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Abstract

In this thesis, we investigate whether additional uncertainty estimates
can be added to the output of a neural network that is used for object
detection. We are mainly interested whether dropout, a stochastic regu-
larization technique, can be utilized for this purpose. When applied to
the decision referral task in which one wishes to identify and exclude
the most difficult inputs from the dataset, dropout does not perform bet-
ter than the standard network output. In addition, using dropout to
estimate bounding-box regression uncertainty performed worse when
compared to modeling the error with a Laplace distribution. However,
we found that an adjusted form of dropout performed well for detecting
a change in data distribution between daylight and night images. We
further investigated whether regression uncertainty or an autoencoder
reconstruction error could be used to identify novel object categories of
interest, which was found not to be the case. Overall, we find that prior
research on classification tasks does not hold for our object-detection
context.
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Chapter 1

Introduction

Machine learning (ML) is a branch of computing science that deals with algorithms
and models that solve complex problems by learning from data. This is particu-
larly relevant to real world applications in which it is impossible to determine the
appropriate response for any state in the world that the system might encounter in
advance. An example for this is autonomous driving, in which an autonomous vehi-
cle needs to be able to perceive and navigate a complex and dynamic environment.

Being able to solve tasks which would be out of reach for traditional iterative al-
gorithms by learning from data is the core strength of ML, but this makes it also diffi-
cult to analyze the risk of models that are employed in the real world. A well-known
failure of an ML model occurred when an image-classification model by Google mis-
classified photos of black people as gorillas [50], resulting in accusations of racism.
Another widely-reported failure case involves a self-driving car from Uber which
hit and killed a pedestrian while driving at night [42]. As research on ML and ar-
tificial intelligence (AI) progresses, it is clear that ML algorithms will contribute to
more and more tasks in which safety is a critical concern. For instance, just recently
it was suggested by DARPA to use AI for autonomous air-to-air combat [1]. In light
of these examples, it is not difficult to imagine a scenario in which the failure of a
ML model may result in disastrous consequences.

In order to assess these risks, it is essential to deliberately address the uncertainty
that is associated with the predictions of ML models in situations for which failure is
associated with significant costs. This subject is of practical interest for the Intelligent
Imaging department at TNO1, where the experiments discussed in this thesis were
performed.

1.1 Neural Networks

Artificial neural networks (NNs) are inspired by observations of biological neurons
and learning. NNs are ML models which transform one or more inputs into one
or more outputs by propagating and transforming activations through a network of
artificial neurons. Standard feedforward NNs perform a sequence of linear transfor-
mations, possibly interspersed with non-linear element-wise activation functions.
Training these models is done in a supervised fashion by tuning the weight param-
eters that determine the linear transformations such that the error between the pre-
dicted output and the ground truth on known data is minimized. As ML models,
NNs have been very successful in the last few years in a variety of different domains.
Two of the most prominent domains in which NNs achieved state-of-the-art perfor-
mance are image recognition [36] and speech recognition [23]. The breakthrough

1Netherlands Organisation for Applied Scientific Research
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performances in these tasks are a significant factor that led to the revival of NN re-
search and successful application to a multitude of other tasks.

Despite their versatility, one of the largest drawbacks of deep NNs is that it is dif-
ficult to interpret their inner workings and how the model predictions were arrived
at. Although there exist some domain-specific methods of gaining insights into deep
NNs, such as feature visualization [66], generally the view of NNs as blackboxes re-
mains relevant.

1.2 Uncertainty Estimation for Neural Networks

The two most common outputs of NNs are unbounded regression outputs (e.g. for
predicting numerical values) and classification outputs with confidence scores rang-
ing between 0 and 1. Generally, regression estimates do not provide any indicator
for prediction uncertainty. For classification, the frequently used softmax output
provides an indication of prediction confidence, but interpreting these as the prob-
ability of being correct on test data data can be problematic. Adversarial examples,
that is inputs which have been deliberately altered to fool the ML system, illustrate
the point that softmax confidence can be high even when the model clearly makes
a wrong prediction [20]. Calibration methods [24] exist which transform the model
output to closer match the actual probability of a correct prediction, but this relies
on the availability of an additional validation set and the assumption that this set is
representative for all the possible data that the ML system might have to deal with.

The learned parameter values of regular NN architectures are generally maximum-
likelihood or a posteriori point estimates. This means that training a neural network
will produce a single value for each parameter in the network, which are then used
for making predictions.

In contrast, Bayesian approaches attempt to infer the posterior distribution of
the weights given the data. Predictions are then obtained by sampling parameters
from the posterior distribution and computing the prediction for each draw, thereby
approximating the expectation of the prediction [3]. Arguably, this is a more robust
way of making predictions because we are then also provided with the variance in
the predictions that is due to changes in model parameters. The main drawback of
Bayesian approaches is that it is often intractable to compute the posterior distribu-
tion of the model parameters. In practice, the posterior distribution can be approxi-
mated for neural networks and many other models, but this still comes at a relatively
high computational cost (e.g. [22], [3]). In addition, the number of model parame-
ters increases when distributions over parameter values are learned instead of sim-
ply learning the values itself. In [3], a Gaussian posterior distribution is learned for
each weight, thereby doubling the number of parameters since each weight is now
a distribution with mean and standard deviation as sufficient statistics.

1.2.1 Types of Uncertainty

The overall predictive uncertainty of a model can be decomposed into aleatoric and
epistemic (or model) uncertainty [33]. While aleatoric uncertainty depends on char-
acteristics of the input (such as sensor noise), epistemic uncertainty is caused by
insufficient knowledge about which parameters best model the data. In contrast
to aleatoric uncertainty, epistemic uncertainty can be reduced by collecting addi-
tional data. Bayesian approaches which learn distributions over the weights there-
fore mainly address the issue of epistemic uncertainty.
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1.2.2 Dropout

Dropout is a regularization technique that was originally devised to prevent overfit-
ting to the training data in NNs by randomly dropping activations during training,
forcing the networks to avoid over-reliance on specific artificial neurons and connec-
tions [60].

Recently, it was shown [14] that using dropout in NNs approximates Bayesian
inference in a deep Gaussian process [7]. In this interpretation, the distribution of
the weights (subject to dropout) is an approximation to the posterior weight distri-
bution. This means that model uncertainty can be obtained by performing forward
passes through networks which differ in their weights due to dropout. Compared
to traditional Bayesian NNs, this approach is easy to train while still providing theo-
retically grounded estimates of epistemic uncertainty at inference time. With respect
to aleatoric uncertainty, it was suggested to let the model learn data-dependent un-
certainty by itself [33]. In the regression case with a scalar output, the model output
can for example be set to be Gaussian and the model is trained to predict both the
mean and the variance of the prediction.

1.3 Object Detection Networks

In computer vision, image classification is a relatively simple task since only an
image-level category needs to be correctly determined. In contrast, object detec-
tion systems need to indicate for each input image the location and classification
of object categories of interest in the image. To localize objects, most frequently a
two-dimensional bounding box is provided, although other shapes may be used in
some contexts, such a three-dimensional bounding boxes or stick-figure like shapes
for posture detection. Recent object-detection networks often provide dense predic-
tions for images by predicting object category and bounding box offsets for each of
a large number of default bounding boxes of different sizes, which cover the image
in a grid-like fashion (e.g. [44], [46]).

1.4 Research Questions

In this thesis we investigate the research question of how additional uncertainty
estimates can be incorporated into an object-detection network and whether they
provide added value compared to the standard NN output. Due to the large model
size of object-detection networks, it is promising to consider dropout uncertainty
as it does not lead to an increase in model complexity compared to other Bayesian
NNs.

To obtain evaluation metrics for the uncertainty measures, we can consider appli-
cations in which additional uncertainty estimates may be of value and then examine
whether this expectation is met. We aim to answer the following sub-questions:

1. Calibration. Are the mean predictions of the stochastic forward passes better
calibrated compared to standard forward passes? In other words, do predic-
tions, when binned into confidence ranges, have an empirical accuracy that
corresponds to the confidence scores when evaluated on a test set?

