
Transductive Learning for

Document Classification and

Handwritten Character Recognition

Leonidas Lefakis
Utrech University

Supervisors : Marco Wiering and Arno Siebes

1

Contents

1 Introduction 3

2 Document Classification 9

2.1 Introduction . 9
2.2 Data . 10
2.3 Supervised Learning Algorithms 18

2.3.1 NBC . 18
2.3.2 SVM . 21

2.4 Transductive Learning Algorithms 27
2.4.1 Self-Training 27
2.4.2 Transductive Expectation Maximization . . . 29
2.4.3 Transductive Learning Using Graph Mincuts . 34
2.4.4 Tranductive Spectral Graph Partitioning . . . 37
2.4.5 Learning with Local and Global Consistency . 42
2.4.6 Results . 46

3 Handwritten digit recognition 52

3.1 Introduction . 52
3.2 Data . 53
3.3 Supervised Learning Algorithms 55

3.3.1 Convolutional Networks 55
3.3.2 Pretrained Networks 60

3.4 Transductive Learning 63
3.4.1 Expectation Maximization 63
3.4.2 Self-Learning 69
3.4.3 A Convolutional Network Analogous 75
3.4.4 Spectral Graph Partitioning 79
3.4.5 Learning with Local and Global Consistency . 81
3.4.6 Transductive Clustering 85

3.5 Results . 87

4 Final Conclusions 90

2

1 Introduction

In the traditional supervised approach to learning, the supervised
algorithm is presented with a set of inputs X train = (x1, x2...xn) and
corresponding outputs Y train = (y1, y2...yn), this set Dtrain = (X, Y)
is known as the training set and the examples xi belonging to this
set are known as labeled examples. In general any data point whose
corresponding output (label) is known is a labeled data point.

Using this training set Dtrain, supervised learning aims to cre-
ate a learner L which having learned the relevant (and presumably
sufficient) information from the training set Dtrain will be able to
make predictions on the output of a set of inputs X test whose cor-
responding output Y test is presumably unknown and which we are
interested in discovering. Examples whose corresponding output is
unknown are known as unlabeled examples.

It is evident from the above that the supervised learning setting
takes only advantage of labeled data during the training phase. In
order for the training to be successful, i.e. the resulting learner
L performs well on the unlabeled and previously unseen data, the
training set must provide the learner with the necessary informa-
tion. This often means that the training set must be of considerable
size, as this is linked to its information content. The number of nec-
essary training examples rises with the complexity of the learning
algorithm as well as with the dimensionality of the data; the latter
is a well known problem in machine learning known as the curse of
dimensionality.

If the number of labeled examples is not sufficient then the danger
of overfitting increases. Overfitted learners have adapted to irrele-
vant attributes of the training data which are not representative of
the problem to be solved in general and thus the learner is not able
to generalize well which translates to poor performance on examples
outside the training set.

The above problem of overfitting can be remedied with a suf-
ficiently large training data set. Unfortunately the acquisition of
training examples is a costly endeavor. Training examples usually
have to be manually labeled which is a time-consuming process.
Peeking for a moment at the text classification problem to be pre-
sented below, we can see exactly how costly this process can be;
each example to be labeled must be read by a human researcher

3

(who could obviously be spending his time more productively) and
then labeled. The process of reading the text itself can ,in certain
cases, be extremely time-consuming as a text could easily consist of
dozens of pages. Furthermore this labeling of examples, inserts a
certain bias into the training procedure; though in most cases the
subject (class/label) of a text is obvious, in other cases it is not as
evident what the text’s subject is (if it is about hardware or soft-
ware for example); labeling such an example is ultimately based on
the subjective opinion of the human labeler and this subjectivity
invariably enters the training of the learner.

For these reasons it is agreeable to be able to conduct learning
with as few labeled examples as possible. In contrast to labeled ex-
amples, there is a plethora of unlabeled examples readily available,
for example the world wide web is full of texts that can be easily
obtained with little to no cost. It is only the labeling process which
is costly. Thus if we were able to use this unlabeled data to supple-
ment the labeled data in the learning process then the problem of
insufficient data could be overcome.

In cases where little labeled data is present while large amounts of
unlabeled data are available, instead of supervised learning, semi-
supervised learning [23] algorithms are preferably used. In semi-
supervised learning, we have a training set X train = (x1, x2...xn, xn+1...xn+m)
for which only a small number n of the corresponding outputs (la-
bels) are known, i.e. Y train = (y1, y2...yn) while for the rest of
the examples (xn+1...xn+m) the corresponding outputs are unknown.
Using these training examples the aim of semi-supervised learning
algorithms is to construct a learner L that can generalize well and
predict the output of unseen examples Xtest whose labels are un-
known but which are not the same examples as the subset Xu =
(xn+1...xn+m) ⊆ Xtrain whose labels are also unknown. Research in
the field of semi-supervised learning, has shown that the addition
of unlabeled examples to the training data set can help improve the
performance of the learner when only small quantities of labeled
examples exist.

As can be seen, just as in the case of supervised learning, semi-
supervised learning aims to create a learner L which can generalize
well on unseen data. The assumption is thus usually made that the
training set is representative of the general problem (for example
the assumption is often made that the training examples have been

4

generated independently and identically according to an unknown
but fixed distribution which is also assumed to reflect the problem
in hand in general). This form of learning is based on inductive rea-
soning. Inductive reasoning uses observations (which are by nature
limited in number) to reach more general conclusions. An example
of such reasoning can be seen below :

All crows observed (by say the scientific community) are black.
Thus all crows (in existence) are black.

Having reached a more general rule (All crows are black) it is
then possible to use deductive reasoning to reach conclusions about
specific instances :

John’s pet is a crow.
John’s pet is black.

As can be seen from the above example the conclusions of de-
ductive reasoning are logically sound. If all crows are black, and
John’s pet is a crow then it follows that John’s pet must be black.
In the case of inductive reasoning however the premise cannot en-
sure the (logical) validity of the conclusion. This becomes evident
if we slightly alter our example :

All crows observed (by me) are black.
Thus all crows (in existence) are black.

It is obvious from the above that the assumption that the second
clause holds true based on the first, cannot be one of high confidence.

This follows closely (and is in fact inspired by) the argument set
forth by Bertrand Russell in his book ”Problems of Philosophy” [16].

. . . the newness of the knowledge is much less certain if we take
the stock instance of deduction that is always given in books on
logic, namely, ’All men are mortal; Socrates is a man, therefore
Socrates is mortal.’ In this case, what we really know beyond

reasonable doubt is that certain men, A, B, C, were mortal, since,
in fact, they have died. If Socrates is one of these men, it is foolish
to go the roundabout way through ’all men are mortal’ to arrive at
the conclusion that (probably) Socrates is mortal. If Socrates is not
one of the men on whom our induction is based, we shall still do
better to argue straight from our A, B, C, to Socrates, than to go

5

round by the general proposition, ’all men are mortal’. For the
probability that Socrates is mortal is greater, on our data, than the
probability that all men are mortal. (This is obvious, because if all
men are mortal, so is Socrates; but if Socrates is mortal, it does

not follow that all men are mortal.)

In inductive learning a function f(x) is learned which is capa-
ble of predicting the correct output for the training data (observed
examples) and it is assumed to be able to correctly predict the cor-
responding labels of unseen data. Both semi-supervised and super-
vised learning use inductive inference based on which they create
learners L which hopefully will perform well on unseen data. This
however entails making assumptions that are not logically safe.

The problem of unnecessarily solving a general problem in a
machine learning setting was pointed out by Vladimir Vapnik [20]
who also introduced the notion of transductive learning. In trans-
ductive learning, instead of aiming to compute a function f(x)
that will perform well on unseen data, the aim is to calculate di-
rectly the output on seen, albeit unlabeled data. Thus as in the
case of semi-supervised learning, a transductive learner takes as
input a training set X train = (x1, x2...xn, xn+1...xn+m) for which
only a small number n of the corresponding outputs (labels) are
known, (Y train = (y1, y2...yn)) while for the rest of the examples
(xn+1...xn+m) the corresponding outputs are unknown; however un-
like semi-supervised learners, transductive learners aim to find the
labeling of the seen unlabeled examples (xn+1...xn+m) ∈ X train.

As can be seen transductive learning not only overcomes the prob-
lem of few labeled data examples but also eliminates the need for
making assumptions which may or may not prove to be valid. For
all these reasons we have chosen to focus the present project on
transductive learning.

In particular we focus on transductive learning when applied to
two well known and important problems : handwritten character
recognition and document classification. Both these problems are
well suited for experimenting with transductive learning as they
both concern areas where labeled data can prove to be scarce. Fur-
thermore both these problems are intensely researched and of con-
siderable scientific interest and are both an integral part of a great
variety of real-world applications. It is perhaps characteristic that
the performance of semi-supervised algorithms (and by extension

6

transductive algorithms) are almost invariably tested on a document
classification problem so that in fact their performance on document
classification serves as a kind of benchmark for the semi-supervised
(and transductive) learning algorithms.

As a large number of transductive algorithms are presented via
their application to document classification, we initially focused the
project on this problem and investigate the performance of a vari-
ety algorithms on it. This allows for the experimentation with a
number of algorithms in a setting where their application is more or
less straightforward as they have been more or less tailored (where
necessary) to the characteristics of the specific problem. We use
the Newsgroup dataset to create a binary classification problem and
experiment with a number of algorithms in order to compare be-
tween them but also to investigate whether, in this case, transduc-
tive learning can be useful, this usefulness translating to whether
transductive learning algorithms do in fact surpass in performance
supervised algorithms when the number of labeled data is small.

Having overviewed via document classification a number of well-
known transductive algorithms and their performance on a binary
classification problem, the project then focuses to applying these
same algorithms to the handwritten character recognition problem.
This allows us not only to observe the performance of these algo-
rithms on an important application but also allows us to observe
their performance on a multilabel problem. In order to experiment
with transductive learning and handwritten character recognition
we must also investigate how exactly these algorithms can be ap-
plied as this is not always straightforward.

Finally besides experimenting with applicable alternatives of the
different transductive learning algorithms, we also propose and ex-
periment with a novel approach to transductive learning for hand-
written character recognition inspired by a well known supervised
algorithm : convolutional networks which are known to perform ex-
tremely well on object recognition problems.

Through the research and the experimentation we hoped to ulti-
mately answer the questions that served as the original impetus of
this project.

Research Questions Does transductive learning in fact lead to higher
performance when labeled data is scarce, as this can be investigated

7

on document classification and which of these algorithms proves ul-
timately to be best suited for this particular problem? Furthermore
can these algorithms be adapted to apply to handwritten character
recognition, which proves best suited in this case and finally does
the convolutional network analogous proposed here in fact increase
performance?

Overview In the following, we experiment with document classifi-
cation in chapter 2, while handwritten character recognition is in-
vestigated in chapter 3. Finally in chapter 4 the conclusions of the
project are presented.

8

2 Document Classification

2.1 Introduction

An application for which transductive learning seems to be well
suited and in which it proves to perform particularly well is that
of document classification. Document classification aims to create
classifiers that given a document di will be able to successfully pre-
dict its class yi. This can be seen as predicting the subject of a
document given a number of potential subjects. For example a doc-
ument classifier can be used to discern whether a specific document
talks about sports, religion or politics.

These classifiers prove to be very useful in many real-world appli-
cations. With the growth of the world wide web, a need has risen for
search engines that can intelligently search the web for pages with
specific content, a document classifier could look at the content of
these pages (the text to be exact) and decide whether the subject of
the specific pages is one that interests the user, if the specific user
is known to systematically read articles on basketball then it would
be useful to be able to find articles whose subject is basketball.

Another application which is closely related is that of recom-
mending systems where the classes the documents are classified to
are no longer subjects but rather the binary labels like/dislike. Thus
for example a document classifier could learn to recommend movies
to a user based on the summaries of previously seen and enjoyed
movies.

Obviously a real-world system would be quite complicated and
have a number of components beyond the document classifier but
nonetheless the document classifier would be an integral part of the
overall system.

All these intelligent systems however useful are in need of data to
be trained. As stated in the introduction and is evident, this data
is not always easy to come by. In the case of web pages the tedious
work of reading through the content and deciding on the subject
must be executed manually in order to obtain labeled data. In the
case of recommending systems the acquisition of labeled data is even
more difficult, as the labeling is no longer performed by a researcher
who will willy-nilly complete the task but rather by the user himself
who will be unwilling to perform significantly time-consuming tasks
before he obtains the desired results.

9

This paucity of labeled data, makes the field of document classi-
fication especially suited for transductive learners. As we shall see
by the results of the experiments conducted in the following sec-
tions, transductive learners are able to overcome the lack of labeled
data and construct document classifiers that attain surprisingly high
performance despite this lack.

2.2 Data

In our experimentations with transductive learning and document
classification, we used the Newsgroup dataset. This dataset is com-
prised of approximately twenty thousand messages taken from twenty
different Usenet newsgroups. These twenty different newsgroups fall
into roughly six different categories, with the newsgroups belonging
to the same category being closely related amongst themselves; these
categories are : computers, science, recreation, politics, religion and
miscellaneous.

In order to obtain a numerical representation of the data, which
is originally in text form, the documents must be mapped against
a dictionary. We thus obtain an initial representation of each docu-
ment consisting of a vector, each coordinate of which corresponds to
a specific word in the dictionary, with the value of that coordinate
being the number of occurrences of the corresponding word in the
document.

To this effect, the documents are parsed and the words that are
encountered are used as a basis for the creation of the dictionary.
While parsing the documents and creating the dictionary, a num-
ber of steps are taken in order to improve on the dictionary and
the quality of the resulting representation (using the TMG Matlab
toolbox [21]).

First, a number of words are encountered which consist of non-
alphabetic symbols, though some of these may well represent words
written with deviant spelling (as for example when using leet, 1337,
language) it is very difficult to discern between these and nonsense
and thus all words containing non-alphabetic symbols are stricken
from the dictionary.

Second, a number of words which are considered excessively com-
mon are also removed as they are considered not to contain any im-
portant information concerning the classification of the texts they

10

appear in as they are very likely to appear in almost all texts. Exam-
ples of such words are ”the” and ”and” whose appearance obviously
has little to do with the topic at hand. This is accomplished by the
use of a list of such common words.

Finally a technique named stemming is used to further refine
the dictionary. Simply parsing the text and recording the appearing
words, would lead to a dictionary (and a subsequent representation)
which marked as different words that in fact differed only in their
appearance but which were in fact identical. For example the words
”talk” and ”talks” would be considered distinct when in fact there
are in fact the one and the same. Stemming uses a number of rules
in order to replace words by their common roots thus rendering a
much more meaningful representation of the data.

Having parsed the text using the rules explained above, we ob-
tain the experimental dataset consisting of 18828 examples each with
80662 attributes. Because of the computational cost involved, the
complexity of most transductive learning algorithms and the size of
the original dataset, a number of steps were taken to reduce the size
of this dataset in order to make it more practical for experimenta-
tion.

