a facial detection and recognition module is robust and performs
adequately. Facial recognition has widespread applications in commercial use and law
enforcement and is powered by about 25 years of research in the scientific field of robotics
and processing techniques for sensory data. Zhao et al. stated “Even though current
machine recognition systems have reached a certain level of maturity, their success is
limited by the conditions imposed by many real applications. For example, recognition
of face images acquired in an outdoor environment with changes in illumination and/or
pose remains a largely unsolved problem. In other words, current systems are still far
away from the capability of the human perception system.” (Zhao, Chellappa, Phillips,
& Rosenfeld, 2003).

Nowadays facial detection (and sometime recognition) is often available on digital
devices like cameras (Ray & Nicponski, 2005) and smartphones (Chun & Maniatis, 2009).
Many parts of the human body, with facial features in particular, have been targeted
for detection by computer vision. Studies on the detection of elements of the face have
been performed like eye-pair detection from visual imagery (Karaaba, Schomaker, &
Wiering, 2014; Jee, Lee, & Pan, 2004) and ear detection in images of faces (Chen &
Bhanu, 2004; Islam, Bennamoun, & Davies, 2008). A ROS based facial recognition
module was implemented by Baggio et al., which will be used and build further upon
in the current research (Baggio et al., 2012). This module combines a Haar classifier
from the OpenCV libraries for the detection of faces, training data transformation to
Eigenfaces using Principal Component Analysis (Turk & Pentland, 1991), and a support
vector machine (Cortes & Vapnik, 1995; Joachims, 1998) for the classification of new
faces.





Chapter Three

The CongreGators Architecture

Weaver et al (2014) have created an architecture for a swarm system of heterogeneous
vehicles to cooperate in search areas in an outdoor environment. The current research
is implemented upon that architecture and is aimed at performing human detection
and recognition through computer vision. The architecture handles the autonomous
navigation of the vehicles from either a decentralized base station or on a centralized
vehicle. Only the decentralized variation was used for the current research due to the
need for precise agent observation and control by a base station. The architecture
entails components like mission control, agent control, goal planners, and a Graphical
User Interface (GUI). Although the architecture was created for autonomous vehicles
to follow drive patterns and search marked areas, the actual object searching methods
were limited to color thresholding for pink objects and fiducial marker tracking. The
current research gives the autonomous vehicles the capability to search for humans,
which is further discussed in chapter 4. All of the software was developed within the
ROS environment (Quigley et al., 2009) which is a set of software libraries and tools for
the development of robotic applications. ROS uses a combination of the programming
languages C++ and Python, in which all of the modules for the architecture and the
current research are written as well. The used functional hardware in the architecture
and the architectural software are discussed below.

3.1 Hardware overview

Currently there are two types of vehicles functional in the architecture, namely Un-
manned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAV). Although ca-
pabilities vary per vehicle type for transportation, the other hardware components are
kept as similar as possible. This provides features like modularity, software generality,
and design robustness. The main processing boards in the vehicle designs were either the
ODROID-U2 quad-core 1.7 GHz Exynos ARM single board computer1 with aluminum
full metal body with heat sink, or the ODROID-U3, which is a smaller equivalent board
without a housing. All on-board higher level processing like path planning and role call

1Specifications of the ODROIDs can be found at http://www.hardkernel.com/main/main.php
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10 CHAPTER 3. THE CONGREGATORS ARCHITECTURE

were performed on these ODROIDs. In this research ‘on-board’ processing refers to com-
putations performed on the vehicle on the ODROID, while ‘off-board’ processing refers
to computations performed on the base station. This station used throughout all of the
development and testing was a ASUS K73S Intel Core i5 laptop with an NVIDIA Geforce
GT520M graphics card. The agent control and navigational execution was performed
by an ArduPilot-Mega (APM) 2.62, which is a complete open source autopilot system
embedded in each agent. The APM uses an external GPS module with an on-board
compass produced by the same company as the APM for full autonomy. Each vehicle
and the base station are equipped with an XBee 900 HP DigiMesh enabled RF module3

with antenna for communication purposes. Due to the relatively small bandwidth of
these modules they are only used to transmit low level data feedback and commands,
i.e. for mission control, agent status, and location information. An externally powered
4 port USB Hub is added to the designs for sufficient USB access between components.
The OrangeRx R620 DSM2 compatible full Range 6-channel 2.4 Ghz receiver4 was used
for manual control input and failsafe handling. Manual control was executed with a
linked Spektrum DX7s 7-Channel DSMX radio system transmitter5. The named trans-
mitter can handle both UAV and UGV control through several pre-programmed profiles.
One of the channels is programmed as a failsafe switch between autonomous and man-
ual control. All autonomous behavior immediately ceases if the manual control mode
is activated and vice versa. A Turnigy nano-tech 5000 mAh 3 Cell Lipo battery6 pack
was used as the power supply for the UGVs. The UAVs used the 4 cell version of the
same brand of battery packs. Both designs made use of a 3DRobotics power module
with XT60 connectors and 6-position connector cable for correct power distribution to
several vehicle components. Each vehicle carried a camera gimbal and was tested with
different types of cameras, to find the optimal camera for the purpose. This optimization
process is further discussed in section 3.1.3.

3.1.1 Unmanned ground vehicle design

The UGV design in the CongreGators architecture was based on the XTM Rail design
by XTM Racing7 as a modified radio controlled vehicle with a custom made carbon fiber
housing. This housing functioned both as a roll cage for protection against mechanical
damage and dirt, a feature the original XTM Rail roll cage lacked. The XTM Rail
design includes features like a heavy-duty brushless Electronic Speed Controller (ESC)

2Specifications of the ArduPilot-Mega 2.6 can be found at
http://store.3drobotics.com/products/apm-2-6-kit-1

3Specifications of the Xbee 900 HP module can be found at http://www.digi.com/products/

wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-pro-900hp
4Specifications of the OrangeRx R620 receiver can be found at http://orangerx.com/2013/

01/22/orangerx-r620-spektrumjr-dsm2-compatible-full-range-6ch-2-4ghz-receiver-wfailsafe/
5Specifications of the Spektrum DX7s transmitter module can be found at

http://www.spektrumrc.com/products/default.aspx?prodid=spm7800
6Specifications of the Turnigy battery pack module can be found at

http://www.hobbyking.com/hobbyking/store/ 11956 Turnigy nano tech 5000mah 3S 45 90C Lipo Pack.html
7Specifications of the XTM Rail design can be found at http://www.rccaraction.com/rail
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and high-torque motors, 3 motor cooling fans, a 4WD drivetrain with gear differentials,
and threaded aluminum oil-filled shock absorbers with heavy duty shock shafts. The
vehicles lacked active brakes but decreased their speed by friction with the ground and
internal differential/motor friction. An On/Off switch was added between the battery
pack and the system for easy start-up and shutdown control. Ardupilot’s pre-existing
Rover Firmware was loaded on the APM for correct navigation and status handling. A
labeled external view of a UGV is shown in figure 3.1. In the UGV design the APM,
USB Hub, and ODROID U-3 are scaffolded on top of each other (in that order) for
efficient space usage. A labeled internal top view and side view of a UGV are shown in
figure 3.2.

Figure 3.1: External view of a UGV

3.1.2 General unmanned aerial vehicle design

Within the CongreGators architecture multiple UAVs with different configurations were
created among which a Flamewheel8 quadro-copter (model F450), a Flamewheel hexa-
copter (model F550), a custom made hexa-copter, and a custom made Octorotor X-8
copter (from now on referred to as the X-8). All custom made UAVs were designed
and created at the Machine Intelligence Laboratory of the University of Florida. This

8Specifications of the Flamewheel designs can be found at
http://www.dji.com/product/flame-wheel-arf/feature
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(a) Internal top view

(b) Internal side view

Figure 3.2: Internal view of a UGV
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section will describe the general UAV setup with the X-8 as a reference example. Besides
the standard components named in section 3.1, the UAVs were equipped with brushless
motors, a number of ESCs according to the number of motors, and varied sizes of carbon-
composite propellers, all dependent on the UAV configuration. A landing gear was used
for safe landings as well as a protective structure for the vehicle’s gimbal and camera.
Due to the absence of a roll cage on the UAVs, the ODROID U-2 with protective housing
was used on the X-8 to ensure the ODROID’s safety in the case of a vehicle crash. A
labeled vehicle overview of the X-8 is shown in figure 3.3.

Figure 3.3: Overview of a UAV, namely the X-8

3.1.3 Sensor selection

For the purpose of human detection and recognition the vehicles had to be equipped
with cameras on a gimbal. Multiple cameras and processing methods were tested before
the final selection was made. The options for the camera selection were the Logitech
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HD Pro Webcam C9209 and the Linksys WVC80N Wi-Fi Wireless-N IP camera10. The
latter camera works in combination with a D-Link 802.11n compliant Xtreme N Gi-
gabit Router11. Some of the differences between the cameras are resolution, size and
weight, and output method. The specifications of the cameras are shown in table 3.1.
Note that if the battery pack is included with the Linksys camera, which the Logitech
camera does not require, 260 grams are added and the total weight of the package will
become 420 grams. From the specifications the Logitech webcam has the most favorable
specifications in terms of resolution, field of view, dimensions, and weight.

Model Logitech C920 Linksys WVC80N

Resolution 1280x720 640x480

Connection type USB Wi-Fi

Size 29x24x24 mm 90x120x37 mm

Weight 65 gr 160 gr (420 gr)

Microphone yes yes

Horizontal Field of View 78◦ 61.2◦

Table 3.1: Table of camera specifications

For processing images for human detection and recognition we also have multiple
options, namely on-board processing on the vehicle versus off-board processing on the
base station and real-time processing versus post-processing. Since the system has to
use the detections immediately to make navigational choices, it has to use real-time
processing and the option of post-processing is discarded. For the decision between on-
board or off-board processing camera benchmark tests were performed for 4 different
camera-system configurations. These camera benchmarks consisted of running the hu-
man detection algorithm with the Histogram of Oriented Gradients classifier discussed
in chapter 4 on a live camera feed for 60 seconds. The performance measure in the tests
is the processed frame-rate in Frames Per Second (fps). Camera resolutions were kept at
640x480 and streaming frame rate at 10 fps on both cameras. The camera benchmark
setup consisted of the Logitech webcam which was connected through USB to the Asus
Intel Core i5 laptop and processing was done off-board. This camera benchmark was
created to measure the maximum throughput without the wireless connectivity. Three
camera-system configurations were measured against the camera benchmark:

1. The Logitech webcam is connected through USB to the on-board ODROID U-3 of
the vehicle which processes the video feed.