2. Decision referral. Can the uncertainties be used for decision referral in object
detection? This deals with the question as to whether accuracy is improved
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when we refer decisions to an expert or oracle based on the computed un-
certainty statistics, relative to the standard NN classification output. Using
dropout uncertainty for decision referral has been investigated in an image
classification task in a medical context and was found to work well [41]. In
contrast, using the standard classification output of the network as the referral
criterion was not sufficient to observe a reliable improvement in performance.
We will later examine whether these findings can be extended from the image
classification to the object-detection domain.

3. Detecting covariate shift. Domain shift, also known as dataset shift or distri-
butional shift, describes the situation in which an ML model encounters out-of-
distribution (OOD) data which differs from the distribution of the dataset that
was used for training and validation. Covariate shift is a special case of dataset
shift, in which only the input distribution changes. More specifically, while the
distribution of the inputs to the model changes, the conditional probability of
the outputs given the inputs stays constant [54].

From a practical point-of-view, it would be useful to be able to determine
when such a distributional shift takes place. One way to approach this prob-
lem is to use the predictive uncertainty estimates to discriminate between in-
distribution and OOD data, following the assumption that OOD data will be
associated with higher predictive uncertainty, on average. This has been in-
vestigated on a simple image classification data set using the predictive uncer-
tainty derived form ensembles [38], Bayesian NNs [47], and dropout [41].

In object detection, the ground truth class for the large majority of inputs to
the system corresponds to the background class, which is the ground truth for
all parts of the image which do not contain an object of interest. This means
that object-detection systems encounter many inputs that do not belong to one
of the target classes during training. It is plausible that this makes the classifi-
cation part more robust when compared to standard classifiers which perform
mutually-exclusive and exhaustive classification (without a generic non-target
class).

In this context we aim to answer the following question: Can dropout uncer-
tainty be used to detect when covariate shift takes place?

4. Regression uncertainty. Can dropout uncertainty be used to estimate the un-
certainty of the bounding box location and dimensions that are predicted in
object detection? How does this compare to learned (aleatoric) uncertainty es-
timates that are obtained by explicitly assuming and predicting a distribution
for the regression residual?

1.5 Outline

The thesis is structured as follows: In chapter 2, we begin by discussing the theo-
retical background for NNs and describe how modern NNs are set up and trained.
In chapter 3, we describe uncertainty estimation for NNs in more detail, including
Bayesian approaches and dropout uncertainty. In chapter 4, we discuss recent object-
detection networks and in chapter 5 we describe and discuss the experiments that
were performed to answer the research questions that were posed above. Finally, in
chapter 6 we provide a conclusion on our findings and suggest future work.
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Chapter 2

Neural Networks

2.1 Supervised Learning

The notion of a label or annotation is an important concept in ML. For instance, in a
dataset consisting of images of one car per image, the labels may for instance be the
known (ground-truth) brand of the car depicted in the image. Supervised learning
is one of the three branches of ML 1 and deals with the question how an ML system
can learn to approximate a function that maps inputs to the correct outputs, given
an annotated set of input-output data [51].

2.1.1 Classification

In classification tasks, the ML system should learn to determine to which categories
out of a predetermined list of possible categories a given input pattern belongs. The
aforementioned dataset of images of cars from different brands is an example for
such a classification task. The dataset can be written as

D = {X, Y} =
{(

x(i), y(i)
)}N

i=1

Here x(i) denotes the input in a vector representation that will be presented to the
system. y(i) ∈ {1, ..., C} denotes the corresponding ground truth class membership
out of the C classes. The classification task is therefore to train an ML system such
that it learns to perform a mapping from input to label f : IRd → IR, where d is the
dimensionality of the input. If C = 2, this is called binary classification and when
a pattern may belong to more than one category this is referred to as multi-label
classification, in which case we can write

D =
{(

x(i), y(i)
)}N

i=1

using a one-hot encoding to allow for membership of multiple categories.

2.1.2 Regression

Supervised regression is very similar to classification, but instead of predicting a
class, the ML model should predict a numeric value or vector of values, such as the
stock price of different companies. The aim is therefore for the model to learn the

1The other two branches are unsupervised learning, which has the goal of identifying structure
in unlabeled data, and reinforcement learning, which concerns itself with how artificial agents can
adjust their behavior by learning from interacting with their environment while receiving rewards and
punishments.
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mapping
f : IRd → IRc,

where c is the dimensionality of the codomain, the regression target. The annotated
data for training and testing the regression estimator can again be written as

D =
{(

x(i), y(i)
)}N

i=1
.

2.1.3 Training and Validation

All supervised learning algorithms rely on annotated data for training and evalu-
ating the performance of the ML model. It is common practice to split the dataset
into three mutually exclusive subsets of data points and corresponding annotations.
The first subset is the training set, which is used by the training algorithm itself
during training. Next, the validation set is a test set that can be used to assess the
performance of the model throughout the training on data other than the one that
is used for the actual training. The validation set can also be used for optimizing
the hyperparameters of the model and training procedure, meaning the parameters
which have to be set before the optimization routine commences. Finally, the test set
is used to get an objective indication of model performance by looking at data that
was not used during training at all, neither for the training algorithm itself nor for
hyperparameter selection.

2.2 Neural Networks

2.2.1 Perceptron

As the name suggests, the building blocks of NNs are artificial neurons. The Rosen-
blatt perceptron [56] is a simple linear model and can be considered a milestone in
the development of ANNs. Mathematically, the perceptron is a function that maps
the input vector x to a binary output scalar:

f (x) =
{

1 if w · x + b > 0
0 otherwise

(2.1)

Here, the input vector x has real values and represents the encoding of the prob-
lem input, for instance a list of grades which are used to predict the binary target
value y of passing an exam. In this example, a prediction of ŷ = 1 corresponds to a
predicted pass, while ŷ = 0 predicts the student to fail. The real-valued weights w
of the perceptron (one weight per input dimension) determine how the individual
input variables predict the outcome and the bias scalar b determines the magnitude
of the dot product w · x that is required for a positive prediction. Thus, this model
is very similar to a logistic regression, but providing the most likely outcome as out-
put instead of the outcome probability. Rosenblatt provided an algorithm for finding
the weights to solve a problem like the one above. In the perceptron training rule, the
weights are updated iteratively, which is typical for ML models. The availability of
this procedure contributed to the popularity of this simple model. Moreover, conver-
gence is theoretically guaranteed if the training data is linearly separable, i.e. there
exists a hyperplane in the input dimensions that can separate data points belonging
to the positive and the negative class.
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After the initial excitement surrounding the perceptron and its learning algo-
rithm, it later became clear that the perceptron as a machine learning model is sub-
ject to important limitations [25]. Given two boolean input variables, the model
cannot replicate the XOR function, meaning that the model should provide a posi-
tive response if and only if exactly one of the two inputs is positive. This is just one
instance that illustrates the limitation that the perceptron can only solve problems
that are linearly separable, which was pointed out in [49].

This finding contributed to stagnation in research on artificial neural networks
for several years.

2.2.2 Multi-layer Perceptrons (MLPs)

Progress was made by arranging artificial neurons into layers (meaning that the in-
put to the layer is connected to all neurons in the layer) and feeding the neuron
activations of each layer as input to the subsequent layer. The number of nodes2 in
a layer is called its width. Such configurations are known as feedforward NNs, or
multi-layer perceptrons (MLPs). MLPs have one or more hidden layers that connect
the input layer to the output layer.

