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Abstract

In the past few decades, many studies have proposed different approaches to multi-agent
reinforcement learning (MARL) systems and have found application in a variety of do-
mains such as swarm robotics coordination, traffic-light control, and supply chain manage-
ment. These methods usually fall under the two categories of centralized and decentralized
systems, with each approach having certain advantages at a cost of some drawbacks. In
the former approach, a single top-level centralized controller is used for making the action
decisions of every agent in the world, whereas in the latter method, each individual agent is
responsible for choosing its actions and learning its own individual behavior policy using
the local rewards received during the process. While the decentralized systems can avoid
the scalability problem of the centralized monolithic approach in complex problems, co-
ordinating the agents in order to produce a coherent collective behavior that satisfies the
global criteria still remains a challenge.

In this thesis, we compared both the centralized and decentralized approaches to MARL
systems in coordinating multiple agents in a shared 2-dimensional environment that con-
sists of two separate goal locations. We explored several approaches of communication in
the decentralized systems to enhance the coordination among the independent learners and
assist them to overcome their limited observation of the environment. Five variations of
decentralized MARL systems are proposed that differ in the range of communication they
provide between the independent agents. In order to evaluate the effect of the communi-
cation mechanisms and compare the performance of the MARL systems under different
conditions, four experiment scenarios were designed in which the difficulty of the task was
altered using different world configurations and limited vision of independent learners.

The results of our experiments show that the communication mechanisms can substan-
tially enhance the performance of the baseline decentralized MARL system in the com-
plex setups and also accelerate the convergence in the average scenarios. Our method of
enabling the agents to shape and communicate their intention using multi-objective rein-
forcement learning managed to demonstrate a faster learning process than the centralized
MARL system in the complex scenarios, even with limited observability of the environ-
ment. Similarly, policy-sharing outperforms the centralized MARL system in scenarios
with a large number of agents and needs significantly shorter training sessions.

KEYWORDS : Multi-Agent Reinforcement Learning, Centralized and Decentralized
Systems, Multi-Objective Reinforcement Learning, Policy-Sharing, Communication
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Chapter 1

Introduction

1.1 Introduction
Reinforcement learning (RL) [65] is one of the most important fields of machine learning
that has grown over the past few decades and influenced other areas of artificial intelli-
gence [12, 11, 2, 16]. RL is a learning paradigm in which an artificial agent learns how to
achieve the desired goal by interacting with the environment and receiving a reward signal
in return as the only means of feedback for its actions [73, 71]. Traditional single-agent RL
is often modeled using the Markov decision process (MDP) framework to solve sequential
decision-making problems in uncertain environments [35, 57]. An MDP enables the rein-
forcement learning agent to capture the states of the process at discrete time-steps in order
to choose a corresponding action. Upon performing the action, the world transitions to the
successive state and the agent receives an immediate scalar reward value which indicates
how good this transition was for progressing towards the goal [37, 18]. The learning agent
aims to gradually learn how to interact with the environment, as a form of an optimal be-
havior policy that maps the states of the process to the best possible actions so that the
cumulative reward of the agent is maximized [45].

Decades of studies have shown that given enough trials, RL agents can successfully
learn a variety of tasks such as playing different games [44, 46, 53, 68, 69] and resource
management [39, 78]. However, despite the successes of traditional single agent reinforce-
ment learning systems, there are certain limitations that need to be addressed for solving
more complex problems [11, 12]. Most real-world problems often involve multiple in-
teractive agents that contribute to accomplishing the task in a shared environment [32].
There are new challenges introduced when we try to apply the single-agent RL in a multi-
agent domain [11]. The most important problem is that the agents must take the action of
their peers into consideration in learning their behavior policies. However, since the other
agents are also simultaneously learning and performing actions, it results in the environ-
ment being perceived stochastic and non-stationary from the perspective of the individual
agents [13]. Multi-agent reinforcement learning (MARL) is an extension of traditional
single-agent reinforcement learning that enables multiple agents to learn how to accom-
plish a task together in a shared and dynamic environment [2, 12, 13].

Over the past few decades, many studies, such as those in [48, 52, 49, 33, 72, 7, 6, 51],
have explored different approaches to multi-agent reinforcement learning systems. Most
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often, these approaches fall under the two categories of centralized [32, 48] and decen-
tralized systems [49, 6, 3, 51, 14]. In centralized MARL systems, a single centralized
controller that observes the true-state of the world makes the decision for all actions that
every agent must perform throughout the process. The behavior policy that the centralized
controller must learn, should map all the states of the process to the corresponding actions
of the agents [13, 32]. Since the centralized controller decides the actions of the agents,
this method eliminates the requirement for explicit communication or coordination among
the agents. However, the complexity of the centralized policy increases as the number of
agents or the possible actions grow, which results in a notorious scalability problem of
the centralized MARL systems [6, 49, 13, 10]. In contrast, breaking the problem down in
smaller chunks to be solved by independent learners in the decentralized MARL systems,
has been a popular approach to address the scalability problem of the centralized method
for many researchers [3, 13, 49, 52, 66].

Contrary to the centralized approach, the decentralized MARL systems lack any form
of central controller, and instead, each agent interacts with the environment independently
and decides for its own actions. Frameworks such as “Multi-Agent Markov Decision Pro-
cess”(MMDP) [9], “Decentralized Markov Decision Process”(DEC-MDP) [6], “COllec-
tive INtelligence” (COIN) [76], and “Independent Q-learning” (IQL) [66], have been
developed and used to implement decentralized multi-agent reinforcement learning sys-
tems. In decentralized MARL systems, the agents are independent learners that aim to
learn their own individual policies that maximize their local reward values. Depending on
the task, the agents may need to compete, cooperate or use a mixture of both to achieve
their goals [31, 55, 40, 23, 74]. Whilst the decentralized MARL systems do not have the
scalability problem of the centralized system, coordinating the independent learners to re-
sult in a coherent collective behavior that solves the problem remains a challenge. Thus,
the decentralized MARL system use different approaches such as communication to en-
able coordination among the independent learners, especially when the agents can only
obtain partial information about the environment [51, 6, 41].

Unlike the centralized MARL systems in which the centralized controller observes
the entire state of the process and is aware of the actions that every agent performs, in
decentralized MARL systems individual agents are often limited to their immediate sur-
roundings for obtaining information about the environment [49, 18, 2]. Having limited
observation of the world introduces more challenges for the decentralized MARL sys-
tems since the agents cannot keep track of all the actions that other agents perform. One
of the ways that decentralized MARL approaches try to compensate for this limitation
is by adding communication among the learning agents [17, 79, 75]. Communication is
an important factor for enabling collective behavior in multi-agent systems [77]. With
communication agents can share information, such as their intention, with each other that
would have been impossible to know otherwise. The agents can utilize the communi-
cated information in deciding their actions and adjusting their policies according to the
other participating agents. Thus, the communication can enable agents to coordinate their
behaviors and progress towards completion of the task conjointly. However, the com-
munication in decentralized MARL systems comes at a cost of additional computation
and can affect the performance of the system as the agents may rely extensively on the
communicated information that sometimes may be false [17, 3, 6].
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1.2 Thesis Goals and Research Questions
While both the centralized and decentralized approaches to MARL systems have their own
advantages and shortcomings, different variations of them managed to successfully learn
a verity of tasks in different studies [21, 52, 48, 79, 29, 66]. In this thesis, we review the
theoretical background of multi-agent reinforcement learning and discuss our methods to
implement both the centralized and decentralized MARL systems.

The primary goal of this thesis is to provide a comparison between centralized and
decentralized MARL systems and examine the differences in their performance as the
complexity of the task increases. To compare the performance of these two methods, a
multi-agent simulation was created in which multiple agents had to navigate from their
initial positions to two predefined goal locations on a 2-dimensional grid. In this problem,
the MARL systems had to learn how to allocate the agents among the limited capacity of
two goal locations on the board, within a limited number steps. To successfully complete
the tasks, the systems had to coordinate the agents so that they all could arrive at a goal
location.

Additionally, this thesis explores the topic of communication for the decentralized
MARL systems. Five levels of communication were designed for the decentralized sys-
tems, each progressively widening the communication among the independent learners.
By using multi-objective reinforcement learning, we enabled the agents to form and com-
municate their intentions. Moreover, by applying the policy-sharing technique, we allowed
a central shared policy to be distributed and updated by independent learners to share the
experiences that they obtain from the local interaction with the environment. With these
approaches, we investigate whether communication has a significant effect on the learning
performance of the decentralized MARL systems in different experiment scenarios.

The primary research questions that we try to answer in this thesis are listed below:

• How do the decentralized MARL systems perform in comparison with the central-
ized system as the complexity of the task grows?

• How does increasing the range of vision for the independent learners affect the per-
formance of the decentralized systems?

• How do the communication methods affect the performance of decentralized MARL
systems?

• How does the addition of multi-objective reinforcement learning affect the compu-
tation power required for training the decentralized systems?

• Are these communication mechanisms applicable to larger settings and more com-
plex tasks?

3



1.3 Outline
The remaining sections of this thesis are structured in five chapters as follows:

• Theoretical Background: This chapter provides the necessary theoretical knowl-
edge required for understanding the centralized and decentralized MARL systems.
In this chapter, both the single-agent and multi-agent reinforcement learning ap-
proaches are described and the transition from an isolated learning method to a
multi-agent setup is discussed. Lastly, this chapter provides an overview of differ-
ent frameworks that have been developed for modeling multi-agent setup and talks
about different aspects of communication in decentralized MARL systems.

• Methods: In this chapter, we introduce our simulated environment and the primary
task that the MARL systems have to solve. Here we present the methods used
for the implementation of the MARL systems and discuss the underlying frame-
works used for both the centralized and decentralized systems. Additionally, details
about the implementation and integration of communication mechanisms in the de-
centralized MARL systems, including multi-objective reinforcement learning and
policy-sharing are discussed in this chapter.

• Experimental Setup: In this chapter, we present and discuss the experiment scenar-
ios that were designed in order to compare the performance of the MARL systems
under different conditions. Furthermore, we provide the details about the world
configurations, initial parameter optimization stage, and final experimental setups
used in this thesis. Lastly, we talk about the setup of additional experiments for
decentralized MARL systems with shared and selfish reward functions.

• Results and Discussion: In this chapter, the results of the final experiments are
presented and the performance of the MARL systems in different scenarios are
compared with each other. Here we discuss how each complexity factor affected
the learning progress of the systems in each experiment scenario. Similarly, the
outcome of the decentralized system in additional reward function experiments are
discussed in this chapter.

• Conclusion and Future Developments: In the last chapter, we answer the research
questions based on the performance of the MARL systems. Additionally, we pro-
vide some suggestions for future experiments and developments of the MARL sys-
tems.
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Chapter 2

Theoretical Background

This chapter provides the fundamental theoretical background that is essential for under-
standing both the centralized and the decentralized setups of multi-agent reinforcement
learning systems. The first half of this chapter describes the traditional single-agent re-
inforcement learning and the Markov decision process framework. Following that, a de-
scription of Q-learning method is provided that demonstrates how an RL agent learns a
behavior policy by interacting with the environment. Additionally, the method of inte-
grating multilayer perceptrons in Q-learning for finding the optimal policy is discussed in
this chapter. Following these sections, an overview of multi-agent reinforcement learn-
ing is given by discussing different frameworks and methods. Lastly, we briefly discuss
multi-objective reinforcement learning.

2.1 Single-Agent Reinforcement Learning
Reinforcement learning [65], along with supervised learning and unsupervised learning
form the three major areas in machine learning (ML)[73, 71]. RL differs from the other
two learning approaches that has helped it to grow over the past few decades and become
a common method of learning sequential decision-making [11, 12, 37, 73]. Supervised
learning relies on a training dataset that contains both the example inputs and the cor-
responding target outputs. During the training process, the machine learning algorithm
learns how to correctly map the provided inputs to the target outputs by tuning the param-
eters in a model. In unsupervised learning, however, the ML algorithm does not require
the target outputs, and instead, uses only the provided example inputs for learning. In
unsupervised learning, the algorithm finds relationships between the input data and dis-
covers the reoccurring patterns in the examples. Based on the patterns, the ML algorithm
can form clusters of related data elements that share similar features. These patterns and
features can be extracted and studied to gain a better insight into the provided data.

Instead of learning how to perform a task based on a pre-existing labeled training data,
reinforcement learning uses either a simulated or a real-world environment in which an
agent learns how to act in that environment and perform the desired task through interac-
tion and experience [47, 73]. The term “agent” in reinforcement learning, is commonly
used for computer programs that can decide and perform an action upon receiving infor-
mation about the environment. Performing any action, grants the agent a scalar reward
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Figure 2.1: The interaction cycle between the RL agent and the environment.

signal accordingly. The reward values that the learning agent obtains are the only form of
feedback of the actions that it receives during the training stage [69, 18], figure 2.1. By ob-
serving the corresponding rewards that the agent receives, it learns the extent to which the
selected actions have helped its progress towards the primary objective. During the train-
ing stage, the learning agent experiences a number of attempts at solving the problem,
through which it gradually learns an optimal policy that yields the maximum long-term
rewards for the agent.

2.1.1 Markov Decision Processes
Traditional single-agent reinforcement learning is often modeled as a discrete-time1, finite
Markov decision process [57]. MDPs have been commonly used for solving sequential
decision-making problems where the agent also has to take into account the dynamics of
the environment [35, 54]. An MDP can be defined as a 4-tuple 〈S, A, T, R〉 where:

• S = {s0, s1, ..., sn} is a finite set of states

• A = {a0, a1, ..., am} is a finite set of actions that the agent can perform

• T (s, a, s′) is a transition probability function, 0 ≤ P (s′ | s, a) ≤ 1, which indicates
the probability of transitioning to the next state s′ ∈ S, upon performing action
a ∈ A at state s ∈ S.

• R(s, a) is a reward function which returns a reward signal to the agent, upon per-
forming action a ∈ A in state s ∈ S.

By modeling the RL problem as an MDP, the agent can learn from its interaction with
the environment [71]. At every time-step t, the agent observes the current state at the time,
st ∈ S 2, and chooses a corresponding action, at ∈ A, to perform. After completing its
action, the agent transitions to the next state, st+1 ∈ S, given the transition probability
T (st, at, st+1), and receives the reward signal rt according to the reward function R(s, a).
Figure 2.1, illustrates the explained interaction cycle that establishes the foundation for
reinforcement learning.

1The process follows discrete time steps t = 0, 1, 2, ...
2st denotes the state that the process is at time-step t
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2.1.2 Learning a Behavior Policy
As the agent experiences these interactions, it gradually learns how to map the states to the
actions, as a form of a behavior policy π : S → A, such that the largest long-term payoff
is obtained [71, 1]. The accumulated discounted reward signals that the agent receives
by choosing its actions from an arbitrary state s according to a policy π(s) is referred to
as the state-value function of the policy V π(s). Thus, for every policy π, V π(s) can be
calculated as:

V π(s) = Eπ(
∞∑
t=0

γtrt | st = s ) (2.1)

With γ ∈ [0, 1] being the discount factor that indicates the importance of the long-term
cumulative reward over the immediate short-term pay-off of the actions. If γ is closer to
1, the emphasis is placed upon the long-term rewards, whereas smaller discount factors,
i.e. closer to 0, favor the immediate rewards that the agent obtains after performing every
action.

To satisfy its main objective of maximizing the discounted cumulative reward signals,
the agent must learn the optimal policy π∗(s) such that:

V π(s) ≤ V ∗(s), ∀π, s (2.2)

If the optimal policy is discovered and both the transition probabilities and reward val-
ues are known, the value of the optimal policy V ∗(s), can be calculated using the Bellman
optimality equation [5] (2.3).

V ∗(s) = max
a∈A

[R(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′)] (2.3)

As an alternative to the state-value function V π(s), a state-action value function,
Qπ(s, a), can be used for optimization of the agent’s behavior. Qπ(s, a) specifies the
sum of discounted rewards that the learning agent expects from following the policy π,
after performing action a in state s. Formally referred to as the Q-function, Q(s, a) maps
both the states and the actions that can be performed at those states as a pair to the corre-
sponding rewards that the agent expects to receive, (Q : S×A→ R). Thus, similar to the
formula shown in 2.1, Qπ(s, a) denotes:

Qπ(s, a) = Eπ(
∞∑
t=0

γtrt | st = s, at = a ) (2.4)

As mentioned earlier, the primary goal of the agent is to learn the optimal policy π∗

among with every policy π, that yields the maximum accumulated long-term reward, for-
mula 2.5.

Q∗(s, a) = max
π

Qπ(s, a) (2.5)
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Similar to equation (2.3), the Q-function of the optimal policy Q∗(s, a) can be de-
scribed as Bellman’s optimality equation

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)max
a′∈A

Q∗(s′, a′) (2.6)

Given the recursive description that Bellman’s optimality equation (2.6) provides, the
agent can utilize techniques such as dynamic programmings (DP) to calculate Q∗(s, a) of
the optimal policy and update the policy accordingly. In equation (2.6), the agent looks
at the Q-value of every action a′ in the next state s′ to find the action that results in the
highest expected Q∗(s′, a′). Once the maximum Q∗(s′, a′) is found, the agent can update
Q∗(s, a) (2.6) and the V ∗(s) (2.8) values accordingly.

V ∗(s) = max
a∈A

Q∗(s, a) (2.7)

Equation (2.8) means that in order to update V ∗(s), the agent must find the action a
that results in the highest discounted total reward Q∗(s, a) in state s. Therefore, upon
updating Q∗(s, a), the agent’s policy also gets updated so that it maps the state s to the
best action a.

π∗(s) = arg max
a

Q∗(s, a) (2.8)

2.1.3 Q-Learning
As shown previously, dynamic programming can recursively calculate the Q-value of the
optimal policy Q∗(s, a), and for problems that have small state-action spaces, dynamic
programming can be considered an efficient approach to compute the optimal policy π∗(s).
However, in order to efficiently use the DP technique, knowing both the transition func-
tion T (s, a, s′) and the reward function R(s, a) is required. This is an issue for DP, since
in most real-world scenarios, the problems are complex and having prior knowledge of
a complete model of the environment and its dynamics that includes both the transition
probability and the associated rewards of every state-action pair, is often not possible. The
complexity of the problems also means that the state-action space may be large that would
make DP computationally inefficient or even unfeasible in case the state-action space is
continuous.