First, the dataset was reduced by only using a subset of the
dataset. That is to say not all newsgroups were ultimately used.
More specifically we used posts from four of the newsgroups (us-
ing however all the posts in each of these newsgroups); in par-
ticular, we used two newsgroups with subjects regarding comput-
ers (comp.graphics and comp.os.windows.misc) and two newsgroups
with subjects regarding science (sci.crypt and sci.electronics). Fur-
thermore in order to aid in the reduction of the complexity of the
learning algorithms these four newsgroups were grouped into two
groups of two newsgroups each (one computer related, the other
science related) and thus the entire problem was reduced from a
multiclass one to a binary classification problem. Thus the result-
ing experimental dataset consists of 3930 examples divided into two
classes, one with 1958 examples and the other 1972 examples (i.e.
a ratio of 50.18 % - 49.82 %).

Besides reducing the number of examples used, the dimensional-
ity of the data was also reduced. The number of attributes (80662)
of the original dataset is excessive and can lead to a number of prob-
lems. On one hand an excessively high number of dimensions results

11

in a similar increase in computational demands. On the other hand
there is also the problem of the so called ”curse of dimensionality”.
As the dimensions of the data grow, the risk of overfitting also in-
creases; overfitting leads to a learner that gives weights to features
that do not in fact yield significant information about the class of
the data. In order to avoid this phenomenon we must have examples
proportional to the number of dimensions. Dimensionality reduction
could thus not only decrease computational costs but hopefully lead
to an increase in performance.

In order to reduce the dimensionality of the data, term selection
techniques are used which attempt to find a subset T ′ of the terms
T which will hopefully lead to an efficient resulting representation
of smaller size. In particular the method applied here is the so
called filtering approach which ranks terms according to a certain
measure and keeps those terms that score the highest. In general
these measures try to capture the intuition that the terms that must
be preserved are those that are distributed most differently across
classes.

In order to experiment with term selection, we used a variety
of measures to compute the relative importance of each term. The
measures used can be seen below, together with there mathematical
forms [17].

Information gain IG(tk, ci) =
∑

c∈ci,c̄i

∑

t∈tk ,t̄k

P (t, c) · log P (t,c)
P (t)P (c)

Mutual Information MI(tk, ci) = log
P (tk ,ci)

P (tk)P (ci)

Chi-square χ2(tk, ci) = |T |·[P (tk,ci)·P (t̄k,c̄i)−P (tk ,c̄i)·P (t̄k ,ci)]2

P (tk)·P (t̄k)·P (ci)·P (c̄i)

Odds ratio OR(tk, ci) = P (tk|ci)·(1−P (tk |c̄i))
(1−P (tk |ci))·P (tk|c̄i)

GSS coefficient GSS(tk, ci) = P (tk |ci)·P (t̄k |c̄i)−P (tk |c̄i)·P (t̄k |ci)

NGL coefficient NGL(tk, ci) =

√
|T |·[P (tk,ci)·P (t̄k ,c̄i)−P (tk ,c̄i)·P (t̄k,ci)]√

P (tk)·P (t̄k)·P (ci)·P (c̄i)

Each of these measures returns for each term tk and for each class
ci a corresponding value. However in order to decide which terms
tk to keep, we must have a value for each term tk irrespective of the
classes. In order to calculate these values we experimented with the
use of following criteria [17]:

12

Max The maximum value observed for each term tk is kept :

fmax(tk) = max
|C|
i=1f(tk, ci)

Sum The sum of values over all classes are kept for each term tk :

fsum(tk) =
|C|
∑

i=1

f(tk, ci)

Weighted Sum The sum of values is weighted by the prior prob-
abilities of each class :

fwsum(tk) =
|C|
∑

i=1

P (ci) · f(tk, ci)

The results of these experimentations using the different term
selection methods can be seen in figures 1-6. In the experiments
conducted a fraction of the dataset was set aside as a test set while
the rest of the dataset was used to train a Naive Bayes Classifier.
The resulting classifier was then used to classify the examples in the
test set. In figures 1-6, the y axis denotes the accuracy attained by
the Naive Bayes Classifier while the x axis denotes the number of
terms kept.

Figure 1

13

Figure 2

Figure 3

14

Figure 4

Figure 5

15

Figure 6

For each measure, we choose that criterium of value selection that
yields the best results and then compare these results between them
(Figure 7) in order to find that technique that will allow us to reduce
the dimensionality of the data as much as possible without leading
to a parallel decrease in the performance of the learning process.

16

Figure 7

As can be seen for the approximately 6000 attributes which we
would like to keep as a practical dimensionality of the dataset, mu-
tual information proves to be the best measure for reducing the di-
mensionality of the data with only a relatively small (2%) decrease
in performance.

Using the mutual information measure, we acquire the dimen-
sionality reduced dataset which will be used for experimentations
for those algorithms which make use at some stage of a Naive Bayes
Classifier.

For the remaining algorithms (for example the support vector
machines), the attributes of each example are weighted. When it
comes to the occurrence of a specific word in a specific document,
what interests us most is not the number of occurrences as this
may easily be influenced by the documents length but rather what
is more characteristic is the number of occurrences relative to the
occurrences of the other words in the document. Thus instead of
using a representation of the data using raw occurrences, an alter-
nate representation is used employing term frequencies and inverse
document frequencies which is known as tf-idf.

17

Tf-idf takes into account not only the frequency of the term in the
specific document but also its frequency in the corpus. Thus a word
which appears frequently throughout the corpus is not considered to
yield considerable information about the class of the documents it
appears in, while an infrequent term is considered more likely to be
particular to the specific document and thus more indicative of its
class. To this effect tf-idf takes into account the inverse document
frequency of each term defined as :

idfik = log |D|
|tk∋d|

where |D| is the number of documents in the corpus and |tk ∋ d| is
the number of those documents in which tk appears. The frequency
of term k in document di is given by :

tfik = nk
∑

j
nj

where nk is the number of occurrences of term k in document di

and the sum
∑

j

nj is over all terms j appearing in di.

Finally the tf-idf weight of the term k in document di is given as
tfidfik = tfik · idfik.

2.3 Supervised Learning Algorithms

In order to experiment whether in fact supervised algorithms per-
form poorly on the specific experimental dataset and for comparison
with the transductive learners we use two different supervised learn-
ers, a Naive Bayes Classifier [11] and a Support Vector Machine [3].

2.3.1 NBC

Naive Bayes Classifiers make the assumption that the data has been
created via a parametric model and estimate the parameters of the
model based on a Bayesian theoretical framework. Having calcu-
lated the parameters, using the training data, the classifier then
classifies any unlabeled examples (test set) using Bayes theorem i.e.
by calculating which component of the model is most likely to have
generated the example (posterior probability).

More analytically and in the case of text classification in particu-
lar, the data is considered to be generated by a mixture model with

18

parameters ϑ and consisting of a number of mixture components
cj ∈ C =

{

c1, c2...c|C|
}

. Under this framework, the probability of a
specific document is given as the sum of probabilities of the docu-
ment over all mixture components [11]:

P (di|ϑ) =
|C|
∑

j=1

P (cj|ϑ)P (di|cj; ϑ)

We can furthermore assume that each mixture component corre-
sponds to exactly one class (and vice versa) and thus by cj we in-
dicate not only the component j but also the jth class. Thus the
probability of each document is the sum of the probabilities of it
being generated by the component that corresponds to each class.

In the experiments conducted here, a multinomial model is as-
sumed which considers each document an ordered series of word
events drawn from the same vocabulary V. Besides the assumption
concerning the nature of the model, we make two further assump-
tions. First that the length of the document is independent of class
and second that the probability of each word event is independent
of the word’s context and position in the document. Based on the
above, the model calculates the probability of a document given its
class using the formula[11] :

P (di |cj ; ϑ) = P (|di|) |di|!
|V |
∏

t=1

P (wt|cj ;ϑ)Nit

Nit!

The parameters of the generative component for each class are the
probabilities for each word, ϑwt|cj

= P (wt|cj; ϑ) and are given by[11]
:

P (wt |cj ; ϑ) =
1+

|D|
∑

i=1
NitP (cj |di)

|V |+
|V |
∑

s=1

|D|
∑

i=1
NisP (cj |di)

The class prior parameters are ϑ̂cj
= P (cj|ϑ) and are given by [11]:

P (cj|ϑ̂) =

|D|
∑

i=1
P (cj |di)

|D|

Having calculated the Bayes-optimum estimates for these param-
eters using the training set, we can then proceed to classifying the
test examples using the acquired classifier. This is accomplished by
applying Bayes’ rule [13]:

19

P (cj|di; ϑ̂) =
P (cj |ϑ̂)P (di|cj ;ϑ̂)

P (di|ϑ̂)

The document is then classified to that class j which returns the
highest probability.

In figure 8 we can see the performance of the Naive Bayes clas-
sifier. As can be seen, though the algorithm performs reasonably
well when the number of labeled examples per class is close to 100,
when the number of labeled examples is low, the algorithm fails to
reach high performance. In each case the classifier is tested on the
remaining examples. Thus when 100 labeled examples are used per
class, then the resulting classifier is tested on the remaining 3930-
200=3730 examples. In order to obtain representative results, for
each number of labeled examples per class, the experiments are re-
peated 10 times, each time the labeled examples being chosen by
drawing with a uniform distribution without replacement from the
set of 3930 examples.

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

Naive Bayes Classifier

Figure 8

As can be seen by the results obtained the Naive Bayes classi-
fier performs quite well when the number of examples is sufficient,

20

reaching an accuracy of 90 percent when the number of labeled ex-
amples per class are 100, when the number of examples per class
are few the accuracy of the classifier falls dramatically (as can be
expected). This seems to be a first indication that document clas-
sification may very well benefit from transductive learning as at
least this supervised algorithm performs unsatisfactorily for small
amounts of labeled data.

2.3.2 SVM

Support Vector Machines have been used in a wide variety of ap-
plications and have been shown to attain high performance in most
cases. They belong to a class of classifiers known as linear classifiers
which aim to learn the solution to classification problems using a lin-
ear function. Specifically the aim of linear classification machines is
given a set of examples (input) x = (x1, x2...xn) and a corresponding
set of labels (output) y = (y1, y2...yn) where in the binary classifica-
tion case yi ∈ {−1, 1}, to learn a function f(x) =< w · x > +b such
that f(xi) ≥ 0 if yi = 1 and f(xi) < 0 if yi = −1.

The problem however of finding a separating hyperplane such
that instances belong to one class lay on ones side of the hyperplane
and instances belonging to the other class lay on the opposite side,
does not have a single solution. Thus if the data is linearly separable,
then there are an infinite number of functions f(x) =< w · x > +b

that given a set of examples and corresponding labels, satisfy the
restrictions f(xi) ≥ 0 if yi = 1 and f(xi) < 0 if yi = −1 [4].

The simplest model of a support vector machine, works only for
linearly separable data, is the so called maximal margin classifier.
The margin of an example (xi, yi) with respect to a hyperplane (w, b)
is defined to be the quantity:

γi = yi(< w · xi > +b)

If γi > 0 then from the above equation it is evident that the
example xi is classified correctly by the function f(x). By extension
the margin distribution of a hyperplane (w, b) with respect to a
training set S = ((xi, yi), ..., (xl, yl)) ⊆ (X × Y) is the distribution
of the examples in S. The minimum of the margin distribution
(i.e. the minimum margin over all the examples of the set S) is the
margin of the hyperplane (w, b) with respect to the training set S.

21

By normalizing the linear function we obtain the separating hy-
perplane (1

‖w‖w, 1
‖w‖b) and the corresponding geometric margin which

is in fact the Euclidean distance of the points from the decision
boundary in the input space [4]. The margin of a training set S is
the maximum geometric margin over all hyperplanes and the corre-
sponding hyperplane is the maximal margin hyperplane.

Figure 9

Thus a simple support vector machine solves the linear separation
problem by finding a separating hyperplane such that the minimum
geometric margin is maximal. This translates to the hyperplane
whose distance from the closest points (to it) in the input space is
as large as possible.

By fixing the functional margin to one we can optimize the cor-
responding the geometric margin by minimizing the norm of the
weight vector. This is evident if we consider the following. Let us
suppose that the closest positive point to the hyperplane is x+ and
the closest negative x−, this implies [4] :

< w · x+ > +b = +1
and

< w · x− > +b = −1

22

and the geometric margin is given by [4]:

γ = 1
2
(< w

‖w‖2
· x+ > − < w

‖w‖2
· x− >) =

= 1
2‖w‖2

(< w · x+ > − < w · x− >) =

= 1
‖w‖2

Thus the problem can be transformed to the equivalent optimiza-
tion problem:

minimize < w · w >

subject to yi(< w · xi > +b) ≥ 1

Unfortunately it is seldom the case that the examples of set S

are linearly separable. In most cases it is not possible to find a
hyperplane (w, b) such that the examples belonging to each class
lay on opposite sides of the hyperplane. In order to overcome this
problem and create a support vector machine that can solve the
maximal margin classification problem even in the cases where the
data is not linearly separable, we first introduce the notion of the
margin slack variable of an example (xi, yi) [4].

For a specific fixed value γ > 0 the margin slack variable ξi of an
example (xi, yi) with respect to a hyperplane (w, b) and the target
margin γ is defined as :

ξi = max(0, γ − yi(< w, xi > +b))

This quantity can be seen as a measure of how much the specific
point (xi) fails to have a margin γ from the hyperplane (w, b). If
ξ > γ then obviously xi is misclassified by the hyperplane (w, b).

The norm ‖ξ‖ measures the amount by which the training set fails
to have a margin of γ, taking into account any misclassifications that
may appear in the training data.

23

Figure 10

With the help of the slack margin variable we can restate the
optimization problem to allow for the margin constraints to be vi-
olated. This gives the so called soft margin optimization problem
which is [4]:

minimize < w · w > +C
l
∑

i=1

ξi

subject to yi(< w · xi > +b) ≥ 1 − ξi

This is the 1-norm soft margin case which will be used throughout
the experiments conducted here. In the 2-norm case the objective

function to be minimized is : < w · w > +C
l
∑

i=1

ξi
2.

Programming SVM As stated above, a support vector machine
(in the 1-norm soft margin case) ultimately solves the optimization
problem.

minimize < w · w > +C
l
∑

i=1

ξi

subject to yi(< w · xi > +b) ≥ 1 − ξi

The problem stated above is presented in the so called primal
form. Before we continue to the actual programming of the support

24

vector machine we first transform the optimization problem to its
dual form using Lagrange multipliers [4]. Thus the optimization
problem becomes :

maximize W (a) =
l
∑

i=1

ai − 1
2

l
∑

i,j=1

yiyjaiajK(xi, xj)

subject
l
∑

i=1

yiai = 0

and 0 ≤ ai ≤ C

where K(x, z) is a kernel function which implicitly maps the input
to a feature space. In the case where no kernel is used we have :
K(x, z) =< x · z >. The bias b no longer appears in the dual form
but is given by the equation [4]:

b∗ = −maxyi=−1(w∗·xi)+minyi=1(w∗·xi)

2

where w∗ =
∑

yia
∗
i xi is the solution to the optimization problem.