Neural networks are called networks because they are formed by a composition
of functions [21]. An MLP with one hidden layer can be written as f (2)( f (1)(x)),
where x denotes the input and f (1) and f (2) denote the hidden and output layer
respectively. The number of layers of a neural NN is called its depth. Frequently, only
the number of hidden layers are counted since all NNs have an input and output
layer. The lth layer of a MLP is a function

f (l)(x; W(l), b(l)) = a(W(l)>x + b(l)) (2.2)

Here, W(l) is the weight matrix that performs a linear transformation on the input
x to the layer. This is very similar to Equation 2.1, but since layers consist of mul-
tiple neurons, there is a vector for each neuron in the layer that describes how the
neuron responds to different input values. Together, all the weights are arranged
in the matrix W(l) ∈ IRm×n, where m is the number of input dimensions and n is
the number of nodes in the layer. Thus, each column of W(l) is a vector of weights
which determine how a different neuron responds to the layer input. Similary, the
bias term b ∈ IRn is now a vector instead of a scalar. Finally, a(·) denotes a pointwise
activation function. If no special activation operator is used, this is just the iden-
tity function, though non-linear activation functions like the sigmoid are frequently
used in the hidden layers.

These functions determine how neuron firing (or activation) is implemented in
the NN. For instance, the conditional expression in Equation 2.1 indicates that the
perceptron has a step activation (all-or-nothing) function. Activation functions are
discussed in more detail in section 2.5. In the output layer, the number of nodes
and the activation function depends on the dimensionality and type of the required
output. By combining multiple layers with non-linear activation functions MLPs are
now capable of approximating complex non-linear functions.

2We use the terms neurons, nodes, and units interchangeably.
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2.3 Likelihood and Loss

As we have seen previously, NNs are parametrized by a weight matrix and bias
vector for each layer after the input layer. It was shown that the feedforward archi-
tecture of MLPs makes them universal function approximators [31]. In other words,
under mild assumptions, MLPs with one or more hidden layers and a sufficient
number of neurons are capable of representing any continuous function. The caveat
here is that this is a only a theoretical guarantee that suitable parameter values exist
and the question as to whether they can be found algorithmically remains. How
would one proceed to find these values? In order to do so, one needs a criterion to
evaluate how well a set of parameters solves the task at hand.

Cost functions (also known as loss functions) are used to assign ML model pa-
rameters a numeric score based on how the model performs on a set of data. Consid-
ering that the cost of a set of parameters depends on the agreement between model
predictions and ground truth labels, different cost functions are used depending on
the NN output.

2.3.1 Classification

For classification, it is common that the model outputs a vector of probabilities pre-
dicting class membership for all categories. For each input pattern x(i) that the
model classifies, we then have the predicted probability for each class c of the pattern
belonging to that category, which we write as

Pmodel

(
y(i) = c|x(i); θ

)
,

where θ is the set of all learned parameters of the model. The conditional likelihood
function describes the probability that the model with parameters θ assigns to a
dataset D:

L(θ,D) = P(Y |X; θ) (2.3)

=
N

∏
i=1

Pmodel

(
y(i)|x(i); θ

)
(2.4)

Note that the second equality assumes that the data is independently and identi-
cally distributed (i.i.d) [21]. For parameter selection, one wants to choose parameters
which have a high likelihood for the dataset. For classification, as can be seen from
Equation 2.4, this is the case when the model assigns high probabilities to the ground
truth labels y(i) given the input vectors x(i). For numerical reasons, it is common to
use log-likelihood (LL):

LL =
N

∑
i=1

log Pmodel

(
y(i)|x(i); θ

)
(2.5)

By convention, a smaller loss indicates better model performance. Since the sum
in Equation 2.5 lies in the range (−∞, 0], the negative log-likelihood (NLL) is a more
suitable loss function since it lies in the range [0, ∞), where perfect model accuracy
produces a loss of 0. In information theory, the NLL is also known as cross entropy.

NLL = −
N

∑
i=1

log Pmodel

(
y(i)|x(i); θ

)
(2.6)
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Given this cost function, the maximum likelihood estimate (MLE) for the model
parameters is given by

θML = arg max
θ

N

∏
i=1

Pmodel

(
y(i)|x(i); θ

)
= arg min

θ
−

N

∑
i=1

log Pmodel

(
y(i)|x(i); θ

) (2.7)

2.3.2 Regression

For regression, the mean squared error (MSE) is one of the most frequently used cost
functions. Given a dataset containing N data points, the MSE is obtained by aver-
aging the squared error between the prediction ŷ(i) and the corresponding ground
truth regression target y(i).

MSE =
1
N

N

∑
i=1

(
y(i) − ŷ(i)

)2
(2.8)

By squaring the error, large deviations are much more impactful compared to the
similar mean absolute error (MAE). Minimizing the MSE and the MAE is equivalent
to minimizing the L2 and L1 norm of the error respectively. Note that the MSE is
always positive and is small for good models and model parameters because devia-
tions from the ground truth will be small, on average.

2.3.3 Bayesian Model Selection

Above, we have discussed the likelihood, the probability of observing the (training)
data D given the values of the model parameters, as a criterion for model selection.
Although it is straightforward to formulate a suitable loss function for MLE, we
implicitly assume the distribution of the parameters themselves does not play a role.
Applying Bayes’ theorem to the problem of model selection opens up a different
perspective. Recall that Bayes’ theorem (in this context) can be stated as

P(θ|D) = P(D|θ)P(θ)
P(D)

posterior =
likelihood · prior

evidence

(2.9)

The evidence is the probability of the training data, marginalizing the conditional
probability over all possible parameter values:

P(D) =
∫

P(D|θ) · P(θ)dθ (2.10)

Note that for models with a large parameter space like NNs, computing this prob-
ability is infeasible as it would require to evaluate the likelihood for all parameter
values, which quickly becomes intractable when the parameter space is continu-
ous. Finding the posterior distribution of the model parameters is the main goal
of Bayesian inference. If we provide the posterior distribution, it is straightforward
to sample parameters from this distribution and by comparing the predictions from
these different models, we can compute the mean prediction and the variance (or un-
certainty) around this prediction. This is arguably much more robust than just using
a single configuration of parameters that is obtained by MLE. However, due to the
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difficulty of evaluating the evidence, more involved techniques are needed in order
to approximate the posterior. This will be discussed in more detail in section 3.4.

A somewhat simpler and therefore more common way of leveraging Bayes the-
orem is maximum a posteriori (MAP) estimation. The MAP parameters are given
by

θMAP = arg max
θ

P(θ|D) (2.11)

= arg max
θ

P(D|θ)P(θ)
P(D) (2.12)

= arg max
θ

P(D|θ)P(θ) (2.13)

= arg max
θ

log(P(D|θ)P(θ)) (2.14)

= arg max
θ

log P(D|θ) + log P(θ) (2.15)

Note that the MAP parameters are just the mode of the posterior distribution.
Since the evidence is just a normalization factor, we do not have to evaluate it in or-
der to perform MAP estimation. The MAP estimate differs from the MLE by placing
a prior distribution over the parameters, e.g. independent Gaussian distributions.
This prior distribution is a reflection of our believes about the model parameters be-
fore seeing any data. If we think that the model should not have too many weights
with large magnitudes, we could use a Gaussian distribution with a small standard
deviation for example. Note that in Equation 2.15, the argument to the arg max op-
erator is just the log-likelihood from Equation 2.5 with an added term that penalizes
parameters that are given a low probability by the prior distribution. As a cost func-
tion, we would just take the negative of the argument.

2.4 Optimization

After specifying a model family and choosing a suitable cost function, such as the
MSE for regression and the NLL for classification tasks, we need to find a way of
finding values for the model parameters which minimize the cost function with re-
spect to the training data. In contrast to simple linear models like linear regression,
the cost function of MLPs is generally non-convex due to the non-linearity of the
models. As a consequence, finding the optimal model parameters analytically is in-
feasible and there is no guarantee that the best solution will be found, in contrast to
other ML models with convex losses, such as support vector machines (SVMs) for
example [21]. These circumstances make iterative optimization strategies the main
choice for training NNs. In general, they start with initial parameter values and
repeatedly adjust these values such that the loss is minimized as far as possible.