Instead of using dynamic programming, the learning agent can gradually find an opti-
mal policy through interactions with the environment without the requirement of knowing
the dynamic model of the environment beforehand. One of the most well-known algo-
rithms that is commonly used in reinforcement learning, is called “Q−learning” [70].
Q−learning is a “model-free” RL approach that aims at directly finding the optimal pol-
icy and learning the Q-function, as opposed to learning the complete dynamic model. In
”model-based” reinforcement learning approaches, the agent attempts at learning the com-
plete model by capturing the transition probabilities and reward function. Similar to the
case of dynamic programming, model-based approaches may become inefficient when the
MDPs have large state-action spaces.
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Algorithm 1 Q-learning Algorithm

Initialize all Q(s, a) arbitrarily
For all episodes t:

Initialize s
Repeat

Choose a using policy derived from Q, e.g., ε - greedy
Take action a, observe the next state s′, obtain r
Update Q(s, a):

Q(s, a)←− Q(s, a) + α[r + γmax
a′
Q(s′, a′)−Q(s, a)]

s← s′

until s is terminal state

Q−learning belongs to the class of Temporal Difference (TD) learning methods, as
its estimation of the maximum Q-value in the successor state is used to update the Q-
value of the predecessor state, without explicitly knowing the model. The procedure that
the Q−learning agent follows to update the estimated Q-values is provided in algorithm
(1). At every time-step t when the agent is in state st, it selects and performs action at
that is derived from its policy, given its estimation of the Q(st, at). Once the agent has
transitioned to the next state st+1, it receives the reward rt of its action, and continues
to estimate the Q-value in the next state max

at+1∈A
Q(st+1, at+1). From there, the agent can

compute the difference between its initial expectation of Q(st, at) and the new estimation
of the Q-value using:

ψt =

TD target︷ ︸︸ ︷
rt + γ max

at+1∈A
Q(st+1, at+1)−Q(st, at) (2.9)

Once the temporal-difference error (ψt) is known, the agent can use this experience
and update Q(st, at) accordingly. The method Q-learning uses to update the Q-values
based on ψt is presented in (2.10).

Q(st, at)←− Q(st, at) + α[rt + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at)︸ ︷︷ ︸
ψt

] (2.10)

The method of updating the Q-values shown in equation (2.10) uses a “learning-rate”
parameter, α ∈ [0, 1], to control the extent to which the agent learns from its experience
at each iteration. Moreover, it also updates Q(st, at) based on the maximum estimated
Q-value of the next state. Q-learning is an “off-policy” reinforcement learning method
[73, 37]. Meaning that, despite updating the Q-values based on a deterministic greedy
policy that always chooses the maximum Q-values, the action that the control chooses
to perform usually follows a different policy [73, 54]. One of the most famous methods
in Q-learning is using an ε-greedy policy that chooses the actions by considering both
the Q-values and an exploration rate, ε ∈ [0, 1]. The ε indicates the probability of the
agent choosing a random action and exploring other choices in the hope of maximizing
the Q-value. With the ε-greedy policy the probability of selecting the action that yields
the maximum estimated Q-value is (1− ε) and the chances of selecting a random action is
set at ε.
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2.1.4 Function Approximation and Multilayer Perceptrons
For simple MDPs with small state-action space, the agent can store the updated Q-values
in a table, commonly referred to as “Q-table”. By using the Q-table, the agent can ac-
cess the Q-values of state-action pairs and use its experience to find an optimal policy.
With this method, the Q-table is often initialized arbitrary, with randomized Q-values for
all state-action pairs. As the agent experiences various actions in different states, it up-
dates the corresponding Q-values in the Q-table based on the newly obtained information.
However, when the state-action space is large, using a Q-table becomes computationally
inefficient to store all the Q-values. Additionally, since the Q-table gets initialized arbi-
trarily, the Q-values of the state-action pairs that have not been experienced by the agent
will not get updated and cannot be effectively used in following the agent’s policy.

Instead of storing the Q-values in a look-up Q-table for large-scale complex problems,
they can be approximated using function approximation techniques such as decision trees,
linear combinations of features and artificial neural networks (ANN) [62, 71]. Unlike the
tabular representation of the state-action values, function approximation methods can gen-
eralize over the entire state-action space. Therefore the agent does not need to explicitly
experience every individual state and action in order to utilize the previous experiences it
gained from its interaction with the environment. Moreover, by using such techniques, it is
no longer required to store the Q-values in the Q-table. As the result of these advantages,
the amount of computational power and memory required for learning the behavior policy
is significantly reduced.

One of the most commonly used methods of approximating the action Q-values in
Q-learning is replacing the Q-table with a multilayer perceptron (MLP) [12, 1, 71]. An
MLP is a feed-forward ANN that consists of multiple neurons which are structured into
three vectors, namely, (i) input layer, (ii) hidden layer, and (iii) output layer [1, 19]. A
multilayer perceptron approximates the value of output nodes from a given input vector
using one or more hidden layers in between. The neurons used in these layers are the fun-
damental building blocks of an MLP that are connected to all nodes in the adjacent layer
via a link commonly referred to as “weight”. Figure 2.2 illustrates how multiple neurons
are organized in the three layers and are connected to each other through weights, in an
example single hidden layer MLP.

The output of a neuron is determined by an activation function given the total weighted
activation of its input neurons in the previous layer [1], equation (2.11). For an arbitrary
neuron hj with N connected input neurons X = {x0, x1, ..., xN−1} and the associated
weights between them Wj = {wj0, wj1, ..., wjN−1}, the output of the neuron can be cal-
culated with:

hj = %(
N−1∑
i=0

wjixi + b0 ) (2.11)

where b0 is the bias signal and % is the activation function used for that layer. There are
different activation functions such as linear function, sigmoid, and rectified linear unit
(ReLU); that have been commonly used to normalize the sum of weighted inputs.
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Figure 2.2: Structure of an example multilayer perceptron with a single hidden layer.

During the process of forward propagation, for each layer of the MLP, the activation of
all the neurons are computed using equation (2.11) and used in determining the activation
of the nodes in the next layer, until the outputs are calculated. Once the activation of the
output neurons are computed, the machine learning algorithm can use these outputs and
translate them into actions of a reinforcement learning agent or determine which class the
input belongs to, in a classification problem.

However, during the initialization of an MLP, the weights between the neurons are
randomized and cannot correctly map each input to the desired target output. On the
other hand, the only component of the MLP that can be altered are the weights, since the
inputs are provided from an external source and the mathematical operations that the MLP
must follow for each layer are a static set of rules which cannot be changed. Therefore,
the learning process with multilayer perceptrons boils down to optimizing the weights
between the neurons such that by feeding every distinct input, the desired target output is
computed. In order to optimize the weights, the machine learning algorithm requires to
know the target output either from an external dataset or as a form a feedback source in
cases like reinforcement learning. Given the approximated outputs and the expected target
outputs, an error function is defined as:

E =
1

2
(y − o)2 (2.12)

where E is the squared error, “y” is the target output and “o” is the predicted output by
the MLP. The calculated error will be used to update the weights between the layers. The
gradient decent algorithm is one of the most commonly used algorithms to optimize the n
weights of the network in order to minimize the error in its predictions. “Back-propagation
refers to the process of computing the partial derivatives of the error function with respect
to each weight that connects the neurons in two layers. By applying the chain rule in back-
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propagation, these partial derivatives are calculated (2.13), and used to iteratively update
the weights.

∂E

∂wji
=
∂E

∂ok

∂ok
∂hj

∂hj
∂wji

(2.13)

with ok, hj , and wji are the activation of output layer, activation of hidden layer and the
weights between hidden layer and input layer respectively.

Using these partial derivatives in a gradient descent algorithm, the weights of the MLP
get updated incrementally to reflect the error made in predicting the outputs [1, 19]. In
gradient descent, updating the weights is governed by a learning rate, α, that indicates the
extent to which the weights get updated with respect to the observed error in prediction,
as shown in equation (2.14).

∆wji = −α(
∂E

∂wji
) (2.14)

2.1.5 Integrating Multilayer Perceptrons into Q-Learning
As described earlier, replacing the Q-table value with a function approximator such as
an MLP, that can predict the state-action values has several important advantages for Q-
learning. By mapping the state of the process to the input layer of a multilayer perceptron,
the Q-learning agent can approximate the Q-value of the possible actions and use the out-
put to make its decision on which action to perform. Therefore, by integrating the MLP
into Q-learning, the process of learning the Q-function of an optimal policy is, in essence,
optimizing the weights in the MLP so that the state-action values are correctly predicted.

Figure 2.3 illustrates how a multilayer perceptron is used by the Q-learning agent to
choose its action in response to the observed states. In this example, the agent uses an
MLP with a single hidden layer to approximate the Q-values of the four possible actions
A = {a1, a2, a3, a4}, that it can perform in every state st ∈ S. The input layer of the
MLP is constructed by mapping the observation of the state into the input neurons given a
mapping function. For example, in the game of Othello, the game board can be translated
into the input layer of the MLP, by simply mapping each tile of the board to an input
neuron such that:

• For tiles that are occupied by the opponent the input neuron is set to -1

• For tiles that are taken by the Q-learning agent, the input neuron is set to 1

• For unoccupied tiles the activation of the input neuron is set to 0

Once the input layer is constructed, the agent can feed the inputs to the MLP and compute
the activation value of the output neurons. Every neuron in the output layer represents the
approximated Q-value of an action an ∈ A that the agent can perform. From there, the
agent uses these Q-values and applies its policy to choose and perform the corresponding
action to the input state st ∈ S. In online-learning, before proceeding to the next state
st+1, the agent temporarily stores the input layer of the MLP to use it again in updating the
weights. For st+1 the agent follows the same procedure and chooses its action according to
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Figure 2.3: An illustration of integrating a multilayer perceptron to approximate the state-
action values in Q-learning. In this example, given the six input nodes that represent the
state of the world, the agent can approximate the expected Q-value for the actions using
an MLP with a single hidden-layer.

its policy and predictions. However, before proceeding to the next state, the agent returns
to the previously stored input layer of the state st to update the weights according to the
newly approximated Q(st+1, a

′) and the reward rt that it received. To do so, the agent first
has to obtain the target of the output in the MLP i.e. the updated Q(st, at). Keep in mind
that since gradient descent (2.14) already includes a learning rate which indicates how
much the agent learns from its experience, its counterpart in updating Q-values (2.10) is
redundant and can be removed. Thus, after removing the learning rate from equation 2.10,
the Q-values can be simply updated with:

Q(st, at)←− rt + γmax
a∈A

Q(st+1, a) (2.15)

The agent uses its new experience to calculate the squared error using equation (2.12),
preforms gradient-decent and updates the weights of the network. This is one of the
methods how Q−learning can use function approximation to accelerate the learning pro-
cess. Considering the advancement in deep-learning and RL, there are many different
approaches to use other types of networks, optimization algorithms or even structures for
the MLPs which can provide certain benefits to the learning process of the RL agent.
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2.2 Multi-Agent Reinforcement Learning
With the rapid advancement in artificial intelligence and processing hardware, we are con-
stantly trying to find answers to more complex problems in the real-world that were not
possible to solve before. In many of these problems the environment is shared among mul-
tiple interactive agents whose local actions affect the global state of the world for everyone
[13, 12]. To solve such problems, we often use multi-agent systems (MAS) to define the
agents and their individual behavior to satisfy some global goals. The applications of MAS
range from supply management, swarm robotics, network routing, assembly line control,
transportation, to even economical and medical domains. Similarly, many complex mono-
lithic systems such as traffic lights controlling system, can be broken down into a MAS
that organizes the individual agents, each of whom solves a portion of the problem [77].
When the tasks are complicated and the environment is shared among many agents, defin-
ing their individual behavior for an optimal solution is difficult [23, 27]. Instead, many
researchers have developed different RL approaches for multi-agent problems in order to
learn the optimal behavior policy using the rewarding mechanism that we discussed earlier
in this chapter.

In the previous section, an overview of traditional single-agent RL was provided in
order to describe how an artificial agent can learn an optimal behavior policy by interact-
ing with an unknown environment. Even though the conventional RL methods have been
successfully used to solve problems in various domains, applying them in a multi-agent
setting is not a simple task [18]. The primary challenge is that the RL agents must con-
sider the actions of the other participating agents in order to learn their policies and solve
the problem successfully. However, since all the agents are learning their policies simul-
taneously, their actions are constantly adapting which results in the world to be perceived
non-stationary from the perspective of the individual agents [27, 13]. Moreover, there are
challenges in credit assignment and defining the private and global utilities such that max-
imizing local rewards of individual agents contributes to achieving the global goal instead
of undermining the utility of other agents [76, 75]. Throughout the last years, many stud-
ies have examined these challenges and have introduced new approaches for solving them,
that collectively shape the field of “Multi-Agent Reinforcement Learning” (MARL).

2.2.1 Frameworks for MARL
In MARL systems we want to enable multiple agents to interact in a shared environment
and learn their behavior policies through the rewards that they receive, so that they can
collectively complete the task. Similar to the method of using an MDP in single-agent
RL, many frameworks have been proposed for modeling the process 3 for MARL systems
[6, 51, 64, 8, 9, 66]. Each of these frameworks takes on a different approach at addressing
the process and can be applied for particular problems or even a specific type of MARL
system. In this section we provide a brief overview of some of these frameworks, and
highlight their similarities and differences.

3also referred to as game since multiple agents are involved. We use them interchangeably in this thesis.
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A “Stochastic Game” (SG) [64], also referred to as “Markov Game” (MG), represents
a multi-agent game as a tuple 〈n, S, A1,...,n, T, R1,...,n〉 where:

• n is the number of agents in the process

• S is a finite set of environment states. st ∈ S denotes the state at time step t

• Ai, ∀i = 1, 2, ..., n is a set of actions available for each agent i, that together shape
the joint action space of the agents A = [A1 × A2 × ...× An]

• T : S × A × S −→ [0, 1] is the transition probability function based on the joint
action A

• R1,2,...,n is a set of reward functions, with Ri : S × A −→ R denoting the reward
function for agent i

The process that SG follows is similar to that of MDPs. At every time-step t, every
agent i in the game observes the state of the environment, st, and performs its selected
action ai,t. Collectively, they form the joint action, At = [a1,t, a2,t, ...an,t], that causes
the world to transition to the successive state, st+1, and return the rewards to the agents
accordingly. Note that both the transition between the states, T (st, At, st+1), and the local
rewards that agents receive from their individual reward functions, Ri(st, At), are both
based on their joint actions in the environment, At [10, 25]. Each agent aims to learn
its individual policy, πi, ∀i = 1, 2, ..., n, that maximizes its discounted cumulative re-
ward in the long-term. The combination of these individual policies form a joint policy
π = [π1, π2, ..., πn] [10].

A stochastic game is a simple extension of the MDP to facilitate the multiple partic-
ipating agents in the process. In fact the MDP can be seen as a stochastic game where
only one agent is involved in the process, (n = 1) [13]. Similarly, SG can be seen as an
extension to Matrix Games (MG) by including multiple states for the agents to interact
with the environment. Of course with the large amount of possibilities in the setup of a
MAS that vary in task procedure, artificial agent characterization, and their organization
in the system; many other frameworks have been developed for MARL. Here we use SG
as a baseline to explain the other frameworks by comparison.

Reward Function: Depending on the format of the game and the design of the global
goal, the agents may need to compete in the world to maximize their local utilities, com-
petitive games, or cooperate in order to complete the task together, cooperative games
[40]. There also exists middle-ground setups where the relation between the agents is a
mixture of cooperation and competition, Mixed-games [23]. In this thesis, we mostly fo-
cus on the cooperative setups.

One of the important factors in MARL systems, is how we reward the agents to im-
ply cooperation and competition. In a fully competitive SG, the agents receive opposing
rewards R1 = −R2 while in fully cooperative stochastic games, the agents share similar
reward functions R1 = R2 = ... = Rn. The “Multi-Agent Markov Decision Process”
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(MMDP) [9] is a similar framework to SG4 with the primary difference being in the re-
placement of the individual reward functions R1,2,...,n with a single joint utility function
Rc referred to as the “Team reward function”. MMDP is seen as a cooperative SG where
all the agents receive identical rewards as a team [63, 51].

Observability: In both the SG and MMDP frameworks, it is assumed that full observ-
ability of the global state is available for each individual agent in the game. This allows the
agents to be aware of the actions that the other learners perform at every step and enables
them to use this information to coordinate their actions [24]. However, in many real-world
scenarios, the agents can only obtain a partial view of the environment [51, 20]. For ex-
ample if multiple agents have to attend to multiple tasks in separated rooms, they would
not be able to observe the actions of their peers using sensory mechanisms. The “Partially
Observable Stochastic Game” (POSG) [22] is an extension of SG where the agents have
a limited observation of the world and cannot see the actions of theirs peers. POSG is a
tuple 〈n, S, Ω1,...,n , A1,...,n, T, O, R1,...,n〉 where:

• n is the number of agents in the process

• S is a finite set of states

• Ωi is a set of observations for agent i

• Ai is the set of actions for agent i, with the joint action spaceA = [A1×A2×...×An]

• O : S × A× Ω −→ [0, 1] is the observation emission probability

• T : S × A× S −→ [0, 1] is the transition probability function

• Ri is the individual reward function for agent i with Ri : S × A −→ R

Contrary to SG where agents could observe the global states at every step, in the POSG
framework, the agents can only receive the partial observations Ωi from the world to de-
cide their actions. The “Decentralized - Partially Observable Markov Decision Process”
(DEC-POMDP) [51], is a cooperative POSG where instead of using individual reward
functions, the agents receive identical rewards using the similar team reward function used
in MMDP. The relation between the DEC-POMDP and the POSG frameworks is similar
to that of MMDP and SG [6, 63]. In fact, the “Partially Observable - Identical Payoff
Stochastic Game” (POIPSG) [56] is essentially an identical approach to DEC-POMDP
since it is basically an SG where R1 = R2 = ... = Rn [4]. Finally, the “Decentralized
- Markov Decision Process” (DEC-MDP) [6], is a special case of DEC-POMDP where
the collection of the individual partial observations of the agents can uniquely identify
the state of the world. In other words, if all the agents could share their observations at
the time-step t, they could know the global state st. However, that cannot work in DEC-
MDP since it does not include any communication [6, 3]. Similarly, in DEC-POMDP
the agents are only limited to their individual observations of the worlds for choosing
their actions and cannot communicate information to each other [20]. This prevents the
agents in DEC-POMDP and DEC-MDP frameworks to form reasonable assumptions and

4Also called “Identical Payoff Stochastic Games” (IPSG)

16



beliefs about each other’s experience in complex problems [63]. To address this limi-
tation and enable the agents to coordinate their policies, some approaches extend these
frameworks to include interactive communication mechanisms between the agents. The
“Communicative Multi- agent Team Decision Problem” (COM-MTDP) [58], and “DEC-
POMDP-communication” (DEC-POMDP-Com) [20] are two similar example frameworks
that extend the former models by: (i) including a set of messages that the agents can send
to each other, (ii) adding a cost of communication between the agents, and (iii) incorpo-
rating communication in the rewards that agents receive.