9Specifications of the Logitech HD Pro Webcam C920 can be found at
http://www.logitech.com/en-hk/product/hd-pro-webcam-c920

10Specifications of the Linksys WVC80N IP camera can be found at
http://store.linksys.com/cameras/linksys-WVC80N stcVVproductId84737621VVcatId554678VVviewprod.htm

11Specifications of the D-Link router can be found at
http://us.dlink.com/products/connect/wireless-n-gigabit-router/
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2. The Logitech webcam is connected through USB to the on-board ODROID U-
3 which sends its information through a Wi-Fi dongle to the Asus Intel Core i5
laptop, which processes the video feed. The raw camera image was sent over Wi-Fi
as a ROS message on an external node and processed on the laptop.

3. The Linksys WVC80N IP camera is mounted on the vehicle and streams its video
feed straight to the D-link router which is connected to the Asus Intel Core i5
laptop. For image processing the ODROID is completely omitted and video pro-
cessing is done off-board.

The results from these benchmark tests are shown in table 3.2 and refer to the enumer-
ation discussed above. Again, note that these results are frame rates after the human
detection algorithm has processed the images and not raw frame rates from the cameras
themselves. The results from the benchmark test in table 3.2 show that the Linksys
WVC80N in this configuration has the highest throughput out of the 3 options. Al-
though configuration 3 is Wi-Fi dependent, this camera-system setup was chosen for
the execution of this research. When faster on-board processors become available, the
human detection processing should be moved back to the vehicle’s processor.

Configuration Used Camera Frame Rate (fps)

Benchmark Logitech webcam 10

1. Logitech webcam 0.56

2. Logitech webcam 0.69

3. Linksys WVC80N 2.82

Table 3.2: Benchmark tests for different camera-system configurations

3.1.4 Gimbals

For stabilization and camera directionality purposes the cameras were mounted on gim-
bals with 2 degrees of freedom (DOF). On the UGVs the gimbals were mounted on top
of the carbon fiber housing of the vehicles and could rotate the camera around the pitch
and yaw axes. The gimbals on the UAVs were mounted underneath the vehicles and
could rotate around the pitch and roll axes. The gimbal was connected to the APM of
the vehicle which moves the gimbal depending on the vehicle’s spatial orientation. User
settings were applied to enable stabilization in both DOF for the UAVs and only in the
pitch DOF for the UGVs. While the foremost functionality of the gimbals on the UAVs
was to stabilize the camera during flight maneuvers, the UGVs mostly used the gimbals
to actively change the camera’s viewing area in different behavior modes (see section 4.2
for more details).
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3.2 Architecture overview

As mentioned previously, the architecture is set up to work both centralized and de-
centralized which entails that the entire architecture, including the agent control and
mission control, has to function on each vehicle of the swarm. The ‘base controller’ is
in charge of the mission commands and this role is taken up by either the base station
or in the absence of a base station one of the agents serves functions as such. Although
the current research only uses the decentralized option, the initial architectural setup
was kept intact throughout the research. The architecture consists of a number of ROS
main modules, which will be elaborated on below. In addition to the main modules
some sensor modules existed like a vision module, an AR tag tracking module, and an
obstacle detection module (Weaver, 2014). The latter described modules will not be
discussed here further. For the current research the GUI was altered and four modules
were added, namely human detection, facial recognition, dynamic navigation, and a user
tracker. The main modules, added modules, and GUI changes will be discussed below.

3.2.1 Main architecture modules

One of the main ROS modules is the swarm core which consisted of multiple functions
to assist in agent control and mission and path planning. Weaver et al stated “Swarm
Core is made to be customizable, allowing a diverse selection of mission types, planners,
or vehicle control applications to be implemented.” (Weaver, 2014). These planners
make use of the standard ROS packages sbpl and sbpl lattice planner that implement a
generic set of motion planners using search based planning (Cohen, Chitta, & Likhachev,
2010).

Roscopter is a ROS package implemented in the CongreGators architecture for the
autonomous control of the unmanned vehicles. It handles the communication between an
autopilot like the currently used APM and a processing board running Ubuntu using the
mavlink protocol (Meier, Tanskanen, Fraundorfer, & Pollefeys, 2011). The previously
mentioned apm status publisher aids in this communication by providing a frequent
feedback loop from the APM to the processing board.

The role call module initiates a digital handshake between the base controller and
each enrolling vehicle using agent role call service messages and role acknowledge mes-
sages. If the handshake is successful, the base controller and all vehicles present in the
swarm will be updated of the enrollment.

Heartbeat is a straightforward function that provides the base station with a pub-
lisher that sends out a boolean message at a frequency of 1 hertz. This message invokes
a request to the agents to acknowledge themselves. Agents will return such an acknowl-
edgement by sending an Agent Status message at half the heartbeat rate consisting of
the variables: intended receivers, agent ID, mission status, latitude, longitude, heading,
battery status, and waypoint distance.

Finally, the xbee bridge handles all the actual communication among agents and
base station through the XBee 900 HP DigiMesh enabled RF module discussed in sec-
tion 3.1. It handles both outgoing and incoming messages. Note that the base station
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only sends out a heartbeat and no basic status messages. Command messages consist of
a mission related message including role acknowledgements, waypoints, mission settings,
and start/stop commands, among others.

3.2.2 Added modules

3.2.2.1 The human detection classification module

The human detection classification module is roughly based on the work by A. Leigh12

and was created to implement the detection of human subjects in video imagery from
the agents. The module makes use of OpenCV libraries and algorithms which include
a HOG classifier and multiple Haar classifiers for testing. In the final experiments only
the HOG classifier remained in the module based on comparing classifiers. Details on
this comparison and the functionality of the classifiers is discussed further in section 4.1.
When a detection occurs, a bounding box is drawn on the output window the module
provides, which is published as a ROS message. The bounding box consists of 4 values,
namely the x- and y-position, width, and height, all measured in pixels. All output
images, with the drawn bounding box included, are saved for result analyses. If multiple
agents are used at once, a ROS launchfile can be used to start multiple instances of the
module. To prevent lag and buffer overflow in the image processing the algorithms are
threaded in an image callback function and an image processing function. The image
callback handles retrieving the frames from the camera at a maximum frequency of
10 Hz. The image processing function handles the application of the classifier to the
frames, publishes the bounding box, manages the output storage, after which output
can be viewed on the base station.

3.2.2.2 The dynamic navigation module

The dynamic navigation module was created from scratch to combine several inputs from
other modules for the dynamic navigation of agents. The dynamic navigation module
receives input from the human detection module, on the status of the agents and the
mission, as well as from the user tracker discussed below. From this input it calculates
detected person positions, clusters person positions into prototypes, calculates dynamic
driving patterns to approach said prototypes, and sends out vehicle commands accord-
ingly. The results are all sent to the GUI for display to the user. When a vehicle has
completed the approach maneuver the module requests a camera-flip action and initial-
izes the facial recognition module, which is discussed below. In the case of a dynamic
maneuver the original static path is stored and continued when the facial recognition is
completed. Note that in this research a static path is defined as the search path that
is set at the start of a mission, either set by the user as a waypoint path or calculated
by the agent from a given search area. A dynamic path is defined as the evolving way-
points that are calculated by the dynamic navigation module as a result from human

12More information and code by A. Leigh can be found at https://github.com/angusleigh
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detections. Details on the methods and functionality implemented in the module are
discussed further in section 4.2.

3.2.2.3 The facial recognition module

The facial recognition module is based on the work by Baggio et al (2012), which was then
adapted for the performance within the current research. The facial recognition module
makes use of a combination of a Haar classifier for the detection of faces, a transformation
to Eigenfaces in a process that is called Principal Component Analysis (Turk & Pentland,
1991), and a support vector machine (Cortes & Vapnik, 1995; Joachims, 1998) for the
classification of new faces in a video feed. Details on these methods and functionality of
the module is discussed further in section 4.3. The facial recognition is only activated
when the UGVs are in a holding position in the stage of the behavior where the vehicle
is close to a detected test person’s location and the camera is flipped up.

3.2.2.4 The user tracker module

For the implementation of additional user functionality in issuing commands to the
vehicles, the user tracker module was added to the architecture. The module makes use
of the OpenNI libraries from ROS to enable a Kinect sensor (Zhang, 2012) to segment
humans from the sensor data. The user tracker will recognize a person consisting of
up to 23 segments of the body through segmentation in the point cloud, e.g. the head,
torso, feet, hands, and so on. In the current research the module was used to detect arm
gestures to issue mission start and pause commands for different vehicles by raising a
different arm. This added functionality gives the user the ability to control the swarm
with gestures, thus without physically touching any buttons. This functionality makes
the user more embedded in the physical world while commanding the agents. An example
of the view from the camera of the Kinect versus the 3D model of the human (which is
giving a gesture) that is created in ROS though the depth information from the infrared
sensor, is shown in figure 3.4. In the figure the different colors of the 3D model indicate a
range of proximities to the distance sensor, red being closer to the sensor and blue being
further away. Besides the described information the different body segments and their
relative positions from the sensor are represented as lines from sensor position to the
separate segments in figure 3.4. The 3D visualization tool Rviz13 from ROS was used to
visualize the 3D models. Note that due to the use of an infrared sensor by the Kinect
sensor the performance heavily decreases if sunlight shines directly onto the sensor. This
event would render the user tracker module useless, unless the sensor and the user are
covered in shade, e.g. with the use of a tent.

13More information about Rviz from ROS can be found at http://wiki.ros.org/rviz
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Figure 3.4: Example of the view from the camera of the Kinect versus the created 3D
model of the human in ROS

3.2.3 Graphical user interface

The GUI for the CongreGators architecture consists of 3 main components within the
‘rqt’ package, which is a Qt-based framework14 for GUI development in ROS. These
components are the Agent Status, Command Plug-in, and Waypoint Plug-in. For the
initial CongreGators architecture architecture those components suffice, but for this
research some functionality had to be added. The initial GUI and the modified version
will be discussed next.