2.4.1 Parameter Initialization

The way in which the weights and biases of NNs are initialized is an important re-
quirement in order for the training to be successful. In practice, NN parameters are
most commonly initialized by some random procedure in order to aid the functional
differentiation of individual neurons. If all weights were initialized with equal val-
ues, they would all contribute to the output in the same way, thereby making opti-
mization based on the contribution of each artificial neuron to the output impossible.
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A common initialization method is to use a Gaussian distribution with zero mean
and a small standard deviation, e.g. σ = 0.01 [36]. As far as biases are concerned,
setting them to 0 or 1 are the most common choices. In order to ensure that the input
signal does not grow or shrink exponentially as it flows through the network, He et
al. proposed to initialize the weights as follows [27]:

wlk ∼ N (0,
√

2/nl) (2.16)

Here, wlk is the value of the kth weight in the lth layer of the NN and nl is the
dimensionality of the input to neurons in layer l (assuming that the input is a single
vector). All biases are set to zero. This approach takes into account how the variance
of the activations changes as they are passed from layer to layer in the NN and
is specifically tailored to work well with the ReLU activation function that will be
described in section 2.5. Using somewhat more complex initialization strategies like
He initialization is especially important in deep neural networks since any problems
caused by bad parameter initialization are bound to be compounded by the layered
architecture of NNs.

2.4.2 Gradient Descent

Formally, in the supervised setting, the cost J on the training set D for the model
parameterized by θ is given by

J (θ,D) = 1
N

N

∑
i=1
J (θ, xi, yi) (2.17)

This equality usually holds true because cost functions are often formulated such
that the total cost is the average of the cost incurred for individual data points of D.
This average is also known as the empirical risk in decision theory [51].

Gradient descent is a widely applicable optimization algorithm that is used to
find a local minimum of a function and is also used to train NNs. In gradient descent,
we wish to find

min
θ
J (θ,D) (2.18)

Recall that in vector calculus, the gradient is a generalization of the derivative and
points in the direction of steepest increase in the function value. If the loss function
is differentiable with respect to its parameters (which is generally the case for NNs)
and given the parameters at iteration t, the parameter updates are performed as
follows:

θt+1 := θt − η∇J (θt,D) (2.19)

Thus, for any given point in the parameter space, gradient descent takes a step of
a previously determined proportion (η ) in the opposite direction to the gradient of
the function at that point, thereby systematically finding parameters values which
decrease the value of the function. Here, ∇J denotes the gradient of J . This is re-
peated for a certain number of steps or until the solution converges. In this manner,
a local minimum will be found if the step size is chosen appropriately, the function
is sufficiently regular, and the initialization is not too far from the local optimum [4].
The backpropagation algorithm [57] is a practical implementation of gradient de-
scent for MLPs and works by backpropagating the observed prediction error through
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the network and computing the gradients for each layer by recursively applying the
chain rule from calculus.

Gradient Descent for Neural Networks

Neural networks are parameterized by the weights and biases of the neurons in the
network. Given the cost function for the NN, such as MSE or the NLL, the pa-
rameters are updated by computing the partial derivatives of the cost function with
respect to each weight and bias in the network and consequently performing the
update in Equation 2.19.

Stochastic Gradient Descent

Gradient descent, as described above, takes the complete training set into account
when computing the loss at each step. If the step size η is not too large, the updates
performed by gradient descent will reduce the loss in a greedy fashion in each iter-
ation. However, there are a number of drawbacks as well. Using standard gradient
descent, computing the gradient has computational complexity ofO(N) which may
become prohibitive for large datasets [21]. Since the empirical risk is just an average,
one may instead attempt to approximate Equation 2.19 by computing the gradient
over a subset B of the training set for each parameter update. Such subsets are called
minibatches and are typically drawn randomly from the training set and the batch
size depends on the model, the problem type, and memory restrictions. In general,
it is common to use batch sizes that vary from 1 to hundreds of data points for each
minibatch [21]. Gradient descent using minibatches instead of the entire training
set is known as stochastic gradient descent (SGD). While larger batch sizes require
more computation per parameter update, the updates are also more precise. While
this may seem to be an advantage compared to smaller batch sizes, it has been found
that large batch sizes correspond to sharper minima in the loss function compared to
smaller batches [34]. Compared to narrow minima, flat minima are less specific to
the training data and therefore typically generalize better to new data. This finding
can be attributed to the fact that the stochastic updates of SGD find more robust so-
lutions by occasionally performing updates which increase the loss when computed
over the whole dataset.

Gradient Descent with Momentum

A few modifications to the vanilla gradient descent algorithm have been suggested
which improve the training performance for NNs in practice. A simple and com-
monly used change is the addition of a momentum term to the procedure described
above. More specifically, parameter updates are made as described above, but the
algorithm also keeps track of a momentum term which is added to the update. The
momentum term is an exponentially weighted first moment of the last few gradient
updates and its contribution to the parameter update is controlled by a decay param-
eter α. In other words, if several gradient updates are made in the same direction,
the updates increase in velocity in that direction due to the momentum term and if
the gradient suddenly changes direction, the update has some inertia in the diretion
of the previously accumulated velocity. The addition of the momentum term can
accelerate the learning procedure and help the algorithm to traverse saddle points
and local minima in the loss function and comes at little computational cost.
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2.4.3 RMSprop and ADAM

The Root Mean Square Propagation (RMSprop) algorithm [30] is another modifica-
tion of gradient descent which improves the learning procedure by keeping track of
an exponentionally decaying second moment (pointwise square) of the gradient and
divding the gradient by the square root of this moving average. This has the effect of
attenuating gradient updates when large steps have been made and increasing the
magnitude if previous updates have been small. Note that this effect takes place on a
per-parameter level, thereby effectively providing an adaptive learning rate for each
parameter in the model. This change can dampen oscillations (think of updates with
opposite sign repeatedly overshooting the optimal path through the loss landscape)
and increase the speed of learning in flat parts of the loss function. Adam [35] is a
more advanced gradient optimization algorithm and derives its name from adaptive
moment estimation. It effectively combines the idea of SGD with momentum and the
per-parameter learning rate of the RMSprop algorithm and adds a few minor im-
provements, such as correcting for bias in the second moment during early episodes
of training [21].

2.5 Activation Functions

Activation functions have been described in Equation 2.2 as (generally pointwise)
functions that determine how firing of artificial neurons is implemented. They are
an important part of NNs because non-linear activation functions allow neural net-
works to learn a wide array of mappings that cannot be approximated by a series of
linear transformations.

The sigmoid activation function is also known as logistic function and is perhaps
the best-known activation function for NNs. Given a scalar input x, the activation is
given by

σ(x) =
1

1 + e−x (2.20)

In the context of NNs, x corresponds to input to the neuron, after taking the in-
ner product with the weight vector and adding the bias term. Thus, the activation
ranges from 0 (for large negative values of x) to 1 (for large positive values of x). For
neurons with sigmoid activation, gradient descent can be used to find the weights
and biases of the network since the activation function is differentiable with respect
to its input. The derivative is bell-shaped and has its maximum for x = 0.5. Note
that the sigmoid is a continuous approximation of an all-or-nothing response.

One issue of the sigmoid activation function is that the function becomes satu-
rated for very small and very large input values with its derivative being close to
zero in both cases. This can be problematic during gradient descent. Since NNs are
essentially a composition of functions, the gradient is computed during the back-
ward pass of the backpropagation algorithm and requires the repeated application
of the chain rule from calculus, meaning that the gradient is repeatedly multiplied
by the derivative of the sigmoid. Since the derivative of the sigmoid function lies
between 0 and 0.25, repeating this multiplication for several layers will decrease the
magnitude of the gradient to very small values which effectively blocks the gradi-
ent from reaching neurons in earlier layers of the NN, preventing the network from
learning in these layers. This phenomenon is known as the vanishing gradient prob-
lem and is especially problematic when many neurons produce saturated responses
(with the gradient being close to zero) or when the network has a large number of
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layers. When used as an output layer, sigmoid activation is commonly used for bi-
nary classification. When classification is performed with more than two categories,
the softmax function is the most common output layer. The softmax is defined as

Softmax (xi) =
exp (xi)

∑j exp
(
xj
)

where xj denotes the input to the softmax layer corresponding to class j. The softmax
function is a generalization of the sigmoid function to multiple classes and they are
identical in the binary classification case. In this thesis, we will focus our discussion
on the sigmoid function, but an extension to softmax output is straightforward.