State Transition Dependency: Lastly, we discuss another factor that can vary in dif-
ferent MA setups, and that is the transition between the states. In some problems where
multiple agents have to simultaneously perform their actions together to complete a task,
such as individual joints movement control in robotic arms or carrying an object together,
the transition of the states fully depends on their joint actions [3]. In these scenarios, the
frameworks that we discussed earlier can apply since the transition probability of the states
is defined based on the joint action of the agents. However, there are also setups in which
the individual agents can act independently and cause the state of the world to transition
based on their local actions. The “Transition-Independent Multi-agent Markov Decision
Process” (TI-MMDP) [4], is a proposed framework for cooperative decentralized MA se-
tups where each agent independently chooses and performs its action based on its partial
observation, which results in the transition of its local state. A TI-MMDP is defined as a
tuple 〈n, S, A, T, R〉 where:

• n is the number of agents in the process

• S = S1 × S2 × ... × Sn is a finite set of global states constructed as a Cartesian
product of finite sets of local states of the agents. Si = {si0, si1, ...., siT−1} is a set of
states of agent i over T discrete time-steps

• A = A1 × A2 × ...× An is the joint action-space that is constructed from the local
action-spaces of the agents. Ai is a finite set of actions for agent i that is selected
and performed independently.
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t , ..., a

n
t ) in the

states (s1
t , ..., s

n
t ).

TI-MMDP is an extension of the DEC-MDP that factorizes the state-space and action-
space for the multiple agents in the game so that they can act independently and change
their local states based on their local actions. While the transitions of the local states,
T (sit, a

i
t, s

i
t+1), are independent, the agents receive the joint reward that is evaluated based

on the action of everyone in the world. Each agent aims to learn its own individual policy
based on its local actions while being tied to others through the reward function. This
method is also referred to as Dec-MMDP with event driven interaction [3].
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2.2.2 Centralized MARL Systems
Aside from the different frameworks that are available for MARL systems, over the past
few decades many methods of reinforcement learning have been developed to use these
frameworks and learn how to coordinate multiple agents in order to complete a variety of
tasks successfully. One of the dimensions along which we can classify MARL systems
is the organization of the agents and the learning approach that they take [12]. A simple
approach to the architecture of MARL systems in cooperative setups is returning to the
monolithic design and use a central controller in order to manage all the agents in the
environment [48, 2]. In centralized MARL systems, a single meta-agent is present that
knows the true state of the game and controls every agent in the process by choosing their
actions. The central controller aims to learn an optimal policy that maps all the states of
the process to the best actions of the agents such that it yields the maximum discounted
cumulative global reward [48, 32]. In fully cooperative setups where a joint team reward
function is used, such as those modeled by the MMDP framework, using the centralized
approach to MARL systems reduces the problem to an MDP5 [12, 2]. Therefore, con-
ventional single-agent RL methods such as Q−learning can be used for the centralized
controller to learn to solve the task which guarantees convergence given adequate experi-
ence [13].

Since a single centralized controller observes all the states and decides every action in
the process, the world will no longer be Markovian [12]. Similarly, the centralized MARL
systems do not require any form of communication among the agents in order to coordi-
nate their actions [13]. However, there are some major drawbacks to this architecture of
MARL systems. The primary issue of the centralized MARL systems is that it does not
scale in complex problems where there are many agents in the environment or the action-
space / state-space is large. Furthermore, the system is not flexible towards future addition
or removal of agents as the entire joint policy has to be re-adjusted by the centralized
controller to reflect the changes in the setup of agents. Therefore, it may not be a robust
solution for advanced real-world problems.

2.2.3 Decentralized MARL Systems
The other approach to the design of the MARL system is breaking the problem down into
smaller pieces that are distributed among the individual agents so that each can solve a por-
tion of the problem. Contrary to the former architecture, in decentralized MARL systems,
each agent chooses its own actions and aims to learn an individual policy that maximizes
its own local utilities. The primary goal in the decentralized MARL systems in cooperative
setups is to learn a set of individual policies that collectively can solve the problem. One
of the famous algorithms for decentralized MARL systems is “Independent Q−Learning”
(IQL) [66] where each agent treats others as a part of the environment and learns its pol-
icy independently using the Q−learning algorithm. IQL is a simple and general approach
to decentralized MARL systems that has been studied and successfully applied in prac-
tice [18, 41]. Other methods have been developed for more specific MA setups such
as “Distributed Q-Learning” [34], “Team Q-Learning” [36], and “Hyper-Q−Learning”
(Hyper-Q). In comparison with the centralized approach, decentralized MARL systems

5The action-space of the MDP will be essentially the joint action-space to the centralized controller
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have some important advantages that make them more efficient solutions for complex
problems. These advantages have attracted many researches to apply different methods
of decentralized MARL systems for various problems [49, 43, 52, 72, 38, 30]. However,
there also new challenges introduced by breaking down the monolithic system and dis-
tributing the problem between individual learners.

Since every agent learns its individual policy, the complexity of the centralized joint
policy is greatly reduced in decentralized MARL systems [12]. Thus, the decentralized
systems are scalable to more complex MA setups involving a large number of agents
[43]. Furthermore, decentralized MARL systems can use distributed computing and par-
allel processing that greatly accelerates the learning process compared to the monolithic
approach. These systems are also more robust in a sense that it does not suffer from a
single-point-of-failure present in centralized systems. Rather than adjusting the behavior
policies of all the agents to compensate for a failing agent, we can replace that learning
agent and allow to adapt the actions of other agents [49, 77]. Lastly, having individual
behavior policies allows us to have a better understanding of the actions that each agent
performs and possibly reuse them in other setups.

While the decentralized systems can avoid the scalability problem of the centralized
approach in complex problems, coordinating the agents in order to produce a coherent
collective behavior that satisfies the global criteria remains a challenge [76, 74]. On the
other hand, although there are scenarios where every agent can observe the entire environ-
ment, in most real-world problems the agents are often limited to their local and incom-
plete observation of the world. With partial observability, the agents cannot keep track of
the actions performed by other agents which makes the coordination even more difficult
[63]. In the previous frameworks, we showed how some approaches used a joint team re-
ward function to coordinate the agents towards the global goal in cooperative setups. The
agents can also attempt to model the behavior of their peers in a special category of MARL
systems, often referred to as “Equilibrium-Based” Decentralized systems, such as “Nash
Q-learning” (Nash-Q)[26]. These methods are often more suitable for mixed games since
in cooperative setups having the learning process of the agents coupled with each other
through modeling behavior of others introduces more challenges to overcome in com-
plex environments [14]. Lastly, many studies have managed to enhance the coordination
in decentralized systems and accelerate the learning process by enabling communication
between the individual agents [17, 79, 58, 66].

2.2.4 Communication in Decentralized Systems
Communication is often regarded as one of the most common approaches to enabling co-
operative behavior in multi-agent settings [13, 12]. With communication mechanisms,
the agents can share important information such as their individual observations of the
world, their action decisions and even their experiences with each other. Specially, in MA
setups where agents are limited to partial observation, communication provides an alter-
native solution to inform them of the actions and changes in the world that are hidden to
them otherwise. For example if agents can share their local incomplete observations of
the state in the DEC-MMDP framework, then collectively they will all be able to know
the true state of the game. Similarly, the agents can share their experiences of interact-
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ing with the environment so that others can learn from them. One of the methods that
enables the agents to learn from the experience of others, is called “policy sharing”[28].
Policy sharing can be considered as a mixture of a centralized and decentralized MARL
system, where the agents use a centralized shared policy to decide their actions and up-
dating it independently based on their local experience [29]. This approach reduces the
complexity of the centralized policy and avoids scalability problems, while it also ac-
celerates the learning process in the decentralized MARL system by updating the policy
with the experience of all the agents [21, 29]. However, policy sharing requires extensive
communication between the agents that can be computationally infeasible to apply for
large MA settings. Moreover, this method is applicable only to cooperative homogeneous
agents that perform similar tasks. When different groups of heterogeneous agents have to
perform complementary specialized tasks to collectively achieve the task, policy-sharing
can be applied on a smaller sub-group scale in which a team of similar agents share their
experiences only among themselves [29].

Communication mechanisms vary drastically in different systems and are often de-
signed specifically according to requirements of the task. Depending on how agents are
organized in the system, the range of communication between them can vary. The agents
may have individual explicit communications between one another, communicate infor-
mation within specific teams, or have the communicated information globally accessible
by every participating agent [66]. The communication can occur at every time-step of the
process or happen through sparse interaction at every K step [63].

Although communication brings a lot of benefits to the decentralized MARL systems,
they also introduce a few challenges. One of the most important problems of commu-
nication is the additional cost added to the computation for sharing the data between a
large number of agents, especially when a large amount of data such as the observations
of the agents are being communicated. Furthermore, the communicated information also
increases the state-space of the agents and can greatly undermine the learning process if
a lot of information is communicated to the agents [66]. It also hinders the distributed
learning of the decentralized systems to some extent, as it introduces new connections
between the agents that are no longer fully independent. Lastly, it may be a challenge in
some problems to determine what information must be communicated between the agents
to enhance their action coordination instead of complicating their learning process [13].

2.3 Multi-Objective Reinforcement Learning
Similar to the MA settings in which the environment hosts multiple agents, the task it-
self can also be composed of multiple objectives. In fact, in many real-world problems,
the tasks are either by nature multi-objective or can be broken down into sub-problems
that are treated as objectives [47]. In some scenarios, the objectives may be complemen-
tary and compulsory in the sense that the agent must learn to attend to every objective
in order to complete the task [7]. In other problems, the objectives may be conflicting,
in which case the agent must also learn the trade-off between the multiple objectives
[37, 16]. In order to enable the agent to learn to complete multiple objectives, researchers
have extended the traditional single-agent RL by combining it with “Multi-Objective Op-
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Figure 2.4: Interaction cycle between the agent and the environment in MORL. The envi-
ronment returns separate rewards to the agent for each objective.

timization” (MOO) under a new category of “Multi-Objective Reinforcement Learning”
(MORL) [37]. MORL enables the agent to learn a behavior policy that simultaneously
optimizes multiple objectives in the world. In MORL, the environment returns a vector of
utility values to the agent for every action that it takes in order to indicate how the selected
action progressed the state of the world towards each objective that is presented. As it is
shown in figure (2.4), for an environment that has n objectives the agent receives a vector
of rewards ~R = {r1, r2, ..., rn} after performing an action.

Similar to MARL, different approaches to MORL are categorised as single-policy and
multiple-policy methods [47, 37]. Multi-policy MORL methods allow us to gain more
insight into the action-policy of the agents and learn about their reasoning regarding each
objective. However, an important problem of explicit modeling of the multiple-objectives
is that it increases the state-action space and can ramp up the computational demand.
On the other hand, the single-policy method prevents these problems by taking a similar
approach to conventional RL methods and using a single scalar reward value that encapsu-
lates the utilities of multiple objectives. The single-policy MORL approaches use different
scalarization methods such as ranking system or weighted sum approaches, to compute the
scalar utility R̂w from the reward vector ~R, (2.16).

R̂w(s, a) = f(~R(s, a), w) (2.16)

with w being the vector that describes the scalarization function f . With this method,
the agent can learn how to prioritize the objective that has the largest weight, or highest
rank, over the other objectives in order to maximize its utility [37]. However, with single-
policy MORL, we no longer have the insight into the agent’s decisions and tracking which
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objective it is approaching becomes more difficult. Furthermore, it requires us to have
prior knowledge about the importance and the weight of each objective in the task that is
not possible in many real-world problems [16]. Furthermore, if the objectives do not differ
in their rank and importance, the agent may fail to distinguish them from one another.

With the success of MORL in accelerating the learning process in single agent setups
[47, 50], some recent studies have experimented with applying this method to multi-agent
settings and have managed to enhance the convergence of MARL systems [7, 16]. A
common characteristic of the multi-policy MORL and decentralized MARL systems is
that they both break the problem down and attempt at solving smaller chunks of it. The
combination of these two provides new opportunities to solve more complex problems
where the agents not only have to coordinate their actions in a shared environment but also
learn their action policies by considering the multiple objectives of the task. Aside from
benefits that MORL provides to enhance the learning process of individual agents [16],
there are other ways we can use this method to assist cooperative agents in a decentralized
MARL system. In this thesis, we use the insight that multi-policy MORL provides into
the action-policy of the agents, to enable them to form and share their intention in order
to enhance the coordination in their actions. In the next chapter, we demonstrate how this
combination of MORL and MARL has been done in practice.
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Chapter 3

Methods

In the previous chapter, the centralized and decentralized approaches to multi-agent re-
inforcement learning systems were introduced and the fundamental differences between
them were discussed. Although distributing the learning process among the individual
agents comes with challenges such as enabling communication between the learners and
make up for their limitations, it has certain advantages over the centralized MARL system.
For example, the decentralized systems can scale with the increase of agents whereas the
centralized MARL systems usually suffer in more complex setups. On the other hand,
the centralized MARL systems usually do not require any explicit communication or co-
ordination among the agents, since the actions of the agents are decided by a centralized
controller.

Using the frameworks and techniques described in the previous chapter, both the cen-
tralized and decentralized approaches to MARL systems were implemented to compare
their performance in solving different problems that vary in terms of complexity. These
systems were designed to learn how to coordinate multiple-agents to limited goal locations
in a shared environment. To compare these MARL systems, a multi-agent simulation was
created to train and test the systems with. This simulation allows the MARL systems to
learn how to achieve the primary task by either controlling the agents1 or by enabling
individual agents to learn the solution collectively2. Furthermore, by incorporating tech-
niques such as multi-objective RL and policy sharing, five levels of communication were
created for decentralized MARL systems. The communication levels were designed such
that each level progressively extends the information that agents receive from their peers
and the environment.

At first, this chapter describes the environment setup and the underlying simulation
mechanisms. Additionally, the details regarding the structure and mechanisms of the cen-
tralized and decentralized MARL systems are discussed to illustrate their fundamental
differences. Lastly, we look at the different techniques used to extend the baseline decen-
tralized MARL system and enable various communication levels between the agents.

1as is the case with centralized MARL systems
2as is the case with decentralized MARL systems
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3.1 Environment Setup and Task Description
The underlying simulation consists of a 2-dimensional grid-based environment in which
multiple artificial agents learn to navigate from their initial locations to pre-defined goal
positions. Aside from the agents and goals, the grid also includes a number of obstacles
that the agents have to avoid along their path to the desired locations. The 2d grid and the
configuration of the three components namely, obstacles, agents, or goals; are collectively
referred to as “world”. Although the position of the goals may vary in different world
setups, the worlds always have two goal locations with limited capacities. The capacity
of each goal indicates the number of grid cells in that particular goal location that can be
occupied by the agents. The cumulative capacity of the goals is limited to the number of
agents involved in the task. Thus, if all the agents arrive at a goal cell, there would not
be any extra slot left in either goal locations. Therefore, guiding the agents to the goals
and distributing them among the limited capacity of two goal locations is the primary task
the MARL systems aim to learn. In the desired scenario, all the agents would be able to
navigate from initial positions on the grid to a particular spot in either one of the goals
without having any agent outside of the goal locations.

To simplify the world representation in order to be used by MARL systems, the grid is
mapped into an integer matrix. This matrix is passed to MARL systems so that they can
utilize this information about the state in deciding the actions of the agents. Depending
on the type of MARL system, the learning agents could use this matrix, or a portion of it,
as the representation of the current state of the process. Every cell on the grid, including
those that are occupied by agents, goals and obstacles, are encoded into the matrix as an
integer using the following encoding method.

In an M x N grid, for every cellC(x, y), x ∈ {0, 1, ...,M−1} and y ∈ {0, 1, ..., N−1},
the cell is encoded as an integer (z), using the mapping function f(x, y) = z such that:

f(x, y) = z =


0 if C(x, y) is empty
n if C(x, y) is occupied by an arbitrary agent an ∈ A = {a1, a2, ...an}
-n if C(x, y) belongs to an arbitrary obstacle bn ∈ B = {b1, b2, ...bm}
100 + n if C(x, y) belongs to an arbitrary goal gn ∈ G = {g1, g2, ...gj}

for n,m, j ∈ N, n 6= 0

Since the resulting integer matrix would include large and negative numbers, the learn-
ing agents use pre-processing methods to prepare the state representation before using it
to decide their actions. An arbitrary world is presented in figure 3.1 to provide an example
world setup and the integer matrix that is created by encoding the grid and its component.
Figure 3.1 also shows the color-mapped representation of the world. This visualization
method is used throughout the thesis to illustrate different world setups.
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Figure 3.1: An example 8x8 world with two obstacles, two goals and four agents. (left)
The integer matrix created by encoding the grid. (right) The color-mapped visualization
of the world with red, green and black colors used to represent agents, goals and obstacles
respectively.

3.1.1 Simulation Mechanisms
Aside from the structure and the components of the world, there are a number of rules
and mechanisms that govern the simulation and enable the MARL systems to learn the
primary task.

The simulation runs for a limited number of steps, during which all the agents have to
decide and perform their next actions in a sequential manner. The simulation is considered
completed if either the goal is achieved, that is all the agents are in a goal location at a
particular state, or the simulation has completed the set limited number of steps.

At each step, agents can either halt3 or navigate on the board by performing one of the
four possible movements, namely, moving (i) up, (ii) down, (iii) left, or (iv) right. These
form the five actions that the agents can choose to perform at every step. Performing either
one of the vertical or horizontal actions, moves the agent to the respective adjacent cell.
The agents, however, are prohibited from moving to the tiles that are either occupied by
other agents or blocked by obstacles. Performing any of these actions, halting included,
costs energy for the agents. The multi-agent reinforcement learning systems handle the
decision making of the agents at each step.

In centralized MARL systems, a centralized agent decides the action for every agent
in the simulation. In the decentralized MARL systems, the agents are responsible for both
deciding their next actions and performing the chosen actions. Once the next action is
decided, the agent performs the action and the MARL system receives a reward signal
accordingly. Following that, the simulation proceeds to the next agent and repeats the
same procedure until all the agents have performed their actions in that step.