3.2.3.1 Initial GUI

The Agent Status component of the GUI keeps track of agents that are enrolled in the
architecture. It creates a new tab for every agent which displays 8 fields of information.
UAVs are marked by ‘AA’ (Agent Air) followed by the agent’s label, while UGVs are
marked by ‘AG’ (Agent Ground) followed by the label. The initial 8 fields of the Agent
Status tabs were the agent’s role, Altitude (m), Latitude (degrees), Longitude (degrees),
the number of waypoints the agent has past, distance to the next waypoint, Battery
voltage (mV), and travel state.

The Command Plug-in is used to set the mission settings, to send mission commands
to the agents, and to display communication feedback from the agents. The mission
settings that can be selected are Mission Name, Mission Type (which corresponds to
the agent’s role in the Agent Status section), Altitude Ceiling (m), Coverage Rate (%),
Overlap Label (m), and Mission Timeout (s). The commands that can be sent are Send
Mission, Start Mission, Pause Mission, Abort Mission, and Return To Base. Mission
settings and mission commands can be set per agent individually or for all agents at once.
The communication feedback function informs the user with corresponding feedback from
the agents, e.g. the message “Sending Command Accepted” or “Mission Complete”.

The Waypoint Plug-in handles the creation of waypoint patterns and paths from user
input. This component consists of an interactive Google Maps section15, a waypoint

14Information on Qt 4.8 and downloads can be found at http://qt-project.org/doc/qt-4.8/
15When the GUI is started an internet connection must be at least briefly available for Google Maps

to load. A tethered smart phone with 3G internet connection would also suffice.
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settings menu, and 5 buttons to aid in the waypoint creation. These 5 buttons have
the labels Add, Delete, Modify, New, and Clear, which respectively function to toggle
the Add mode, Delete mode, Modify mode, create a new waypoint from scratch, and
clears all the waypoints. In using one of the modes, for example the Add mode, the
user can click the Add button and then click on the location on the map to create a
waypoint there, signified by a dark blue marker. The Delete and Modify mode work
in analogous ways, where the latter is used to change default settings of the waypoint
like the altitude or the position accuracy. Like with the Command Plug-in all input can
be given per agent individually or for all agents at once. All waypoint markers can be
dragged and dropped on the map for easy adjustments. The Plug-in also creates one
green base station location marker that has the same features as the waypoint markers,
but signifies the location of the base station. The waypoint settings menu provides
useful functions like the saving and loading of waypoint patterns. While a waypoint
pattern is created dark blue lines are drawn between the waypoints, creating a visual
path in case of the ‘Path’ mission type and a visual search area in case of the ‘Search’
mission type. If a search mission is accepted by an agent it will send back a planned
lawnmower pattern within the search area. A lawnmower pattern is defined as paths
from side to side of the search area parallel to the edges of the area with turns of 180◦ at
the borders, including a small shift to ensure no path section is repeated. Examples of
such lawnmower patterns can be reviewed in figure 3.5 in which the (dotted) light blue
lines are the agents (calculated) driving paths. Search areas are autonomously divided
among all enrolled agents in which they will individually generate lawnmower paths to
cover their own part of the assigned search area. The GUI represents this patch with
dotted light blue lines. Agents that are enrolled and are communicating their current
GPS location are shown at that location on the map with a light blue marker showing
the agent’s label. From the time of enrollment to the time of agent log out or program
termination a light blue line marks the path that the agent has traveled.

3.2.3.2 Modified GUI

To represent the information provided by the current research some extra functionality
is added to the GUI. The additions are detected person locations, prototype locations,
dynamic waypoint locations, actual person locations, actual person input through but-
tons, saving and loading actual person locations, and a change in the Agent Status from
altitude to heading. For information and methods on how locations are calculated and
provided, see section 4.2.

When information about a detected person location becomes available, that position
is marked on Google Maps with a small red marker. In a similar fashion a purple marker
signifies the location and label of a prototype and a light blue marker containing an ‘N’
signifies a new dynamic waypoint that is created. Actual person locations can only be
entered by the user after a GPS location of a test subject is determined and are shown by
a yellow marker. The user can either input that information through Google Maps using
the toggle buttons Add Person and Delete Person and clicking and dragging on the map,
or the user can input the GPS data through coordinates. Actual person locations can be
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saved and loaded just like one can do with waypoints. All markers in the GUI were made
to prompt a pop-up window with GPS location of the marker and label information (if
available) when clicked.

A change was made in the Agent Status section of the GUI to display the agent’s
heading instead of the altitude. For obvious reasons the heading of a ground vehicle is a
more important piece of information than its altitude. Examples of the initial GUI and
the modified GUI are shown in figure 3.5.
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(a) Initial GUI

(b) Modified GUI

Figure 3.5: Two versions of the GUI



Chapter Four

Human Detection and
Recognition through Dynamic
Navigation

4.1 Human detection

For the detection of humans in a video feed, multiple classifiers were considered, namely a
Histogram of Oriented Gradients (HOG) classifier and five cascades for a Haar classifier.
The input of the classifiers consists merely of raw video without any other informa-
tion on possible human locations. Benchmarks were created to test the classifiers on
their performance on 4 separate datasets in a post-processing experiment. The separate
classifiers and the benchmarks on the datasets are discussed below.

4.1.1 Histogram of oriented gradients classifier

The pedestrian ‘HOGDescriptor’1 from the OpenCV libraries was tested on its perfor-
mance on the benchmarks. The reason that this classifier was chosen is because “Lo-
cally normalized Histogram of Oriented Gradient (HOG) descriptors provide excellent
performance relative to other existing feature sets” (Dalal & Triggs, 2005). The HOG
pedestrian detection algorithm makes use of an overlapping grid of HOG descriptors of
which the results are combined into a feature vector for a conventional Support Vector
Machine (SVM) based window classifier. Before the HOG algorithm is applied to the
input frames the image is pre-processed by converting it to the grayscale color space,
without specific color filtering, and equalizing the histogram of the grayscale image.
Sequentially the HOGDescriptor is applied on the image through a multi-scale sliding
window technique. If multiple detections are made, an overlap threshold is applied to
(partially) prevent the algorithm from outputting multiple detections of the same object.
Multiple detections are compared through overlapping pixel areas of their corresponding

1The OpenCV HOGDescriptor class description can be found at
http://docs.opencv.org/java/org/opencv/objdetect/HOGDescriptor.html
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bounding boxes, which are discussed in section 3.2.2.1. The overlap threshold is set to
50% which signifies that if two bounding boxes within one frame cover more than 50%
of the same pixel area, the bounding box with the smallest total area is discarded.

4.1.2 Haar classifiers

For the development of Haar classifiers, Viola and Jones developed Haar-like features
(Viola & Jones, 2001) which are adapted on the idea of Haar wavelets. In a Haar-
like feature the pixel intensities from adjacent rectangular subsections of an image are
summed up and differences between those sums are calculated. These differences are then
matched and categorized against a classifier cascade defining the Haar-like features. The
training of a Haar classifier is the creation of such a cascade through multiple stages in
which false-positive rates and detection rates are optimized.

Five Haar cascades for human detection from the pedestrian view were used in the
benchmark tests, from which four were taken from the OpenCV libraries and one was
created specially for the current research. The four OpenCV human detection cascades
are for full body, lower body, upper body, and an adapted upper body cascade named
‘Haar mcs upperbody’ (Castrillón-Santana, Déniz-Suárez, Antón-Canaĺıs, & Lorenzo-
Navarro, 2008). Since there was no cascade on-hand for the detection of humans from a
top view, one was created from scratch and named ‘Haar top-view’.

4.1.2.1 Creating the Haar top-view classifier

For the creation of the Haar top-view classifier a cascade had to be created. The training
phase used input images, recorded using both UAV imagery and static video imagery
from an experimental setup. All UAV imagery was recorded through manual flight
on dates before June 18, 2014 and in accordance to the regulations applied before the
publication of the “Interpretation of the Special Rule for Model Aircraft”2 by the Fed-
eral Aviation Administration. The UAV recorded multiple individuals from different
altitudes passing underneath the vehicle. In the experimental setup individuals were
recorded from a static altitude passing underneath the camera from the same angle at
which the camera on the UAVs was mounted. Through the recordings of different indi-
viduals a spread in appearance was ensured to create a diverse training set. The camera
view angle was kept at 30◦ raised from a downwards perpendicular view, both on the
vehicle, which is shown in figure 3.3 of the X-8 by the blue markings, as in the experi-
mental setup. From these experiments 1000 positive images and 2000 negative images
were taken for training and 100 positive and 100 negative images for testing (the later
discussed UAV field data set was created from these images). For these purposes the
same camera was used.

The 1000 positive images in the training set were cropped such that only the subjects
were seen in the result. These 1000 cropped images were then processed into 7000 posi-
tive examples with the use of OpenCV’s ‘opencv createsamples’ function which applies

2The “Interpretation of the Special Rule for Model Aircraft” was published on June 18, 2014 and
can be found at http://www.faa.gov/uas/publications/media/model aircraft spec rule.pdf
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perspective transformations on the original images. To be more precise, the method
creates a large set of positive examples from the given object input images by randomly
rotating, changing the image intensity as well as placing the images on arbitrary back-
grounds taken from the negative image set. The cascade was created through training
on these 7000 positive examples and 2000 negative images in a 30 stage training process
using the OpenCV ‘opencv traincascade’ algorithm. The parameter for minimal desired
hit rate for each stage of the classifier was set to 0.99 and the parameter for maximal
desired false alarm rate for each stage of the classifier was set to the default 0.5. Using
an Apple Mac Pro “Eight-Core” 2.8 GHz Xeon desktop computer for the training pro-
cedure the overall training time was 6 days. After finishing the top view Haar cascade
could now be used for field and benchmark testing.