A more recent activation function is the rectified linear unit (ReLU). It is a piece-
wise linear activation function that is defined as follows:

g(x) = max(0, x) (2.21)

It has been pointed out in [18] that the ReLU activation function has three advan-
tages compared to the sigmoid activation: The computation is faster since there is
no exponential in the equation, it mitigates the vanishing gradient problem because
the derivative can be equal to one, and is associated with a sparse response because
neurons with negative inputs to the activation function produce a zero response. To
illustrate this, for an untrained NN with randomly initialized weights and biases of
zero, we would expect half of the neurons with ReLU activation to have a zero re-
sponse for random inputs. This is clearly not the case for sigmoid activation. It has
been argued that such sparsity is more biologically plausible and comes with a num-
ber of advantages compared to a more dense encoding, such as robustness to small
changes due to a disentanglement of information [18]. As a result, ReLU activations
have largely replaced sigmoid activations as the most popular choice for NNs.

2.6 Regularization

A core strength of deep NNs is their high capacity to learn complex input-output
mappings from data. Yet, this property also makes deep NNs prone to overfitting
to the training set, especially if the available training data is relatively small. Over-
fitting is a phenomenon in machine learning in which the model learns to solve a
particular problem on the training data, but then fails to generalize to the test data.
One way of viewing this situation is that the NN has failed to separate the signal
from the noise during training, resulting in errors on different datasets that do not
share the idiosyncrasies of the training data. In this context, regularization refers
to techniques which are designed to mitigate the problem of overfitting in neural
networks, generally by placing some constraints on the model during the training
procedure.

2.6.1 Weight-decay

Weight-decay has been known for a while in the ML community to reduce overfit-
ting in NNs [37]. It refers to the practice of adding a term to the loss function which
penalizes large parameter values. The motivation for this is that, in order to prevent
overfitting, we want to prevent the model output from being dominated by a small
group of weights with a large magnitude. The two most commonly used weight
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decay procedures for NNs and other models like regression are L1 and L2 3 regu-
larization. If the original loss of the model is the NLL, the new loss functions for L1
and L2 are given by

JL1(θ,D) = −
N

∑
i=1

log P
(

y(i)|x(i); θ
)
+ λ

M

∑
i=1
|wi| (2.22)

JL2(θ,D) = −
N

∑
i=1

log P
(

y(i)|x(i); θ
)
+ λ

M

∑
i=1

wi
2 (2.23)

Here, wi refers to the ith weight out of the overall M weights of the NN and λ is
a parameter that controls the contribution of the weight penalty to the overall loss.
As is common practice, the bias values are not penalized. Due to the squaring of
the weights, L2 regularization penalizes large weight values more than L1, but L1
regularization has a stronger emphasis on inducing real sparsity in the weights.

It is worth mentioning that training with L1 regularization is equivalent to find-
ing the MAP estimate for a prior distribution over the weights in which each weight
is i.i.d drawn from a Laplace distribution. Similarly, assuming that the weights are
drawn i.i.d from a Gaussian distribution is an instance of L2 regularization. In both
cases, λ depends on the parameter that defines the spread of the distribution, with
smaller spread being associated with stronger regularization.

2.6.2 Batch Normalization

Batch normalization [32] is a relatively recent technique which was originally de-
veloped for facilitating the training procedure, but was also found to have some
regularizing effect on the networks as well. Batch normalization was devised to mit-
igate the adverse effects of what the authors refer to as internal covariate shift. This
phenomenon refers to the property that the input distribution for a layer changes as
training progresses and the previous layers in the network adapt their parameters
to the training data. An additional source of variation occurs when training is per-
formed using minibatches. In both cases, small differences in the input distribution
are bound to be magnified when passing through the network from layer to layer.
The key contribution of batch normalization is to normalize the outputs of each layer
such that the mean and variance are mostly fixed between iterations. As the name
suggest, inputs in each mini-batch are standardized by subtracting the mini-batch
mean and dividing by the variance. In addition, two trainable parameters, β and γ
are added to each layer. They shift and scale the output respectively, allowing the
layer to learn the optimal mean and variance that should be passed to the next layer
by gradient descent. The detailed procedure is presented in Algorithm 1.

These adaptations allow for the use of higher learning rates and make the success
of the training procedure less dependent on the parameter initialization. The regu-
larizing effect of batch normalization is due to the fact that the neural network is
unlikely to encounter the exact same input twice during different training iterations
because the normalization will change as the input is drawn together with different
mini-batches across the iterations. This will prevent the network from memorizing
any particular input.

3L2 is also known as Tikhonov regularization or ridge regression in statistics.



16 Chapter 2. Neural Networks

Algorithm 1 Batch Normalization, adapted from [32]
.

Require: Mini-batch B = {x1...m}
Require: Parameters to be learned: γ, β
Returns:

{
yi = BNγ,β (xi)

}
µB ← 1

m ∑m
i=1 xi . mini-batch mean

σ2
B ←

1
m ∑m

i=1 (xi − µB)
2 . mini-batch variance

x̂i ← xi−µB√
σ2
B+ε

. normalize. ε is a small positive constant

to avoid division by 0.

yi ← γx̂i + β ≡ BNγ,β (xi) . scale and shift

2.6.3 Dropout

Whereas L1 and L2 regularization originated in the context of regression, dropout
is a regularization technique that was specifically devised for NNs. In dropout,
a Bernoulli distribution, characterized by dropout probability p, is placed over all
nodes of the network. For each forward pass through the network during training,
nodes that draw the value 0 are removed from the network, along with all incoming
and outgoing connections [60]. When the network is used for prediction after train-
ing, no dropout takes place and activations in the network are multiplied by 1− p
in order to compensate for the increase in the overall activation that is due to the use
of all neurons.

This prevents overfitting to the training data by forcing the network to learn
robust representations instead of relying on a selected few nodes and connections
to perform most of the computation. Given the vast combinatorial space of possible
networks created by random dropout, dropout training forces the network to learn
more robust representations instead of relying on complex co-adaptations with other
nodes in the network, which would be much more susceptible to overfitting to the
noise in the training set [29].

It has further been argued that dropout improves model performance by essen-
tially training an ensemble of different networks due to the difference in their struc-
ture that is caused by random dropout. Compared to other ensemble approaches
which explicitly combine predictions of different models in some way, dropout can
be viewed as training an ensemble of networks and implicitly combining these by
using all nodes and rescaling the activations.

Due to these benefits, networks using dropout achieved state-of-the-art perfor-
mance on many computer vision tasks (e.g. [36]). However, it has also been pointed
out that the use of dropout may require more training time because parameter up-
dates become noisy since a different model is trained in each iteration [60], in some
cases doubling the number of iterations that are needed for the model to converge
[36].

Other stochastic regularization techniques that resemble dropout have been stud-
ied for training NNs. An example is multiplicative Gaussian noise, in which the ac-
tivation of hidden units is multiplied by a random variable r′ ∼ N (1, σ2) during the
forward pass through the network. Here, the standard deviation of the distribution
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σ is a hyperparameter which determines the strength of the regularization, similarly
to the dropout probability p described above. Although [60] found this approach
to be equally effective, standard dropout was more widely adopted, perhaps due to
the computational efficiency and theoretical simplicity of the approach.

2.7 Convolutional Neural Networks

The convolution is an operation that originates in signal processing. Since this the-
sis focuses on NNs in the computer vision domain, we will focus on explaining
two-dimensional convolutions here. Given two scalar-valued functions x(m, n) (the
image) and h(m, n) (the kernel or filter), the two-dimensional convolution is defined
as:

y[i, j] = (x ∗ h)[i, j] =
∞

∑
m=−∞

∞

∑
n=−∞

x[i−m, i− n]h[m, n] (2.24)

Thus, convolving two functions x and h results in a new function that is the result
of flipping the kernel and moving it across the image, advancing pixel-by-pixel. At
each step, we compute the product of the overlapping pixels and then take the sum
of these products. This sum then corresponds to the output for the pixel on which
the kernel is currently centered. In this context, we can think of the kernel as a
feature detector such as the well-known Sobel operator for edge detection [59], and
the output of the convolution as a map that indicates how strongly the feature is
present across the input.