Having converted the optimization problem to its dual form, we
can proceed to programming the support vector machine. The sim-
plest approach is to use gradient descent, meaning that the vector a

is sequentially updated following the steepest ascent in the direction
of the gradient of W (a).

Using this method, the examples of the training set are sequen-
tially presented to the support vector machine and the component
ai is updated by the rule :

ai = ai + ηi(1 − yi

l
∑

j=i

ajyjK(xi, xj))

where ηi is the learning rate and can be proven to provide maxi-
mal gain for ηi = 1

K(xi,xi)
.

In order to satisfy the restrictions of the objective function, after
each update we perform a check to make sure that the update ai is
not below zero or above C, if this is the case then we set ai = 0 or
ai = C accordingly.

This approach however proves to be impractical as its complexity
makes it excessively time consuming. Instead we program a support
vector machine using the sequential minimal optimization (SMO)
algorithm [15]. This algorithm is based on a technique known as
decomposition in which only a subset of the Lagrange multipliers ai

25

are considered at each moment with the rest considered constant.
In the case of the SMO algorithm this idea is taken to the extreme
and only two multipliers are considered at a time. One of the main
ideas is that in the case of only updating two multipliers at a time,
there exists an analytical solution to the optimization problem.

More analytically, considering a1 and a2 to be the multipliers to
be updated, then the new values for these two parameters must lie

on a line in order not to violate the linear conditions
l
∑

i=1

aiyi = 0.

Thus we have :

a1y1 + a2y2 = constant = aold
1 y1 + aold

2 y2

where of course the constraints 0 ≤ a1, a2 ≤ C must also be
satisfied.

This translates to the following constraints for the value anew
2 :

U ≤ anew
2 ≤ V

where

U = max(0, aold
2 − aold

1), V = min(C, C − aold
1 + aold

2)

if y1 6= y2, and

U = max(0, aold
1 + aold

2 − C), V = min(C, aold
1 + aold

2)

if y1 = y2.
It can be proven [4] that the maximum of the objective function

can be achieved by first computing a
new,unc
2 = aold

2 + y2(E1−E2)
κ

and
clipping it to enforce the constraints U ≤ anew

2 ≤ V . Where −κ =
−K(x1, x1)− K(x2, x2) + 2K(x1, x2) is the second derivative of the
objective function along the diagonal line and

Ei = f(xi) − yi = (
l
∑

j=1

ajyjK(xj , xi) + b) − yi

is the difference between function output and target classification of
the point xi.

The value anew
1 can then be obtained from anew

2 as follows :

anew
1 = aold

1 + y1y2(a
old
2 − anew

2).

26

SVM Results In figure 11 we can see the performance of the sup-
port vector machine. As before the experiments were repeated 10
times each time drawing the labeled examples from the dataset by
using a uniform distribution without replacement. Once the SVM
was trained using the examples, its performance was observed on the
remaining examples in the data set. From the figure we can see that
once again in the case of a supervised learning algorithm the prob-
lem cannot be solved to a satisfactory level when very few labeled
examples exist. This reinforces the suspicion that when it comes to
document classification, the problem cannot be solved satisfactorily
with supervised algorithms if there is not adequate labeled data.

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

Support Vector Machine

Figure 11

2.4 Transductive Learning Algorithms

2.4.1 Self-Training

One of the simplest transductive learning algorithms, is the self-
training algorithm [12]. In self-training, a learner L is trained using
the labeled examples of the training set. Once the learner has been
trained, it is used to classify the unlabeled examples. The most

27

confidently classified examples are then chosen and are labeled ac-
cordingly. These labeled examples are then added to the training set
and the learner is retrained. The process continues iteratively, each
time the learner being trained with a slightly augmented training
set. This can continue until every example in the original test set is
labeled or (as this can prove to be especially time consuming) after
a fixed number of steps.

In the experiments conducted here, the learner used was a Naive
Bayes Classifier. Thus after the training set has been used to obtain
the parameters ϑcj

= P (cj|ϑ) and ϑwt|cj
= P (wt|cj; ϑ) of the model,

the self-training algorithm calculates the probabilities of each doc-
ument di for each of the classes cj :

P (cj|di; ϑ̂) =
P (cj |ϑ̂)P (di|cj ;ϑ̂)

P (di|ϑ̂)

and for each of the classes cj find those documents di which have

the highest probability P (cj|di; ϑ̂) and labels them accordingly.
In the experiments conducted here, at each iteration of the al-

gorithm, only the most confident example for each class is labeled,
the process continues for 10 iterations, i.e. 10 examples are labeled
for each class. Of course the process could continue until all the
unlabeled examples are labeled (which translates to 3730/2 = 1865
iterations for the case of 100 labeled examples per class) but that
proves impractical as the complexity of the Naive Bayes classifier
makes it prohibitive. As in the cases before, the experiments are re-
peated 10 times and the resulting classifier tested on the unlabeled
examples. The results of these experiments can be seen in figure 12.
As can be seen the resulting classifier continues to perform badly
for minimal labeled data (1 or 2 per class) but nonetheless performs
quite well when the number of labeled examples are few (but not
minimal).

The sudden jump observed in the accuracy of the algorithm can
be easily explained if one takes into consideration the nature of the
algorithm. As at each iteration the algorithm augments its training
set and retrains the classifier using the augmented training set, in
order for its performance to increase the examples labeled must in
fact belong to the class they are labeled to, otherwise they will hinder
the training process. When the number of original labeled data is
very small then the examples are labeled more or less randomly and

28

as the probability of the training set incorporating falsely labeled
data increases, the accuracy of the algorithm instead of increasing
with every iteration in fact deteriorates. When however the number
of originally labeled examples surpasses a certain threshold then
the examples chosen for labeling are highly likely to be classified
correctly (as the original classifier is of a sufficient accuracy) and
the algorithm no longer deteriorates but instead improves with each
iteration.

0 20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

SelfTraining

Figure 12

2.4.2 Transductive Expectation Maximization

A well known algorithm in statistical learning theory is the expec-
tation maximization algorithm [14]. This algorithm uses iterative
optimization in order to estimate some unknown parameters ϑ of
a probabilistic model. In a supervised learning setting, expectation
maximization is usually used when there is incomplete data present,
i.e. the values of the different attributes are not all known for each
example. Thus in these cases, expectation maximization is used to
make a maximum likelihood estimation of the missing values.

29

In the case of transductive learning, the missing values are con-
sidered to be the labels of the unlabeled data. In particular, we
consider a Bayesian probabilistic framework and originally train a
Naive Bayes classifier using the labeled data. Having built the clas-
sifier using the labeled data, it is then used to estimate the compo-
nent membership of each document. This translates to calculating
the probability that each mixture component generated each docu-
ment and based on these probabilistically weighted class labels are
assigned to the unlabeled data.

The algorithm then continues to train a new Naive Bayes classi-
fier (i.e. new parameters ϑ̂) this time using the entire data set. The
process of building classifiers and estimating labels for the unlabeled
data is repeated iteratively until there is no change to the values of
the estimated parameters ϑ̂ (in practice the algorithm halts when the
change in the log-likelihood of the data falls beneath some thresh-
hold, in this case 10−4). Thus we effectively execute a hill-climbing
search which ultimately calculates those labels for the unlabeled
data that maximizes the value lc(ϑ |D) = log(P (ϑ)P (D |ϑ)) which
is equivalently[14]:

lc(ϑ |D; z) = log(P (ϑ)) +
∑

di∈D

|C|
∑

j=1

zijlog(P (cj |ϑ) P (di |cj ; ϑ))

where zij are the indicator values of document di and where
zij = 1 iff yi = cj, otherwise zij = 0. Consequently, the hill-climbing
procedure effectively computes the expected value of z at each E-
step and uses these values to estimate the maximum a posteriori
estimates for the parameters of the mixture model ϑ̂. As the labels
of the unlabeled data are not in fact binary, but rather, as stated,
probabilistically weighted estimations of the true labels, when esti-
mating the maximum a posteriori values for the parameters ϑ̂ we
use the following equations[14]:

ϑ̂wt|cj
= P (wt|cj; ϑ̂) =

1+
|D|
∑

i=1
N(wt,di)P (yi=cj |di)

|V |+
|V |
∑

s=1

|D|
∑

i=1
N(ws,di)P (yi=cj |di)

where N(wt, di) is the count of the number of times word wt

appears in document di. The value P (yi = cj |di) ∈ {0, 1} for labeled
data, while in the case of labeled data we have P (yi = cj |di) ∈ [0, 1].

The class prior probabilities are given by [14]:

30

ϑ̂cj
= P (cj|ϑ̂) =

1+
|D|
∑

i=1
P (yi=cj |di)

|C|+|D|

.
The above equations are derived from the maximum a posteriori

parameter estimation, if we consider the prior distribution over the
parameters (P (ϑ)) to be a Dirichlet distribution[14]:

P (ϑ) ∝ ∏

cj∈C

((ϑcj
)a−1

∏

wt∈V

(ϑwt|cj
)a−1)

The parameter a affects the strength of the prior, if we consider
a = 2 which is equivalent to Laplace smoothing, then we obtain the
formulas shown above[14]. In figure 13 we can see the performance
of the Expectation Maximization algorithm. As in the case of Self-
training, the experiments were repeated ten times each time drawing
the labeled examples by a uniform distribution without replacement
and the resulting classifier each time being tested on the remaining
(originally) unlabeled examples.

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

Number of Labeled Examples per Class

A
cc

ur
ac

y

Expectation Maximization

Figure 13

31

As can be seen from these results, the algorithm quickly reaches
a high performance as the number of labeled examples rises. Unlike
the self-training algorithm however, expectation maximization does
not deteriorate for minimal amounts of labeled data. On the con-
trary it reaches a relatively high performance (≈ 68%) even when
originally there is only one labeled example per class. This per-
formance is higher than both the supervised algorithms and the
self-training transductive algorithm.

The expectation maximization transductive learning algorithm,
after having trained the first learner, in all subsequent iterations and
training of a new classifier (at the M-step), uses both the labeled

and the (originally) unlabeled data to estimate the parameters ϑ̂.
These two sets of data are taken into consideration with equal weight
and influence any estimations made equally. However it is obvious
that there should be more confidence in the label of the labeled
data than the labeling of the unlabeled data. Thus it would be
preferable if during the M-step of the algorithm, i.e. the training
of the Naive Bayes Classifier, the labeled data was taken more into
account than the unlabeled data, especially seeing as the unlabeled
data is far larger in quantity than the labeled data and subsequently
it is highly probable that the information provided by the labeled
data be lost under the weight of the information provided by the
unlabeled data.

In order to overcome these problems, an extra parameter λi is
introduced which weights the contribution of each example di to the
learning process. By introducing this variable, the quantity which
is maximized by the expectation maximization algorithm is[14]:

lc(ϑ |D; z) = log(P (ϑ)) +
∑

di∈Dl

|C|
∑

j=1

zijlog(P (cj |ϑ) P (di |cj ; ϑ)) +

λ(
∑

di∈Du

|C|
∑

j=1

zijlog(P (cj |ϑ) P (di |cj ; ϑ)))

where Du and Dl are the sets of labeled and unlabeled docu-
ments. As λ approaches zero, the influence of the unlabeled data
on the learning diminishes, the algorithm effectively reverts to su-
pervised learning for λ = 0, while for λ = 1 the algorithm takes
both labeled and unlabeled data into equal consideration. For the
training process realised in the M-step, we define Λ(i) to be[14]:

32

Λ(i) = λ if di ∈ Du

and
Λ(i) = 1 if di ∈ Dl

Using these values, the formulas for computing the parameters ϑ̂

become[14]:

ϑ̂wt|cj
= P (wt|cj; ϑ̂) =

1+
|D|
∑

i=1
Λ(i)N(wt,di)P (yi=cj |di)

|V |+
|V |
∑

s=1

|D|
∑

i=1
Λ(i)N(ws ,di)P (yi=cj |di)

and the class prior probabilities are given by :

ϑ̂cj
= P (cj|ϑ̂) =

1+
|D|
∑

i=1
Λ(i)P (yi=cj |di)

|C|+|Dl|+λ|Du|

In figure 14 we see the performance of the algorithm for different
values of lambda. The settings of the experiments remain the same
as before

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

lambda=1

lambda=0.5

lambda=0.2

lambda=0.1

Figure 14

33

From the results it can be seen that the introduction of the pa-
rameter λ does in fact improve the performance of the algorithm.
However this improvement exhibits itself mostly when the number
of labeled examples is not minimal. Thus for minimal amounts of
labeled data, the algorithm performs best for λ = 1 which is equiv-
alent to the original algorithm. The introduction of the parameter
λ only leads to improvement as the number of labeled examples
augments leading to a clear advantage when the number of labeled
examples is above 20 per class. This makes sense if ones considers
that for minimal amounts of labeled data, the information received
by these examples is also minimal and thus the algorithm must rely
on the unlabeled data. As however the number of labeled examples
increases, the information for the labeled data also increases and
so not only decreases the need for information from the unlabeled
examples, but also so increases the need to protect this information
from being buried under the unlabeled data’s information.

2.4.3 Transductive Learning Using Graph Mincuts

Another approach to transductive learning is that of using graph
mincuts [1]. One of the main advantages of the graph mincut al-
gorithm is that unlike the expectation maximization algorithm pre-
sented in the previous chapter, the graph mincut finds the global
maximum of the objective function. Furthermore this global maxi-
mum can be found in polynomial time. However, while in the case
of the expectation maximization algorithm, the hill-climbing pro-
cedure can be applied to a wide number of objective functions, in
the case of the graph mincuts algorithm the objective functions are
limited to those functions which depend only on pairwise relations
amongst examples.

In particular, the graph mincuts algorithm can perform the fol-
lowing optimization which is of great interest[1]:

Given a set of labeled examples (in this case documents) Dl and a
set of unlabeled examples Du, label the unlabeled examples in such
a way that the leave one out cross validation error of the k-nearest

neighbor algorithm is minimized over the entire data set
D = Dl ∪ Du.

Given these two sets of data Du and Dl, the algorithm first con-
structs a weighted graph G = (V, E), where the vertices V consist

34

of one vertice for each example in the labeled and unlabeled data
set and also a source vertix u+ and sink vertix u−; thus we have
V = Dl ∪ Du ∪ {u+, u−}. The vertices u+ and u− are also called
classification vertices, while the other vertices are called example
vertices.

Each edge e ∈ E between the vertices in the graph is assigned a
weight w(e). This weight can be assigned by any number of functions
(for example analogously to the distance between the two examples
that the edge connects), in the experiments conducted here the value
of w(e) for edges e between two example vertices ui and uj is set to

be w(e) =
cos(~di, ~dj)

∑

m∈kNN(di)

cos(~di, ~dm)
if example dj is amongst the k nearest

neighbors of example di (or vice versa), where cos(~di, ~dj) is the cosine
similarity function between documents di and dj and which is equal
to :

cos (~di, ~dj) =
~di· ~dj

‖~di‖2∗‖ ~dj‖2
=

n
∑

k=0
wikwjk

√

n
∑

k=0

w2
ik

√

n
∑

k=0

w2
jk

Otherwise if dj is not amongst the nearest neighbors of di then
the weight of the edge between the two vertices is set to 0, i.e. the
vertices are not considered to be connected.