4.1.3 Benchmark tests and datasets

The six human detection classifiers, namely HOG, Haar fullbody, Haar upperbody, Haar
mcs upperbody, Haar lowerbody, and Haar top-view, were tested with benchmarks on
four datasets. A benchmark consists of running the detection classifiers on 100 positive
images, i.e. images with a person fully shown in the image, and 100 negative images,
i.e. images from the same environment as the positive images but without a person
present. The four data sets were taken from (1) video footage from a UGV in the field
where final experiments were performed, (2) UAV top view video footage in the same
scenario, (3) video footage from a UGV in a busy campus area, and (4) from the INRIA
unoccluded person dataset3 (Dalal & Triggs, 2005). These datasets were named UGV
field, UAV field, UGV campus, and INRIA, respectively. The INRIA dataset is a well-
established collection of random photos of humans, therefore the negative images are
also a collection of random scenes without humans in them. The reason for the choice of
the first two datasets was to test the classifiers on data from the same environments the
final experiments would be conducted in. Dataset 3 and 4 were included to test classifiers
on their general performance. In the different datasets the angles from which the human
subjects are viewed differ significantly. The view from the UGVs will be defined here as
Pedestrian view and the UAV’s view will be defined as Top view. From this definition we
can now determine that dataset 1, 3 and 4 are Pedestrian view datasets, while dataset
2 is a Top view dataset.

Table 4.1 shows properties of the datasets, namely their number of unoccluded human
subjects in the positive images, resolution of the camera used for recording, and the type
of view. All datasets consist of 100 positive images, but due to occurrences of multiple
unoccluded subjects in single positive images in the UAV field set and INRIA set, their
number of test subjects exceeds 100.

The benchmarks were scored on 3 measures, namely correct detections, false-positives,
and processing rate in frames per second (fps) of the 200 frames per dataset. False-
positives are the detection of a human subject when there is no subject in the output
bounding box, which was checked by the user. In the checking process the following rules

3The INRIA dataset can be downloaded from http://pascal.inrialpes.fr/data/human/
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Dataset number of subjects Resolution View type

UGV field 100 640x480 Pedestrian view

UAV field 128 1280x720 Top view

UGV campus 100 1280x720 Pedestrian view

INRIA 158 Diverse Pedestrian view

Table 4.1: Dataset specifications

applied. For the HOG, Haar fullbody, and Haar top-view classifiers, if a bounding box
covered more than 50% of the subject’s body the detection was considered correct. The
Haar upperbody, Haar mcs upperbody, and Haar lowerbody classifiers were composed
of training on several parts of the human subject (Kruppa, 2004). Therefore, if parts of
the subject associated with the classifier were detected (with a relatively correct size)
the detection was considered correct, e.g. the top of a head for the Haar upperbody
classifier or a leg for the Haar lowerbody classifier. For all classifiers, if a human shadow
‘attached’ to a subject was detected, the detection was also considered correct. Besides,
if multiple detections were made of a subject only 1 correct detection was counted and
the other detections dismissed. Note that a dismissal is subtracted from the ‘correct’
benchmark measure while not being added to the false-positive count. The same action
applied if illustrations or other representations like statues were detected in the back-
ground. Only the INRIA set included some of those objects in the background. All other
detections from classifiers that did not apply to the discussed exceptions, were marked
as false-positives.

4.2 Dynamic navigation

A dynamic navigation module was created to combine all the input from other modules
and agents into a new investigation behavior. When human detections are made through
the HOG classifier, that information is combined with the current Agent Status informa-
tion from the agent that made the detection. This results in a detected person location
consisting of a GPS coordinate. After 3 or more detections are made, every occurrence
of a human detection initiates a clustering algorithm to see which detections should be
labeled as a cluster of detections, thus belonging to one test subject. A prototype is
created in the middle of the cluster as representation of the found person and a new
drive pattern is created to investigate the person, i.e. try to recognize the person’s face.
If the agent is in an investigating position, the camera could be ‘flipped up’ with the
gimbal under an angle of 30◦ to get the subject’s face in view. This angle is the maxi-
mum gimbal pitch angle and is in line with the investigation distance and the average
human height. Finally a sequence of commands is issued by the module to complete the
behavior. The previously described process will be discussed in detail below.
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4.2.1 Detection processing

Each detection is processed into a detected person location with a label and possibly
accompanied by a prototype. All the produced information is displayed on the GUI.
Clustering will re-occur after every human detection when 3 or more detections are made,
but will only generate a prototype if more than 3 detections are made within a range
of 3 meters of each other. The clustering algorithm is incorporated to exclude outlying
false-positives and to build a certain ‘confidence’ about detected person existence and
location.

4.2.1.1 Person localization

At the moment an agent detects a human through the HOG classifier, the person local-
ization is started. First the values of the detection bounding box are used to calculate
distance and angle to the subject. The angle to the subject relative to the vehicle is
calculated through equation 4.1, where frameWidth is 640 and FoV (Field of View) is
61.2◦, when the IP camera is used.

angle =


(
Boundingbox.x+ (Boundingbox.width/2)

)
frameWidth

− 0.5

 ∗ FoV (4.1)

Note that angles of detections range from -30.6◦ to 30.6◦ minus half of the width of the
detection. Distance from the agent to the subject is calculated according to the height
of the bounding box. A distance calibration was performed to determine the relation
between the height of a bounding box and the distance to the subject. A subject of
180 cm was placed in front of the vehicle in a range from 2 to 15 meters with 1 meter
intervals. Detections were made by the HOG classifier at distances from 3 to 14 meters.
Averaged bounding box heights were plotted against distances and regression analysis
was performed up to the fourth degree polynomial. Results from the regression analysis
are shown in figure 4.1. The analysis shows that 3rd degree polynomial regression (also
know as cubic regression) and 4th degree polynomial regression are very similar and
describe the data better than 2nd degree polynomial regression (quadratic regression).
Following Occam’s Razor the function is chosen that describes the data well while keeping
the complexity of the function as low as possible, which in this case is the cubic regression
function. The general cubic function of distance versus bounding box height is shown in
equation 4.2, with the coefficients p1 = −1.0123∗10−6, p2 = 0.00094457, p3 = −0.30537,
p4 = 38.996.

distance = p1 ∗Boundingbox.height3 + p2 ∗Boundingbox.height2+
p3 ∗Boundingbox.height+ p4

(4.2)

When the distance and angle to the subject are known, the current latitude, lon-
gitude, and heading of the agent in question are taken from the current Agent Status.
These 5 values can be combined to determine the latitude and longitude of the subject
with the pair of equations 4.3 and 4.4, where latsub and lonsub signify the subject’s
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Figure 4.1: Regression analysis on distance calibration data

latitude and longitude respectively, latveh and lonveh signify the agent’s latitude and
longitude respectively, dis being the distance between agent and subject, Earth being
the Earth’s radius (km), heading being the agent’s bearing (clockwise from magnetic
north), and angle being the relative angle from agent heading to subject.

latsub = asin

(
sin(latveh) ∗ cos

( dis

Earth

)
+ cos(latveh) ∗ sin

( dis

Earth

)
∗

cos(heading + angle)

) (4.3)

lonsub = lonveh + atan2

(
sin(heading + angle) ∗ sin

( dis

Earth

)
∗ cos(latveh),

cos
( dis

Earth

)
− sin(latveh) ∗ sin(latsub)

) (4.4)

Note that all angles should be expressed in radians. End results are calculated as radians
and can be recalculated to degrees by multiplying them with the factor (180/π). The
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detected person location can now be published on ROS through a customized message
for the GUI to be shown.

4.2.1.2 Clustering and prototype creation

The clustering algorithm is initiated after 3 human detections occur and clusters are
re-calculated after every new detection occurrence. In the clustering algorithm two pa-
rameters are most important, namely detectionsInCluster representing the minimum
number of detections to form a cluster and clusterRadius which represents the radius
a cluster area has. Default values of the parameters are detectionsInCluster = 3 and
clusterRadius = 3 (meter). Detections are marked by numerical labels which represent
cluster identifiers. If a new detection is added it initially receives the label 0, which
represents that the detection has not been assigned to a cluster yet. The first time the
clusters are generated, which occurs when exactly 3 detections are made, a detection is
chosen at random and assigned the label 1. Note that at the start of this process all
detections are labeled as 0. Subsequently another detection is taken and the euclidean
distance between the two detections is calculated. This process first converts the de-
tection location data from Geographic (latitude and longitude) coordinates to Universal
Transverse Mercator (UTM) coordinates (Northing and Easting). Conversions between
these coordinate types was performed in the software with the LLtoUTM and UTM-
toLL functions of the gps common package4 from ROS. UTM coordinates include a Zone
value which is assumed to remain the same in this research, since no large distances are
traveled by the agents and no zone border is close to the experiment locations5. Dif-
ferences between Northing and Easting of the two locations are calculated and provide
input to the Pythagoras Theorem to calculate distance. Equation 4.5 shows the function
that produces the euclidean distance between two UTM coordinates, while equation 4.6
shows the function that produces the angle between two locations. The latter function
(needed later in the dynamic navigation behavior) is expressed in radians but can be
converted to degrees by multiplying the result with 180/π. Both equations include the
components Ni and Ei being the Northing and Easting with location identifier i, and i1
and i2 being the specific identities of the detected locations.

distanceeucl =
√

(Ni1 −Ni2)2 + (Ei1 − Ei1)2 (4.5)

angle(rad) = atan2(Ei1 − Ei2 , Ni1 −Ni2) (4.6)

If the calculated distance is smaller than clusterRadius the new detection is assigned
the same label as the labeled detection, namely label 1 in this first iteration. If the
distance exceeds clusterRadius a new label will be assigned which is an increment of
the highest existing label number. This process is repeated for the third detection.
If the number of person detections with the same label exceeds detectionsInCluster,
a prototype is generated to represent the cluster. The location of this prototype is

4Package information can be found at
http://docs.ros.org/hydro/api/gps common/html/namespacegps common.html.

5All experiments were performed in Gainesville, Florida, U.S.A.
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calculated by averaging the UTM location data of the cluster’s members, shown in
equations 4.7 where the equation variables denote the same variables as in equation 4.5.

Nproto =

∑n
i=1Ni

n

Eproto =

∑n
i=1Ei

n

(4.7)

When the previously described process of labeling has already taken place at least
once, only new detections will be included to the prototype if they are within the cluster
radius. If that is not the case, but they are within the range of other detections, they
are added to the cluster of those detections. This is an opposite approach to re-checking
and renaming every location from scratch. The reason for this choice is to keep a
certain consistency in cluster naming. After every addition of a person detection and
label, all prototypes are recalculated to update their position. After that the creation of
prototypes dynamic drive patterns can be initialized.