Since the indices in Equation 2.24 range from negative infinity to infinity, we
assume that any pixels that fall outside of the boundaries of the input matrix and the
kernel are zero. Padding the input with zeros also allows us to compute the result
of the convolution for pixels near the outside of the input matrix because kernels
that are larger than one pixel would partly cross the boundary of the input matrix
to evaluate these pixels. This method is known as zero padding. Another common
method for obtaining an output matrix that has the same size as the input matrix is to
assign pixels outside the boundary the value of the closest pixel that lies within the
boundary. Alternatively, one may decide to perform a valid convolution, in which
we only keep the output for locations where the kernel does not cross the boundary
of the input matrix. However, this would reduce the size of the output.

Convolutional neural networks (ConvNets) are a special type of NN which have
become very popular for solving computer vision tasks. The main difference be-
tween convolutional layers and the densely connected layers of standard MLPs is
that nodes in convolutional layers have only local receptivity, meaning they receive
input from a spatially connected part of the input to the layer. Additionally, nodes
are part of a channel and all nodes within a channel share the same weights but are
connected to different parts of the input. In this manner, each node within a channel
can be viewed as applying the same feature detector (or filter) to a different part of
the input, thereby effectively performing a convolution on the input. Since all neu-
rons within a channel share the same weights, convolutional layers need far fewer
parameters compared to a fully connected layer when both have to perform the task
of finding a particular feature at different locations in the image.

In practice, images are treated as three-dimensional inputs, where the depth
refers to the number of channels. For instance, an image with RGB encoding would
have three channels in the input layer: red, green, and blue. The convolution kernels
are therefore three dimensional, covering a part of the width and height of the input,
but all of its depth. To illustrate, assuming that the image is square with a height and
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width of 50 pixels, the input shape would then be 50× 50× 3. If we feed this input
into a convolutional layer that performs a convolution with 10 distinct 5× 5 filters,
each filter would have dimensions 5× 5× 3 and the output of the layer would have
a shape of 50× 50× 10, assuming that the input is padded to preserve the width
and height. Thus, each node in the output volume effectively computes the value of
the convolution of one of the 10 kernels at a particular location in the width/height
grid of the input volume, covering the whole depth since the filters are three dimen-
sional. Since the output of the layer comprises 10 channels, the filters in the next
convolutional layers would also have a depth of 10. Since we can think of filters as
feature detectors, the number of channels in a given layer corresponds to the number
of features that we would like to be able to detect from the input.

Stride

The stride of a convolutional layer determines the vertical and horizontal space be-
tween the center of the receptive field of a neuron and the center the of the receptive
fields of its neighbors. Above, a stride of one is assumed, meaning that the area to
which the filter is applied for one neuron has an offset of one compared to adjacent
nodes. If we choose a stride of two, there will be an offset of two in vertical and
horizontal direction. Thus, the stride determines how densely the filter is applied to
the input. Note that a stride larger than one will reduce the height and width of the
output since fewer nodes are needed to cover the input.

Pooling

It is often desirable to reduce the dimensionality of the output of a convolutional
layer, as features become more abstract in later layers of the network and the pre-
cise location plays a less important role. Next to strided convolutions (implying
a stride that is larger than one), pooling layers are the main method for achieving
this. Spatial pooling (also referred to as subsampling) is a method which reduces
dimensionality while retaining important information. Max pooling achieves this
by dividing each depth-slice of the input into regions of a certain shape, say 2× 2,
and subsequently reducing each region to a single value by retaining the maximum
value. The output of a max pooling layer then has the same depth as its input, but
reduced height and width. Average pooling follows the same procedure, but retains
the average instead of the maximum of each region.

2.7.1 Dropout in Convolutional Neural Networks

Standard dropout works by temporarily deleting random neurons in the network,
including all incoming and outgoing weights, in the forward pass that takes place
during training. As we have seen above, the nodes within convolutional layers are
spatially arranged such that the feature map is equal to the output of a convolution
of a filter with the input to the layer. It is common that the stride of the convolution
is sufficiently small relative to the size of the filter such that adjacent neurons have
overlapping receptive fields with respect to the input. If this is the case, the feature
maps of the convolutional layer become spatially correlated as the filter is applied to
overlapping parts of the input. This, taken together with the fact that image pixels
are often spatially correlated to begin with, motivated Tompson et al. to point out
that standard dropout may not be the best regularization for convolutional layers
because the regularizing effect of dropout may be weak since the nodes adjacent to
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dropped nodes are likely to preserve the spatially correlated information [62]. This
amounts to a reduction in learning rate, while providing relatively little regular-
ization. Instead, they propose SpatialDropout which randomly drops whole feature
maps, thereby setting the activations of all neurons within a channel to zero. As
with standard dropout, the probability of dropping whole feature maps is character-
ized by a Bernoulli distribution with dropout probability p. This approach provides
stronger regularization compared to standard dropout because there is no a priori
reason for filters within a layer to be redundant when no dropout or other regular-
ization methods are used.

2.8 Modern Convolutional Neural Networks

2.8.1 AlexNet

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is one of the best-
known competitions in computer vision, featuring annual object detection and im-
age classification challenges [8]. Perhaps the most notable breakthrough in the recent
history of neural networks occurred in 2012, when a ConvNet called AlexNet [36]
outperformed all other competitors in the ImageNet classification competition by
more than 10% in the top-5 error4 rate. The 2012 challenge featured a training set of
1.2 million images and 1000 object categories, which makes the competition relevant
for real-life applications. AlexNet is one of the first deep neural networks, featuring
five convolutional layers, three max-pooling layers, and three fully connected lay-
ers. ReLUs were used as activation functions and dropout was applied in order to
regularize the fully connected layers. AlexNet can be considered a milestone in the
history of NNs because it was one for the first very large networks (having 60 mil-
lion parameters and 650,000 neurons). In addition, it used sophisticated graphical-
processing unit (GPU) optimization to be able to train the large network in order to
fully take advantage of the size of the ImageNet dataset.

2.8.2 VGG

Another breakthrough in image classification was achieved by the VGG-16 model,
which managed to halve the top-5 error of AlexNet on ImageNet [58]. The key dif-
ference in terms of architecture is that VGG-16 used 3 × 3 convolutional kernels,
compared to AlexNet, which also uses kernels of 11× 11 and 5× 5 in the early lay-
ers. This decision was based on the insight that the larger receptive field of larger
kernels can be imitated by stacking several layers with smaller kernels. For example,
two layers with 3× 3 kernels have an effective receptive field of 5× 5. This makes
it possible to incorporate more activation functions (since there are more layers) and
also significantly decreases the number of parameters that would be required for a
larger kernel with an equivalent receptive field. In total, VGG-16 has 138 million pa-
rameters, but significantly larger depth than comparable networks at the time due
to the use of smaller kernels.

2.8.3 GoogLeNet

While it may seem at this point that the increase in performance may just be a result
of ever-increasing size, GoogLeNet (Inception V1), the 2014 winner of the ILSVCR

4top-5 error rate denotes the proportion of images in the test set for which the ground truth label is
not among the five labels that the model predicts to be most likely
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challenge showed that this is not the case, achieving a 6.7% top-5 error with merely
6.8 million parameters [61]. This impressive performance was achieved by intro-
ducing the inception module, in which 1× 1 convolution, 3× 3 convolution, 5× 5
convolution and 3× 3 max pooling are applied to the same input, stacking the re-
sult to provide the input to the next layer. This configuration, albeit rather complex,
enables the network to choose the most suitable path itself. The key change that
allowed for this to work and also changed the total number of parameters was the
extensive use of 1× 1 convolutions, which substantially reduce the depth of the in-
put to the layers throughout the network.