In the case of the classification vertices u+ and u−, these are con-
nected to those vertices which correspond to labeled data with the
same label as the corresponding classification vertex. Thus vertices
corresponding to positively labeled examples (i.e. examples with a
label of +1) are all connected to the vertex u+, while vertices corre-
sponding to negatively labeled examples (i.e. examples with a label
of -1) are all connected to the vertex u−. These edges between clas-
sification vertices and example vertices are all assigned an infinite
weight, thus we have w(u, u−) = ∞ xor w(u, u+) = ∞ ∀u ∈ Dl.

The algorithm then proceeds to calculate a minimum cut for the
graph, considering u+ as the source and u− as the sink which trans-
lates to finding the minimum total weight set of edges that discon-
nect u+ and u−. This can be achieved with the help of a maximum
flow algorithm like for example the Edmonds-Karp algorithm [2]
which is used in the following experiments.

Before analyzing in detail the Edmonds-Karp algorithm, we must
first introduce the notion of the residual network. Given a graph

35

G = (V, E) with capacity c(v, u) and flow f(v, u) between vertices v

and u, the residual network Gf(V, Ef) is the network with capacity
cf(v, u) = c(v, u) − f(v, u).

The Edmonds-Karp algorithm is based on the Ford-Fulkerson al-
gorithm [2] which uses the residual network to solve the maximum
flow problem of a graph, as follows :

While there is a path p in Gf from s (source) to t (sink) such
that cf(u, v) > 0 ∀(u, v) ∈ p then :

Set cf (p) = min(cf (u, v)|(u, v) ∈ p).
∀(u, v) ∈ p do :
f(u, v) = f(u, v) + cf(p)
f(v, u) = f(v, u) − cf (p)

The Edmonds-Karp algorithm is a variation of the Ford-Fulkerson
algorithm which specifically uses depth-first search to find the path
p in the residual network Gf .

Returning to the transductive learning graph mincut algorithm,
having found the mincut of the constructed graph, the graph is
essentially partitioned into two sets V+ and V− each consisting of
vertices situated on opposite sides of the mincut. Thus vertices
in V+ are those vertices which can be reached by a path p in the
final residual graph and which form a connected component which
includes the vertex u+ while conversely vertices in the set V− cannot
be reached by a path p in the final residual graph. Finally the
unlabeled examples corresponding to the vertices in each of the two
subsets are labeled accordingly.

Figure 15 shows the performance of the graph mincut algorithm
for various quantities of labeled examples. As before, the experi-
ments are repeated 10 times, each time the labeled examples be-
ing drawn from the extended data set using a uniform distribution
without replacement. The graph was constructed considering the
3-nearest neighbors of each example [1].

36

0 20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

MinCut

Figure 15

The results obtained using the graph mincut transductive learner
show that once again the transductive learning algorithm is able to
reach relatively high levels of performance with a few labeled exam-
ples per class. However unlike the expectation maximization algo-
rithm in the previous section, the algorithm is unable to attain a
high performance when the number of labeled examples is minimal.
In fact in the case of one labeled example per class the algorithm
performs worse than the supervised algorithms, its performance bor-
dering on that of a random classifier. A possible explanation for
this phenomenon is presented in the next section along with an al-
ternative graph partitioning algorithm which aims to remedy this
problem.

2.4.4 Tranductive Spectral Graph Partitioning

The graph mincut algorithm presented in the previous chapter is a
intuitively appealing approach to the transductive learning problem,
however it does not in all cases lead to similarly appealing solutions.
Consider the case where there are only two labeled examples, one

37

positive x+ and one negative x−. If we connect each point to its
three closest neighbors then it is very likely that the minimum cut
of the graph consists of partitioning the graph into two sets S and
S̄ such that S = u+∪, x+ and S̄ = u− ∪ x− ∪ Du. This partition
obviously will result in every example in the unlabeled data set Du

being labeled with a negative label. In this case it is obvious that
the resulting classifier performs substantially poorer than if we had
not taken the unlabeled data into consideration at all.

The problem of degenerated cuts can be overcome if we consider
the graph Laplacian and instead of the minimum cut problem, we
solve the ratiocut problem instead [8]. The ratio of a cut S, S̄ is
defined as :

R(S, S̄) = C(S,S̄)
∑

i∈S
di·

∑

i∈(̄S)

di

where di is the size of vertex i and C(S, S̄) is the sum of the
weights of the edges between the vertices of S and S̄. The ratio
cut problem consists of finding the non-empty cut S, S̄ for which
the value R(S, S̄) is minimum. Thus instead of minimizing the sum
of the weights of the edges of the cut as in the case of the mincut
problem, the ratiocut problem finds the cut S, S̄ which minimizes
the average weight of the cut.

The Laplacian LG of a graph G = (V, E) is a matrix whose en-
tries lij are given by :

lij = −1 if (i, j) ∈ E

lij = di if i = j where di is the degree of vertex i

lij = 0 otherwise.

The Laplacian of a graph provides information about various
characteristics of the graph through its eigenvalues λi and corre-
sponding eigenvectors vi. For example the multiplicity of 0 as an
eigenvalue of LG equals the number of connected components of
G. In the case of the ratiocut problem, the eigenvalue λ2 (i.e. the
smallest non-negative eigenvalue) is important as it yields informa-
tion concerning the quality of the best cut of the graph.

If we redefine the ratio of a cut (S, S̄) to be :

φ(S) =
|C(S,S̄)|

min(|S|,|S̄)|

38

then the isoperimetric number φ(G) of a graph can be defined as :

φ(G) = minSφ(S)

It is obvious from the above that the ratiocut problem consists of
finding a cut in the graph whose ratio is equal to the isoperimetric
number. The isoperimetric number is related to the eigenvalue λ2

via Cheeger’s inequality :

φ(G) ≥ λ2 ≥ φ2(G)
2d

where d is an upper bound of the degree of every vertex in the graph.
Thus the eigenvalue λ2 of the Laplacian LG bounds the isoperimetric
number of the graph, giving both a lower bound (φ(G) ≥ λ2) and a
higher bound (

√
2d · λ2 ≥ φ(G)).

Before presenting the spectral graph transducer [8] that solves
the spectral graph partitioning problem in a transductive setting,
we first formally state the problem to be solved. Given a graph G =

(V, E) the problem consists of minimizing the value C(S,S̄)
|i:yi=1||i:yi=−1|

with the constraints a) yi = 1 if i ∈ Dl and positive, b) yi = −1 if
i ∈ Dl and negative and c) ~y ∈ {+1,−1}n.

Ignoring these constraints which are related to the labels of the
labeled data set, we obtain the unsupervised ratiocut problem which
is equivalent to the following[8]:

min~z
~zT L~z
~zT ~z

where ~zi ∈ {γ+, γ−} and γ+ =
√

|i:zi<0|
|i:zi>0| ,γ− = −

√

|i:zi>0|
|i:zi<0|

The above problem is NP-hard to solve[8]. However the relax-
ation of the above problem:

min~z~z
T L~z

subject to ~zT~z = n and ~zT 1 = 0

where n is the number of vertices in the graph, has an analytical
solution which is the eigenvector v2 which corresponds to the eigen-
value λ2 of the Laplacian[8]. The solution to the relaxed problem
can then be used as a good approximation of the solution of the
original unsupervised ratiocut problem.

For the supervised ratiocut problem, we add a quadratic penalty
to the objective function and obtain the following supervised ratio-
cut problem :

39

min~z~z
T L~z + c(~z − ~γ)T C(~z − ~γ)

subject to ~zT~z = n and ~zT 1 = 0

where the value of element i of the vector ~γ is γ+ or γ− if the
corresponding example di is positively labeled or negatively, and it
is 0 if di ∈ Du. The parameter c allows for a trade-off between
training error and cut-value, while C is a diagonal cost matrix that
allows for misclassification costs (not necessarily the same) for each
example.

Using eigen-decomposition, we can decompose the Laplacian :
L = UΣUT , and subsequently by introducing a new parameter vec-
tor ~w such that ~z = U ~w, we obtain the equivalent problem :

min~w ~wT D~w + c(V ~w − ~γ)T C(V ~w − ~γ)
subject to ~wT ~w = n

Based on the above formulation of the ratiocut problem, the spec-
tral graph transducer labels the examples of the unlabeled data set
Du by solving the ratiocut problem as follows.

First the similarity-weighted k-nearest neighbor graph is con-
structed. As in the case of the graph mincut algorithm presented
in the previous chapter, the vertices of the graph, each represent an
example of the extended data set D = Dl ∪Du. Two vertices i, j of
the graph are connected by an edge eij in the graph if the example
dj is amongst the k nearest neighbors of the example di. The weight
of the edge w(eij) is assigned the value :

w(eij) =
cos (~di, ~dj)
∑

~dk∈kNN ~di

cos (~di, ~dk)
if ~dj ∈ knn~di

w(eij) = 0 otherwise.

Having constructed the similarity-weighted k-nearest neighbor
graph A, the algorithm computes the diagonal degree matrix B,
the elements of which are :

Bij = 0 if i 6= j

Bij =
∑

k

Aik if i = j

The normalized Laplacian L = B−1(B −A) is then computed as
well as its smallest 2 to d + 1 eigenvalues (λ2...λd+1) and eigenvec-
tors (v2...vd+1), where the parameter d is defined by the user. The

40

eigenvectors are then stored in the matrix V , whose columns corre-
spond to the eigenvectors (i.e. V (:, i) = vi−1). In order to normalize
the spectrum of the graph, instead of using the diagonal matrix
D whose diagonal elements are eigenvalues of L (i.e. Dii = λi−1),
some monotonically increasing function is used to assign values to
the diagonal elements of D. More specifically, in the experiments
conducted here, we use Dii = i2.

Next the values γ+ =
√

l−
l+

and γ− =
√

l+
l−

are estimated, where

l+ is the number of positively labeled examples and l− the number of
negatively labeled examples. The vector ~γ is then computed where:

γi = γ+ if di ∈ Dl and yi = +1
γi = γ− if di ∈ Dl and yi = −1

γi = 0 if di ∈ Du

The diagonal cost matrix is then computed by setting :

Cii = l
2l+

if di ∈ Dl and yi = +1

Cii = l
2l−

if di ∈ Dl and yi = −1

Cij = 0 otherwise.

The solution ~w∗ to the optimization problem :

min~w ~wT D~w + c(V ~w − ~γ)T C(V ~w − ~γ)
subject to ~wT ~w = n

is given by ~w∗ = (G − λ∗I)−1~b, where G = (D + cV T CV) and
~b = cV T C~γ and λ∗ is the smallest eigenvalue of the matrix :

(

G −I
−1
n
·~b~bT G

)

where I is the identity matrix.
Based on the above the algorithm computes a prediction :

~z∗ = V (G − λ∗I)−1~b

Using this prediction, the spectral graph transducer, makes a
hard class assignment to the unlabeled examples by setting yi =
sign(zi − Θ) where

Θ = 1
2
(γ+ + γ−).

41

The performance of the algorithm can be seen in figure 16. The
experiments, as before, were all repeated ten times and the labeled
examples drawn each time using a uniform distribution without re-
placement. The parameter c was set to c = 3200 while the number
of nearest neighbours used to calculate the adjacency matrix was
set to 50.

0 10 20 30 40 50 60 70 80 90 100
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of Labeled Examples per Class

A
cc

ur
ac

y

Spectral Graph Partitioning

Figure 16

From the results it is evident that the spectral graph transducer
is able to overcome the shortcomings of the graph mincut algorithm
of the previous section. Even for very small, minimal, amounts
of labeled data, the spectral graph transducer reaches a very high
level of performance, the greatest observed up till now, attaining an
accuracy of more than 80% with two labeled examples per class.

2.4.5 Learning with Local and Global Consistency

Another approach to transductive learning is that of learning with
local and global consistency [22]. This algorithm is based on two
assumptions concerning the consistency of the data set. The first
assumption concerns local consistency and is that nearby points

42

are likely to have the same label. The second assumption concerns
global consistency and is that points on the same structure (for
example a cluster) are likely to have the same label, this assumption
is also known as the cluster assumption.

In order to formalize the above assumptions, the algorithm uses a
classifying function which is considered to be sufficiently ”smooth”
as regards the intrinsic structure of the data. The algorithm clas-
sifies the unlabeled examples with the help of a matrix F . This
matrix is a n × c matrix (where n is the number of examples in the
extended data set Dall = Du∪Dl and c the number of classes) which
corresponds to a classification of the examples in Dall, it effectively
assigns a vector Fi (i.e. the row i of the matrix F) to each example
di, this vector can then be used to obtain a label for the example di

by setting yi = argmaxj≤cFij.
We define the matrix Y to be a n × c matrix for which :

Yij = 1 if yi = j i.e. if example di is labeled and belongs to class j

Yij = 0 otherwise.

Based on the above the learning with local and global consistency
algorithm consists of the following steps [22]:

1. The matrix W , called the affinity matrix, is constructed. This
matrix can be seen as the weighting function of the edges E of
a graph G = (V, E) where as in the previous learners presented
heretofore, the vertices represent the examples of the data set
Dall . More analytically in the case of text classification the
elements of the affinity matrix W are given by :

Wij = cos (~di, ~dj) if i 6= j

Wii = 0

2. The matrix S = D− 1
2 WD− 1

2 is constructed. The matrix D is a
diagonal matrix whose diagonal elements are equal to the sum
of the elements of the corresponding row of the affinity matrix
W , i.e. Dii =

∑

j

Wij.

3. The matrix F is calculated by iterating F (t + 1) = aSF (t) +
(1 − a)Y until convergence, where a ∈ (0, 1) is a user defined
parameter.

43

4. Having calculated F ∗ (the limit of the sequence F (t)), the
unlabeled examples di ∈ Du are labeled by assigning yi =
argmaxj≤cF

∗
ij

The above iterative process is closely related to spreading acti-
vation networks (SANs). As stated above, the affinity matrix W

can be seen as the weighting function of a graph G = (V, E) where
each node vi ∈ V represents a specific example di of the extended
data set Dall. Equivalently in a spreading activation network each
node represents a specific concept (or on this case example) and two
nodes i, j are connected between them by a connection with which a
weight wij is associated. The iteration process in step 3, propagates
information from the nodes of the network to its neighbors based
on the weights of the connections between them. Just as in the case
of spreading activation networks, initially only the input nodes are
activated (equivalently only the vertices pertaining to labeled ex-
amples are labeled i.e. Yij = 1 if yi = j) and the rest of the nodes
have an output of 0 (Yij = 0 otherwise). Thus at each point every
node receives information regarding its label from its neighbors and
ultimately is set to the class of which it has received the most in-
formation. It should be noted that during the iteration procedure
self-reinforcement is avoided as the diagonal elements of W are all
zero (Wii = 0).