4.2.2 Dynamic drive patterns

Since prototypes are representations of detected person locations, these locations of
interest are investigated by the agents. Three options of drive patterns have been imple-
mented to approach prototypes, namely a single waypoint, a star pattern, and a diamond
pattern. In every pattern the closest waypoint(s) to the subject are ‘investigation’ points
where the camera is flipped up 30◦ in the pitch direction by the gimbal to get the sub-
ject’s face in view and start facial recognition, which is discussed in section 4.3. At this
waypoint the ‘holding’ state is prolonged to give the facial recognition module enough
time to perform correctly. All dynamic driving patterns are discussed below and shown
in figure 4.2, where the dotted lines were added for clear representation of the path and
red crosses mark the investigation points. When approaching a location of interest to
investigate a person’s face, two factors are of great importance, namely maintaining a
certain distance from the subject and making sure the subject is in view of the camera.
These factors were regulated by a behavior parameter approachDistToPerson that in-
dicates the approach distance of the agent to the subject and the varying drive patterns.
The default setting of approachDistToPerson was 3 meters in all dynamic navigation
experiments. Note that the efficiency of every dynamic driving pattern is highly de-
pendent on the accuracy of the human detection and person localization algorithms.
After a prototype was created the agents would immediately respond by approaching
the created prototype with a dynamic driving pattern.

4.2.2.1 Single waypoint

The most simple way to approach a location of interest is to move along a straight line
to that location up to a distance of the given approachDistToPerson parameter. To
compute the coordinates of this single new waypoint one can combine the previously
discussed steps. These include calculating the distance between the locations with equa-
tion 4.5, subtracting approachDistToPerson from that result, calculating the angle to
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the location with equation 4.6, and inputting those variables with agent location in-
formation into the pair of equations 4.3 and 4.4. This process computes the stopping
location of the vehicle along the shortest path. For a visual representation of the single
waypoint approach see figure 4.2a.

4.2.2.2 Star pattern

The driving pattern in the form of a star was created to approach a subject from 4
angles while trying to keep the heading of the vehicle towards the subject. The angle
of approaches towards the subject are 0◦, 90◦, 180◦, and 270◦ respectively. The star
pattern consists of 7 waypoints, of which 4 are used for actual recognition and 3 are
used for correct agent heading purposes. The first waypoint is a waypoint created with
the same method for a single waypoint, i.e. the point in between agent and subject on
the given approach distance. Subsequently three pairs of waypoints are reached in a
counter-clockwise fashion. In a waypoint pair, first the agent drives to a waypoint on
twice the approachDistToPerson distance under the correct angle to the subject. Then
the agent drives inwards towards the subject to stop at the given approach distance.
This would theoretically result in having the detected subject in view of the camera
since the agent’s heading lines up with its location. For a visual representation of the
star pattern see figure 4.2b.

4.2.2.3 Diamond pattern

Another option to get the subject’s face into camera views is to mount the camera on
the vehicle in a different fashion and drive around the subject. The gimbal on the vehicle
is then rotated 90◦ counter-clockwise in the yaw direction and fixed manually in that
position before the mission. The camera could still be flipped up in a pitch rotation
for the facial recognition and would stay in this configuration during the entire pattern.
Driving around the subject in a diamond shape while holding still in the middle of the
paths would theoretically result in having the face of the subject in view at 4 different
angles. For a visual representation of the diamond pattern see figure 4.2c.

Mounting the camera sideways like described above proposes multiple swarm behav-
iors because of the heterogeneity it introduces among the UGVs. To give but a few
examples, if one agent would have its camera mounted in a sideways fashion and other
agents would have their cameras mounted ‘normally’, the regular agents could search for
human subjects but let the investigation tasks be done by the ‘special’ agents. Another
option would be to adjust the software so human detection and localizing could also
be done with the sideways oriented camera, thus rendering the special agents with the
entire set of capabilities that the normal agents possess.

4.2.2.4 Dynamic drive pattern choice for dynamic navigation experiments

After experimenting and testing all drive patterns only the single waypoint pattern was
chosen to be used in the final experiments. Due to its simplicity and small number of
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(a) Single waypoint

(b) Star pattern (c) Diamond pattern

Figure 4.2: Three dynamic driving patterns to approach a prototype

navigational actions this driving pattern showed the highest chance of having the sub-
ject’s face in the camera’s view after completion. Note that this method of approach
only investigates the person’s face from one angle and therefore the condition that the
subject was facing the vehicle at the time of facial recognition was imposed. The reason
for the ineffectiveness of the star pattern and the diamond pattern were the inaccuracy
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of the agent’s GPS module and the allowance by the system of the waypoint approach
proximity. This system allowance was a result of the initial architecture setup to search
large areas in broad lawnmower patterns in combination with the GPS inaccuracy. In
the diamond pattern the ‘roll-out’ characteristic from the agents also had a bad influence
on the agents performance in getting a person’s face in camera view during the driving
patterns. Because the facial recognition module has the need for a precise vehicle ap-
proach and correct vehicle heading in order to get the subject’s face in view, the methods
with the highest simplicity yielded the best results. Even though there is a requirement
to have faces in the direction of the approaching vehicle’s camera, the single waypoint
driving pattern was used in the final experiments as being the most effective.

4.2.3 Measuring behavior performance

The person localization performance was measured in 5 experiments of two separate
experiment types. Due to the “Interpretation of the Special Rule for Model Aircraft”6

implemented by the Federal Aviation Administration on June 18, 2014 the current re-
search could not make use of any UAVs in the experiments. Despite of the fact that the
UAVs could not actually be deployed in the experiments, the current research does pro-
vide a proof of concept for the functionality of such vehicles providing human detection
within the architecture. This proof of concept is further discussed in chapter 6. The
first type of experiment was conducted twice with 6 test subjects and 2 UGVs. The
second type of experiment was conducted three times with 1 test subject and 1 UGV.
In all experiments actual subject locations were randomized, while keeping them apart
at least 5 meters, and their locations were recorded by GPS for detection verification
purposes.

In experiment type 1 a search area was created around the 6 test subjects, which
was kept the same for both experiment instances. The deployed agents divided the
search area and created lawnmower paths from side to side. Note that the lawnmower
patterns do not guarantee that subjects will appear in the camera’s field of view since
the subject’s positions are randomized and the agents have a certain coverage rate (the
amount of spread between the lawnmower strokes). This coverage rate is limited by the
quality of the GPS signal and its drift.

In experiment type 2 a manual path was created from a single UGV to a location
straight behind the test subject to search along that line for the subject. Agent start
and end position were kept the same. This experiment type was conducted to measure
person localization performance with a high certainty of the subject being in the field
of view of the camera. The specifications of the two experiment types are summarized
in table 4.2. The confidenceThreshold parameter was set according to environmental
conditions and will be discussed in section 4.3.3.

The experiments were scored on 8 measures, namely (1) the total number of de-
tections made by the agents, (2) the number of ‘correct’ detections through sufficient
proximity to test subjects, which is determined by the parameter correctDistance which

6The “Interpretation of the Special Rule for Model Aircraft” can be found at
http://www.faa.gov/uas/publications/media/model aircraft spec rule.pdf
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Experiment type 1 Experiment type 2

Agents 2 1

Test subjects 6 1

Subjects in datasets 3 4

Search method Lawnmower paths Direct path

Subject view guarantee No Yes

confidenceThreshold 0.72 0.70

Table 4.2: Specifications of the differences between the two experiment types

will be discussed below, (3) the number of false-positive (incorrect) detections, (4) the
total number of created prototypes, (5) the number of ‘correct’ prototypes through suffi-
cient proximity to test subjects, also compared with the parameter correctDistance, (6)
the number of false-positive prototypes, (7) the number of test subjects that were actu-
ally ‘found’ by the system, i.e. that had at least one prototype at a sufficient proximity,
and (8) if a ‘useful’ dynamic drive pattern was created with respect to facial recognition
possibilities, which is discussed below. The correctDistance parameter functions as a
threshold to determine the correctness of a detection or prototype, i.e. to determine
if the detection is in a sufficient vicinity of an actual subject position. The value of
correctDistance was set to 5 meters for all experiments as a default. Measures 2, 3, 5,
6, and 7 were also calculated as a percentile of their respective categories. Note that
measure 4 is mostly important for experiment type 1, since in experiment type 2 this
measure yield boolean-like results (either 1 or 0) due to the experimental setup. The
usefulness of any created dynamic patterns in measure 8 is a boolean result, which is de-
termined by the human operator in terms of whether a test subject was in the camera’s
view after the completion of the dynamic pattern.

4.2.4 Command handling

The initial CongreGators architecture included 4 mission commands that could be sent
to the agents, namely a Start, Pause, Abort, and Returntobase command. These com-
mands were supplemented by mission information messages like for example waypoint
sequences. For the purpose of obtaining the correct behaviors from the agents within the
current research there were two options. Either the behaviors could be built by scaffold-
ing the existing commands into a new behavior or new commands could be created like
an Approach and Investigate command combined with an appropriate internal state of
the agents. Due to resource and time constraints only the first option was tested and
proved to produce a desired behavior.

The command sequences from the scaffolding method will be explained more thor-
oughly here. At the moment a prototype is created by the human detection algorithm
a Pause command is sent to the agent that has made the detection. After the Pause
command is sent and an acknowledgement from the corresponding agent is received, the
agent’s static path and the upcoming waypoint number are stored. Subsequently one
of the dynamic driving patterns, which is specified by the user before the mission, is
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applied to the prototype and current agent location. At this point the new dynamic
mission is displayed on the GUI. Subsequently an Abort command is sent to abort the
static mission within the agent, the dynamic mission is sent to the agent through a way-
point sequence message, after which a concluding Start command is sent to start the
dynamic mission. While executing the dynamic mission, internal agent states are cues
for the behavior to perform certain actions. A prolonged holding time on a waypoint is
a cue to flip up the camera and start facial recognition. A Completed message from the
agent is a cue that the dynamic mission is successfully completed and that the original
static mission can be continued. This continuation can simply be performed by sending
the stored static mission and the upcoming waypoint number back to the agent followed
by a Start command. No Pause and Abort commands are necessary in this case.

Missions can be started or intervened through either the GUI or through human
gesture control using the Kinect, as is discussed in sections 3.2.3 and 3.2.2.4. While all
commands, mission settings, and waypoint sequences can be sent through the GUI, only
Start and Pause commands can be issued through gesture control with the Kinect.