2.8.4 Residual Networks

In the sequence of AlexNet, VGG, and GoogLeNet, increasing depth goes hand in
hand with improved performance. Residual networks (ResNets) are specifically de-
vised to make it possible to train very deep models [26]. The deepest model pre-
sented is a 152-layer ConvNet with 60.2 million parameters and has a top-5 error of
only 4.49 % on the ImageNet validation set. He et al. observed that as ConvNets
become deeper than a certain threshold, performance begins to deteriorate. Since
this is also observed in the training set, this is a problem of optimization rather than
generalization. The authors attribute this to the fact that it is already quite chal-
lenging for deep neural networks to learn the identity function as more layers are
added. As a remedy, they use residual blocks, which contain shortcut connections to
later layers besides regular convolutional layers which perform feature extraction.
At the end of each residual block, the input to the block is added to the output of
the convolutional path by means of the shortcut connection. This design makes it
straightforward for the network to learn the identity function because the model can
just drive the weights for the convolutional path to zero and rely on the parameter-
free skip connections. The name residual derives from the interpretation that the
convolutional path in the residual block now only has to learn the residual between
the input and the desired output. For the three larger ResNets presented in [27], spe-
cial kinds of residual blocks are used. In these bottleneck blocks, the convolutional
path consists of a 1× 1 convolution reducing the input depth from 256 to 64, a 3× 3
convolution, and a final 1 × 1 convolution which maps the output back to 256 to
be compatible with the original input to the block that is provided by the shortcut
connection. A graphical depiction of a residual block and bottleneck block is shown
in Figure 2.1.
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FIGURE 2.1: Adapted from [27]. Left: a residual block used for the
ResNet-34 network. Right: a bottleneck block that is used for the
larger ResNet-50/101/152. The + symbol stands for element-wise

addition
.
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Chapter 3

Uncertainty Estimation for Neural
Networks

3.1 Types of Uncertainty

When evaluating the uncertainty of a modelling process, a distinction can be made
between aleatoric and epistemic uncertainty [9]. In general terms, epistemic uncer-
tainty is caused by insufficient knowledge about which model and which parame-
ters best model the data, while aleatoric uncertainty results from noise in the data
itself [33]. In contrast to aleatoric uncertainty, epistemic uncertainty can be reduced
by collecting additional data.

In [33], a further distinction is made between aleatoric uncertainty that is ho-
moscedastic and aleatoric variance which is hetereoscedastic. Homoscedastic aleatoric
uncertainty refers to uncertainty that is constant for different inputs, for instance
due to fundamental limitations in camera resolution. In contrast, heteroscedastic
aleatoric uncertainty differs between different input patterns. Examples in the com-
puter vision domain include darkness, fog, sensor noise, and occluded objects in
images.

3.2 Uncertainty in Classification

Neural networks usually perform classification by producing an output vector of
values between 0 and 1, one entry for each class and summing to 1 if the classifi-
cation is mutually exclusive and exhaustive, i.e. each input belongs to exactly one
ground truth class. This is frequently implemented by a softmax activation function.
For multi-label classification, multiple categories can be assigned to the same input
pattern. The entries can be assigned independently from each other and do not have
to sum to one. This can be achieved by a layer with independent sigmoid activation
functions for example. It is common practice for practitioners to interpret these val-
ues as actual predicted probabilities rather than mere confidence scores on a scale
from 0 to 1. This relies on the assumption that the predictions are well calibrated.
A model is well-calibrated if the predicted probabilities coincide with the actual ac-
curacy of the model. For instance, we would expect a perfectly calibrated model to
have an empirical accuracy of 70% in expectation for input patterns which the net-
works classifies with a softmax or sigmoid score of 0.7. Note that model accuracy
and calibration are independent, since a model can have a very low accuracy while
still being well-calibrated and vice-versa.

When the model is trained by using the NLL as a loss function, the loss is only
minimized when the network learns to match predicted probabilities with its em-
pirical accuracy [12]. In other words, the loss is reduced when the model improves
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its calibration during training. This makes the NLL a proper scoring rule [38][19].
Since the likelihood is also part of the loss that is used for MAP estimation (refer to
Equation 2.15), good calibration is also rewarded in MAP estimation 1.

Thus, assuming that the optimization procedure found a good local minimum,
we have some ground for treating the predicted values of the model as probabilities.
Since the network learns to provide its own uncertainty estimate while classifying
input patterns, we can categorize this as an example of aleatoric uncertainty.

However, it has been pointed out that calibration of modern NNs may have de-
teriorated compared to earlier, more simple models [24]. Using different models,
the authors varied network depth, the number of filters per layer, and whether or
not batch normalization was used. All three aspects were found to have an effect
on calibration, as well as accuracy. Increasing model capacity (i.e. using deeper lay-
ers and more filters per layer) up to a certain point increases accuracy, while letting
calibration deteriorate. This may partly be due to overfitting the predictive distribu-
tion to the training set [24], especially when the accuracy of the network is already
very high. Using batch-normalization had a similar effect, increasing accuracy while
making the model less calibrated. They further examine different approaches for
manually calibrating classifiers after training and find that temperature scaling, an ex-
tension of Platt scaling [53], is a simple and effective way of improving the predictive
distribution, provided that sufficient data is available for validation.

3.3 Uncertainty in Regression

In contrast to the classification case, standard neural network regression predicts
the target value(s) without giving an indication of confidence in the outputs. The
most commonly used cost functions are the MSE and MAE which, in contrast to the
NLL used in classification, do not have a probabilistic interpretation because they
only concern themselves with the size of the error and not with the probability of
observing errors of different magnitudes. To obtain an additional confidence score
for regression, we can make the additional assumption that the prediction error is
characterized by a particular distribution. For example, for a regression task with
one-dimensional targets and normally distributed residuals, the likelihood function
is:

pmodel

(
y(i)|x(i); θ

)
= p(y(i)|ŷ(i)) (3.1)

=
1√

2πσ2
exp

(
− (y(i) − ŷ(i))2

2σ2

)
(3.2)

where the mean is the predicted value ŷ(i) and σ2 is the variance of the Gaussian
distribution. By splitting the output for the regression from one to two neurons, we
can train our model to predict the variance of this distribution in addition to the
regression estimate itself by training the model to maximize the likelihood function.
As for the classification case, in practice, it is common to minimize the NLL instead:

1An exception to this rule occurs when an improvement in calibration comes at the cost of a lower
prior probability of the model parameters, which would amount to a penalty in the loss function.
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− log p(y(i)|ŷ(i)) = (y(i) − ŷ(i))2

2σ2 − log
(

1√
2πσ2

)
(3.3)

=
(y(i) − ŷ(i))2

2σ2 +
1
2

log(σ2) + log(
√

2π) (3.4)

To minimize the NLL, we can ignore the last term since it is constant with respect to
the model parameters, which gives us the following loss:

J (θ|y(i), x(i)) =
(y(i) − ŷ(i))2

2σ2 +
1
2

log(σ2) (3.5)

We can see that the first term on the right-hand side of the equation is just the
squared error, divided by 2σ2. Thus, the model can reduce the loss that it incurs
for any input pattern by predicting a large variance for the Gaussian distribution of
the residual that we assumed. At the same time, predicting a larger variance is pe-
nalized by the second term on the right-hand side of the equation. This is an instance
of learned loss attenuation [33], in which the network learns to reduce training loss
by recognizing difficult examples.

A similar result, but involving the absolute error, can be obtained by assuming a
Laplace noise distribution. Recall that the probability density function of the Laplace
distribution is defined as follows:

p(x|µ, b) =
1
2b

exp
(
−|x− µ|

b

)
(3.6)

Similarly to the predicted standard deviation σ of the Gaussian noise distribution, b
defines the spread of the Laplace distribution, with the variance given by σ2 = 2b2.
The likelihood for regression is then

pmodel

(
y(i)|x(i); θ

)
=

1
2b

exp

(
−|y

(i) − ŷ(i)|
b

)
(3.7)

where ŷ(i) and b are predicted by the model. The negative NLL, which we wish to
minimize, is then given by:

J (θ|y(i), x(i)) =
|y(i) − ŷ(i)|

b
+ log(2b) (3.8)

As for the Gaussian distribution, the model can reduce the loss for the regression
error for any input by predicting a large variance, which is also penalized in the
loss.