The execution of the iteration procedure in step 3 can be avoided
if we consider the limit :

lim
t→∞

F (t) = lim
t→∞

aSF (t) + (1 − a)Y

Since F (t + 1) = aSF (t) + (1 − a)Y [22], we have :

F (t) = (aS)t−1 + (1 − a)
t−1
∑

i=0

(aS)iY

As a ∈ (0, 1) and the eigenvalues of S ∈ [−1, 1], it follows that :

lim
t→∞

(aS)t−1 = 0

and

lim
t→∞

t−1
∑

i=0

(aS)iY = (I − aS)−1Y

Based on the above we obtain a closed form for the solution F ∗ :

44

F ∗ = (1 − a)(I − aS)−1Y

The above algorithm can also be analyzed in a regularization
framework where the algorithm can be seen as minimizing a cost
function Q(F). In particular we consider the cost function :

Q(F) = 1
2

(

n
∑

i,j=1

Wij

∥

∥

∥

∥

1√
Dii

Fi − 1√
Djj

Fj

∥

∥

∥

∥

2

+ µ
n
∑

i=1

‖Fi − Yi‖2

)

where the parameter µ is a regularization parameter which is set
by the user.

The first term of the cost function
n
∑

i,j=1

Wij

∥

∥

∥

∥

1√
Dii

Fi − 1√
Djj

Fj

∥

∥

∥

∥

2

is

the smoothness constraint and ensures that the resulting classifying
function will not have greatly different values for similar input, that
is two points that are nearby will be less likely to be ultimately clas-
sified to different classes. This is connected to the local consistency
assumption.

The second term
n
∑

i=1

‖Fi − Yi‖2 is the fitting constraint which

ensures that the classifying function will not return results which
differ significantly from the original label assignment i.e. the result-
ing classifier will have a low error-rate on the labeled data set Dl.
The parameter µ thus gives us a trade-off between the two terms.

In order to minimize the cost function Q(F) the solution F ∗ must
satisfy :

∂Q
∂F

|F=F ∗ = 0
⇒ F ∗ − SF ∗ + µ(F ∗ − Y) = 0

⇒ F ∗ = β(I − aS)−1Y

where a = 1
1+µ

and β = 1 − a. The two closed forms obtained

through considering the limit of the sequence F (t) and considering
the minimization of the cost function Q(F) are obviously equivalent.

In figure 17 we can see the accuracy attained by the algorithm
for different amounts of labeled examples where the setting are the
same as always, ten repetitions, the labeled examples drawn with
a uniform distribution without replacement, and the resulting clas-
sifier tested on the remaining unlabeled examples. Regarding the
parameter µ it is set to 0.99.

45

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

Number of Labeled Examples per Class

A
cc

ur
ac

y

Learning With Consistency

Figure 17

The results obtained seem to indicate that the learning with lo-
cal and global consistency algorithm is not particularly appropriate
for the document classification problem, the problem of low perfor-
mance for minimal labeled examples has returned and furthermore
unlike the other transductive classifiers the performance of the learn-
ing with local and global consistency algorithm remains relatively
low even for larger amounts of labeled examples.

2.4.6 Results

In the figure 18 we can see the performance of all the transductive
learning algorithms presented here compared to the two supervised
learning algorithms used as a base for comparison.

46

0 20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

NBC
EM
SelfTraining
Learning With Consistency
SVM
MinCut
SGT

Figure 18

As can be seen the supervised learning algorithms perform sig-
nificantly poorer than the transductive learners when labeled data
is sparse. This can be better seen in the next three figures (19-21)
which zoom in on different parts of the previous figure.

When the amount of labeled data is below twenty examples per
class, both supervised learning examples perform below the trans-
ductive learners as can be seen in figure 19.

47

5 10 15 20 25 30 35 40

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of Labeled Examples per Class

A
cc

ur
ac

y

NBC
EM
SelfTraining
Learning With Consistency
SVM
MinCut
SGT

Figure 19

As the number of labeled examples increases, approaching sev-
enty examples per class, the supervised learners start surpassing
certain of the transductive learners. The Naive Bayes Classifier
outperforms the Expectation Maximization, Learning with Consis-
tency and SelfTraining algorithms while the Support Vector Machine
outperforms the two latter algorithms. Both supervised algorithms
however continue to perform worse than the Spectral Graph Trans-
ducer and the Mincut learner.

48

35 40 45 50 55 60 65
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of Labeled Examples per Class

A
cc

ur
ac

y

NBC
EM
SelfTraining
Learning With Consistency
SVM
MinCut
SGT

Figue 20

The Naive Bayes Classifier finally reaches the performance of
the two transductive learners as the number of labeled examples
reaches about 100 examples per class. At this level there seems to be
enough labeled data that there is no need for additional information
from the unlabeled data in order to solve the classification problem.
Nonetheless the Support Vector Machine continues to perform below
the transductive learners.

49

65 70 75 80 85 90 95 100

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of Labeled Examples per Class

A
cc

ur
ac

y

NBC
EM
SelfTraining
Learning With Consistency
SVM
MinCut
SGT

Figure 21

Finally figure 22 shows the performance of only the best two
transductive learners, the Spectral Graph Transducer and the graph
Mincut learner, and that of the best supervised learner,the Naive
Bayes Classifier, for better comparison. From the graph the domi-
nance of the transductive learners is evident.

From the experiments conducted it is easy to see that in the case
of document classification, classifiers can benefit from transuctive
learning to increase performance by making use of the abundance of
unlabeled data in order to overcome the problem of scarce labeled
data which is common is such applications.

The graph Mincut and Spectral Graph Transducer prove to per-
form especially well, at least as concerns the problem at hand, and
would seem to be appropriate for applications of this sort. The graph
Mincut algorithm does suffer from complexity (Solving the mincut
problem on a graph G(V, E) is O(V E2)) which makes it perhaps
not so attractive but the Spectral Graph Transducer is especially
speedy making it an ideal approach to the document classification
problem.

50

0 20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Labeled Examples per Class

A
cc

ur
ac

y

NBC
MinCut
SGT

Figure 22

51

3 Handwritten digit recognition

3.1 Introduction

Another application in which transductive learning can prove to
be particularly useful is that of handwritten text recognition. In
handwritten text recognition, the aim is to create learners which
will ultimately be capable of recognizing handwritten text whether
by recognizing isolated characters or entire words. Thus effectively
handwritten text recognition can be seen as an approach to learning
machines to read.

In the case of handwritten character recognition the system learns
to recognize one character at a time, thus in order to read a specific
word it must parse each of its letters and then based on the letters
recognized, ultimately recognize the word they make up. As however
the system will not be 100% accurate in the recognitions of letters
it is quite likely that the system will not correctly recognize all the
letters of a word. This problem is even more prominent in the case
of cursive text where the limits of each letter in a word are not clear
cut. Thus for example while parsing the word ”dog”, the system
may mistakenly recognize the ”o” as an ”a” and thus ultimately read
the word ”dag”. A human being would be unlikely to make such
a mistake as he is well aware that the word ”dag” does not exist.
In order to overcome this problem, handwritten text recognizers
which are based on character recognition are usually equipped with
a dictionary; this however is not always possible as certain texts
may be written in a language for which a concise dictionary is not
readily available (in Old Dutch for example).

In cases like these it is perhaps preferable to create a system that
attempts to recognize handwritten words directly without resorting
to recognizing the individual components (letters) of a word. How-
ever in this case another problem often arises. In the case where
the system is to be trained to recognize characters, obviously the
input of the learning algorithm will also be characters; labeled ex-
amples of such characters are usually easy to obtain as the number
of different characters are limited and there exist large data sets of
different characters (as for example the MNIST data set for digits).
On the other hand however in the case where whole words are to
be recognized, the presence of large amounts of labeled data cannot
be guaranteed (one is highly unlikely to find a data set consisting of

52

handwritten Old Dutch words) and as the number of different words
is high, the acquisition of such a large data set by manual labeling
is not a realistic endeavor.

Thus it is obvious that although in the specific problem of hand-
written digit recognition transductive learning may not be partic-
ularly helpful on a practical level as large amounts of labeled data
already exist, nonetheless transductive learning can prove to be par-
ticularly useful in the wider area of handwritten text recognition.
As the two approaches to handwritten text recognition (character
and word) are based on many common principles, the experiments
presented below which address handwritten digit recognition can be
seen representative of the value of transductive learning in the case
of handwritten text recognition in general.

3.2 Data

The data set of handwritten digits that will be used in the follow-
ing experiments is the MNIST dataset [9]. It consists of two sets
of data, one dataset containing sixty thousand hand written digits
and another containing ten thousand samples of hand written digits.
These samples were taken from a mixture of US census workers and
high school students and is thus considered to represent two different
distributions. In the original NIST dataset these distributions were
used separately, the first as a training set and the second as a test
set. In the MNIST dataset however these two distributions have
been mixed together yielding two datasets (training and test set)
which contain samples from both distributions. In figure 23 we see
examples from each distributions. The first image shows hand writ-
ten digits obtained from the (paid) US census workers. The second
image shows the samples obtained from the high school students.

53

Figure 23

These obtained digits are of a size at most 20x20 pixels. These
digits are then set centered on a blank background of 28x28 pixels.
Each pixel of the obtained digit is originally represented by a value
in the interval [0,255] signifying the intensity of the pixel. Before
using the digits in the following experiments however, the values
of their pixels are first normalized. Thus the value of each pixel is
divided by the maximum value (255) and as a result the value of
each pixel lays in the interval [0,1].

As stated the entire MNIST dataset consists of seventy thousand
examples of handwritten digits. In the following we will be experi-
menting with datasets consisting of very few labeled examples (one
to twenty per class) and a significantly larger quantity of unlabeled
examples. As the maximum number of labeled examples that will be
used is 150 (15 examples per class / 10 classes) that leaves us with
just under seventy thousand unlabeled examples to complement the
labeled data set. Though transductive learning allows us to take
advantage of large repositories of unlabeled data to enhance perfor-
mance, the number of available unlabeled examples in this case in
excessive. With such a huge amount of unlabeled data, any informa-
tion provided by the labeled data set is very likely to be buried due
to the sheer size of the unlabeled data set. Furthermore a data set
of that size greatly increases the computational cost of the various
transductive learning algorithms making them impractical and the

54

execution of multiple experiments unfeasible.
Due to the above, instead of using the entire MNIST data set, a

smaller data set is created consisting of four hundred examples of
each digit, these examples are drawn from the original data set using
a uniform distribution (without replacement). Thus the data set
used for the experiments presented below consists of four thousand
handwritten digits.

3.3 Supervised Learning Algorithms

As in the case of text classification, the transductive learning algo-
rithms are compared against a number of supervised learning algo-
rithms in order to discern if in fact these supervised learning are
insufficient when there are only small amounts of labeled data avail-
able and if transductive learning can in fact increase performance.

In particular two algorithms ,Networks pretrained with Restricted
Boltzmann Machines and Convolutional Networks are tested and
compared to the transductive learners; these algorithms are known
to perform exceptionally well on the handwritten digit recognition
problem and the second of the two (Convolutional Networks) is in
fact specifically tailored to deal with exactly this kind of problems
(optical recognition in general). Thus if these two algorithms are
seen not to perform adequately with little labeled data then it is
highly probable that supervised learning algorithms in general are
not capable of overcoming the scarcity of labeled data.

3.3.1 Convolutional Networks

As stated convolutional neural networks [10] are specially tailored
for machine vision problems. Convolutional networks use a feature
mapping and sub sampling techniques, applying these consecutively
onto the data through the multiple layers of the network in order to
create a classifier that is ultimately invariant to distortions in the
original data, making the classifier effectively invariant to shifting
or rotation of the original image. This resembles the way human
beings recognize images, or in this case digits; a human would not
look to see whether a digit has a line at the exact same place as
a prototype digit, for example ”4”, rather a human would simply
look to see if certain lines (features) that constitute a digit ”4”
are approximately where they should be (invariance to shift and

55

rotation). In the experiments conducted here, we use a specific
convolutional network called LeNet-5 which has a total of seven
layers (the input excluded) using a series of feature mappings and
sub-sampling layers. An overview of the architecture of LeNet-5 [10]
can be seen in figure 24.

Figure 24

Convolutional networks use feature detectors to create feature
mappings of the data, these detectors consist of a set of weights that
are applied to a small neighborhood in the data (a bias is then added
and the result passed through a sigmoid function), this operation is
the equivalent of a convolution and thus lends its name to the entire
network. The application of a feature detector over a series of such
small neighborhoods (effectively scanning the entire imag) creates
a feature mapping corresponding to the specific feature detector.
More precisely each unit on a feature mapping has as input a specific
region of the data (called the receptive field of the unit), the value
of each unit depends on the input of the unit and the value of the
weights of the feature detector, these weights are identical for each
unit, it is this fact that allows for the creation of feature maps.

This architectural idea is called weight replication (or shared
weights). Thus all unit will have the exact same output value for
identical input regardless of the location of their respective recep-
tive fields in the data as the shared weights perform the exact same

56

operation over each receptive field. Each feature map is created
by passing over the data using the feature detector creating a map-
ping where consecutive units have consecutive receptive fields. Each
consecutive receptive field is slightly shifted on the data from the
first field, thus neighboring units on the feature maps correspond to
receptive fields that overlap on the data.

As can be seen from the above a slight shift in the data will
lead to an equivalent shift in the feature map. This property of
feature mappings accounts for the ability of convolutional networks
to be invariant to shift (and distortion). Typically a convolutional
network will have a number of layers, with the feature detectors
of each layer mapping the features of the previous layer. A layer
will typically consist of a number of feature detectors in order to
create mappings of a variety of different features. Feature maps in
subsequent layers can have receptive fields in several of the feature
maps of the previous layer, allowing thus for the detection of higher-
order features.

In the case of the LeNet-5 convolutional network we have three
layers of feature detecting, the first, third and fifth layers labeled
C1,C3,C5 respectively. LeNet-5 uses 5 × 5 receptive fields in all its
feature detecting layers. Below we can see how the output of a node
i, j on the kth feature map of layer C1 when the input is the image
I.

C1k,i,j = bk +
n=5
∑

n=1

m=5
∑

m=1

wC1,k,n,m ∗ Ii+n−1,j+m−1

and
C1k,i,j = A ∗ tanh(S ∗ C1k,i,j)

Where the bias bk is the shared bias of all the units belonging
to map k and the weights wC1,k,n,m are the shared weights of the
connections of these units. The parameters A, S are constants set
by the user.

When training, convolutional networks use backpropagation to
propagate the error in the output layer back to the nodes in the
previous layers, due to the weight replication, a slight alteration
of the classical backpropagation is used. Specifically, for each set
of weights, the error corresponding to each of the nodes they are
applied to is calculated as well as the corresponding updates to
the weights. This overall sum of updates is then averaged out and

57

this average used to update the set of weights. Below we see these
calculations in the case of the first feature detecting layer C1 :

aC1,k,i,j = aS2,k,ceil(i/2),ceil(j/2) ∗ A ∗ S ∗ (1−C12
k,i,j)

A2 ∗ wS2,k

4
and

wC1,k,i,j = wC1,k,i,j + 1
N
∗ lr ∗

√
(N)
∑

n=1

√
(N)
∑

m=1

aC1,k,n,m ∗ In+i−1,m+j−1

Where N is the number of nodes in the feature map C1k and
1 ≤ i, j ≤ 5.