4.2.5 Conditions for dynamic navigation experiments

Some conditions were organized in the dynamic navigation experiments to ensure that
the vehicles did not physically crash. Since there was no obstacle avoidance implemented
on the vehicles the experimental conditions were imposed so that no obstacles were
present in the experimental area, other that the test subjects. The subjects were asked to
step aside if the vehicle was on a collision course with the subject. Since the research was
set up to detect and recognize people but not track them, the condition was imposed that
these subjects stood straight up at a stationary position at spread out locations. This
would avoid frequent occlusion between subjects for view of the vehicle’s camera. The
conditions that the test subjects were of an average adult height (between 1.60 and 2.00
meter) was related to the former discussed conditions. Finally, due to the experimental
setup of the single waypoint approach discussed in section 4.2.2.4, the condition was
imposed that subjects faced the agents during facial recognition. In all experiments
no other conditions were imposed on the subjects or the experiment environment than
the ones discussed above. No clothing or appearance regulations were imposed on the
subjects to test behavior performance on a diverse group of individuals.

4.3 Facial recognition

The facial recognition module in the current research is based on the work by Baggio et
al (2012) and consists of three main phases, namely (1) a facial data collecting phase,
(2) a classifier training phase, and (3) a facial recognition phase. The module makes
uses of the combination of a facial detection Haar classifier (Viola & Jones, 2001), data
conversion to Eigenfaces (Turk & Pentland, 1991), and an SVM (Cortes & Vapnik,
1995; Joachims, 1998) to classify new faces. Certain conditions (discussed below) were
applied to the facial recognition phase for the sake of performance in the behaviors
by increasing recognition confidence over time. When the facial recognition module is
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started, a window per agent appears on the base station showing the live camera feed
and any detections as rectangular bounding boxes for the user to review.

4.3.1 Collecting facial data

Collecting the facial data from a subset of the subjects used in the experiments was
always done before the missions were started. The facial data collecting phase produces
50 images per subject out of which the face is cropped automatically. The camera with
the highest resolution available was used for the data collection, which is the Logitech
HD Pro Webcam C920 as can be deducted from table 3.1. Training images with the
highest possible resolution yield the best results, even when a lower resolution camera is
used for the recognition. In the data collection progress a frame from the camera is only
stored if a face is detected in the image. This detection is performed by the Haar face
detector from the OpenCV libraries called “haarcascade frontalface alt.xml”. If a face
is detected in the frame this is shown on the output window and the frame is cropped
using the dimensions of the bounding box, which results in data of only facial crops
from the subject. The image is also converted to grayscale without color filtering for
pre-processing purposes for the classifier training module. If multiple faces are detected
in the image only the largest faces is stored, assuming that the subject for training is
closest to the camera. This functionality also prevents the storage of false-positives of
for example the background, up to a certain level. Even though only the largest face
is cropped, in data collecting for the experiments precautions were taken that only one
subject was in the camera’s field of view at a time. Subjects are asked to slightly and
slowly move their head left, right, up, and down to ensure their face is seen from multiple
angles. The data collection software is running until it has stored 50 crops of faces per
subject. The data is labeled with the subjects name for recognition verification purposes.
After this phase is completed the data can be reviewed and pruned by hand if necessary,
i.e. when false-positives are stored erroneously.

4.3.2 Facial recognition classifier training

To train the system on the data collection, the facial dataset is first converted to eigen-
faces and their eigenvalues with Principal Component Analysis (PCA), a technique first
introduced in 1991 by Turk and Pentland (1991). The reason this conversion is not al-
ready performed in the data collecting phase is because the data would not be reviewed
properly anymore by the user due to the visual distortions in PCA reconstructed faces.
To briefly elaborate on PCA, the process first creates a so called average face from all
the data. Subsequently the data is converted into a set of eigenfaces that represent the
main differences between the average of the training images and how to represent each
training image using a combination of those differences. The first eigenface represents
the most dominant facial feature differences, the second eigenface represents the second
most dominant facial feature differences, and so on. For a visual example of the differ-
ences between the average grayscale face and the conversion to the first 5 eigenfaces, see
figure 4.3 which was taken from Heseltine et al. as an illustrated example (Heseltine,
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Pears, & Austin, 2002). The eigenfaces and eigenvalues are now the data space in which

Figure 4.3: Average face image and the first 5 eigenfaces of a particular face. Figure
taken from Heseltine et al. (2002)

new examples can be projected for classification by the facial recognizer. To evaluate
new facial images, a classifier needs to be trained on the data space to segment the data
and labels. This classifier must reliably separate multiple data clusters and also classify
new data points that are not part of the trained data space as ‘unrecognized’. An SVM
that creates a model of the data space is used towards this goal. Setting the parameters
for the SVM is the process of actually training the facial recognition module.

To elaborate briefly on how the SVM works, the algorithm creates a model that
segregates the data into a category of labels. This model is a mapped representation of
the data in which the training data points of the separate labels are divided by an as
wide as possible gap. The data points of each label that have the closest proximity in the
data space to differently labeled data points are called the label’s support vectors. The
new face images that are presented to the SVM are then mapped onto the model space
and predicted to belong to a label category, based on which side separating regions it
falls on to. The SVM used for facial recognition in the current research is trained with
OpenCV’s ‘train auto’ function on an SVM object of the ‘CvSVM’7 class. This function
trains the SVM model automatically by selecting the optimal parameters from a given
range per parameter. The most important parameters for the SVM training are the C
and γ parameter, which are automatically chosen from a logarithmic scale ranging from
1*10−5 to 1*105 for C, and 1*10−14 to 10 for γ. Since the step size for a logarithmic
scale must be larger than 1, the step size for both previously named ranges is set to
5. Parameters are considered optimal when the cross-validation estimate of the test set
error is minimal. The average training time on a total of 150 training images from 3
individuals (50 images per person) over 6 sessions was 22.4 seconds, which is manageable
in the case that training happens before any mission starts (which is the default).

The advantages of SVMs are their high generalization ability in high feature spaces
(which facial recognition is dealing with), their redefinition of the training data to a
model which saves memory, their robustness against noise and overlap in the training
data, and the lack of parameter tuning requirement because the SVM will figure out the
parameters by itself (Joachims, 1998). Disadvantages of SVMs can be the training time

7OpenCV’s ‘CvSVM’ class description and it’s functions can be found at
http://docs.opencv.org/modules/ml/doc/support vector machines.html
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and computational demand, while they could take some irrelevant features into account.
Tests showed that the former disadvantage appeared not to be an issue in the current
research.

4.3.3 The facial recognition module

The actual facial recognition is performed by the facial recognition module that makes
use of the data set and SVM discussed previously. It will attempt to match detected
faces in the frames from the cameras on the vehicles to the training set. For the detection
of faces, the same Haar detector is used as in the training phase. The module expresses
the degree of recognition in terms of a confidence value that ranges between 0 and 1,
being a total mismatch and being a complete match respectively. The confidence value
is compared to an adjustable parameter named confidenceThreshold which sets the
threshold of confidence needed for recognition. The threshold parameter is the critical
boundary which determines whether the new face is marked as a positive recognition
or as an unknown face. If a face in a frame is recognized, the label of the face in the
data space is retrieved and produced both as visual output on the recognition window
(including label and confidence value) for the user to review and sent as a customized
message over ROS. The message contains the label, the x and y pixel coordinates, and
the height and width pixel values of the recognized face in the current frame. When
a face is detected but not recognized (the confidence value does not exceed the value
in confidenceThreshold) the label is absent in both the output window and the ROS
message. The lack of this label in the message is a cue for the behavior that a face
is detected but not recognized. When such a rejection occurs, the module outputs a
different ‘most-likely’ label indicating the person to be most likely in view of the camera.
This label is not shown in the output window. Figure 4.4 shows two processed frames
from the facial recognition module on a video feed from a UGV, one in which a person
with label “Bob” is correctly recognized and one in which an unknown person is correctly
rejected (no label is shown). The input imagery for the facial recognition module from
the vehicles, i.e. a facial view from almost ground level 30◦ upwards from a distance
of approximately 3 meters, is not as ideal as a close up view at human facial height.
Despite of the non ideal camera angle and distance to the subject’s face, trials showed
that the facial recognition module still performed satisfactory.

4.3.4 Conditions on facial recognitions

When the facial recognition module is performing within the behavior, errors occurring
from noise and false-positives must be taken into account. Therefore a person must be
recognized for a minimal time duration for the system to acknowledge the recognition, i.e.
a certain number of face recognitions must occur within a set timespan. In the current
research the recognition number versus the recognition timespan was set to 7 recognitions
within 10 seconds. Using these parameters it is assumed that the frame rate would not
drop under 1 fps, which has never occurred during tests and trials. The average frame
rate of the facial recognition module was 4.9 fps. If no 7 recognitions were made within
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(a) Correct recognition (b) Correct rejection

Figure 4.4: Examples from the facial recognition module on frames from a UGV

10 seconds the facial recognition module was deactivated and the remainder of the initial
mission was executed. The number of rejections made by the facial recognition module
during the 10 seconds of activation determined whether the module produced a subject
classification as ‘unknown’ (enough rejections) or no classification at all (not enough
rejections). Another condition imposed on the facial recognition module was that the
dimensions and position of the recognized faces has to stay similar to some degree over
the given timespan. The latter condition held rather large margins to account for some
lag or noise in the system, while the recognition time and number were strict parameters.
For all facial recognition parts of the experiments no conditions were imposed on the
subjects their facial appearance, as long as their face was not obstructed by a mask or an
equivalent concealing item. Other accessories like glasses or long hair partially occluding
a forehead were allowed. These allowances in combination with a group of test subjects
that varied heavily in appearance ensured robust performance testing on a diverse group
of individuals.

4.3.5 Measuring facial recognition performance

Due to the nature of the facial recognition module, the performance is scored per subject
that is in view of the camera at the time the module is activated. Statistics are derived
from subject occurrences in the frames, correct classifications, correct rejections, false-
positives, and confidence values. The measures per subject are (1) the total number of
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frames stored while the facial recognition module was active, (2) the number of frames in
which a subject recognition is made with respect to the confidenceThreshold parameter
(the correctness of the output label does not matter here yet), (3) the number of correct
classifications of the subject in view, (4) the number of false-positives, i.e. incorrect
labels in recognitions, (5) the number of frames in which no face is detected at all,
(6) the number of frames in which a rejection occurred with respect to the parameter
confidenceThreshold, (7) the number of rejections that nevertheless had a correct ‘most-
likely’ label, (8) the average confidence value output when a face was detected, either
recognized or unrecognized, over the entire facial module activation period, and (9) the
total time that the facial recognition module was activated. Measures 3 and 7 were
also calculated as a percentile of their respective categories. Note that if an unknown
subject is in view (a subject that is not in the dataset), measure 3 transforms into the
number of correct rejections, since a rejection is a correct classification in this case. The
false-positives in measure 4 are all classifications which the classifier deems correct, but
are in fact faces of other subjects that are not in view or subject recognitions in the
background.