3standing still and not moving for that step
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3.2 Decentralized MARL Systems
Decentralized MARL lacks any centralized controller that could make decision for all
the agents. Instead, every agent in the decentralized setup is created as an independent
Q-learning agent that can decide for its own action during the process, given its partial
observation of the world. Each agent in the decentralized MARL system uses a multi-
layer perceptron to approximate the Q-values of the possible actions and learns its own
behavior policy through interaction with the environment. The main idea in decentralized
MARL systems, is to distribute the learning process among independent learners instead
of learning the task by a centralized controller. While the agents try to learn how to inter-
act with the world so that its cumulative reward is maximized, the global goal is to teach
every agent to allocate themselves among the limited capacity of the goal locations. To
assist the learning process and encourage cooperation among the agents a shared reward
function was used in decentralized MARL systems. Given enough experience, the agents
gradually learn their individual policies and develop strategies such that their collective
behavior achieves the main global goal.

Another major difference between the centralized and decentralized MARL systems
is the amount of information that each system receives from the world to use during the
decision making process. Contrary to the centralized controller that receives the complete
state of the world at every step, the decentralized agents are confined to observe only
a limited portion of the grid in their immediate surroundings. To compensate for their
limitation, decentralized agents can communicate certain information between the goal
locations and themselves. Thus, five decentralized MARL systems were designed, each
extending the communication among the agents and increasing the amount of information
they receive from the world.

• Baseline decentralized MARL System: also referred to as, baseline system, is
considered the foundation of the other decentralized systems as it includes only the
basic mechanisms for enabling distributed learning. The baseline system does not
include any form of communication among the independent learners.

• Goal-Communication System: builds upon the baseline system by enabling a basic
communication between the goal locations and the agents. In this system, the agents
are informed of the number of occupied slots in each goal location.

• Goal-Intention System: extends the previous system by allowing the agents to
shape intention. This system uses multi-objective reinforcement learning for agents
that enables them to explicitly know which goal location they are navigating to.
However, the agents cannot communicate their intentions in this system.

• Intention-Communication System: allows the agents to inform other learners of
their intended goal at each step. The learners can use this information in determining
their next actions in addition to the communicated goal population information.

• Policy-Sharing System: all the agents use and update a single shared policy as
they interact with the environment and learn the actions. Similar to the previous
system, the agents use the communicated intention and goal population in deciding
the actions.
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We first examine the domain of this multi-agent setting and explain how the learning
process is distributed among independent learners in the decentralized MARL systems.
Following this section, the details about the independent learners and their interaction
procedure in the simulation are presented. Lastly, the difference between the five levels of
communication in the decentralized MARL systems are discussed and the key differences
between them are highlighted.

3.2.1 Multi-Agent Setting and Independent Learners
We consider this problem as a multi-agent setting in which multiple agents must learn to
collectively achieve the global goal of allocating themselves among limited capacity of
the goal locations. In this multi-agent setting, a set of n agents, (n ≥ 2), share a common
environment wherein the action of one agent affects the state of the world for all the agents
in the process. We also consider this problem as a sequential game in which the agents
take turns to perform an action and interact with the environment. During the process, the
agents can take a limited number of turns that is determined by a predefined step-limit Φ.
We model our process similar to the method of [4] with:

• A set of n ≥ 2 homogeneous agents, U = {u1, u2, ... , un}, that are participating in
the process together.

• S = {s1
0, s

2
0, s

3
0, ... ,sn−1

0 , sn0 , s
1
1, s

2
1, · · · , s1

Φ−1, s
2
Φ−1, s

3
Φ−1, ... ,sn−1

Φ−1, s
n
Φ−1} :

A finite set of discrete states in which sij denotes the state of the process when the
agent i has to make its j−th action decision. Intuitively, the set S can be considered
as a decomposition of a higher level step cycle set for the simulation process,
Ŝ = {ŝ0, ŝ1, ..., ŝφ−1}, where each element ŝj ∈ Ŝ, groups local states for the
agents’ turns at the step j, ŝj = {s1

j , s
2
j , ..., s

n
j }. The initial state of the process

is s1
0 where the first agent is taking its first action and the final state snΦ−1 is used

for the last agent’s final action. The state of the world is obtained from the world
matrix that was described previously. In decentralized MARL systems, for every
agent um ∈ U a lower level set of states, Sm = {sm0 , sm1 , sm2 , ..., smΦ−1}, Sm ⊂ S,
is considered that only contains the states in which agent um has to take an action.
For a centralized controller that observes the true state of the process all the time, it
simply considers a sequence of discrete states in which it can control one agent at a
time S = {s0, s1, s2, ..., st} where t = n(Φ− 1).

• A finite set of actions am ∈ A that the agents can perform. am denotes the action
performed by the agent um. In this problem the agents can perform one of the five
moves [halt, up, left, down, right] at each turn. However, given the described mech-
anisms of the simulation, some of the actions may be prohibited in some particular
states. At every step j, during the turns for every agent um ∈ U , the agent performs
an action amj in the state smj which transitions the world to the next state sm+1

j . The
process proceeds with the next agent um+1 to take an action until all the n agents
have performed an action at the j−th step. Once that step is completed the process
start the next step which repeats the sequential turn-based interaction of the agents.
From the perspective of an independent learner that observes the state of the envi-
ronment at its own turn in every step, once the agent observes the state of the world
on the next step smj+1, all the other agents have already taken an action. Given the
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partial observation that the agent um receives in decentralized systems, it is able to
observe the previous action of the neighboring agents that fall within its range of
vision. The actions of other agents that are outside of the observable portion for
agent um, are hidden to that agent.

• Let Âj = {a1
j , a

2
j , ..., a

n
j } denote the sequence of actions that the agents took during

the j−th step of the process (Ŝj). The transition of the local states, [smj −→ sm+1
j ],

depends on the individual action of the agents, T (sm+1
j |smj , amj ). The transition of

the states in the scale of steps, [smj −→ smj+1], depends on the action of all agents at
the j−th step of the process, T̂ (ŝj+1|ŝj, Â).

• Upon performing an action, the quality of the action is evaluated and an appropri-
ate reward value rmj is allocated accordingly. rmj denotes the allocated reward for
the agent um upon performing action amj in state smj . In decentralized MARL sys-
tems, each agent receives the reward of its own actions at every turn, whereas in
centralized MARL system, only the centralized controller decides for every action
and receives its corresponding reward. Regardless of the type of MARL system, all
the actions are evaluated equally based on the same criteria.

The decentralized MARL systems break the problem down to small chunks, each
solved by one of the agents. Every agent becomes an independent Q-learner that learns
Q∗m(sm, am) using the method explained in the previous chapter. Every agent uses a mul-
tilayer perceptron to approximate the Q-values of the actions and update the weights of
the network θm upon receiving the rewards of its action and observing the next state.

The independent learners of the decentralized MARL system learn their individual
policies π∗m, that maximizes its individual cumulative long-term pay-off. The ultimate
goal of the decentralized MARL systems is to have the individual learners learn a set of
policies π∗(s) = {π1(s), π2(s), ..., πn−1(s)}, that collectively accomplish the task and as
the result maximizes the reward for everyone. A shared reward function is used for the
decentralized systems that encourages cooperation among the agents. This shared reward
function aligns the intention of maximizing personal rewards in agents with maximization
of the global reward rather than hindering other agents. However, coordinating the agents
is still a challenging task since they can only observe a limited portion of the world.

3.2.2 Training the Independent Learners
At each step, every decentralized agent has to make an action decision upon receiving the
state of the world smϕ and obtaining its observation matrix. In order to decide their next
actions, agents have to follow a few steps, starting with processing their observation of the
world and the communicated information. Once these pre-processing stage are completed,
the agent creates the input layer of the MLP and performs a forward propagation with the
multilayer perception. As mentioned before, the MLP approximates the Q-value of each
action at any given state and results in five values that are mapped to the five actions which
the agent can perform. Before making the decision, for each of the actions, the learning
agent checks whether it is prohibited from making that move due to the destination cell
being occupied by an agent or blocked by an obstacle. This process results in two lists that
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indicate the possible and prohibited actions4. After that, the agent chooses the move that
it predicts to result in the highest Q-value from the possible moves. During the training
sessions, the agents can deviate from this rule and explore other possible options given a
probability known as “exploration rate”. If the agent decides to explore, a random move
from the possible options is selected without considering the predicted Q-value. Once the
decision making process is completed and the action is selected, the agent performs the
action and waits for the other remaining agents to perform their actions and proceed to the
next step. The agent updates the parameters of the MLP when the the next state is observed
and the reward of the action is returned to it. Algorithm (2) shows the training process for
the independent learners. However, we look at some of the aspects of the agents first.

3.2.3 Vision
One of the common characteristics between these decentralized systems is having a limited
“vision” for the independent Q-learning agents. Vision indicates the extent of which the
agents can observe the grid at their turn. In these decentralized MARL systems vision
is limited to the immediate surroundings of the agents as they can only see one or a few
tiles ahead of themselves. The vision is defined as a square area around the agent5 that the
agent can observe. For instance, if the agent has a vision of 3x3, it can see one tile ahead
of itself in every direction. Figure 3.2 illustrates two setups of 3x3 and 7x7 vision grids
that are used in the final experiment of this thesis.

Figure 3.2: Example vision illustration. The board tiles that the agent observes with a 3x3
and 7x7 vision grids, are highlighted with yellow.

There are instances where an agent may fall on the boundaries of the grid and cannot
obtain complete observation of its surrounding areas. For instance, consider the two ex-
ample scenarios provided in figure 3.3. In both of these examples, the agent with a 3x3
vision is set at either corners of the grid. This means that the agent can only observe a 2x2
portion of the grid while the 3rd row and column of its vision fall outside of the bound-
aries of the grid. In these situations, the agent uses an arbitrary obstacle, obstacle -3 in this
example, to pad the vision matrix to a proper 3x3 matrix. Given the position of the agent,

4The halt move is always a possible option
5The agent is at the center of the vision’s square
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Figure 3.3: (Top) An example scenario a where the agent (with 3x3 vision) is at the bottom
right corner of the grid. (bottom) Agent is at the top left corner of the grid.

appropriate vertical or horizontal paddings are applied so that the agent is always at the
center of the vision grid.

3.2.4 Creating the Input-Layer of the MLP
Decentralized agents have to use their observation of the environment along with commu-
nicated information to create the input layer of the multilayer perceptron. To shape the
input layer of the MLP, the agents have to first process their observation matrix and create
three matrices, each representing one of the three components involved in the task. The
three matrices are created for goals, agents and obstacles by encoding the observed matrix
such that every cell occupied by the respective component is encoded as 1 and all other
cells are encoded as 0. Therefore with these three matrices, the agent knows the position
of other components and empty tiles on the board. The matrices are flattened and used for
constructing the input layer used by the MLP. The agents also receive their (x, y) coordi-
nates on the board, and use two input nodes to represent them.

In the baseline decentralized MARL system, there is no form of communication al-
lowed between the agents. Therefore, the input layer in the baseline system only includes
the flattened encoded vision grids and the coordinate nodes. For decentralized MARL
systems that have communication mechanisms, the additional communicated information
such as the population of agents at each goal location and the intention of other agents6,
are added to the input layer using their representative input nodes. Figure 3.4 illustrates

6Both discussed in the next sections
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an example process of creating the input layer of the MLP used for a decentralized MARL
agent given an arbitrary observation matrix. The values of the coordinate and communi-
cation nodes are normalized between 0 and 1.

.

Figure 3.4: The process of creating an example input of the MLPs used for decentralized
agents from the obtained information about the world. Given more communication, more
information regarding the goal population and the intention of agents are added to the
input layer.
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Figure 3.5: The structure of the MLP used for decentralized agents in a baseline system
with a 3x3 vision grid. Each of the five output nodes is translated to one of the five possible
actions the agents can perform.

3.2.5 Structure of the MLP
Since the state-action space in this problem is large, each agent uses an multilayer per-
ceptron to evaluate the Q-values of actions. During the process of generating the world,
a MLP is created for each independent learner with a single hidden layer and with ran-
domized weights. All of the weights are initialized randomly, as a real number between
-0.5 and 0.5. The sizes of the input and output layers may vary in different decentralized
systems with the addition of communication. In the baseline system, the output layer con-
sists of five nodes, each representing one of the five possible actions that the agent can
perform. Figure 3.5 shows the architecture of the MLP that an agent with a 3x3 vision
uses in the baseline decentralized MARL system. It also illustrates the mapping of the
output nodes to five possible actions of the agent. This MLP consists of a single hidden

layer and uses the sigmoid f(x) =
1

1 + e−x
and linear activation function for the hidden

layer and output layer respectively.

The integration of the MLP for the Q-learning agents was discussed extensively in
the previous chapter. Suppose, agent um has performed action amϕ in state smϕ given the
approximated Q-value, Qm(smϕ , a

m
ϕ ). When the agent gets the reward rmϕ and sees the next

state smϕ+1, we calculate the target of the MLP (y) and compute the squared error (E).

y = rmϕ + γmax
a∈A

Qm(smϕ+1, a) (3.1)

E =
1

n
(y −Qm(smϕ , a

m
ϕ ))2 (3.2)

Once the error (E) is calculated, the agent performs gradient-decent and updates the
weights of the MLP by back-propagating the error as discussed in the previous chapter.
With every new experience the agent adjusts the weights of the MLP based on a predefined
learning rate (α).
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3.2.6 Action Evaluation and Reward Function
After completing a step ϕ, each agent receives a reward signal that is computed based on
the outcome of its last action amϕ . If the agent is at the location upon the completion of
the step, a reward signal of 1 is assigned to the agent. On the other hand if the action has
resulted in the agent moving outside of a goal location gets, a punishment of -1 is given to
the agent. Regardless of the outcome of the actions, the agent also receives a punishment
given the constant energy cost (ε = -0.1) set for performing any action. equation 3.3 for-
mulates the reward function that is used for evaluating the actions of the learning agents.
If the action amϕ does not alter the status of the agent with regards to the goal location, the
agent only gets the punishment of the action’s energy cost.

rmϕ =


1 + ε if the agent is at a goal location
ε− 1 if the agent has moved outside of a goal location
ε otherwise

(3.3)

Using the individual reward function shown in equation 3.3, the agents can learn how
to navigate to the goal locations based on the outcome of their own action. However, we
want to encourage cooperation among the agents so that they can collectively solve the
problem. This reward function can slow down the learning process and undermine the
performance of the decentralized MARL system as the individual rewards that agents re-
ceive do not reflect the performance of the other agents involved in the task.

To address this issue, the rewards that the agents receive at each step is altered to
encourage the collective behavior among the agents. Thus, the rewards that the agents re-
ceive after completing a step together, includes an additional reward value that is obtained
by averaging the reward of all agents during ŝϕ. Equation 3.5 shows how the updated
rewards are calculated. First, for every agent um ∈ U , the assigned rewards are averaged
at the end of each step. Once the average reward value (Fϕ) is obtained, the rewards for
all the agents are updated with the additional value.

Fϕ =
1

n

n∑
m=1

rmϕ (3.4)

rmϕ ←− rmϕ + Fϕ , ∀um ∈ U (3.5)

With this shared reward function, the performance of every agent in the system con-
tributes to the reward that they get after performing an action. Thus, it is in their best
interest if all the agents are receiving higher rewards as it directly affects their individual
reward signals. As the result of this, maximization of individual rewards are correlated to
maximizing the global reward and ultimately accomplishing the task together.

The previous sections provided an in depth description of the problem, multi-agent
setting, simulation process and the multi-agent reinforcement learning adaptation to the
simulation. Algorithm (2) puts everything that was discussed into perspective and shows
the complete simulation cycle that is used for training the independent learners.
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Algorithm 2 - Simulation Cycle for Training Independent Learners

Requires : A world configuration including a set of agents U = {u1, u2, ..., un}
Requires : Φ = A step-limit for the simulation

Initialize : j = 0 : step-counter
Initialize : λ = ’Progressing’ : simulation-completion status

λ can be either ’progressing’ or ’completed’
Initialize : Ωj = n : denotes the number of agents outside of goals at step j

While λ = ’Progressing’:
if j = Φ or Ωj = 0:

λ = ’completed’
else:

for every agent um ∈ U :
Pass the current state (smj ) to the agent um :

obtain the observation omj and apply padding if needed
if communication is allowed:

Obtain and process communicated data
end if
Prepare the encoded matrices and create the input layer of the MLP
Perform a forward propagation with the created input layer
Obtain Qm(smj , a

′) for ∀a′ ∈ A
if j 6= 0:

Return the rewards of the previous step rmj−1

Update the Q-function (MLP) by the agent:
Compute the updated Qm(smj−1, a

m
j−1) with the target output

Perform back-propagation and update θm

end if
Obtain the action decision πm(smj ) −→ amj from the agent :

Obtain the list of possible actions A′ ⊆ A
With a random probability 0 ≤ ρ ≤ 1 :

if ρ ≤ exploration rate (ε):
Explore a random move, a′ ∈ A′, from the allowed actions

else:
select the action a′ = argmax

a∈A′
Qm(smj , a)

end if
Perform the selected action a′ by the agent um
Evaluate the action and store the corresponding reward rmj

if shared reward function is used:
Average the rewards of the agents Fj =

1

n

∑n
m=1 r

m
j

Update the previous reward of every agent rmj ←− rmj + Fj , ∀um
end if
Proceed to the next step j = j + 1

end if
end While
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Figure 3.6: Baseline decentralized MARL system diagram, illustrating the sequential in-
teraction of agents with the environment at step ϕ.

3.2.7 Baseline Decentralized MARL System
The simplest decentralized system, called the Baseline Decentralized System, does not al-
low any form of communication among its agents. The mechanisms of the baseline system
are the foundation of the other decentralized MARL systems. Figure 3.6 shows the indi-
vidual interaction of the agents with the environment in the baseline system. At every step
ϕ the agents receive the state of the world (smϕ ) from which they obtain their observation
and decide their actions accordingly. Due to lack of communication, the agents cannot be
aware of certain information such as the space availability in goal locations or the number
of agents navigating to either destination. As the result of this, coordination among the
agents becomes limited which hinders the learning process. Without enough means for
coordination, establishing cooperative behavior and solving the problem collectively be-
comes even more challenging. The next decentralized systems introduce a communication
channel between the agents in order to facilitate better cooperation among them and assist
their learning process.