Feature maps detect the presence of different features in the data
and record their location. However in certain cases (as in digit recog-
nition) the exact location of the occurrence of different features is
not important. What is more important is the approximate loca-
tion. In fact in cases such as digit recognition the strict recording
of locations of features is not only not helpful but indeed can lead
to a lower performance. This is easy to see if we imagine a classifier
based on such a strict representation. A classifier like this would
expect to find specific features characteristic of each digit (say the
upper circle in an ”8”) in specific locations. This, as can be readily
seen, is not a realistic expectation, as a bunch of handwritten eights
could not possibly be expected to have this feature (the upper cir-
cle) in the exact same location. On the other hand the classifier
could only be interested in the approximate location of the digit
(say that it was in the upper half of the image), this obviously is
a much more realistic expectation. In order to achieve the above
effect, convolutional neural networks use sub-sampling layers.

Sub-sampling consists of averaging over the data of the feature
maps belonging to the previous layer. This leads to a reduction in
the resolution of the feature maps. The network is thus less sensitive
to shifts and distortions. More precisely each unit in a sub-sampling
layer is the result of the averaging of the data in its receptive field
with consequent multiplication by a trainable coefficient, the addi-
tion of a bias and the application of a sigmoid function. As is the
case with feature mappings, the trainable coefficient used by each
unit is identical for all units in the sub-sampling layer. Thus sub-
sampling also uses weight replication for the trainable coefficient
and the bias used. However unlike feature mappings, in the case of
sub-sampling layers consecutive units correspond to consecutive but
not overlapping receptive fields in the previous layer. Depending on

58

the value of the shared trainable coefficient, the output of the sub-
sampling can be considered to be a ”noisy OR” or a ”noisy AND”
if the coefficient is sufficient.

In the case of the LeNet-5 convolutional network we have two
layers of sub-sampling, the second and fourth layers labeled S2,S4
respectively. LeNet-5 uses 2 × 2 receptive fields in all its feature
detecting layers. Below we can see how the output of a node i, j on
the kth feature map of layer S2.

S2k,i,j = bk +
wS2,k

4

n=1
∑

n=0

m=1
∑

m=0

C1k,2i−1+n,2j−1+m

and
S2k,i,j = A ∗ tanh(S ∗ S2k,i,j)

As in the case of the feature detecting layers, backpropagation of
the network error is executed using a slightly altered procedure :

aS2,k,i,j =
K
∑

a=1

∑

C3a,k,o,p∈AS2k,m,n

aC3,a,k,m,n ∗A ∗ S ∗ (1−S22
k,i,j)

A2 ∗wC3,a,k,o,p

and

wS2,k = wS2,k + 1
N
∗ lr ∗

√
N
∑

i=1

√
N
∑

j=1

(aS2,k,i,j ∗
n=1
∑

n=0

m=1
∑

m=0

C1k,2i−1+n,2j−1+m

4
)

where N is the number of nodes in the feature map S2k and K the
number of feature maps in layer S2.

Finally regarding the final two layers of the LeNet-5 convolutional
network (the layer F6 and the output layer O, the layer F6 is a reg-
ular layer of a neural network fully connected to the previous layer
C5 without weight replication, feature detecting or subsampling;
the output layer O consists of ten softmaxed output units fully con-
nected to the neurons of the previous layer C5. The calculation of
the output of the neurons of these layers and of the backpropagation
of the network error is straightforward.

Despite the suitability of convolutional networks for the hand-
written digit recognition problem and the high accuracy they attain
when labeled data is abundant, experiments conducted with small
labeled data sets (up to 15 examples per class) showed that in these
cases, convolutional networks are not able to learn at all. Hav-
ing been trained using these data sets, the convolutional network
achieved an accuracy of a little over 10% in every case which is

59

approximately the accuracy that a random classifier would attain.
Thus in this case convolutional networks perform very poor and are
not appropriate for the task in hand.

3.3.2 Pretrained Networks

Neural networks typically suffer from the problem of weight initial-
ization. As they are not guaranteed to find the global minima of
the objective function but rather a local one, their performance can
differ significantly according to the initial values of their weights.
Different initial weights mean different starting points for minima
search and ultimately different solutions to the objective function
minimization problem. As an objective function can be expected to
have a number of local minima, neural networks typically arrive at
a solution that is suboptimal. The difference of this solution from
the optimal one can in some cases be substantial.

In order to overcome this problem of initial weight selection, in-
stead of randomly assigning initial values to the weights, the network
can be pretrained in order to begin its search from a more appropri-
ate position. One method of pretraining that has been proposed in
the case of handwritten digit recognition is that of pretraining the
network with the help of restricted Boltzmann machines (RBM) [6].

In this approach in order to pretrain the network, initially each
pair of sequential layers in the network are treated as a restricted
Boltzmann machine. The input layer of the restricted Boltzmann
machine [19] is considered to consist of linear units with Gaussian
noise and the hidden layer is considered to consist of units with
binary states.

The restricted Boltzmann machine then proceeds to use the avail-
able data in order to pretrain the respective weights. More specifi-
cally, the RBM minimizes the following objective function which is
called the energy of of the RBM:

E(v, h) = −
∑

i∈vis

bivi −
∑

j∈hid

bjhj −
∑

i,j

vihjwij

where the vis units are the units of the input layer and hid refers
to the units of the output layer. Accordingly, hi (vi) are the values
of the unit i of the input (output) layer. The value of the weight
between two units i,j in the input and output layer respectively is
denoted by wij and the biases of these units by bi and bj respectively.

60

During the training of the RBM, as each example is presented to
its input layer, the restricted Boltzmann machine assigns a proba-
bility P (hj = 1) to each of the units of the output layer according
to [6]:

P (hj = 1) = 1

1+e
−bj−

∑

i
viwij

Based on this value, a confabulation is produced for each unit in
the input layer :

vi = 1

1+e
−bj−

∑

j
hjwij

Having calculated the above confabulation, the RBM then once
again calculates probabilities for the units of the hidden layer using
the same equation as before.

After the Boltzmann machine has been presented with all the
data, it updates the weights between the two layers according to[6]:

∆wijk = m ∗ ∆wijk−1 + lr ∗ (< vi, hj >d − < vi, hj >c +cost ∗ wij)

The value of < vi, hj >d is the fraction of times the units i and
j, in the input and output layer respectively, are both ”on” when
the input of the machine is an example of the data set; the value
of < vi, hj >c is accordingly the fraction of times the units i and j,
in the input and output layer respectively, are both ”on” when the
input of the machine is a confabulation. At each update k, the value
of the previous update k − 1 is also taken into account via the term
m∗∆wijk−1. Furthermore the value of the weight itself is also taken
into consideration via the term cost ∗ wij. As can be seen by the
update rule given, the training process aims to minimize the energy
over the data while raising the energy of the confabulated data.

Once the restricted Boltzmann machine is trained, the process
of pretraining weights continues to the next pair of network layers
where obviously the new input layer is the previous output layer.
Having pretrained the network and obtained weights that hopefully
are more suitable, the network can then be trained. In the case of
the pretrained network presented here, the network is subsequently
trained using a conjugate gradient method [18].

In the conjugate gradient method the search for the (local) min-
ima of the function is conducted in directions that are A-orthogonal.

61

Two vectors are A-orthogonal (or conjugate) if the following equa-
tion holds :

di
T ∗ A ∗ dj = 0

Choosing the search directions to be A-orthogonal guarantees the
method will find the (local) minima after at most n steps, where n

is the dimensionality of the search space. As is known the mini-
mization of a quadratic function f(x) requires the determination of
a set of values for which f ′(x) = 0. These values are determined by
the solution of an equation of the form:

Ax = b

In each of the A-orthogonal directions di−1 a search is conducted
to find the value xi for which the error vector ei = Axi − b is A-
orthogonal to di−1. The directions chosen for search are given by
the following iterative equations:

di+1 = ri+1 + βi+1di

βi =
rT
i ri

rT
i−1ri−1

and
ri = −Aei

Where the vectors ri are the residuals. For these residuals we
have also that ri = b−Axi. In the case of nonlinear problems these
vectors are in fact the directions of steepest descent.

In the experiments conducted for the conjugate gradient fine-
tuning, Carl Rasmussen’s minimize code was used .Batch training
was implemented in the fine-tuning stage and for each epoch and
for each batch presented for training, three line searches were con-
ducted. The restricted Boltzmann machines were each trained for
50 epochs with a learning rate of 0.1, a cost weight of 0.0002, the
parameter m was set to 0.5 for the first five epochs and 0.9 for all
subsequent. The experiments were repeated ten times, each time
drawing the labeled examples from the data set using a uniform
distribution without replacement and the trained network tested on
the remaining unlabeled examples. The results of these experiments
can be seen in figure 25.

62

0 5 10 15
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Examples per Class

A
cc

ur
ac

y

Pretrained Network (RBM)

Figure 25

The results show that the pretrained network ,unlike the convolu-
tional networks, are in fact able to learn from such small amounts of
data. However the results are far from satisfactory, it is characteris-
tic that for one or two labeled examples per class the network has an
accuracy of below 50% and though this is much better than random
(which would be 10%) it still means that the resulting classifier is
wrong more times that it is right.

3.4 Transductive Learning

3.4.1 Expectation Maximization

In the case of transductive learning using expectation maximization,
when applied to handwritten digit recognition, we can no longer use
a naive Bayes classifier as a base learner. A naive Bayes classifier
(based on a multinomial model) considers each example to be an
ordered series of events. This approach does not seem appropriate
when it comes to images, as in this case the classifier would consider
a pixel of intensity 255 (for example) to be the result of a specific
event (corresponding to specific pixel) occurring 255 times, which

63

would seem to make little sense. Thus rather then use a naive Bayes
classifier as a base learner, we must turn towards other solutions.
An alternate framework that would seem to be well suited for the
transductive expectation maximization is that of considering the
data as generated by a mixture of normal (Gaussian) densities[5]:

p(x) =
c
∑

i=1

P (ωi)
1√

2π|Σ|1/2 e
− 1

2
(x−µi)

T Σ−1
i (x−µi)

where AT is the transpose of A. The probabilities P (ωi) are the prior
probabilities of each class ωi, while the values µi and Σi are the mean
and covariance matrix respectively that correspond to class ωi.

Based on the above assumption given a specific example xk, the
probability P (ωi|xk) is given by[5]:

P (ωi|xk) = p(xk|ωi)P (ωi)
∑

j
p(xk|ωj)P (ωj)

and the most probable class for the example xk is given by[5]:

ω(xk) = argmaxiP (ωi|xk) = argmaxi
p(xk|ωi)P (ωi)
∑

j
p(xk|ωj)P (ωj)

As the denominator
∑

j

p(xk|ωj)P (ωj) is common for all P (ωi|xk)

it can be ignored and thus the above equation becomes:

ω(xk) = argmaxip(xk|ωi)P (ωi)

and substituting p(xk|ωi) = 1√
2π|Σ|1/2 e

− 1
2
(x−µi)

T Σ−1
i (x−µi) we obtain

the final form :

P (ωi|xk) = P (ωi)
1√

2π|Σ|1/2 e
− 1

2
(x−µi)T Σ−1

i (x−µi)

In the above final equation, the mean of each class ωi is the
expected value of an example generated by the mixture component
corresponding to that class µi = E[x]. Given a data set D, if the
maximum-likelihood estimates are used then the mean of each class
ωi is given by[5]:

µi = 1
n

n
∑

k=1

xk

64

where obviously, xk is considered to belong to class ωi. Equivalently
the maximum-likelihood estimate of the covariance matrix Σi of
class ωi is given by[5]:

Σi = 1
n

n
∑

k=1

(xk − µi)
T (xk − µi)

where as above xk is considered to belong to class ωi. Finally the
probabilities P (ωi) are given by [5]:

P (ωi) = n
N

where n is the number of examples in the data set belonging to class
ωi and N is the size of the data set.

Based on the above we can use this framework for transductive
learning with the help of the expectation maximization algorithm.
At each E-step of the algorithm the parameters µi,P (ωi) and Σi are
calculated for each class ωi using the data. In the first E-step only
the labeled data is used while in subsequent steps the extended data
set is used as after the first M-step all the examples are assigned a
label. Subsequently in the M-step, the probabilities p(xk|ωi) are
calculated ∀k, i and each example xk is assigned a label accordingly.

Unfortunately even though the presented framework ties in nat-
urally with the expectation maximization algorithm, in the case of
the experiments presented here it cannot be applied due to a num-
ber of problems that arise and make the algorithm in its present
form inapplicable.

In particular, the experiments conducted here focus on the case
where there are very small amounts of labeled data. These settings
are natural when conducting experiments on transductive learning
as when large amounts of labeled data are present, supervised meth-
ods are more appropriate.

This scarcity of labeled data however means that though it is
possible to calculate the maximum-likelihood estimates of the co-
variance matrices Σi, these estimates will not be inversible. This
is due to the fact that in order for the covariance matrix Σi =
1
n

n
∑

k=1

(xk − µi)
T (xk − µi) to be inversible the number of examples n

must be at least as large as the dimensionality of the data d. As
the data has 784 dimensions and the labeled data sets used here are

65

of a size of maximum 15 examples per class, it is evident that the
resulting matrices will not be inversible.

One way to overcome this problem is to assume that every class
has the same covariance matrix Σ. The entire data set (both labeled
and unlabeled data) can then be used to calculate this covariance
matrix and since the size of the data set N is 4000 examples it is
obvious that N ≥ D. Thus we have :

Σ = 1
n

N
∑

k=1

(xk − µi)
T (xk − µi)

Unfortunately, though this approach overcomes the initial ap-
proach of insufficient labeled data, it suffers from a further setback.
As stated the data consists of images of digits which have been cen-
tered on a 28× 28 background. This means that the pixels near the
border of the image tend to have a value of zero, as the pixels of the
digit tend to be more towards the center. In fact there are lines of
pixels whose value is constantly zero over the entire data set. This
unfortunately means that the respective rows in the covariance ma-
trix Σ are also zero which in turn means that rank(Σ) < d. Thus
once again the covariance matrix is not inversible.

In order to overcome this obstacle, we employ two different ap-
proaches that ultimately prove successful. The first approach is to
use a technique known as shrinkage which ”‘shrinks”’ the covariance
matrix Σ towards the identity matrix I[5]:

Σβ = (1 − β)Σ + βI

The results of experiments conducted using this approach can
be seen in figure 26 where the accuracies for different numbers of
labeled examples per class in relation to the number of steps of the
expectation maximization algorithm are shown. The settings of the
experimentation (creation of training set, test set and repetitions)
remain the same as in the supervised experiments. The parameter
β is set experimentally to 0.8.