Shifting the confidenceThreshold parameter yields various results. Through trial
and error a value between 0.70 and 0.75 was found to yield the best results depending on
the present lighting conditions. For experiments of type 1 a dataset of 3 out of the 6 test
subjects was recorded with the procedure discussed above and the confidenceThreshold
was set to 0.72 (normal lighting conditions). For the experiments of type 2 a dataset of 4
people was recorded of which one was to be recognized and the confidenceThreshold was
set to 0.70 (very bright sunlight conditions). Note in experiment type 2 all recognitions
with labels other than the one opted for recognition were false-positives. The conditions
discussed in section 4.3.4 only applied to experiments of type 1. In the experiments of
type 2 there was no time limitation on recognitions or rejections, but the experiments
were ended by user interference after it became clear that the experiment was a success
or a failure.



Chapter Five

Results and Discussion

5.1 Human detection classifiers

The results of the benchmark tests for the pedestrian view classifiers on the UGV field
dataset are shown in figure 5.1. The results of the benchmark tests for all the classifiers
(pedestrian view and top view) on the UAV field dataset are shown in figure 5.2 where a
different scale for the secondary axis of the figure is used to show the frame rate section.
Results of all benchmarks can be reviewed in Appendix A.1. Shown measures of the
benchmarks results are correct detections, false-positives, and frame rate (fps). The
percentage of correct detections of the classifiers on all datasets are shown in table 5.1.
Here the number of correct detections is calculated as a percentile of the total number of
subjects shown in the positive images as described in table 4.1. Note that the percentage
of correct detections are independent of false-positive numbers which can be reviewed in
Appendix A.1.

Figure 5.1: Benchmark results of the 5 pedestrian classifiers on the UGV field dataset
with the measures correct detections, false-positives, and frame rate.

Optimal detection performance is observed from the HOG classifier on both the UGV
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Figure 5.2: Benchmark results of all 6 classifiers on the UAV field dataset with the
measures correct detections, false-positives, and frame rate.

UGV field UAV field UGV campus INRIA

HOG 90.0% 1.6% 76.0% 61.4%

Haar fullbody 11.0% 12.5% 0.0% 43.7%

Haar upperbody 7.0% 25% 14.0% 43.7%

Haar mcs upperbody 15.0% 10.2% 15.0% 58.9%

Haar lowerbody 9.0% 7.8% 5.0% 61.4%

Haar top-view 32% 72.7% 64% 74.7%

Table 5.1: Normalized correct classification results of classifiers on datasets

field and the UGV campus datasets. The created Haar top-view classifier outperforms
all other classifiers on the UAV field dataset. In benchmarks on the INRIA dataset
the Haar top-view classifier has the best correct detections score, but also the highest
number of false-positives as can be seen in Appendix A.1. The HOG classifier on the
other hand has an equivalent or higher score than the other pedestrian classifiers but
the lowest false-positive count. In terms of processing time the HOG classifier is either
equivalent to other classifiers in the INRIA test or much slower in other sets. Even
though Haar classifiers prove to process real world data significantly faster than the
HOG classifier in most cases, the latter still achieves an average processing frame rate of
2.8 fps. In a pedestrian view from the agents in the current research this is a sufficiently
high rate for human detection at the agent’s operating and navigation speed. Therefore
the HOG classifier was used for human detection in pedestrian view data from the UGVs
in further experiments. For the top view scenarios the Haar top-view classifier is chosen
for human detection since it outperforms all other classifiers in every measure, except
for the false-positive count of the Haar lowerbody classifier.
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5.2 Person localization

As discussed in section 4.2.3 the person localization performance was measured in 5
experiments of two experiment types. A results representation of the first experiment of
type 1 is shown in a Google Maps view in figure 5.3. The representation includes actual
person locations (yellow markers), a search area (dark blue markers and borders), subject
detections (smaller red markers), prototypes (purple markers), and a base station (green
marker). The first agent produced 14 subject detections and 2 prototypes, and the
second agent produced 10 subject detections and 2 prototypes.

Figure 5.3: Google Maps view of experiment type 1 with results of two operating agents

Figure 5.4 shows the results of the first experiment of type 2. Next to the inclusion
of the objects mentioned above for figure 5.3, the approach path of the agent (light
blue line), the search path (dark blue line between start and end position), and the
newly created waypoint (light blue marker containing an ‘N’) are also shown. The
agent approached the subject from the south. Representations of all the results of the
experiments are shown in Appendix A.2.

The experiments were scored on the 8 measures discussed in section 4.2.3. The
measure results on all experiments are shown in table 5.2.

The localization results of the experiments will be reviewed here, while the facial
recognition results will be discussed further in section 5.3. Experiment 1 of type 1
included a very large number of correct person detections and all prototypes were deter-
mined to be correct. Although 4 correct prototypes were created, 3 of those prototypes
were representing the same test subject. Therefore the number of people ‘found’ is 2 out
of 6. Two useful waypoints were created that led to the activation of the facial recog-
nition module in which two subjects were in view of the camera at the time of module
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Figure 5.4: Google Maps view of experiment 1 of type 2 with the agent’s driven path

Experiment Type 1 Experiment Type 2

Experiment 1 2 1 2 3

# Detections 24 29 6 5 4

Correct detections 21 (87.5%) 8 (27.6%) 5 (83.3%) 1 (20%) 3 (75%)

False-positives 3 (12.5%) 21 (72.4%) 1 (16.7%) 4 (80%) 1 (25%)

# Prototypes 4 2 1 1 1

Correct Prototypes 4 (100%) 0 (0%) 1 (100%) 0 (0%) 1 (100%)

False-positives 0 (0%) 2 (100%) 0 (0%) 1 (100%) 0 (0%)

# Found subjects 2 (33.3%) 0 (0%) 1 (100%) 0 (0%) 1 (100%)

Useful waypoints Yes No No No Yes

Table 5.2: Results of all experiments in 8 measures

activation. Of these two subjects one was in the dataset and the other was not.
Experiment 2 of type 1 yielded worse results than experiment 1. Only 27.6% of the

detected person locations were in the vicinity of test subjects and two incorrect proto-
types were generated. The mission data showed the reason for this poor performance,
namely an internal process failure of an agent. The agent’s location and heading were not
updated anymore, while the agent’s person detection kept working, since that module is
handled on the base station. The mismatch in agent status and detections resulted in
a cluster of detections that was placed on the wrong location away from the actual test
subject. Three other test subjects were also detected a few times, but the detection rate
was not high enough for a prototype creation (a cluster of at least 3 detections within
a range of 3 meters must be formed for a prototype to be created). Due to the agent’s
process failure and the lack of prototypes from the other agent no useful waypoints were
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created and the facial recognition module was not usefully activated.
In experiment 1 of type 2 the subject was detected multiple times, a correct proto-

type was generated, and the agent had stopped to investigate the subject. A dynamic
waypoint was created, but was not useful. Due to the lack of brakes on the vehicle the
agent had driven past the waypoint after it was created. If a subject is detected at a
large distance, a ‘roll-out’ does not become a an issue since a relatively small distance
is additionally traveled. Here on the other hand, the agent was detecting a subject at
a small distance which makes the roll-out distance relatively more problematic. Both
at the moment of stopping for investigation and after driving to the new waypoint the
subject was not in view. Therefore the useful waypoint measure is scored as ‘No’ and
the facial recognition module was not usefully activated.

Experiment 2 of type 2 involved a similar internal agent process failure as was ob-
served in experiment 2 of type 1. The agent’s heading and location were not updated
properly which led to an incorrect localization of the test subject. This was also the
reason no dynamic waypoint could be created, even though a prototype was present.
Fortunately, at the moment of the process failure, the agent was fairly close to the
subject and had the subject in view of the camera. With a user override, the facial
recognition module was activated to see if the subject could be recognized.

Finally, experiment 3 of type 2 shows the best performance. The test subject was
detected and localized correctly through a prototype at 2 meters distance of the subject,
while a dynamic waypoint between the agent and the subject was created. The waypoint
was also useful because the subject was fully in view after the agent had reached the
waypoint which led to the useful activation of the facial recognition module.

5.3 Facial recognition

5.3.1 Facial recognition in experiment type 1

Only in experiment 1 of type 1 was the facial recognition module usefully activated. The
results of the facial recognition modules for the two agents are shown in table 5.3 with
the measures discussed in section 4.3.5. Note that agent 1 had a subject in view that was
in the dataset for facial recognition, while agent 2 had a subject in view that was not in
the dataset. From the results in table 5.3 we can conclude that agent 1 has successfully
recognized its test subject and agent 2 has successfully rejected its test subject, i.e.
classified as ‘unknown’. Agent 1 made 7 correct classifications, after which the module
was deactivated due to the applied conditions on the facial recognition module discussed
in section 4.3.4. Even the ‘most-likely’ labels from the rejections were all correct. Agent
2 had recorded a total of 60 frames out of which 48 frames (80%) were correctly classified
as a rejection. Thus after 10 seconds of facial recognition module activation the subject
was correctly classified as ‘unknown’. Average confidence values of both agents support
these conclusions in a high average confidence value for agent 1 (symbolizing recognition)
and a low confidence value for agent 2 (symbolizing rejection). The facial recognition in
experiment 1 of type 1 was deemed a success.
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Agent 1 Agent 2

Subject in dataset Yes No

# Total frames 19 60

# Recognition frames 7 4

# Correct classifications 7 (100%) 48 (80%)

# False-positives 0 4

# No face detections 2 8

# Rejections 10 48

# Correct ‘most-likely’ labels 10 (100%) 48 (80%)

Average confidence value 0.7150 0.6632

Total time (s) 4.31 10.35

Table 5.3: Results of the facial recognition in experiment 1 of type 1 for two agents

5.3.2 Facial recognition in experiment type 2

In two of the three experiments in experiment type 2 the facial recognition module was
activated, namely in experiment 2 and 3. The results of the facial recognition modules
for the two experiments are both shown in table 5.4 with the measures discussed in
section 4.3.5. Due to the setup of the experiments the test subject was in the dataset
for both experiments.