3.2.8 Goal - Communication System
The second decentralized MARL system adds a communication channel to the baseline
system that enables agents to use additional information in deciding their actions. In this
system, in addition to the observation of the environment, the agents also receive two
additional values each indicating the number of agents that are already occupying a cell in
the respective goal location. As it has been shown in figure 3.4, the communicated values
are scaled between 0 and 1 and are represented with two input nodes in the multilayer
perceptron that the independent learners use. Although this communication is limited,
it allows the agents to know whether there are any available spots in each goal. They
can plan their strategy to navigate to the goal location that has more available slots. This
can greatly enhance the coordination between the agents and in the long-term enhances
the learning process for the agents. However, to optimally utilize this information, the
agents must know which goal they are navigating to explicitly. In the goal-communication
system, since the structure of the function approximator is still similar to that of baseline
system, it does not provide an explicit representation for each goal location. The next
system addresses this problem and uses a new architecture for the multilayer perceptron.
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Figure 3.7: The structure of the MLP used for IMOQLs. The green nodes, (the first five
output nodes), represent the five actions with the intention of navigating to the first goal.
The blue nodes are mapped to the same actions but imply having the second goal as the
intention of agent.

3.2.9 Goal - Intention System
The third decentralized MARL system extends the goal-communication system by in-
troducing an intention characteristic for the agents. This system uses multi-policy multi-
objective reinforcement learning that enables agents to know explicitly which goal they are
navigating to. MORL extends the standard RL architecture to facilitate scenarios in which
multiple, and even possibly conflicting objectives exist. As mentioned in the previous
chapter, instead of one scalar reward value, the environment provides multiple rewards,
each indicating the quality of the agent’s actions with regard to one of the objectives of
the process. To replace the IQLs with independent multi-objective learners (IMOQLs),
the structure of the multilayer perceptron was altered as the output layer now has to ap-
proximate the Q-value of every action with respect to both goals. Figure 3.7 illustrates the
MLP that is used for IMOQ-Learning agents. The output layer of this MLP consists of 10
output neurons that represent the Q-values of five possible actions with respect to the two
goals that the agents can navigate to. For each action am ∈ A the MLP approximates two
Q-values ofQ1

m(smϕ , a
m
ϕ ) andQ2

m(smϕ , a
m
ϕ ) for goals 1 and 2 respectively. Upon performing

an action, it is evaluated with a new reward function (3.6) with respect to both objectives,
and receives a reward vector, ~r mϕ = [r mϕ , r

′ m
ϕ ], that contains two rewards for goal one and

two respectively.

[r mϕ , r
′ m
ϕ ] =



[1 + ε, ε] if the agent is at a goal location 1
[ε− 1, ε] if the agent has moved outside of a goal location 1
[ε, 1 + ε] if the agent is at a goal location 2
[ε, ε− 1] if the agent has moved outside of a goal location 2
[ε, ε] otherwise

(3.6)
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Similar to the previous approach that uses a shared reward function, the goal-intention
system also updates the rewards that agents receive with an additional averaged reward
value during that step. Equation (3.7) shows the method that is used to update both of the
reward values that the agent receives for an action. Fϕ and F ′ϕ are average rewards that the
agents received at step ϕ for objective 1 and 2 respectively.

Fϕ =
1

n

n∑
m=1

rmϕ , F
′
ϕ =

1

n

n∑
m=1

r′ mϕ (3.7)

rmϕ ←− rmϕ + Fϕ , ∀um ∈ U

r′ mϕ ←− r′ mϕ + F ′ϕ , ∀um ∈ U

The rewards that the agent receives at the ϕ−th step , rmϕ and r′mϕ , are used to update
the Q-values for two objectives, Q1

m(smϕ , a
m
ϕ ) and Q2

m(smϕ , a
m
ϕ ), respectively. Once the

agents observe the next state smϕ+1, it can update the previous approximations for both
objectives using equation (3.8) and proceed to update the weights of the MLP with the
newly obtained experience.

Q1
m(smϕ , a

m
ϕ )←− r mϕ + γ max

a∈A
Q1
m(smϕ+1, a) (3.8)

Q2
m(smϕ , a

m
ϕ )←− r′ mϕ + γ max

a∈A
Q2
m(smϕ+1, a)

Using this setup the agents can develop intention that indicates which goal they are
navigating to. During the decision making stage, the agent chooses the action that has the
highest Q-value among all approximated Q-values. If the approximated Q-value of the
action towards the first goal was larger than the value of the second goal, Q1

m(smϕ , a) ≥
Q2
m(smϕ , a) the agent’s intention is set to the first goal. Otherwise, the agent intends to

navigate to the second goal. This structure, combined with the communicated goal pop-
ulation information, can help the agents to develop a better strategy in order to arrive at
a goal location. However, the agents are only aware of their own intention and do not
know whether other agents are also navigating to the same goal location. This is still a
coordination issue, that may result in too many agents navigating to a same goal location.

3.2.10 Intention - Communication System
The Intention-communication system extends the communication among decentralized
agents by allowing them to share their intention with each other. Similar to the previous
system, the intention-communication system also utilizes multi-objective reinforcement
learning for its agents in order to enable them to form intentions. In addition to the com-
municated goal population and observed portion of the grid, the agents receive and use
two scaled values that indicate how many agents intend to arrive at either one of the goal
locations. This information can assist the collective behavior of the agents and reduce the
probability of all agents navigating towards the same goal location. With this change, at
every step, the agents receive the latest intention of the other agents and shares its own
intention once it decides on an action.
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Figure 3.8: Intention-Communication diagram, highlighting the addition of communica-
tion mechanisms established between the agents.

Figure (3.8) illustrates the addition of this communication channel to the decentralized
MARL systems and the process of communicating intention and goal population infor-
mation between the agents. Note that since the intention - communication system uses
multi-objective RL for the independent learners, two rewards are returned to the agents
upon completing the step.

3.2.11 Policy Sharing System
The last decentralized MARL system is named after the policy sharing technique which
it uses to enhance the learning process of the agents. In this system, the agents share the
same multilayer perceptron to assess the information and predict the Q-values of the ac-
tions. This enables the shared policy to experience more variations as all agents explore
the world and navigate towards the goals. In fact, for a process with N agents and an M
step-limit, the shared policy experiences M × N examples, whereas a single individual
MLP in other decentralized systems gets updated only M times. Hence it can generalize
more information and have a better approximation of theQ-values for new states that have
not been experienced before. This approach may be considered as a stage between the cen-
tralized and the decentralized approach to MARL systems. This is because, although the
agents share a common MLP between each other, the process of deciding the actions and
updating the policy is performed independently as it is done in other decentralized MARL
systems. The policy sharing approach shares the advantage of obtaining more experience
during the process with the centralized MARL system while avoiding the scalability prob-
lem of the centralized controller.

In the policy-sharing system, the agents follow the same procedure for deciding their
actions, communicating with each other and interact with the world, as the goal-Intention
system. This means that the structure of the shared MLP allows the agents to use MORL
and form their intention and Like the previous decentralized system, the agents also share
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Figure 3.9: Policy sharing system diagram, illustrating the interaction between indepen-
dent learners and the shared MLP at an arbitrary step ϕ.

the goal population and intention information with each other in the policy-sharing de-
centralized system. However, the main difference between these two systems is that
the agents in the policy-sharing system do not have their own individual multilayer per-
ceptron. Instead, they all use a shared MLP for assessing the information and approx-
imate the Q-values of the actions. The structure of the shared MLP follows that of
the intention-communication and goal-intention system as it enables multi-objective re-
inforcement learning. The input layer of this MLP is constructed by the agent at each
step and returns the Q-values back to the agent. Following that stage, the agent chooses
the action based on its policy and updates the MLP independently once the process has
proceeded to the next step. Figure (3.9) illustrates the interaction of the agents with the
shared MLP. Note that this figure highlights the shared policy aspect of the system and the
structure of the communication channel, demonstrated in figure (3.8), still holds true for
the agents.

3.3 Centralized MARL
Throughout this chapter, many aspects of the centralized MARL system were discussed by
drawing comparisons between the decentralized systems and the centralized approach to
the MARL system. Contrary to the decentralized systems in which all the agents engage
in the learning process, in the centralized MARL system a single centralized controller
must learn to achieve the goal by controlling all the agents in the process. In this system,
the agents are no longer responsible for deciding the actions on their own. Instead they
can only perform the actions that the centralized controller decides for them. The process
still follows the same procedure as the agents take turns to perform their actions for every
step of the process and the primary goal of the system is to allocate the agents between the
limited capacity of two goal locations. However, in this system the environment directly
passes the state of the process to the centralized controller where it processes the infor-
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Figure 3.10: Centralized MARL system diagram, illustrating the control of the centralized
agent over the actions of every agent.

mation and uses its own multilayer perceptron to decide what action the agent must take
during its turn. Moreover, the rewards of the action is directly returned to the centralized
controller so that it can update the policy every turn. Figure 3.10 illustrates the interaction
cycle between the centralized controller, environment and the agents at an arbitrary step ϕ.

There are certain advantages that the centralized controller has compared with the inde-
pendent learners of the decentralized MARL systems. Contrary to the independent learn-
ers that could observess only their surroundings during every step, the centralized con-
troller observe the entire board. As the result of this advantage, the centralized controller
can make the decisions knowing the position of all the agents on the board. Moreover,
since the centralized controller makes the action decision for every agent and observes the
true state of the process, the communication mechanisms to share intention or goal popu-
lation are not required anymore. Since the centralized controller receives the rewards for
every action and controls the agents by itself, coordinating the agents is considerably eas-
ier and the shared reward function is no longer needed to encourage cooperation between
the agents. However, as mentioned before, this system suffers from scalability issues since
the centralized controller has to learn a policy that maps every state of the world to an op-
timal action of the respective agent. When the number of agents grows in more complex
environments, the complexity of the centralized meta-policy that the controller must learn
also grows higher.

The centralized controller is a higher level Q-learning agent that receives every state
of the process, S = {s1

0, s
2
0, s

3
0, ..., s

n−1
Φ , snΦ}, and decides the sequence of actions, Aϕ =

{a1
ϕ, a

2
ϕ, ..., a

n
ϕ}, for the agents during every step ϕ. The centralized controller uses a cen-

tral multilayer perceptron that predicts the five Q-values for the actions. Similar to the
procedure of the decentralized MARL system, the agent processes the state matrix that it
receives to shape the input layer. However, since the centralized controller observes the
entire board at every step, mapping the obstacles and the goal locations to separate binary
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matrices is redundant. Although the position of the agents changes on the board, the goal
and obstacles remain at the same location in every world setup. Thus encoding them for
the input layer of MLP would be redundant when the positions are static. The centralized
controller learns by updating this MLP upon receiving the rewards and observing the next
states. The actions are evaluated based on the same method where navigating to a goal lo-
cation rewards the controller with 1, and exiting the goal location punishes the controller
by a value of -1. Similarly every action regardless of the outcome adds a energy − cost
punishment to the agent.

As mentioned before, instead of learning individual policies that map the local states
to individual actions, the policy that the centralized controller learns maps every state of
the process to the actions of the agents. The centralized controller considers a set of states
S = {s0, s1, ...sT} that encapsulates every state of the process. The optimal policy that
the controller must learn, maps these states to the actions of the agents, π : S −→ A, such
that the total reward that it receives in the long-term is maximized. That is the primary
reason that increasing the number of agents in the process, increases the complexity of
the centralized policy that the controller must learn. Therefore, even though the decen-
tralized MARL systems have coordination challenges and suffer from various limitations,
they can possibly be a better approach for solving problems where the number of partic-
ipating agents is large. In the next chapter, we discuss our experiment scenarios that test
our approaches with different task complexities. However, before we proceed to the next
chapter, we summarize the structure of our MARL systems in table (3.1), by highlighting
the most important differences between them.

Baseline Goal Goal Intention Policy Centralized
- System Comm. Intention Comm. Sharing System
Vision limited limited limited limited limited full observation
Learning independent independent independent independent independent centralized
method Q-learning Q-learning MO Q-learning MO Q-learning MO Q-learning Q-learning
Q-value individual individual individual individual shared centralized
approximation MLP MLP MLP MLP MLP MLP
Updating MLP independent independent independent independent distributed centralized
shared reward
function

×

Goal population
sharing

× ×

Intention.
mechanism

× × ×

Intention
sharing

× × × ×

Table 3.1: Comparison between the structure of the centralized and decentralized MARL
systems.
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Chapter 4

Experimental Setup

The final experiments of this thesis were designed with two primary goals in mind:

• Comparing the performance of the centralized and decentralized MARL systems in
learning tasks with different complexities

• Evaluating the effects of different communication mechanisms in the decentralized
multi-agent reinforcement learning systems

To examine whether either one of the previously discussed MARL systems can con-
sistently outperform the other setups, four experiment scenarios were designed in which
the agents had to learn the tasks under different conditions. The different task complexi-
ties that these scenarios represent were determined based on the complexity of the world
setup and the extent of vision allowed for the agents in decentralized MARL systems. The
addition of vision as a complexity condition allows us to examine whether the communi-
cation mechanisms were a significant factor in determining the success of MARL systems
in learning the tasks; in comparison with the primary visual input that the agents utilize
during to decide their actions. Furthermore, the individual and shared reward functions
were tested to evaluate their effectiveness in encouraging cooperation among the agents
and enhancing the learning process of the systems.

First, this chapter describes the initial parameter optimization stage that was completed
before testing the systems with the final conditions to find the optimal learning rate and
discount factor for both the centralized and decentralized systems. Additionally, this chap-
ter provides the experimental setup of the final comparison between the MARL systems.
For the four final experiment scenarios, the world configurations, independent learner’s
vision setups, and the training hyperparameters are presented in this chapter. Finally, the
details of the reward function experiment and the procedure of training the MARL systems
are discussed at the end of this chapter.
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4.1 Parameter Optimization
Before comparing the multi-agent reinforcement learning systems in solving the complex
problems, some initial trial runs were completed to optimize two parameters of the sys-
tems. In the initial parameter optimization stage, few tests were completed to choose the
most optimal combination of learning rate (α) and discount factor (γ) that would result in
the best overall performance for both the centralized and decentralized MARL systems.
For the learning rate the values of 0.01, 0.001, 0.0001, 0.005 and for the dis-
count factor, 1.00, 0.99, 0.98, 0.97 values were tested. Two MARL systems,
the centralized and the intention-communication systems, were trained on a simple world
setup for 20,000 epochs. The step limitation for the agents during this stage was set at
200 steps. During each training session, the systems were tested with 100 runs upon com-
pleting every 1,000 training epochs1. In this 12x12 world, six agents had to navigate to
two goal locations2 while avoiding three obstacles along their paths. Figure 4.1 shows the
world configuration used during the parameter optimization stage.

Figure 4.1: Easy world setup used in the parameter optimization stage. This world consists
of a 12×12 grid, 6 agents and 3 obstacles.

Table 4.1 lists the result of the parameter optimization tests. It lists the final training
and testing accuracy of the centralized and decentralized systems with different combina-
tions of learning rate and discount factor. The combination of a learning rate of 0.001
and a discount factor of 0.99 yields the best overall performance for both the central-
ized and decentralized systems. Thus these values were chosen to be used in the final
comparison of the systems.

15% of total epochs per condition
2Each goal has a capacity of three
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Centralized MARL Decentralized MARL
Test Learning Discount Training Testing Training Testing

No. Rate (α) Factor (γ) Accuracy Accuracy Accuracy Accuracy

1 0.01 1 63% 72% 45% 43%
2 0.01 0.99 71% 74% 58% 52%
3 0.01 0.98 66% 65% 59% 47%
4 0.01 0.97 63% 59% 44% 42%
5 0.001 1 76% 79% 71% 77%
6 0.001 0.99 84% 88% 81% 78%
7 0.001 0.98 81% 83% 79% 84%
8 0.001 0.97 66% 62% 70% 63%
9 0.0001 1 72% 68% 69% 66%

10 0.0001 0.99 81% 83% 71% 75%
11 0.0001 0.98 78% 77% 70% 69%
12 0.0001 0.97 62% 57% 63% 60%
13 0.005 1 79% 73% 71% 73%
14 0.005 0.99 80% 78% 65% 72%
15 0.005 0.98 77% 71% 72% 75%
16 0.005 0.97 69% 70% 61% 54%

Table 4.1: Result tests of the centralized and decentralized system for tuning the learning
rate and discount factor parameters. The setup that resulted in the best overall performance
is marked as bold.

4.2 Final Comparison Setup

4.2.1 World Configurations
The world setup used in the parameter optimization phase was considered “simple”. For
the final experiments, both the centralized and decentralized MARL systems were trained
and tested on two more complex world configurations that represent “average” and “com-
plex” task difficulties. The complexities of the worlds are defined based on the number of
obstacles and agents as well as the size of the grid used in the world setup.The specifica-
tion of these two world configurations is as follows:

World Setup Grid Size # of Agents # of Obstacles # of Goals Total Goal Capacity
Average 14x14 7 5 2 7
Complex 18x18 14 7 2 14

Table 4.2: Specification of the average and complex world configurations

All the MARL systems used the same world configurations during the training ses-
sions. The position of the obstacles and goals remained static during the experiment while
the location of the agents are randomized. Figures 4.2 and 4.3 show the average and the
complex world setups respectively.
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Figure 4.2: Average world setup used in the final experiment. This setup contains a 14×14
grid, 7 agents and 5 obstacles.

Figure 4.3: Complex world setup used in the final experiment. This world has a 18×18
grid, 14 agents and 7 obstacles.
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4.2.2 Vision Configuration for Decentralized Agents
In addition to the world configurations, two different vision setups were also used for the
decentralized MARL systems during the final experiments. The decentralized agents were
tested with both the 3x3 and the 7x7 vision grid setups that were shown earlier in figure
3.2 (chapter 3). The addition of the size of the vision grid as a factor in the experiments
allows us to determine whether the benefits of increasing the communication among the
agents3 outweighs the advantages of having an extended vision and being able to observe
a bigger portion of the world4. The vision factor was only applied to the decentralized
MARL systems since the centralized controller does not have a limitation in its vision and
can observe the entire grid in every setup.

4.2.3 Experiment Scenarios
Using the world configurations, [ Average, Complex ], combined with the vision setups for
decentralized agents, [ 3x3 , 7x7 ], four scenarios for the final experiment were designed
such that each scenario increases the difficulty of the task from the previous setup. The
description of these experiment scenarios is as follows:

• Scenario 1: Averaged World - Extended Vision:

In the first scenario, the decentralized agents have an extended vision of [7x7] and
have to learn the task in an environment with average complexity. This setup is
considered to be the easiest scenario since the agents can observe a big portion of a
less complex environment.