66

1 1.5 2 2.5 3 3.5 4 4.5 5
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Steps

A
cc

ur
ac

y

1 Example per Class
2 EpC
5 EpC
8 EpC
12 EpC
15 EpC

Figure 26

As can be seen in almost every case, after one or at the most
two iterations of the algorithm, the performance of algorithm ceases
to improve and from then on any further iterations are counterpro-
ductive. If we chose to run only two iterations (which seems to be
the optimal) then the performance of the algorithm can be seen in
figure 27.

67

0 5 10 15
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Examples per Class

A
cc

ur
ac

y

Figure 27

It is evident from the results obtained that though the self-
training algorithm may perform better than the supervised pre-
trained networks, they nonetheless do not seem to completely over-
come the problem of poor performance for small amounts of labeled
data. Thus in this case the presence of unlabeled data may lead
to an improved performance, however this performance is still rela-
tively low.

The second approach to calculating an inversible covariance ma-
trix is to assume that the features are statistically independent and
that each of the features has the same variance σ2. This leads to a
common covariance matrix of the form[5]:

Σ = σ2I

which is obviously inversible. In order to calculate the variance
σ2, an average of the variance over the data set of each feature is
calculated. The results obtained using this approach can be seen in
figure 28 for various numbers of iterations of the algorithm.

68

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Steps

A
cc

ur
ac

y

1 Example per Class
2 EpC
5 EpC
8 EpC
12 EpC
15 EpC

Figure 28

As can be seen with the exception of the cases where only one or
two examples per class are labeled, the algorithm does not gain in
performance from using expectation maximization. Thus in order
to use the expectation maximization algorithm we must revert back
to the previous approach.

3.4.2 Self-Learning

As was the case with the transductive learning algorithm using ex-
pectation maximization, in the case of self-learning once again a
naive Bayes classifier is not a suitable base learner for the same
reasons as above.

Instead of using a naive Bayes classifier, again as before we as-
sume that the data has been generated by a mixture of Gaussian
distributions. The self-training algorithm in this case, calculates the
covariance matrix Σ (using the approaches described) the means of
the classes µi and the prior probabilities P (ωi), the latter two using
the labeled data while the former using the entire data set.

The algorithm then calculates the probabilities P (ωi|xk) and for

69

each class ωi labels the example xk for which the value P (ωi|xk)
is maximal over the data set. The algorithm then continues to it-
eratively calculate parameters and label examples, extending the
labeled data set each time by one example per class. Unfortunately
as can be seen from figure 29, in the case of self-training the results
obtained show that the performance of the learner does not im-
prove. The results are obtained using the standard experimentation
settings used in the previous sections.

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Steps

A
cc

ur
ac

y

1 Example per Class
2 EpC
5 EpC
8 EpC
12 EpC
15 EpC

Figure 29

As the framework used with the expectation maximization algo-
rithm does not seem to work in the case of self-learning, we must
choose a different learner as a base, in order to obtain a self-learning
transductive classifier with enhanced performance. For this purpose
we experiment with using a class of neural networks known as au-
toencoders [7].

Autoencoders are typically used to reduce the dimensionality of
the data. The main architectural idea behind these networks is
a bottlenecked network which has as many output neurons as in-
put and has a hidden layer with as many neurons as the desired

70

dimensionality of the data (obviously less than the original dimen-
sionality). By equating the target of the network with the input
presented each time we force the bottlenecked hidden layer to learn
a representation of the data. As the autoencoding network is trained
to replicate its input in its output layer, this means that the values
of the neurons of the bottlenecked hidden layer hold adequate in-
formation so as to allow for the (optimally perfect) reconstruction
of the input by the succeeding part of the network. In figure 30 the
architecture of such an autoencoder can be seen.

Figure 30

In the experiments conducted here we use a series of autoen-
coding networks in a slightly different fashion. Instead of aiming
to reduce the dimensionality of the data, we use a number of au-
toencoders (as many as the different classes in the data) to create
a classifier. Each of the autoencoders is trained using only that
data which belongs to a specific class. This way, each autoencoder
is trained to replicate only those examples that belong to its spe-
cific class. The unlabeled data is then passed through each of the
autoencoding networks and each example is classified according to
which autoencoder best replicates the example in its output.

As in the case of the supervised pretrained network, the weights of
the autoencoding networks are pretrained before the actual training
phase. The weights between layers up until the bottlenecked layer

71

are as before considered to belong to a restricted Boltzmann machine
whose input layer consists of linear units with Gaussian noise and
whose hidden layer consists of units with binary states.

The training process of this RBM is very similar to the process
in the supervised case. For each example presented to its input, the
RBM calculates the probabilities of the output units hj being ”‘on”’
[6]:

P (hj = 1) = 1

1+e
−bj−

∑

i
vi∗wij

As before, based on these values, a confabulation is also calcu-
lated :

vi = 1

1+e
−bj−

∑

j
hjwij

and subsequently probabilities P (hj = 1) are calculated anew.
After all the appropriate examples have been presented to the

RBM, its weights are updated. The update rule used for the weights
(for the kth update) is :

∆wijk = m ∗ ∆wijk−1 + lr ∗ (< vi, hj >d − < vi, hj >c +cost ∗ wij)

where at each update k, the value of the previous update k − 1
is also taken into account via the term m ∗ ∆wijk−1. Furthermore
the value of the weight itself is also taken into consideration via the
term cost ∗ wij).

The terms < vi, hj >d and < vi, hj >c are as before the fraction
of times the units i and j, in the input and output layer respectively,
are both ”on” when the input of the machine is an example from the
data set or a confabulation accordingly. The values of these terms
are given by :

< vi, hj >= 1
N

∑

t

vit ∗ Pt(hj = 1)

where vit is the value of unit vi when the RBM is presented with
the example (or confabulation) t.

In the case of the bottlenecked layer, the RBM which has the
units of this layer as an output is considered to have an output layer
consisting of linear units. For each of these units, given a state of
the input units v, the mean µj of the output unit hj is calculated

72

µj = bj +
∑

i

wij ∗ vi

The variance for each output unit is considered to be the same
and equal to : σ2 = 1.

Having calculated the corresponding means, the machine then
calculates the values of the output units by drawing from a normal
distribution N(µj , σ

2). Based on these values, as before, a series of
confabulations is calculated along with the corresponding values of
the output units for those confabulations.

Finally the weights are updated using the same update rule as
before, only that in this case, the values of the terms < vi, hj >d

and < vi, hj >c are given by :

< vi, hj >recon=
1
N

∑

t

vit ∗ hj

The process of pretraining the weights of the autoencoder is con-
ducted up until the weights prior to the bottlenecked layer. The
weights of the subsequent layers are obtained by ”unrolling” the
network. Thus the weights between two layers situated after the
bottlenecked layer are assigned the same values as the weights be-
tween the two corresponding layers prior to the bottleneck. This
process of ”unrolling” can be seen in figure 31.

Figure 31

73

Subsequently the autoencoder is trained using the labeled exam-
ples as both input and target values. As before the method used
during the training phase is the conjugate gradient method.

After the ten autoencoders have been trained, the unlabeled ex-
amples of the data set are presented to each of these autoencoders.
For each example xk and for each autoencoder i the reconstruction
error Ei(xk) is calculated. If oi is the output of autoencoder i, then
the reconstruction error is given by:

Ei(xk) = ‖oi − xk‖2

Having passed through the entire set of unlabeled data, for each
class i the unlabeled example xk for which Ei(xk) is minimal over
all the unlabeled data set is found and appropriately labeled, thus
extending the labeled data set by one example per class.

In figure 32 we can see the performance of the self-training algo-
rithm based on autoencoders for various numbers of iterations.

1 2 3 4 5 6 7 8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
cc

ur
ac

y

Steps

2 Examples per Class
 5 Epc
8 Epc
11 EpC
15 Epc

Figure 32

From figure 32 we can see that the performance of the algorithm
seems to decline after a certain number of iterations, especially as
the number of labeled examples per class rises. By fixing the number
of iterations to three which seems according to the previous results
to be the optimal, we obtain the results shown in figure 33, where
the usual settings are used.

74

2 4 6 8 10 12 14
0.55

0.6

0.65

0.7

0.75

0.8

Number of Examples per Class

A
cc

ur
ac

y

Figure 33

As can be seen by the results, the expectation maximization algo-
rithm using autoencoders does not completely overcome the problem
of low amounts of labeled data, as we shall see this transductive al-
gorithm surpasses the supervised pretrained network algorithms in
performance but as is evident from the results seen in figure 33, its
performance is still not high.

3.4.3 A Convolutional Network Analogous

As can be seen by the results of the experiments conducted us-
ing convolutional networks, this supervised approach is not suitable
when the number of labeled examples is very low. This inappro-
priateness can be readily explained if we consider the size of the
convolutional network and the number of trainable parameters it
has. Networks of this size typically require thousands of examples
in order to be trained so it is not surprising that training fails when
only a handful of labeled examples are available.

Despite the extremely poor performance of convolutional net-
works in these settings, we can use the ideas it is based on (feature
mapping and sub-sampling) to come up with a transductive learner
which employs these two techniques with the help of the large quan-
tities of unlabeled data to obtain a new representation of the data
which allows for higher performance. As such the algorithms pre-

75

sented in this chapter are not classifiers themselves but rather a
transductive method of acquiring a new data representation that
can subsequently be combined with a classifier which will attain a
higher performance.

Feature Mapping In order to create a feature mapping of the data
that can exploit the available unlabeled data, we create feature de-
tectors that can manipulate this data. To this extent we utilize
a self organizing map (SOM) that will be trained to recognize the
presence of certain features and thus serve as a group of feature
detectors. This self organizing map takes a small number of input
units which are situated in a small neighborhood of the data point
(i.e. the SOM’s receptive field), and reveals in its output which
feature is present in that neighborhood according to which of the
SOM’s units is activated by the input.

The SOM is originally trained using as input neighborhoods of
units in the training data. Thus in the case where the SOM has
a 5 × 5 input layer (as will be used here) the data used to train
the SOM are 5 × 5 neighborhoods of input units taken from the
original training data. By presenting the SOM with receptive fields
taken from the data, it is trained to recognize a number of different
features that are present in these 5× 5 windows. Thus each neuron
in the SOM’s output layer becomes sensitive to a different feature.

Having trained the SOM, we subsequently scan each data point
using this SOM in order to obtain a feature mapping of the data. For
each data point the SOM is applied to consecutive receptive fields
on the data point. Each of these receptive fields is shifted slightly
in relation to the previous receptive field. Thus two consecutive
receptive fields are overlapping as can be seen in Figure 34.

76

Figure 34

By scanning each data point with the SOM, a feature mapping of
the data point is created by recording for each receptive field which
neuron in the SOM’s output field is activated. Thus the feature
mapping of the data consists of a list of numbers as can be seen
in Figure 35 where each of these numbers corresponds to a specific
neuron in the SOM’s output field and denotes the presence of a
specific feature in the corresponding receptive field.

1 4 7 12 11 9 3 5 6 1

1 1 8 4 3 2 9 11 5 7

1 11 5 4 1 7 9 1 3 1

5 1 9 1 12 1 3 2 7 4

1 9 1 2 1 4 7 1 3 1

3 1 2 5 7 1 9 10 4 1

1 12 1 7 11 4 1 3 1 9

10 11 4 7 1 2 5 9 3 1

8 9 3 5 4 1 11 7 2 1

5 9 1 4 10 8 7 1 3 12

Figure 35

Sub-Sampling Once a feature map of the data has been created,
it is useful to find a way to execute sub-sampling. By using sub-
sampling the algorithm will become even less sensitive to small dis-

77

tortions in the data as the exact positions of the occurring features
will no longer be as important as their approximate positions.

To this effect, after creating the feature maps of the data, these
feature maps are clustered in K different clusters. For each one of
these clusters k we follow the following procedure :

1. A specific region (neighborhood) of units is extracted from the
data points belonging to that cluster (here 2×2 neighborhoods
are chosen).

2. The center of the cluster formed by these subdimensions is
calculated. This center is treated as an archetype for that sub-
region in the specific cluster k

3. The above steps 1-2 are repeated scanning all the subdimen-
sions of the data points. The subregions are chosen in such a
way that they do not overlap. By this repetition we obtain a
series of archetypal subregions for the entire data vector.

4. Steps 1-3 are repeated for all the clusters k.

5. Finally for each example in the data set, we compare each of
its 2 × 2 subregions with the respective archetypes obtained
for each of the clusters. The subregions of the data are then
replaced with the archetype with which it has the greatest sim-
ilarity.

After this procedure has been executed the subdimensions of each
data point consist of a series of archetypal subregions. Thus slight
shifts or distortions in the original feature maps are lost as sub-
regions exhibiting similar features will most likely be clustered to-
gether, and ultimately be replaced by a common archetype.

Distance between Examples Once a feature mapping of the data
has been created and sub-sampling has been executed, the data
acquires a new form of representation. However as the data is rep-
resented by a list of numbers denoting the presence of features and
their locations, the Euclidean distance function is no longer an ap-
propriate distance measure between two points. Instead the distance
between two examples is calculated using a distance function based
on the distances between neurons in the SOM’s output layer.

78

More specifically the distance between two data points Ii and Ij

is set to be the sum of the distances between the neurons in the
SOM, for each pair of neurons activated by the same receptive fields
in the SOM. More formally the distance between these two data
points is calculated as

dist(Ii, Ij) =
M
∑

k=1

dSOM(Ii(k), Ij(k))

where Ii(k), Ij(k) denote the neurons activated by the kth recep-
tive field of the two data points and where the distance function
dSOM(x, y) returns the distance between neurons x and j in the self
organizing map.

Results using these methods can be seen in the following sections
where the convolutional network analogous is combined with other
transductive methods to form improved transductive classifiers.

3.4.4 Spectral Graph Partitioning

As analyzed in the previous chapter, the spectral graph transducer
calculates the cut of a graph such that the average weight of the cut
is minimal. Having found this cut, the algorithm labels the examples
corresponding to nodes on the one side of the cut as positive and the
examples corresponding to the rest of the nodes as negative. As such
the spectral graph transducer is appropriate for binary classification
problems.

In the case however of the MNIST data set for handwritten digit
recognition, the problem at hand is a multiclass one. Thus in order
to be able to apply the spectral graph transducer to the handwritten
digit recognition problem, it must first be altered in order to be able
to handle multilabel problems.

This adaptation is achieved by reconstructing the problem from
a single multiclass problem to a series of binary classification prob-
lems. Thus in the case of c classes, we construct as many spectral
graph transducers and train them using a one against all approach,
for example the first spectral graph transducer is trained to dis-
cern between the digit 1 and the rest; in this case the examples of
class ”-” are considered to be 1s while the examples in class ”+”
are considered to be one (any) of the other digits. In this case the
adjacency matrix is constructed based on the Euclidean distance of
the examples,].

79

The results when using the original representation of the data can
be seen in figure 36 using the usual settings. We set c = 3200 and
the adjacency matrix is constructed using the 5 nearest neighbours
of each example.