Experiment 2 Experiment 3

Subject in dataset Yes Yes

# Total frames 25 248

# Recognition frames 25 140

# Correct classifications 0 (0%) 117 (83.6%)

# False-positives 0 23

# No face detections 25 24

# Rejections 0 108

# Correct ‘most-likely’ labels 0 (0%) 65 (60.2%)

Average confidence value n/a 0.7046

Total time (s) 21.1 52.7

Table 5.4: Results of the facial recognition in experiment 2 & 3 of type 2

After reviewing the results and data from experiment 2, it was revealed that no face
was detected, and thus not recognized, during this experiment. The location of the
agent was north of the test subject, which resulted in the sun shining straight into the
camera causing underexposure of the face. Only the contour of the subject was seen and
no face could be recognized, not even by a user inspection. For example purposes the
vehicle was positioned south of the subject. Differences between northern and southern
position of the vehicle with respect to the subject are shown in figure 5.5 to illustrate
sun influence on module performance.
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(a) Northern vehicle position with
underexposure of the face

(b) Southern vehicle position with a correct
performance

Figure 5.5: Facial recognition module result of two vehicle positions facing the subject

Results from experiment 3 showed that there were faces detected and recognized by
the facial recognition module. Note that the false-positives in table 5.4 were incorrect
recognitions of the other subjects in the dataset that were not in front of the camera. A
number of 117 out of 140 recognition frames (83.6%) were correct classifications and 65
out of 108 rejections (60.2%) had the correct ‘most-likely’ label. The average confidence
value exceeds 0.70 which made the recognition robust. Facial recognition in experiment
2 of type 2 was deemed a failure, while the facial recognition in experiment 3 of type 2
was a success.





Chapter Six

Conclusions and Future Work

6.1 Conclusions

In this research methods for the detection and recognition of humans in an outdoor
environment by an autonomous heterogeneous swarm of agents were proposed and tested.
A combination of human detection classifiers, dynamic navigation methods, and facial
recognition were implemented towards this goal. The swarm consisted of ground and
aerial vehicles for which a software architecture was in place to perform the autonomous
navigation of the agents. Camera modules were installed on the agents to provide live
video imagery for the human detection and recognition.

Towards the goal of robust human detection from both types of agents in the swarm,
multiple human detection classifiers were tested. A great performing pedestrian HOG
classifier was chosen for human detection on the ground agents. A custom Haar classifier
was created in this research for the detection of humans from a top view. The created
classifier was tested on datasets consisting of images of humans from a top view and it
proved to outperform all other existing classifiers in these benchmark tests. Classifiers
showed to be non interchangeable between viewing scenarios. Therefore the HOG clas-
sifier was merely used for the pedestrian view human detection tasks and the created
Haar top-view classifier for the top view human detection tasks.

The localization algorithms performed fairly well in determining the location of the
subjects after detection, provided that the agents functioned correct without internal
process failures and the discussed assumptions were met. False-positive detections were
sifted out effectively by a clustering algorithm in combination with subject representation
through prototypes. Multiple dynamic approach patterns were created and tested, after
which the simplicity of the single waypoint in combination with the agent’s behavior as
a result from the setup of the architecture (including waypoint and GPS inaccuracy)
proved to be the most effective pattern.

The facial recognition module performed satisfactory on the imagery from the UGVs
even though the angle from camera to face was not ideal. The performance of the module
within the entire behavior was heavily dependent on the dynamic navigation module,
which in turn is dependent on the human detection module. Environmental factors
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and parameter settings also played a significant role in the performance of the facial
recognition module. In spite of the previously named dependencies, module performance
in the final experiments showed robust facial recognitions and rejections, therefore the
module was deemed as performing satisfactory.

Even though the UAVs could not be deployed in the final experiments due to the
limitations on flying these aircrafts for the current research by the Federal Aviation
Administration, the present research does provide a proof of concept of the UAVs func-
tioning and usefulness within the used architecture including human detection. A reliable
top view human detection classifier was created through Haar cascade training, which
in combination with the localization algorithm using adjusted parameters for a different
viewing angle, and the clustering algorithms, proves that human detection and localiza-
tion can also be performed through the use of UAVs. In theory a top view overview
of a search area through the use of UAVs would significantly decrease search time and
subject location certainty, in part because the UAVs have a larger area of view with their
cameras and the background behind the subjects would be less busy than from a pedes-
trian view (green grass versus trees and a sky). Therefore the deployment of UAVs is
deemed to presumably be a very useful addition to the human detection modules within
the current architecture. The reason for not implementing and testing facial recognition
with the UAVs is because potential hazardous situations could occur if such a vehicle
would come up close to a subject, which is a requirement for the currently used facial
recognition module. Instead the locations of the subjects would be transferred as a task
for the UGVs to go and investigate the detected subjects. All of the software for this
behavioral concept was already in place in the current research through the generality
of the architecture and the modules.

The main research questions that drove the current research consisted of comparing
human detection algorithms, creating and testing the functional use of dynamic search
patterns with the agents, and implementing and testing facial recognition on any de-
tected and approached subjects. The functionality and performance of the three created
modules are the product of answering the three research questions. The human detec-
tion module was a result of the implementation and comparison of the different human
detection algorithms. The dynamic navigation module was a result of creating and test-
ing different dynamic search patterns to approach test subjects. And finally, the facial
recognition module was a result of implementing and testing facial recognition in the
current research.

Concluding, a complete system for the autonomous detection and recognition of hu-
man subjects through dynamic navigation with a heterogeneous swarm of autonomous
agents was created in this research. Even though certain conditions were imposed and en-
vironmental factors had some influence, the entire system illustrated a good performance
within a noisy outdoor environment on a diverse group of subjects in the conducted ex-
periments, if internal agent processes functioned as they should. The performance of
the human detection module and the facial recognition module on a diverse group of
subjects, shows those modules to be robust and reliable assets to the system.
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6.2 Future Work

A number of proposals for future work in human detection and recognition through dy-
namic navigation with the currently used swarm of agents will be discussed here. Hard-
ware improvements from which the system would greatly benefit include sensor upgrades
to for example thermal or infrared imaging sensors and processing board upgrades. The
thermal sensors would be able to detect body heat instead of body appearance of the
human subjects which would significantly increase detection rates, an idea illustrated by
Breckon et al. (2011). Upgrading the agents their CPUs and GPUs would enable the
agents to process their imagery on-board on a feasible frame rate, which in turn would
dismiss the use of Wi-Fi connections and could also lead to upgrading to cameras with a
better resolution. This would certainly improve system performance and functionality.

Using the parallel computing platform and programming model CUDA1 to process
the input images for human detection and recognition on GPUs (either off-board or on-
board) would also increase the performance of the human detection and facial recognition
modules significantly.

The system would also benefit from improving the agent’s position accuracy through
for example odometry (using data from motion sensors on the wheels to estimate change
in position over time) or magnetoception (using the detection of the earth’s magnetic
field to perceive the agent’s direction, altitude or location). The performance in agent
localization with the currently used GPS module in combination with the system’s setup
to reckon with the GPS’s inaccuracy and drift, yields some unwanted agent behaviors
like holding near a waypoint while not reaching it. Relying on more sensor input than
solely the GPS module would theoretically benefit the system.

In terms of approaching subjects for facial recognition with dynamic navigation a
new driving pattern is proposed here. In this drive pattern the current position of the
sun would be included in determining the angle from which the subject is approached.
Sun position would be computed from the general location and the time at which the
experiments are held. A waypoint pair would be generated, like the ones used in the star
pattern discussed in section 4.2.2, that is in line with the sun and the subject. For a clear
representation of this proposal see figure 6.1. This proposal was made to theoretically
gain the best angle for facial recognition since the sun shines straight on the subject’s
face, and moreover does not shine into the camera causing underexposure of the face.
The facial lighting appeared to be a large factor in facial recognition, as discussed in
section 5.3.

1More information on CUDA can be found at https://developer.nvidia.com/about-cuda
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Figure 6.1: A dynamic driving pattern to approach a prototype dependent on the current
position of the sun



Appendix A

A.1 Benchmark results

To review all the benchmarks from the human detection classifiers on four datasets,
results were plotted in bar graphs. Benchmarks were scored on three measures, namely
correct classifications, false-positives, and processing rate in frames per second. For the
UGV field and UGV campus datasets the 5 pedestrian classifiers were tested, namely
HOG, Haar fullbody, Haar upperbody, Haar mcs upperbody, and Haar lowerbody. All
six classifiers (including the Haar top-view classifier) were tested on the UAV field and
INRIA dataset. The result graphs on the four datasets (a) UGV field, (b) UAV field,
(c) UGV campus, and (d) INRIA are shown in figure A.0. Note that figure A.0c and
A.0d have a different scaled secondary axis to show the frame rate.

(a) Benchmark results from 5 pedestrian classifiers on the UGV field dataset including 200
images with 100 positive examples
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(b) Benchmark results from 6 classifiers (pedestrian and top view) on the UAV field dataset
including 200 images with 128 positive examples

(c) Benchmark results from 5 pedestrian classifiers on the UGV campus dataset including 200
images with 100 positive examples

(d) Benchmark results from 6 classifiers (pedestrian and top view) on the INRIA dataset
including 200 images with 158 positive examples

Figure A.0: Benchmark results of six classifiers on the four datasets with the measures
correct classifications, false-positives, and process time.
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A.2 Person localizations

Result representations of the experiments may include actual person locations shown as
yellow markers, a search area or direct path as dark blue markers and borders, subject
detections as smaller red markers, prototypes as purple markers, a base station as a
green marker, an agent path as light blue line, or newly created waypoints as light blue
markers containing an ‘N’. Results of the two experiments of experiment type 1 are
shown in a Google Maps view in figure A.1. Both experiments were performed by two
simultaneously operating agents. Results of the three experiments of type 2 are shown
in a Google Maps view in figure A.2.

(a) Experiment 1

(b) Experiment 2

Figure A.1: Results representations of the two experiments in type 1 in a Google Maps
view
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(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure A.2: Results representations of the three experiments in type 2 in a Google Maps
view
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