• Scenario 2: Averaged World - Limited Vision:

This setup increases the complexity of the task by reducing the size of vision grid
of agents to the [3x3] setup. Although in this setup the decentralized agents are
restricted by limited vision, the average world setup makes this scenario comparably
easier than the next two scenarios.

• Scenario 3: Complex World - Extended Vision:

In this scenario, the agents have to learn the task in a complex environment while
still observing a [7x7] portion of the grid around themselves. Even though the agents
have a larger vision, the complexity of the world makes this scenario more difficult
than the two previous scenarios.

• Scenario 4: Complex World - Limited Vision:
In the last scenario, the agents in the decentralized MARL systems have a limited
vision of [3x3] and must learn to navigate to the goal location in the complex world
setup. Therefore, this scenario is considered to represent the must difficult task
which the MARL systems most learn to solve.

3that is considered to be additional information
4which is the primary source of information
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Test World
Number System Type Vision Complexity Scenario

1 Centralized Entire Board Average 1 & 2
2 Decentralized - Baseline 7x7 Average 1
3 Decentralized - Goal Communication 7x7 Average 1
4 Decentralized - Goal Intention 7x7 Average 1
5 Decentralized - Intention Communication 7x7 Average 1
6 Decentralized - Policy Sharing 7x7 Average 1
7 Decentralized - Baseline 3x3 Average 2
8 Decentralized - Goal Communication 3x3 Average 2
9 Decentralized - Goal Intention 3x3 Average 2

10 Decentralized - Intention Communication 3x3 Average 2
11 Decentralized - Policy Sharing 3x3 Average 2
12 Centralized Entire Board Complex 3 & 4
13 Decentralized - Baseline 7x7 Complex 3
14 Decentralized - Goal Communication 7x7 Complex 3
15 Decentralized - Goal Intention 7x7 Complex 3
16 Decentralized - Intention Communication 7x7 Complex 3
17 Decentralized - Policy Sharing 7x7 Complex 3
18 Decentralized - Baseline 3x3 Complex 4
19 Decentralized - Goal Communication 3x3 Complex 4
20 Decentralized - Goal Intention 3x3 Complex 4
21 Decentralized - Intention Communication 3x3 Complex 4
22 Decentralized - Policy Sharing 3x3 Complex 4

Table 4.3: The setup of the final experiment, listing the conditions under which all the
systems were trained and tested.

Every MARL system described in the method section was trained and tested under
these four conditions. As mentioned earlier, the vision factor does not apply to the cen-
tralized MARL system. Thus, for the centralized MARL system, the only determining
factor in the complexity of the task was the selected world configuration. Table 4.3 lists
the complete setup of the final experiment.

4.2.4 Testing the Reward Functions
In the previous chapter, two reward functions, namely individual and shared reward func-
tions, were discussed. In order to examine the benefits of having a shared reward function
for decentralized MARL systems, two of the systems were also trained using the indi-
vidual reward function. In an additional experiment similar to the setup of the primary
comparison, the goal-intention and goal-communication decentralized MARL systems,
were also trained on all four scenarios while using the individual reward function.
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Test System Type Reward function Scenario
1 Decentralized - Goal Communication individual 1
2 Decentralized - Goal Intention individual 1
3 Decentralized - Goal Communication individual 2
4 Decentralized - Goal Intention individual 2
5 Decentralized - Goal Communication individual 3
6 Decentralized - Goal Intention individual 3
7 Decentralized - Goal Communication individual 4
8 Decentralized - Goal Intention individual 4

Table 4.4: The additional Experiments with individual reward function for the goal-
intention and goal-communication decentralized MARL systems.

Table 4.4 lists the additional experiments that were conducted with the individual re-
ward function for the decentralized agents. In the main experiments, table 4.3, the de-
centralized agents use the shared reward function. In the next chapter the performance
of these two decentralized MARL systems, using the two reward functions, are compared
and analyzed.

4.2.5 Final Experiment Parameters
For every experiment setup shown in tables 4.3 and 4.4, the MARL systems had to com-
plete a training session during which they were granted multiple attempts at learning the
task and were tested throughout the session. Each training session lasted for 40,000 epochs
during which, the MARL systems were allowed to learn to solve the task within a 300 step-
limit for the agents.

Given the results of the parameter optimization phase, configuration for the final simu-
lations and the specification of the MARL systems that were used in the final experiments
are set according to the table 4.5. Note that the size of the input layer for the MLPs are set
based on the type of MARL system and according to the structure of the MLPs explained
in the previous chapter.

Learning Discount Size of Size of Step Energy
Systems Rate Factor Exploration Hidden-layer Output-layer Limit Cost

Centralized 0.001 0.99 0.2 100 5 300 -0.1
Baseline system 0.001 0.99 0.2 50 5 300 -0.1

Goal - Comm. system 0.001 0.99 0.2 50 5 300 -0.1
Goal - Intention system 0.001 0.99 0.2 50 10 300 -0.1

Intention - Comm. system 0.001 0.99 0.2 50 10 300 -0.1
Policy sharing system 0.001 0.99 0.2 100 10 300 -0.1

Table 4.5: Parameter setup for the MARL systems in both the main experiment scenarios
and the reward function experiments.
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Chapter 5

Results and Discussion

In the previous chapter, we discussed the setup of the final experiments and introduced the
four scenarios that the MARL systems have to complete. In these scenarios, the difficulty
of the task was altered using two factors of (i) world configuration and (ii) vision limita-
tion. While the vision characteristic was applied only to the decentralized MARL systems,
the world configurations directly affect the complexity of the task for both the centralized
and decentralized MARL systems. In this chapter, we investigate how these factors affect
the learning progress of the MARL systems

In order to complete each scenario, the MARL systems have to learn the task with
40,000 training epochs and 300 step-limits. During each training session, at every 2,000
epochs, 5% training progress, the MARL systems are tested with 100 randomized runs
to evaluate their performance. For each test, the positions of the agents were randomized
over the board while the location of the obstacles and goal cells remained unchanged. If
all the participating agents were at a goal location upon completion of the test, the attempt
was considered “successful”. Otherwise, even if one of the agents was outside of the goal
locations, the test was considered “failed”. The accuracy of the MARL systems at every
testing stage was calculated based the number of successful tests over the total number of
tests.

For each scenario, the systems had to complete 10 training sessions. At the beginning
of each training session, the weights used in the multi-layer perceptrons of the MARL sys-
tems were re-initialized again and the performance of the systems was recorded throughout
the training session. For each system, the results of these 10 sessions were averaged and
used for further analysis in this chapter.

In this chapter, we first discuss the results of the final experiments and compare the
performance of the MARL systems in the four scenarios. For each scenario, we discuss
how the complexity factors affected the performance of the MARL systems and compare
the performance of the decentralized MARL system to evaluate the effects of different
communication levels. Additionally, we use a one-way analysis of variance (ANOVA) test
for each scenario to evaluate the extent to which the changes in task complexity affected
the learning process of the MARL systems. Lastly, we also present the outcomes of the
additional experiment of the shared and individual reward functions.
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Figure 5.1: Performance results of the MARL systems over 40,000 training epochs in
scenario (1). The bars indicate the standard error.

Baseline Goal Goal Intention Policy Centralized
- System Communication Intention Communication Sharing MARL System

Mean Accuracy 98.9% 99.4% 99.8% 99.7% 99.1% 99.1%
Standard Error ±0.09 ±0.14 ±0.02 ±0.04 ±0.08 ±0.11
Average Time (s) 4082 3866 5240 5196 6296 24066

Table 5.1: The mean final accuracy, the standard error and average learning time of the
MARL systems in the first scenario.

5.1 Final Experiment Results

5.1.1 Scenario 1: Average World - Extended Vision
First, we look at the performance results of the MARL systems in scenario (1). To recall
the experiment setup for the first scenario, it was considered the easiest setup as it allowed
an extended vision, [7x7], for the independent learners of the decentralized MARL sys-
tems, while having the average world configuration. Figure 5.1 demonstrates the learning
progress of all the multi-agent reinforcement learning systems over the 40,000 training
epochs during the final experiment of scenario (1). As it is shown in figure 5.1, all MARL
systems managed to successfully learn to solve the task in scenario (1) and score nearly
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perfect towards the end of the learning process. Table 5.1 shows the averaged final perfor-
mance of the MARL systems in this scenario along with the average learning time. While
most systems managed to learn to solve the task relatively quickly, there are some differ-
ences between the systems that can be discussed.

The first noticeable difference in performance can be observed with the baseline MARL
system (M = 98.9% , SE = 0.09). Compared with the other decentralized MARL sys-
tems, the baseline system had a slower initial learning progress and gradually enhanced
the performance over the training session. The other systems learned how to solve the
problem considerably faster and could complete the tests successfully after approximately
20,000 training epochs. A comparison can be drawn between the goal-communication
system (M = 99.4%, SE = 0.14) and the baseline decentralized MARL system. The
only difference between these two systems is the additional communicated information
about the number of agents that are occupying cells of either goal locations in the goal-
communication system. Although the difference between the final performance of these
two systems is not significant, the initial performance of the baseline system was notice-
ably worse than the goal-communication system. Without knowing the goals’ population
information, the only information that the agents obtain from their peers comes from ob-
serving their movements. Even then, the learners are only aware of the other agents’
actions that fall within their limited observation instead of tracking all the agents that are
involved. As the result of this, coordinating the agents among the limited capacity of
the goal locations may have suffered in the baseline system. On average, both systems
took approximately the same duration to learn the task with the baseline systems having a
slightly longer training time, table 5.1. Even though the goal-communication system had a
slightly bigger input layer for the agents’ MLPs to include the communicated information.
One of the factors that may have caused this difference in the learning time, is that the goal-
communication system performed better during the training session, and consequently, the
epochs could be completed faster by the goal-communication system. Nevertheless, both
the baseline and the goal-communication decentralized systems managed to learn how to
allocate the seven agents between the goal locations using the extended observation of the
environment.

The other three decentralized MARL systems, namely, the intention-communication
(M = 99.7% , SE = 0.04), the policy-sharing (M = 99.1% , SE = 0.08), and the goal-
intention (M = 99.8% , SE = 0.02) systems had a relatively similar overall performances
and managed to learn the task quickly. However, the policy sharing system performed
slightly worse than the other systems during the training sessions. This is a surprising
effect that is opposite of our initial assumption. The policy sharing system was designed
on the premise that it would enhance the learning process by having more experience
for updating the shared MLP. However, in scenario (1) the goal-intention and intention-
communication systems performed slightly better. Considering the similarity between the
performance of the goal-intention and intention-communication systems, communication
of the intention appears to have no significant effect on the overall performance of the
system in this scenario. However, the addition of multi-objective reinforcement learning
for the independent learners appears to be beneficial for the decentralized MARL sys-
tems as their performances were better overall in comparison with the baseline and goal-
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communication systems, see figure 5.1. In comparison with the first two decentralized
MARL systems, these three systems had a longer training time that can be associated with
the new structure of the multi-layer perceptron that supports multi-objective reinforce-
ment learning. However, the policy sharing system had a longer training time compared
with the other two decentralized MARL systems. Similar to the baseline system, having
lower performance than the goal-intention and intention-communication system resulted
in a longer training session on average for the policy sharing system.

Lastly, we look at the performance result of the centralized MARL system in the first
scenario. Although the centralized system managed to successfully learn the task simi-
larly to the other MARL systems, its initial performance was lower than the performance
of the decentralized systems, figure 5.1. One of the factors that may have contributed to
the success of the decentralized systems was the extended vision that the agents had in the
average world setup. Considering the size of the board in the average world configura-
tion, 14x14, the extended vision covered a large portion of the environment for the agents
to utilize for deciding their actions and to know about the location and actions of more
agents in their surroundings. Thus, the independent learners could obtain nearly sufficient
information for learning their optimal individual policy even without communication as is
the case for the baseline decentralized system. As the result of this, the learning process of
simpler independent policies of the decentralized system was faster initially than learning
a more complex centralized policy.

Nonetheless, the centralized system (M = 99.1% , SE = 0.11) managed to relatively
quickly learn the task in scenario (1) and had a consistent performance throughout the
training session. However, the training duration of the centralized system was noticeably
longer than the decentralized MARL systems. This is not an unexpected results since even
during the initial parameter optimization tests, the centralized system had a longer train-
ing time due to the bigger multi-layer perceptron that it uses. The centralized MLP has
a larger input layer that includes the entire board as opposed to the limited vision of the
decentralized agents. Hence, approximating the Q−values of the actions at every step is
computationally more expensive in the centralized system. Additionally, the lower initial
performance of the centralized system may have increased the average training time for
this system.

Both the intention-communication and goal-intention systems performed better than
the centralized MARL system and required shorter training times. On the other hand, the
centralized system could marginally outperform the other decentralized systems at the cost
of a longer training time. Overall, considering the close performance of the systems and
their differences in training time, the decentralized MARL system were more efficient in
scenario (1) than the centralized system. Although the assigned step-limit and the extended
vision allowed decentralized systems to converge quickly, the addition of MORL helped
the learning process of the systems at the cost of slightly longer training times. Comparing
the centralized MARL system with its counterpart baseline decentralized system, shows
that the absence of communication and intention mechanisms put the decentralized system
at a great disadvantage compared with the centralized system. Perhaps the multi-objective
reinforcement learning structure can further enhance the performance of the centralized
system.

52



Figure 5.2: Performance results of the MARL systems over 40,000 training epochs in
scenario (2). The bars indicate the standard error.

Baseline Goal Goal Intention Policy Centralized
- System Communication Intention Communication Sharing MARL System

Mean Accuracy 82.6% 94.9% 98.2% 98.8% 97.7% 99.1%
Standard Error ±1.90 ±1.03 ±0.23 ±0.15 ±0.38 ±0.11
Average Time (s) 7119 8695 7897 7843 8142 24066

Table 5.2: The mean final accuracy, the standard error and average learning time of the
MARL systems in scenario (2).

5.1.2 Scenario 2: Average World - Limited Vision
Similar to scenario (1), in this scenario the MARL systems had to learn the task in an
average world configuration involving 7 agents. However, compared with the previous
scenario, scenario (2) increased the difficulty of the task for the decentralized MARL sys-
tems by reducing the portion of the grid the agents can observe at every step to [3x3].
Table 5.2 shows the averaged final accuracy and training duration of the MARL systems
in scenario (2). Except for the baseline system, all decentralized systems managed to learn
how to solve the problem with high accuracy towards the end of the training session. Fig-
ure 5.2 illustrates the performance of the MARL systems in the second scenario of the
final experiment over the 40,000 training epochs. Even though most of the decentralized
MARL systems managed to score relatively high in this scenario, the learning progress
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of these systems was noticeably undermined by the limited vision of the agents. In this
section, we discuss how the smaller vision affected the performance of the decentralized
systems in the average world setup.

In the second scenario, the baseline decentralized MARL system obtained the final
score of (M = 82.6% , SE = 1.90) that is the lowest performance compared with other
MARL systems. Contrary to its performance in scenario (1) where the baseline system
could gradually learn to solve the task and scored close to the other decentralized systems
during the late stages of the training session, in scenario (2) the baseline system failed to
close the gap and ultimately demonstrated the worst performance, figure 5.2. On the other
hand, the goal-communication system (M = 94.9% , SE = 1.03) had a considerably better
performance than the baseline system while still having lower performance than the other
decentralized systems. Aside from the lower performance of these two systems, having
a larger standard error than the previous experiment indicates that both of these systems
performed less consistent in this scenario.

Similarly, the drop in the scores from the previous scenario can be observed with the
policy-sharing (M = 97.7% , SE = 0.38), the goal-intention (M = 98.2% , SE = 0.23)
and the intention communication (M = 98.8% , SE = 0.15) systems. Not only the final
accuracy of the decentralized systems was lower in the scenario (2), the overall learn-
ing progress of these systems was noticeably slower and the systems could only achieve
the high accuracy towards the end of the training session. Additionally, the standard er-
ror of these decentralized systems also increased in comparison with their performance
in scenario (1). In contrast to the previous scenario, communication of intention among
the agents helped the intention-communication system to perform slightly better than the
goal-intention system. Nevertheless, all these three decentralized systems that used multi-
objective reinforcement learning for their agents, managed eventually to learn to solve the
task even with the limited vision, and performed comparably better than the baseline and
the goal-communication systems throughout the training session.

As mentioned in the previous chapter, since the centralized MARL system is not af-
fected by the limited vision and can observe the entire state at every step, this scenario was
only applied to the decentralized systems. Therefore, the result of the centralized system
in the average world setup was carried over in figure 5.2, in order to provide a better com-
parison with the performance of the decentralized system in scenario (2). Without having
the extended vision, the decentralized MARL systems failed to retain their fast learning
process in scenario (2) and demonstrated a weaker performance in solving the problem
in the average world configuration compared with the centralized system. Consequently,
the training time of the decentralized system also increased slightly in scenario (2) despite
having less data included in the input layer of their multi-layer perceptrons due to their
limited vision. The baseline and goal-communication systems greatly suffered from the
limited vision and the gap between their performance and the centralized system was more
noticeable in this scenario. Despite their slower learning progress in scenario (2), the de-
centralized systems, particularly the goal-intention and intention-communication systems,
still obtained a better overall performance in the average world setup when considering
their faster training sessions than the centralized system.
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Figure 5.3: Performance results of the MARL systems over 40,000 training epochs in
scenario (3). The bars indicate the standard error.

Baseline Goal Goal Intention Policy Centralized
- System Communication Intention Communication Sharing MARL System

Mean Accuracy 48.0% 75.5% 88.5% 89.9% 84.9% 80.8%
Standard Error ±3.63 ±1.09 ±0.74 ±0.28 ±0.37 ±0.68
Average Time (s) 21787 20475 15138 16346 15394 35049

Table 5.3: The mean final accuracy, the standard error and average learning time of the
MARL systems in the scenario (3).

5.1.3 Scenario 3: Complex World - Extended Vision
Contrary to the first two experiment setups, in this scenario, the MARL systems had to
learn to solve the task in a complex environment that increased the difficulty of the task
by including a larger world grid, more obstacles and twice as many agents as the average
world configuration. However, the agents in the decentralized MARL systems could use
an extended, [7x7], vision in this setup that gave them a noticeable advantage earlier in
scenario (1). The final evaluation of the systems indicates that they could no longer solve
the problem in the complex environment with the high accuracy that they obtained in
the average world configuration and the consistency in their performance dropped signif-
icantly. Similarly, the performance of the MARL systems throughout the session, shown
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in figure 5.3, demonstrates a compelling drop in the overall learning progress of the sys-
tems in scenario (3). In this section we discuss how the complex world setup affected the
MARL systems in comparison with the previous setups.