0 5 10 15
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Examples per Class

A
cc

ur
ac

y

SGT

Figure 36

Besides however applying the spectral graph transducer on the
data using the original representation, the convolutional analogous
presented in the previous chapter can also be used to obtain a new
representation of the data. The adjacency matrix of the data is then
constructed using the distance function analyzed in the previous
chapter. Figure 37 shows the result of applying the transductive
learner on the data when only feature mapping has been applied and
when both feature mapping and sub-sampling have been applied;
the previous results on the original representation are also shown
for comparison.

In the case where only feature mapping is applied, the exper-
iments are repeated 25 times, 5 different self-organizing maps are
trained using the data and for each of these SOMs we obtain a dif-
ferent representation of the data, for each of these representations we
calculate an adjacency matrix for the data and repeat 5 experiments
with the spectral graph transducer.

In the case of both applying both feature mapping and sub-
sampling, for each of the five representations (from the five different

80

SOMs) we cluster the data four times each time receiving a new
sub-sampled representation. Thus we effectively obtain 20 different
representations of the data. For each of these representations we re-
peat the experiment five times, effectively running 100 experiments
for each amount of labeled data.

0 5 10 15
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Examples per Class

A
cc

ur
ac

y

Original Representation
Feature Mapping
Feature Mapping + Sub−Sampling

Figure 37

As can be seen from the results above, applying feature mapping
to the data prior to executing the spectral graph partitioning leads
to an increase of the performance of the resulting classifier. Further-
more if sub-sampling is applied subsequent to the feature mapping
and then the algorithm executed, the performance improves even
further. Based on these results we can see that the convolutional
analogous proposed does in fact contribute to the learning process.

3.4.5 Learning with Local and Global Consistency

In the case of transductive learning with local and global consis-
tency, the application of the algorithm to the handwritten digit
recognition problem is straightforward. As the algorithm is already
adapted to handle multiclass problems, no alterations to the algo-
rithm is needed. The only difference with the algorithm applied to
the document classification problem is that the construction of the
affinity matrix is slightly changed to better represent the nature of
the problem.

81

The values of the affinity matrix W are given by :

Wij = e−‖xi−xj‖2/2σ2

when i 6= j and Wij = 0 when i = j.
Using this affinity matrix, we obtain the results in figure 38 when

applying the tranductive learner to the original representation of the
data. The value of σ is set to 1.25. The experiments are repeated
ten times, the labeled examples being drawn using a uniform dis-
tribution without replacement and the resulting classifier tested on
the remaining examples.

2 4 6 8 10 12 14
0.65

0.7

0.75

0.8

0.85

0.9

Number of Examples per Class

A
cc

ur
ac

y

Figure 38

As can be seen the algorithm attains a very high performance on
the handwritten digit recognition problem when applied to the orig-
inal representation of the data. Unfortunately in this case applying
the algorithm to the representations obtained by the convolutional
network analogous, is not straightforward, this is due to the param-
eter σ.

The algorithm is extremely sensitive to the parameter σ, the
performance varying greatly in relation to its value. Thus although
the value 1.25 proves to be optimum when the data is in its original
representation, in the case where feature mapping has been applied
the performance is very low. This is not due to the expressive power
of the new representation but rather is due to the poor choice of σ.

82

A search for a suitable value for σ in the case where feature
mapping has been applied, yielded the results shown in figure 39
where the number of labeled examples per class is 15. The settings
of the experimentation are the same as before.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

sigma

A
cc

ur
ac

y

Figure 39

Based on the above the optimum value for σ is 3.16, for which
we obtain the following results which are shown together with the
previous results for comparison. As can be seen in the case of the
learning with local and global consistency algorithm, using feature
mapping only slightly increases the performance of the algorithm.
Furthermore we have set the value σ with hindsight, though the
value in the case of the original representation was also set to its
optimum value. As in the case of feature mapping and spectral
graph partitioning the experiments have been repeated 25 times.

83

0 5 10 15
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of Examples per Class

A
cc

ur
ac

y

Feature Mapping
Original Representation

Figure 40

In the case of using sub-sampling, a similar search as above was

conducted and an optimum value of σ =
√

1
2

was found. Unfor-

tunately even for this value the algorithm performs poorly on this
representation (compared to the other two representations), as can
be seen in figure 41. As in the case of sub-sampling and spectral
graph partitioning, the experiments have been repeated 100 times.

0 5 10 15
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of Examples per Class

A
cc

ur
ac

y

Feature Mapping
Original Representation
Feature Mapping + SubSampling

Figure 41

84

3.4.6 Transductive Clustering

In the case of handwritten digit classification, besides the algorithms
already presented we can also apply another transductive algorithm
which we could not practically apply in the case of document clas-
sification due to the dimensionality of the data. The algorithm in
question is transductive clustering.

In the case of transductive clustering, the data is originally clus-
tered using an unsupervised clustering algorithm like for example
the k-means algorithm. In this step of the algorithm all the data is
treated as unlabeled. The reason this algorithm could not be (prac-
tically) applied in the case of document classification is exactly due
to this step; the complexity of a single iteration of the k-means
algorithm is O(knd) where n is the number of examples, k is the
number of clusters and d is the dimensionality of the data. Thus as
the dimensionality of the data rises, the k-means algorithm tends to
become computationally intractable and thus impractical.

Returning to the transductive clustering, once the data has been
clustered, the algorithm finds those labeled examples which are clos-
est to each of the cluster centers. The examples belonging to each
cluster are then labeled according to the label of the closest data
point to the cluster’s center.

Using the original representation of the data, we conduct exper-
iments with transductive clustering and obtain the results seen in
figure 42. The experiments here are repeated 25 times, the data is
clustered 5 times and for each of these clusterings, experiments are
repeated 10 times by choosing ten different sets of labeled examples
by choosing these sets by a uniform distribution without replace-
ment.

85

0 5 10 15
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Examples per Class

A
cc

ur
ac

y

Figure 42

We furthermore conducted experiments using the representations
obtained by feature mapping and subsampling and obtained the re-
sults seen in figure 43. As in the case of spectral graph partitioning
the experiments are repeated 25 and 100 time respectively for fea-
ture mapping and sub-sampling. From the results it is evident that
transductive clustering achieves a quite higher performance when it
is applied to the new data representations using the convolutional
network analogous.

86

0 5 10 15
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Examples per Class

A
cc

ur
ac

y

Original Representation
Feature Mapping
Feature Mapping + SubSampling

Figure 43

3.5 Results

In figure 44, we can see the performance of the different transduc-
tive learning algorithms as well as that of the supervised pretrained
networks algorithm.

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Examples per Class

A
cc

ur
ac

y

Pretrained Networks
Self−Training
Expectation Maximization
Learning with Consistency
Spectral Graph Transducer
Transductive Clustering

Figure 44

87

It is evident from these results that in the case of handwritten
digit recognition transductive learning can prove to be very helpful
when only small amounts of labeled data are present. As can be seen
all of the transductive learning algorithms surpass the performance
of the supervised methods (the convolutional networks effectively
randomly classify the data and thus their results have been omited).
Learning with local and global consistency performs especially well
surpassing the rest of the algorithms by a large margin.

Of the rest of the algorithms, the spectral graph transducer and
transductive clustering perform substantially better than the ex-
pectation maximization and the self-training algorithms, surpassing
them by 2-5%.

Finally the last two transductive learners, expectation maximiza-
tion and self-training perform only slightly better than the super-
vised algorithm when the labeled examples are about 10 to 15 ex-
amples per class. However when the labeled examples are truly few
(1 to 5 per class) than even these algorithms greatly outperform the
supervised pretrained networks as can be seen in the figure 45.

1 2 3 4 5 6

0.5

0.55

0.6

0.65

0.7

0.75

Number of Examples per Class

A
cc

ur
ac

y

Pretrained Networks
Self−Training
Expectation Maximization
Learning with Consistency
Spectral Graph Transducer
Transductive Clustering

Figure 45

Finally regarding the convolutional network analogous proposed
here for obtaining a new representation of the data with the help
of large amounts of unlabeled data, as was seen in the previous
chapters, wherever it was applicable, when applied it increased the

88

performance of the respective transductive learner (though in the
case of learning with local and global consistency only marginally).
This holds true both for the feature mapping technique proposed but
also for the sub-sampling technique proposed. This form of feature
extraction is especially suited for a transductive learning setting as
in those cases we have large amounts of unlabeled data which the
convolutional network analogous can readily use.

89

4 Final Conclusions

In the present project we concentrated on transductive learning for
both document classification and handwritten character recognition.
Besides experimenting with the performance of well known trans-
ductive classifiers on document classification we further investigated
how these could be adapted to apply to handwritten character recog-
nition. This allowed us to experiment with the performance of trans-
ductive learning algorithms not only on to different applications but
also on both a binary and multi label problem.

The aim of the these experimentations was to ultimately answer
the simple question:

Can transductive learning overcome the lack of labeled

data with the help of the unlabeled data and return

classifiers with increased performance?

Based on the results obtained, the answer in both cases, doc-
ument classification and handwritten character recognition, binary
label and multi label, straightforward application and adapted appli-
cation is yes; transductive learning was shown in both cases to lead
to improved performance, in fact when the number of labeled exam-
ples was very low (one or two examples) the transductive learning
algorithms almost invariably outperformed the supervised classifiers.

Furthermore in both cases, certain transductive classifiers consis-
tently surpassed both the supervised classifiers and the remaining
transductive classifiers even as the number of labeled examples per
class increased. This dominance makes them seem ideal for the
specific application. In the case of document classification the spec-
tral graph partitioning algorithm outperformed all others, while for
handwritten character recognition, learning with local and global
consistency performed considerably better than the rest. Unfor-
tunately, the learning with local and global consistency performed
quite poorly in the document classification problem meaning that
its success is application dependent. On the other hand the spectral
graph transducer performed quite well on the handwritten character
recognition problem which possibly indicates its general appropri-
ateness when labeled data is scarce.

Finally in this project a novel method based on convolutional
networks was presented which uses a transductive setting to obtain

90

an alternate representation of the data and which can be combined
with a number of transductive learners and which hopefully results
in improved learners. This method proposes an alternate approach
to both feature mapping and sub-sampling so that they may take
advantage of the large amounts of unlabeled examples. This brings
us to the second question this project was concerned with:

Does the convolutional network analogous proposed lead

to a representation of the data which ultimately leads

to improved classification?

Based on the results obtained the answer would again be yes.
At least as far as the experiments conducted here are concerned,
both the feature mapping and sub-sampling techniques proposed
lead to improved performance in most cases. When combined with
a spectral graph transducer or with transductive clustering the re-
sulting classifiers are improved as opposed to the same algorithms
executed on the original representation of the data. Only in the case
of learning with local and global consistency does the sub-sampling
technique result in an inferior classifier. These results make us confi-
dent that the method proposed can be applied successfully in a more
broad field, either by combining it with other transductive learning
algorithms or by applying it to other problems, object recognition
problems seeming especially germane. This could perhaps become
the focus of a future project.

91

References

[1] Avrim Blum and Shuchi Chawla. Learning from labeled and
unlabeled data using graph mincuts. In Carla E. Brodley and
Andrea Pohoreckyj Danyluk, editors, ICML, pages 19–26. Mor-
gan Kaufmann, 2001.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second Edition.
The MIT Press, September 2001.

[3] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[4] Nello Cristianini and John Shawe-Taylor. An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press, March 2000.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification.
Wiley-Interscience Publication, 2000.

[6] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 313(5786):504–
507, July 2006.

[7] Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, min-
imum description length and helmholtz free energy. In Jack D.
Cowan, Gerald Tesauro, and Joshua Alspector, editors, NIPS,
pages 3–10. Morgan Kaufmann, 1993.

[8] Thorsten Joachims. Transductive learning via spectral graph
partitioning. In Tom Fawcett and Nina Mishra, editors, ICML,
pages 290–297. AAAI Press, 2003.

[9] Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes,
J. Denker, I. Guyon, U. Muller, E. Sackinger, P. Simard, and
V. Vapnik. Learning algorithms for classification: A comparison
on handwritten digit recognition, 1995.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

92

[11] A. McCallum and K. Nigam. A comparison of event models for
naive bayes text classification, 1998.

[12] Rada Mihalcea. Co-training and self-training for word sense
disambiguation. In Hwee Tou Ng and Ellen Riloff, editors,
HLT-NAACL 2004 Workshop: Eighth Conference on Computa-
tional Natural Language Learning (CoNLL-2004), pages 33–40,
Boston, Massachusetts, USA, May 6 - May 7 2004. Association
for Computational Linguistics.

[13] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

[14] Kamal Nigam, Andrew McCallum, Sebastian Thrun, and
Tom M. Mitchell. Text classification from labeled and unla-
beled documents using em. Machine Learning, 39(2/3):103–134,
2000.

[15] J. Platt. Sequential minimal optimization: A fast algorithm for
training support vector machines, 1998.

[16] Bertrand Russell. The problems of philosophy. Oxford Univer-
sity Press UK, 1912.

[17] Fabrizio Sebastiani. Machine learning in automated text cate-
gorization. ACM Comput. Surv., 34(1):1–47, 2002.

[18] Jonathan R. Shewchuk. An introduction to the conjugate gra-
dient method without the agonizing pain. Technical report,
Pittsburgh, PA, USA, 1994.

[19] P. Smolensky. Information processing in dynamical systems:
Foundations of harmony theory. In D. E. Rumelhart, J. L. Mc-
Clelland, et al., editors, Parallel Distributed Processing: Volume
1: Foundations, pages 194–281. MIT Press, Cambridge, 1987.

[20] Vladimir N. Vapnik. The Nature of Statistical Learning Theory
(Information Science and Statistics). Springer, November 1999.

[21] D. Zeimpekis and E. Gallopoulos. Tmg : A matlab toolbox
for generating term-document matrices from text collections.
In Charles Nicholas Jacob Kogan and Marc Teboull, editors,
Grouping Multidimensional Data Recent Advances in Cluster-
ing, pages 187–210. Springer Berlin Heidelberg, 2006.

93

[22] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency, 2003. In 18th An-
nual Conf. on Neural Information Processing Systems.

[23] Xiaojin Zhu. Semi-supervised learning literature survey. Tech-
nical Report 1530, Computer Sciences, University of Wisconsin-
Madison, 2005.

94

	Introduction
	Document Classification
	Introduction
	Data
	Supervised Learning Algorithms
	NBC
	SVM

	Transductive Learning Algorithms
	Self-Training
	Transductive Expectation Maximization
	Transductive Learning Using Graph Mincuts
	Tranductive Spectral Graph Partitioning
	Learning with Local and Global Consistency
	Results

	Handwritten digit recognition
	Introduction
	Data
	Supervised Learning Algorithms
	Convolutional Networks
	Pretrained Networks

	Transductive Learning
	Expectation Maximization
	Self-Learning
	A Convolutional Network Analogous
	Spectral Graph Partitioning
	Learning with Local and Global Consistency
	Transductive Clustering

	Results

	Final Conclusions