In scenario (3), the baseline decentralized system (M = 48.0% , SE = 3.63) obtained
the worst performance among all the MARL systems. In contrast to its performance in the
average world configuration, the baseline system did not improve much during the train-
ing session and its final accuracy was significantly lower than the other systems with only
48.0% of the tests being successfully completed at the end of the session. Moreover, a
notable increase in the standard error from the previous setups indicates that the baseline
decentralized system did not retain a consistent performance throughout the experiment,
figure 5.3. Likewise, the performance of the goal-communication system (M = 75.5% ,
SE = 1.09) also suffered greatly from the complex environment and could not achieve
its earlier success in the average world configuration. Although the standard error of the
goal-communication system also increased from the previous experiments, its overall per-
formance was considerably more consistent than the baseline decentralized system. Both
of these systems also had a longer training time than the other decentralized systems, due
to their poor performance in this scenario.

For the policy-sharing (M = 84.9% , SE = 0.37) , goal-intention (M = 88.5% ,
SE = 0.74), and the intention-communication (M = 89.9% , SE = 0.28) systems,
similar effects can be observed throughout their learning progress. Although these sys-
tems could not demonstrate the quick learning progress of the scenarios with a more
complex world configuration, they managed to perform considerably better than the goal-
communication and the baseline decentralized systems at the end of the training sessions.
The goal-intention system achieved the highest performance among all the systems and
had the fastest training sessions in average. Similar to the previous scenario, communi-
cating the intention of the agents helped the intention-communication system to perform
better than the goal-intention system, figure 5.3. On the other hand, the policy-sharing sys-
tem had the most consistent performance and outperformed the centralized MARL system.
Similar to the baseline and goal-communication systems, the training times of these three
decentralized systems were also increased drastically given the lower performance and
larger number of agents that were involved in the process.

Lastly, we look at the performance of the centralized MARL system in the third sce-
nario. As it is shown in figure 5.3, the centralized MARL system’s performance suffered
significantly from the increase in task complexity. Similar to the decentralized systems,
the centralized system (M = 80.8% , SE = 0.68) no longer could achieve its high accu-
racy from the previous scenario and its performance consistency was greatly undermined.
Considering, the slower learning progress, the size of the board, and the number of agents
that the controller had to organize, the centralized MARL system resulted in the longest
training time. All three decentralized systems, policy-sharing, intention-communication
and goal-intention systems managed to demonstrate a better performance than the central-
ized system. However, the performance of the centralized system is still noticeably better
than the baseline decentralized MARL system.
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Figure 5.4: Performance results of the MARL systems over 40,000 training epochs in
scenario (4). The bars indicate the standard error.

Baseline Goal Goal Intention Policy Centralized
- System Communication Intention Communication Sharing MARL System

Mean Accuracy 40.9% 70.7% 82.7% 88.1% 85.4% 80.8%
Standard Error ±0.36 ±0.61 ±0.79 ±0.99 ±0.42 ± 0.68
Average Time (s) 15062 14542 15857 15405 15470 35050

Table 5.4: The mean final accuracy, the standard error and average learning time of the
MARL systems in scenario (4).

5.1.4 Scenario 4: Complex World - Limited Vision
In the last section, we look at the performance results of the MARL systems in the fourth
scenario of the final experiments. Compared with the previous scenarios, this setup repre-
sented the most difficult task as the vision of the decentralized agents was reduced to [3x3]
and the MARL systems had to complete the task in the complex world configuration. Table
5.4 shows the final results of the MARL systems in scenario (4) along with their average
training time. Although the final performance of the systems was slightly worse in this
scenario, there are interesting changes in the learning progress of the decentralized system
which utilized MORL for their independent learners, figure 5.4. Contrary to the effect of
limited vision in the average world configuration that undermined the performance of all
the decentralized systems, in scenario (4) the goal-intention and policy-sharing systems
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had faster learning progress and demonstrated better performance after the initial stages
of the training session. On the other hand, the performance of the baseline and goal-
communication and intention-communication systems suffered from the limited vision of
the agents. In this section, we discuss how the limited vision affected the performance of
the MARL systems in the complex world configuration.

Like the previous scenario, the baseline system (M = 40.9% , SE = 0.36) demon-
strated the worst performance among the decentralized systems by completing only 40.9%
of the tests at the final stage. One of the noticeable changes in the baseline system was
that it failed to even gradually enhance its performance during the training session. With
the extended vision, the baseline system illustrated a slight upward trend in its learning
progress, figure 5.3. Whereas the result of the system in scenario (4) shows that it had
more consistent but less successful learning progress as the extent of vision was reduced.
Similarly, the goal-communication decentralized system (M = 70.7% , SE = 0.61) also
had a slightly weaker performance in this scenario. However, communicating the goal
populations helped the goal-communication system to perform better than the baseline
system. Although both of these systems suffered from the limited vision, in compari-
son with the first two scenarios, the smaller vision size had a less significant influence
on the overall performance of the systems. In the first two scenarios where the MARL
systems had to complete the task in the average world configuration, reducing the vision
size greatly affected the performance of these systems and prevented the baseline decen-
tralized system from learning the task as it otherwise managed to do with the extended
vision. However, in the complex world configuration, the extended vision did not provide
a significant advantage for these two decentralized systems. The baseline system failed
to successfully learn to solve the task regardless of the vision size of its agents in both
scenarios. One of the reasons that the effect of vision on the performance of the systems
was less noticeable, is that considering the number of agents and the size of the board in
scenario (4), even with the extended vision the agents were unaware of a big portion of the
environment and the events that took place in it. Without the extended communication and
the intention mechanisms, learning a set of independent policies that can guide all agents
to the goal locations in harmony became more challenging in the complex environment.
As a result of this, the systems did not manage to successfully coordinate the agents in
scenario (3) and (4) regardless of the vision setup.

In scenario (4), the policy-sharing (M = 85.4% , SE = 0.42), the goal-intention
(M = 82.7% , SE = 0.79) and the intention-communication (M = 88.1% , SE = 0.99)
systems had a much better overall performance than the first two decentralized systems
and managed to complete the training with higher final scores. Contrary to the baseline
and goal-intention systems, these three decentralized systems were affected differently by
the limited vision of the agents. In the third scenario, the policy-sharing and goal-intention
systems had gradual learning progress and managed to slowly enhance their performance.
However, in scenario (4) both systems had a slightly faster learning progress after the few
initial stages of the training session despite observing a smaller portion of the environment.
On the other hand, the intention-communication system resulted in a slightly lower per-
formance compared with its results in the previous scenario, and the limited vision caused
its learning progress to be slower throughout the training session. Although the negative
effect of the limited vision is more profound on the intention-communication system, the
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system managed to enhance its performance and obtain the highest accuracy among all of
the MARL systems.

As mentioned earlier, the overall performance of the decentralized systems were less
effected by the limited vision of the agents in the complex world configuration than it was
in the average world setup. Aside from the fact that the larger board and more agents of
the complex setup negates the advantage of having the [7x7] vision, another factor that
may have caused this effect is the way that the agents use the observation to decide their
actions. The agents process the observed matrix and create three matrices that encode
the goals, agents and obstacles around them and use them to create the input-layer of the
MLPs. Although having a bigger vision allows the agents to utilize more information, it
also results in a bigger input-layer for the MLP, and thus, making them more difficult to
train. Considering the additional complexity of the setup in scenarios (4), having a larger
vision, could not assist the decentralized systems to the extent as observed in scenario (1).
One of the approaches to solve this scalability problem is to use a convolutional neural
network (CNN) for the agents instead of the MLP that the agents use in these systems.

In both scenarios (4) and (3), the baseline and goal-communication systems performed
worse than the centralized system and failed to achieve high scores. On the other hand, the
policy-sharing, goal-intention and intention-communication systems managed to demon-
strate a better performance than the centralized system and obtained the highest scores.
This shows that in complex world configurations, the addition of multi-objective rein-
forcement learning and the intention mechanisms not only enhanced the performance of
the decentralized MARL system, but also managed to perform better in most cases. Aside
from allowing the agents to shape and communicate intention, MORL breaks the objec-
tives into sub-problems which enhances the learning process of the independent learners.

5.2 Data Analysis
We conducted a one-way analysis of variance (ANOVA) test for each scenario to compare
how significant changes in the task complexity affected the performances of the MARL
systems. Moreover, we used Tukey’s “Honestly Significant Difference” (HSD) Post-hoc
to determine which systems were more significantly affected by the changes in the task
complexity. In this section the results of the ANOVA tests are presented for each scenario
and the important pairwise comparisons in Post-hoc tests are highlighted.

Scenario 1: A One-way ANOVA test on the results of the experiments in scenario (1)
indicates that there is no significant difference between the final performance of the sys-
tems (F (5, 54) = 0.0489, p = 0.9985), as they all managed to learn to solve the task. As
discussed earlier, the most noticeable difference between the performances of the systems
could be observed during the initial stages of training, where the decentralized MARL
systems that were using communication mechanisms for their agents, converged faster
than the baseline system. Nonetheless, since all the systems managed to obtain nearly
perfect scores at the end, the result of Post-hoc comparison suggests that none of the sys-
tems performed significantly different in this condition in comparison with other systems
(p > 0.05), see figure 5.5.
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Figure 5.5: The final results of the MARL systems
in scenario (1). The bars indicate the standard error.

Figure 5.6: The final results of the MARL systems
in scenario (2). The bars indicate the standard error.

Scenario 2: As is shown in figure 5.6, the final score of the MARL systems dif-
fered more noticeably from each other in scenario (2) than the previous setup. A one-way
ANOVA test yielded a significant effect of limiting the vision of the decentralized agents
in scenario (2), on the performance of the MARL systems (F (5, 54) = 442.26, p < 0.05).
However, the pairwise comparisons of the means with Tukey HSD Post-hoc test shows
that only the differences between the results of the baseline decentralized system (M =
82.6%, SE = 1.9) and the other MARL systems were significant (p < 0.05). On the other
hand, the pairwise comparison of the other MARL systems indicate that their obtained
scores in scenario (2) did not differ significantly from one another (p > 0.05). Thus,
the results of the Post-hoc test suggests that only the baseline system was significantly
susceptible to drop in performance when we limited the vision in the average world con-
figuration, while the other MARL systems still managed to obtain high scores towards the
end of training, despite the initial drop in their learning progress shown earlier in figure 5.2.

Scenario 3: The one-way ANOVA with the results of the MARL systems in sce-
nario (3) shows that the performances of the systems were significantly influenced by the
increase in task complexity of this experiment scenario (F (5, 54) = 94.72, p < 0.05).
Tukey’s HSD Post-hoc pairwise comparisons show both the goal-communication (M =
75.5%, SE = 1.09) and the baseline (M = 48.0%, SE = 3.63) systems were signifi-
cantly impacted by the increase in the task difficulty compared to the other decentralized
systems. However, in comparison with the centralized system (M = 80.2%, SE = 0.68),
the effect of the task difficulty in the baseline system (p < 0.05) was more significant
than in the goal-communication system (p = 0.1959). Pairwise comparisons between the
goal-intention, intention-communication and policy sharing system did not yield any sig-
nificant difference between the averaged score of the systems in scenario (3), see figure
5.7. However, when compared with the results of the centralized system, the intention-
communication system had a significantly better performance (p = 0.0024) as well as the
goal-intention (p = 0.0152), but not the policy sharing systems (p = 0.4674). This results
show that not only the intention-communication system (M = 89.9%, SE = 0.28) had
the highest score among the MARL systems, but it also significantly performed better than
both the baseline decentralized and the centralized MARL systems.
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Figure 5.7: Performance results of the MARL systems
in scenario (3). The bars indicate the standard error.

Figure 5.8: Performance results of the MARL systems
in scenario (4). The bars indicate the standard error.

Scenario 4: Similar to the previous scenarios, we conducted a one-way analysis of
variance ANOVA test on the results of the MARL systems in the last experiment sce-
narios. The analysis indicates that there was a significant difference in the effect of the
increase in the task complexity on the final performance of the MARL systems in sce-
nario (4) (F (5, 54) = 679.2757, p < 0.05). The pairwise comparisons of the MARL
systems’ scores using the post-hoc test indicates that the intention-communication system
(M = 88.1%, SE = 0.99) performed significantly better than both the centralized sys-
tem (M = 80.8%, SE = 0.68), and even the goal-intention system (M = 82.7%, SE =
0.79) despite having slower learning progress initially. However, comparing the intention-
communication with the policy-sharing system (M = 85.7%, SE = 0.42) did not differ
significantly from each other (p = 0.069). Taken together, the intention-communication
decentralized system managed to also be the most successful system in scenario (4) and
less affected by the increase in the task difficulty.

5.3 Results of the Reward Function Experiment
As was mentioned in the previous chapter, an additional set of experiments were conducted
in order to observe the extent to which the shared reward function assists the decentral-
ized systems in coordinating the agents. In these experiments, the goal-intention and goal-
communication systems completed the four scenarios using the individual reward function
for their independent learners. These two decentralized systems were specifically selected
to observe the effect of the shared reward function on both the Q−learning and multi-
objective Q−learning agents.

The additional experiments followed the same procedure and setup as the main experi-
ments. For each scenario both systems completed 10 training sessions each lasting 40,000
training epochs. The step-limit of the epochs was set to 300 and the systems were tested
with 100 randomized examples at every testing stage. The previous results of the goal-
intention and goal-communication systems in the main experiment were carried over to
this section to provide a comparison between the shared and individual reward functions.
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Figure 5.9: Learning performance of the decentralized
systems in scenario (1) with shared and individual reward
functions.

Figure 5.10: Learning performance of the decentralized
systems in scenario (2) with shared and individual reward
functions.

Systems Reward
Scenario 1 Scenario 3

Accuracy St. Error Accuracy St. Error
Goal-Communication Individual 99.2% 0.40 49.3% 1.71
Goal-Intention Individual 99.7% 0.11 60.4% 1.44

Goal-Communication Shared 99.4% 0.14 75.5% 1.09
Goal-Intention Shared 99.8% 0.02 88.5% 0.74

Table 5.5: Final Results of the decentralized systems obtained in scenarios (1) and (3) with
individual and shared reward functions.

5.3.1 Extended Vision Scenarios
First we look at the results of the decentralized systems in scenarios (1) and (3) where
the independent learners could use an extended vision. Figures 5.9 and 5.10 illustrate the
learning progress of these decentralized systems in the average and complex world con-
figurations respectively. In both scenarios, sharing averaged rewards between the agents
accelerated the learning process for both decentralized systems. In the average world
setup, figure 5.9, the decentralized systems could eventually the learned to solve the task
with both reward functions, although the individual rewards resulted in a slower conver-
gence. nonetheless, the goal-intention system demonstrated faster progress than the goal-
communication system. In the complex environment, both systems with the individual
reward function had a noticeably lower performance than using a shared reward func-
tion, figure 5.10. Although the goal-intention system had a slightly better performance,
both decentralized systems could not retain their accuracy obtained with the shared reward
function.
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Figure 5.11: Learning performance of the decentralized
systems in scenario (2) with shared and individual reward
functions.

Figure 5.12: Learning performance of the decentralized
systems in scenario (4) with shared and individual reward
functions.

Systems Reward
Scenario 2 Scenario 4

Accuracy St. Error Accuracy St. Error
Goal-Communication Individual 80.4% 1.76 49.4% 1.88
Goal-Intention Individual 90.2% 1.08 63.7% 1.09

Goal-Communication Shared 94.9% 1.03 70.7% 0.61
Goal-Intention Shared 98.2% 0.23 82.7% 0.79

Table 5.6: Final Results of the decentralized systems obtained in scenarios (2) and (4) with
individual and shared reward functions.

5.3.2 Limited Vision Scenarios
Lastly, we compare the performance of the two decentralized systems with individual re-
wards in the scenarios where the vision of independent learners was limited to the 3x3
setup. As shown in figures 5.11 and 5.12, the individual reward function had a similar
effect on the decentralized systems as with the extended vision. We can see that without
the shared reward function, both decentralized systems experienced a substantial decline
in their performance in both world configurations. Contrary to the previous scenarios, in
the average world setup the decentralized systems failed to converge with the individual
rewards, and the performance gap between them grew larger. Likewise, the goal-intention
system demonstrated much better learning process than the goal communication system
in the complex environment, figure 5.12. Similar to the two previous scenarios, the goal-
intention system had a faster learning progress with both reward functions compared with
the goal-communication system. In fact the goal-intention system that used the individual
reward function managed to gradually reduce the gap between its performance and the
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progress of the goal-communication system that used the shared reward function; when
restricted to the limited vision. Thus, we can see that although the shared reward allowed
the agents to coordinate their actions more effectively in the goal-communication system
in all four scenarios, with the IMOQL agents the decentralized MARL system gradually
learned their individual policies successfully even with the individual reward, due to the
advantage of using multi-objective RL.

The results of the systems with the reward functions indicate that the systems could co-
ordinate the agents towards completing the task more effectively using the shared reward
function for both IQL and IMOQL agents. Although in the average world setup the sys-
tems managed to gradually learn to solve the task with the individual rewards, the shared
reward function still accelerates the convergence for both decentralized systems. With the
individual reward function, the agents can attempt at learning their behavior policies to
maximize the local rewards that they receive based on their own actions. However, with
this setup it is more beneficial for the agents to keep occupying the goal cells that they ar-
rive at instead of considering the performance of the other agents. This is why we believe
the shared reward function assisted the independent learners to cooperate more effectively
to achieve the global goal in complex environments. In our approach to the shared reward
function, the agents received the average utility of their peers in addition to the reward of
their own actions. We can further experiment with the reward function and test whether
sharing only the average utilities as a form of joint team reward; can enhance the coordi-
nation among the independent learners, or make it more difficult for them to learn their
independent policies.

64



Chapter 6

Conclusion and Future Work

In this thesis, we presented both the centralized and decentralized approaches to multi-
agent reinforcement learning systems and compared them in coordinating multiple agents
in a shared simulated environment. We also implemented communication mechanisms
for the decentralized systems to enhance the coordination among the independent learners
and assist them to overcome their limited observation of the environment. We enabled
the agents to shape and communicate their intention by integrating multi-objective re-
inforcement learning and allowed them to use each others interaction experiences using
policy-sharing.

To test the MARL systems under different conditions, we designed four experiment
scenarios in which the task difficulty was altered based on the complexity of the environ-
ment and the extent of vision used for independent learners. In the previous chapter, we
presented the results of our experiments and discussed how different factors affected the
performance of the MARL systems. Even though we could only capture a small portion
of possibilities in our experiments, we could still see the effect of different factors on the
performance of our systems. In short, although the centralized system had a faster learning
process in the average setup, we saw that its performance dropped noticeably in the com-
plex environment. Moreover, the training time of the centralized system was significantly
longer than for the decentralized systems in every scenario. This an important problem
for the centralized MARL system, since in real-world scenarios the tasks often involve
more agents, more complex state representations and even larger degrees-of-freedom in
actions that can substantially undermine the performance of the centralized system. We
also saw that the communication mechanism greatly enhanced the performance of the
baseline decentralized system and played a key role in enabling the agents to obtain ade-
quate coordination in more complex scenarios. Here in the final chapter, we answer our
initial research questions and discuss our ideas about the possible ways the systems can
be improved and tested in the future.

Although, these methods may not be suitable for very complex scenarios in the real-
world, luckily the rapid advancement of deep RL and MA systems provides us with a lot
of opportunities to explore. Thus, we conclude the thesis by providing some suggestions
for future experiments and developments in the field of MARL that can open new doors
to solving more complex real-world problems.
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6.1 Answering the Research Questions
Question 1: How do the decentralized MARL systems perform in comparison with

the centralized system as the complexity of the task grows?

In its simplest form, the decentralized MARL system had a slower learning progress
than the centralized system and its performance was greatly undermined as the complex-
ity of the task increased in the later scenarios of the experiment. When the task was not
complex and the agents had extended vision, the baseline system learned how to solve the
problem similarly to the other systems, despite having a slower convergence. However, in
the complex tasks, the independent learners did not obtain adequate coordination in their
actions and ultimately failed to solve the problems even with the extended vision. On
the other hand, the centralized system managed to demonstrate better overall performance
in both the average and complex scenarios than the baseline decentralized system, even
though its training sessions were noticeably slower and more computationally demanding.
Nevertheless, a noticeable decline in the learning progress of the centralized MARL sys-
tem was also observed when the number of agents and the task difficulty was increased in
the complex world setup.

One of the reasons that the centralized system managed to outperform the baseline de-
centralized system, is that it rendered any requirement for cooperation unnecessary since
a single centralized controller made the decision for every agent in the process. Although
in decentralized systems the complex centralized policy is broken down into smaller sub-
problems for the agents to solve, the independent learners must learn a set of policies
which results in the optimal collective behavior of the agents and enables them to accom-
plish the goal conjointly. However, coordinating the actions becomes a challenging task
when the agents observe only a limited portion of the environment and cannot be aware
of all the decisions that other agents make at every step of the process. The baseline
decentralized system relied only on the shared reward function as the only means for en-
couraging the cooperation among its independent learners which was insufficient in the
complex settings. However, with the addition of the communication mechanisms, the de-
centralized MARL systems had a significant improvement in their performance. With the
policy-sharing, goal-intention and intention-communication systems, we saw that they not
only managed to achieve high scores in scenarios where the baseline system failed, but also
outperformed the centralized MARL system in solving the complex problems. Consider-
ing that these systems had significantly shorter training sessions and better performances
than the centralized system in the complex environment, they all could be considered as
better approaches to control a larger number of agents. However, to have a better un-
derstanding of the centralized and decentralized MARL systems as the task complexity
grows, we should have more diverse scenarios that differ in the number of agents in future
experiments. Also, we can try to solve the biggest drawback of the centralized MARL
systems, scalability, by using deep reinforcement learning that has been shown to enhance
the learning process in [43].
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Question 2: How does increasing the range of vision for the independent learners
affect the performance of the decentralized systems?

In the average world configuration, extended vision enabled all the decentralized MARL
systems to converge quickly and learn the task successfully. With the limited vision, how-
ever, we saw that the baseline decentralized system failed to retain its high accuracy and
the learning progress of the other decentralized systems got noticeably slower. Although
the decentralized systems that used communication still managed to score high at the end
of the training sessions, the limited vision of the agents undermined their overall perfor-
mance in comparison with the centralized system.

On the contrary, in the complex world setup, the decentralized MO-MARL systems
managed to consistently outperform the centralized MARL system with both vision se-
tups. While in the complex environment limiting the observability of the agents similarly
resulted in lower scores for the decentralized systems, the overall performance of the sys-
tems was marginally compromised as the result of this limitation. Considering that the
complex environment had both more agents and a bigger grid, even with the extended
vision the agents were still unaware of most actions that took place in the world. The
problem with extending the vision is that, while it makes the problem easier by allowing
the agents to use more information about the world, it also increases the complexity of
the function approximator that makes the training of the systems more difficult. In our
approach, we encoded the vision grid into three matrices that represented the objects in
the environment. Although it is not possible to extend the vision without reflecting it in
the state representation, there are other methods of function approximation that can solve
this problem without drastically increasing the computation expense. In future work, we
can apply deep reinforcement learning and use a convolutional neural network (CNN) for
the independent learners to approximate the Q−values. Some recent studies [15, 52] also
managed to address the scalability issue of the decentralized MARL systems that may
arise from increasing the number of agents, using deep learning.

Question 3: How do the communication methods affect the performance of
decentralized MARL systems?

Goal-Communication System: Communicating the number of agents that occupy
the goal cells on the board helped the goal-communication system to obtain better per-
formances than the baseline decentralized system in every experiment scenario. Although
this communication allowed the learners to coordinate their actions more effectively, in
the complex tasks the goal-communication system also failed to achieve a high accuracy
and had a noticeably slower learning progress than the centralized MARL system. Nev-
ertheless, considering the simplicity of this communication method and improvement that
it brings to the performance of the baseline system, this method was an easy, yet effective
approach to assist the training of the independent learners. Similarly, there is other infor-
mation about the goal locations that can be easily communicated to the agents in order to
assist their learning progress, without significantly increasing computational demand. For
instance, we can enable the agents to know their distance from each goal location that can
be represented using a single neuron in the input layer of the MLP. There are of course
more possibilities for simple communication methods that we can explore in future exper-
iments.
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Goal-Intention System: By enabling the agents to form their intention using MORL,
the goal-intention system managed to significantly improve upon the results of the previ-
ous system and placed itself among the best performing systems throughout the experi-
ments. The addition of the MORL provided the most noticeable assistance to the decen-
tralized systems by allowing the agents to learn their behavior policies with respect to the
multiple objectives presented in the world. The product of this mechanism was accelera-
tion in the learning progress of the goal-intention system, and most importantly, enabling
the agents to communicate their intention to each other.

Overall, we saw that the IMOQL agents had a better performance than the traditional
IQL agents in all the experiment scenarios. Even when the coordination was more chal-
lenging with the individual reward function, the IMOQL agents still managed to arrive
at goal locations more successfully. However, since both MARL and MORL are rapidly
developing fields, there are many more possibilities for their combination that can be ex-
perimented with in future. One of the approaches that we can use to further improve our
decentralized MARL systems, is to speed up the learning process of the systems by us-
ing a heuristic function for selecting the actions of the agents. As it is shown in studies
[7, 16], the “Heuristically Accelerated Modular” RL (HAMRL) approach could enhance
the learning process in decentralized MARL systems when using both Q-learning and
minmax-Q.

Intention-Communication System: The intention-communication system not only
managed to obtain the highest accuracy among the decentralized systems, but also demon-
strated the fastest learning progress in almost all scenarios. Even though the final accu-
racy of the intention-communication system was marginally higher than the goal-intention
system, communicating the intention enabled the agents to coordinate their actions more
effectively and learn the solutions faster. However, in the last experiment scenario where
a larger number of agents had to solve the problem with the limited vision, we saw that
the intention-communication system could not retain its consistency.

When the task becomes more challenging and agents fail to arrive at goal locations,
they have to explore new opportunities and adapt to the changes in other’s intentions to
solve the problem. On the other hand, the weights in the MLPs that the agents use, are ran-
domized at the beginning of the training sessions. Thus, before gaining more experience
and updating their policies, the Q−values that the MLPs approximate can be far from the
true-values which results in broadcasting wrong intention to the peers. This means that
during the initial stages of the training there is a high chance for the agents to arrive at
a different goal location than they intend. These conflicts and changes can make it more
difficult for the agents to learn the task. Future experiments can investigate whether the
intention-communication system can retain its high performance with more agents or per-
haps more objectives in the environment.

Policy Sharing System: In the last communication level, a single multilayer percep-
tron is shared among the agents which they use to approximate the Q-values of their ac-
tions. On the other hand, updating this shared MLP is distributed among the independent
agents as they obtain new experiences from their interaction with the environment. Thus,
the policy sharing system can be considered as a combination of the centralized and decen-
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tralized systems. Like the other communication mechanisms, the policy sharing system
also performed better than the baseline decentralized system in every experiment scenario.
Although policy sharing did not accelerate the training of the intention-communication
system in the earlier scenarios, it demonstrated more consistent performance in com-
plex experiment scenarios.With future experiments, we can investigate whether the goal-
intention and goal-communication systems can benefit from this technique.

Nevertheless, the policy sharing system had both faster training sessions and better
performance than the centralized system in solving the complex tasks. Even though the
centralized controller does not need to share intention with any other agent, with future
experiments we can test if the centralized MARL system can also benefit from multi-
objective reinforcement learning. However, considering that the centralized MARL sys-
tem is already more computationally expensive in comparison with the decentralized sys-
tems, the single-policy methods of MORL may deem more feasible than the multi-policy
approaches for the centralized system.

Question 4: How does the addition of multi-objective reinforcement learning affect
the computation power required for training the decentralized systems?

Contrary to our expectation, training the decentralized systems that used MORL for
their agents was not significantly longer than training the traditional independent Q−
learning agents. Despite approximating twice as many Q−values per actions, the goal-
intention, intention-communication, and policy-sharing systems had faster training ses-
sions than the goal-communication and the baseline decentralized systems in some of the
scenarios. This is due to the weaker performance and slower learning progress that the
goal-communication and baseline decentralized system had in comparison to the decen-
tralized systems that used MORL. Thus, given the 300 step-limit used in the experiments
and the number of agents that were involved in the process, failing at completing the tasks
leads to longer training sessions than the addition of the MORL for the independent learn-
ers. However, there are other factors that can affect the performance of the decentralized
systems that used MORL and increase the computational demand that is discussed in the
next question.

Question 5: Are these communication mechanisms applicable to larger settings and
more complex tasks?

Although the addition of the communication mechanisms assisted the decentralized
MARL system to solve the problems, to answer this question we must take a few factors
into consideration. In these experiments, the MARL systems had to learn the task in a
rather simple simulation in which the agents were limited to only five actions. In this
setup, as the tasks got more difficult, the decentralized systems that used communication
and intention mechanisms performed significantly better than the baseline system while
the training time of the systems did not suffer much from the additional components.
Therefore, while we only tested few scenarios in this thesis, we can expect that raising
the task difficulty by adding more agents to the process, widens the gap between the sys-
tems and may increase the dependency of the decentralized system on the communication
mechanism in order to solve the problems.
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However, we realize there are other factors aside from the number of agents, grid size,
and the vision of independent learners that can affect the complexity of the task for the
decentralized systems. For example, the complexity of the problems can also grow by in-
troducing more goal locations in the world. Instead of using two goal locations with larger
capacities, consider a scenario where the agents have to navigate to smaller goals scattered
across the board, that can only host one agent at a time. In this setup, for every agent in
the process, a single-cell goal location will be presented in the world that the independent
learners must account for in their behavior policies. Similarly, tasks by nature may al-
low a wider range of actions to be performed by the agents, particularly in more complex
real-world problems. In this setup, we can also increase the number of possible actions
by introducing diagonal movements in the simulation. If the IMOQL agents must approx-
imate the Q−value of every action with respect to every objective, increasing the action-
space and the number of goal locations can greatly increase the computation requirement
to train the system. Further experiments are needed to evaluate how the changes in the
action-space and the number of objectives affect the performance of the multi-objective
MARL systems in comparison with the other approaches.

6.2 Future Work
Although we provided some of the suggestions for further improvements to our MARL
systems throughout this chapter, there are still a lot of possibilities for future developments
and experiments that we can discuss. In this section, we provide suggestions for more fun-
damental changes to the setting of the environment and the underlying task that the sys-
tems must complete in order to draw a better comparison between the systems. Similarly,
we explore some of the opportunities for trying new approaches with the MARL systems
and our communication mechanisms and briefly discuss some of the recent studies that
have used these methods for accelerating the learning progress of the systems.

6.2.1 Experiment Scenarios and World Configurations
In our experiment scenarios, we defined the complexity of the task based on only the world
complexity and the vision setup of the independent learners. As we said earlier, we can
break down the world complexity factor to its basic elements and directly use the number
of participating agents, goal locations, obstacles along with the board size and step-limit
as independent variables that define the task complexity. By adjusting each component
separately, we can introduce more diverse scenarios and have a better comparison of the
systems. However, it is also interesting to completely change the world configuration and
use new setups that can put a bigger emphasis on the importance of having multiple goal
locations in the environment. For instance, using the arrangement of the obstacles, we
can design a maze that has multiple entry points along the boundaries of the grid for the
agents to begin their process. Depending on the starting point of the agents, the difficulty
of arriving at each goal location will not be solely based on the distance and their limited
capacities but also affected by how difficult it is to navigate to them through the maze.
Similarly, we can also adapt to the famous “Deep-Sea Treasure” (DST) problem [67] for
our environment setup where each objective returns a different reward signal to the agents
based on some predefined criteria. In our setup, we can use the capacity of the goal
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locations as one of the factors that affect the rewards that agents receive upon arriving at
them. These setups can enable us to have a better understanding of the advantages that the
communication mechanism bring to the decentralized MARL systems, especially with the
MORL and the intention communication mechanisms.

6.2.2 Alternative Problem Setups
In our task setup, the interaction between the agents is very limited since they can only
block each other from occupying cells on the board. On the other hand, every agent can
arrive at a goal location and collect its own local utility without the help of the peers.
However, this does not reflect most of the real-world problems where the agents have a
wider range and more complex forms of interaction between each other. For instance, in
a scenario where agents must carry a box together to a goal, the agents fully depend on
each other to successfully complete the task. Similarly, in the famous traffic-light problem
used in many reinforcement learning studies, the actions that the agents perform have a
considerably bigger effect on the other participating agents and requires better coopera-
tion between them to learn the task. By testing our systems with similar tasks that allow
the agents to have a more meaningful interaction, we can observe the extent to which our
communication mechanisms assist the learners to cooperate.

However, on the other side of the spectrum, there are many scenarios where the agents
have to compete in order to solve a task efficiently [40]. It would be interesting to see how
these communication mechanisms affect the performance of the systems when the agents
must compete over multiple objectives in the environment. Especially with the intention
mechanism, we can experiment whether the agents can learn to take advantage of this
mechanism and share false intentions.

6.2.3 Actor - Critic MARL Systems
In this thesis, we used Q−learning for both the centralized controller and the independent
learners because of its simplicity and efficiency. However, there are other methods of
reinforcement learning that can be applied to the MARL domain. The “Actor-Critic”(AC)
reinforcement learning method is one of the approaches that has been successfully used for
multi-agent settings in some of the recent studies [38, 61, 30]. In these studies, the “Multi-
Agent Deep Deterministic Policy Gradient” (MADDPG) [38] framework uses actor - critic
for MARL systems. The advantage of this framework is that every agent has its own
independent actor-network, while they share a centralized critic network that is updated
using the experience of every agent in the process. This is similar to our policy-sharing
method as it takes advantage of both the centralized and decentralized approach to MARL
systems to enhance the learning process. However, in the MADDPG method, the authors
[38] assume that the agents cannot have any form of communication and are limited to
only physical interaction in the environment in order to generalize the method for both the
competitive and cooperative settings. In future studies, MADDPG can be combined with
the MORL to enable the agents to shape and communicate intention as well.
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6.2.4 Evolutionary MARL Systems
For some really complex scenarios where 100 agents need to participate in the task such
as swarm robotics, our methods that take a single attempt at solving the problem may not
be efficient nor feasible to apply. With our method of exploration, the systems would re-
quire a lot more experience to learn how to solve the problem. By taking an evolutionary
approach to decentralized MARL systems, the studies shown in [59, 42, 60] managed to
accelerate the learning process and improve the convergence of decentralized MARL sys-
tems in solving complex problems. In our future developments we can also experiment
with the combination of genetic algorithm with the decentralized MARL systems that use
MORL. Similar to the “Parental Advisory Evolutionary Strategy” (PAES) approach [42],
we can start an initial population of randomly generated chromosomes in which each gene
is a behavior policy of an agent that is participating in the process. During the life-time
of a generation, the agents attempt at learning the optimal policy within few limited ex-
periences. When evolving to the next generation cycle, cross-over can be performed by
simply exchanging the genes i.e. policies of the agents, between the parent chromosomes.
There are many possibilities to explore for the selection of the parents, mutation and other
methods to help the system to converge.

One of the most important advantages of this approach is that it can simultaneously
use multiple attempts at solving the problem. Especially, since each chromosome can be
trained independently, we can use parallel processing and distribute the computation of the
generations. This means without increasing the training time, we can explore more possi-
ble solutions. However, the biggest drawback of this approach is the significant increase
in the computational demand that can be an expensive solution for most simple problems
that do not include a large number of agents.

6.2.5 Deep Reinforcement Learning and Experience Replay
As we mentioned throughout this chapter, our methods can be improved by using deep
reinforcement learning to assist the learning process for both the centralized and decen-
tralized MARL systems. With the success of the “Deep Q-Network” (DQN) in learning
to play classic Atari 2600 games [46], many researchers became inspired to experiment
with deep reinforcement learning for both the single-agent [53, 50] and multi-agent setups
[38, 30, 52, 43, 32]. Deep learning on its own is a very big topic in artificial intelligence
that provides us with many features and methods that can allow our setups to take on more
complex setups. One of the methods that greatly helps DRL is “Experience Replay, that
enables the agent to store its experiences as a form of tuples and reuses them to accelerate
the learning process. However, there is a challenge to using experience replay in decen-
tralized MARL systems. Since the independent agents are all learning and performing
actions simultaneously, the world is perceived non-stationary which makes the old experi-
ences unusable. Recently, the study in [18] introduced approaches that address this issue in
IQL decentralized systems, namely: (i) MA fingerprint using hyper Q−learning (ii) MA
importance sampling that learns from the experiences offline. Lastly we can also experi-
ment with the OpenAI Five1 approach that successfully uses “Long Short Term Memory”
(LSTM) for the independent learners for the complex game DOTA-2.

1https://blog.openai.com/openai-five/
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