3.4 Bayesian Neural Networks

As alluded to in subsection 2.3.3, training Bayesian NNs amounts to approximating
the posterior distribution of the weights given the data. Given an approximation
of the posterior distribution, we can sample different networks in order to obtain
a distribution of outputs. The variance of the predictive distribution then provides
us with a measure of epistemic uncertainty because we do not rely on a single set
of weights for the prediction. Note that a single model may be highly confident,
indicating small aleatoric uncertainty, while a Bayesian prediction using multiple
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draws from the posterior may still indicate high epistemic uncertainty due to large
variation in the output of the different networks.

The posterior distribution of modern NNs cannot be solved analytically and is
generally difficult to sample from [22].

3.4.1 Variational Inference

Variational inference addresses this problem by approximating the posterior p(θ|D)
with a more tractable distribution q(θ|β) and optimizing the variational parameters
β to resemble the posterior as much as possible [2]. The optimization is based on the
Kullback-Leibler (KL) divergence, which in this context is given by

KL(q‖p) = Eq

[
log

q(θ)
p(θ|D)

]
(3.9)

The KL divergence is also referred to as relative entropy and measures the ex-
tent to which one distribution differs from a target distribution. Note that by Equa-
tion 3.9, the KL divergence is not symmetric and is equal to zero when the distribu-
tions are identical. Following [2], it is shown that Jensen’s inequality can be used to
find a lower bound:

log p(x′) = log
∫

θ
p(x′, θ)

≥ Eq[log p(x′, θ)]− Eq[log q(θ)]
(3.10)

where x′ is meant to denote a data point x, including the ground truth target vari-
able(s). This is known as the evidence lower bound (ELBO), or variational free en-
ergy. They further show that the KL divergence can be rewritten to

KL(q(θ)‖p(θ|x′)) = −
(
Eq[log p(θ, x′)]− Eq[log q(θ)]

)
+ log p(x′), (3.11)

which is just the negative ELBO plus a constant term that does not depend on q.
Thus, optimizing the variational parameters to maximize the ELBO is equivalent to
minimizing the KL divergence. The choice of the approximating distribution has
then to be performed in such a way that the computation of the expectations in
Equation 3.10 becomes feasible.

To implement this approach in a Bayesian NN, Graves [22] proposed to replace
the true posterior distribution with a variational distribution which, while still in-
tractable to integrate, would allow for efficient sampling. These samples can then
be used for stochastic optimization, like gradient descent. In this way, using a Gaus-
sian prior distribution results in a diagonal Gaussian posterior for the NN parame-
ters and was found to perform well on a phoneme recognition task, showing little
overfitting.

Blundell et al. [3] built on this work by making gradient updates unbiased and
extending the method to non-Gaussian prior distributions, calling their approach
Bayes by Backprob. In their approach, the variational optimization fits a Gaussian
mean and standard deviation for each weight in the network, thereby doubling the
number of parameters compared to a standard NN. The name of their method is
due to the fact that the standard gradient that is used in backpropagation reappears
as part of the gradient updates for the means and standard deviations in the varia-
tional posterior distribution. Using a Bayesian NN with a mixture of two Gaussian
distributions of different scales as the prior and a Gaussian as the posterior distri-
bution, they were able to achieve performance on the MNIST digit recognition task



26 Chapter 3. Uncertainty Estimation for Neural Networks

on par with NNs that were regularized by dropout, while also providing Bayesian
uncertainty estimates.

The previous approaches made the training of Bayesian NNs viable for real-
world applications. However, the fact that the number of parameters is effectively
doubled (for a Gaussian prior with independent means and standard deviations for
each weight) makes it computationally expensive to extend these methods to larger
models, which may be needed for more challenging tasks.

3.5 Dropout as Bayesian Approximation

Motivated by this fact, Gal and Ghahramani showed in [14] that using dropout dur-
ing training and prediction approximates a deep Gaussian process (GP) [7], a prob-
abilistic model with inherent Bayesian uncertainty estimates. As a machine learning
model, GPs are characterized mainly by their covariance function, which measures
the similarity between data points. To make predictions for new data points, the
prediction is extrapolated by referring to known target values in the data set and
weighing their contribution to the prediction by evaluating the covariance function
between known data points and the new data point. The resulting prediction is a
mean and variance, the sufficient statistics for a one-dimensional Gaussian distribu-
tion.

The deep GP is a hierarchical extension of standard GPs, in a very similar fashion
to the way in which a MLP is an extension of perceptron-like single layer NNs. That
is to say, each layer in a deep GP is a Gaussian process latent variable model (GP-
LVM), taking as input the output of the previous layer and passing its output to the
next layer in the hierarchy.

Below, a summary of the derivation is presented. For the (extensive) full deriva-
tion please refer to the appendix of [14]. Consider the following covariance function:

K(x1, x2) =
∫

p(w)p(b)σ
(

wTx1 + b
)

σ
(

wTx2 + b
)

dwdb (3.12)

for any two data points x1 and x2, and given the parameters of a covariance function
w and b and an element-wise non-linearity σ(·), the output of a deep GP consisting
of multiple layers characterized by this covariance function can be approximated by
an NN in which the hidden units explicitly represent the activation term σ

(
wTx + b

)
above. This is partly based on an earlier result in which it was shown that a hidden
layer with an infinite number of neurons converges to a GP [52] when a distribution
is set over the weights. Above, some prior distribution p(b) is assumed, in addition
to a prior distribution p(w) = N

(
w; 0, l−2 I

)
. In this context, l is called the prior

length-scale.
The interpretation of dropout training as variational inference will now be further
explained. For the L layers of the deep GP, let Wi ∈ IRKi×Ki−1 be a matrix for layer i
and ω = {Wi}L

i=1 the set of all these matrices. In addition, let mi ∈ IRKi . Integrating
over the parameters ω , Gal and Ghahramani parameterize the posterior predictive



3.5. Dropout as Bayesian Approximation 27

probability as

p(y|x,D) =
∫

p(y|x, ω)p(ω|D)dω

p(y|x, ω) = N
(

y; ŷ(x, ω), τ−1I
)

ŷ (x, ω) =

√
1

KL
WLσ

(
. . .

√
1

K1
W2σ (W1x + m1) . . .

) (3.13)

Above, τ refers to the model precision, which represents a prior belief about how
much noise is present in the observations. As discussed earlier, it is not computa-
tionally feasible to compute the posterior distribution p(ω|D) for the parameters of
the covariance function. Instead, the authors use a variational distribution q(ω) to
approximate the posterior.

Wi = Mi · diag
([

zi,j
]Ki

j=1

)
zi,j ∼ Bernoulli (pi) , i = 1, ..., L, j = 1, ..., Ki−1

(3.14)

Thus, the matrix Wi is equal to a matrix Mi, but each column j is set to zero when
the corresponding random variable zi,j, drawn from a Bernoulli distribution with
probability pi, is zero. The parameters of the variational distribution are therefore
{Mi}L

i=1. To optimize these parameters, we again choose to minimize the negative
log ELBO instead of working directly with KL(q(ω)‖p(ω|D)) :

JELBO = −
∫

q(ω) log p(Y|X, ω)dω + KL(q(ω)‖p(ω)) (3.15)

p(Y|X, ω) = −
N

∑
n=1

∫
q(ω) log p (yn|xn, ω)dω (3.16)

In the appendix of [14], it is shown that the KL divergence between the variational
posterior and the prior distribution can be approximated as follows:

KL(q(ω)‖p(ω)) ≈
L

∑
i=1

pil2

2N
‖Mi‖2

2 +
l2

2N
‖mi‖2

2 (3.17)

with l as the prior length-scale mentioned before. To optimize the objective in equa-
tion 3.15 stochastically, the integral in 3.16 is approximated with Monte Carlo (MC)
integration by drawing a different set of variational parameters from the variational
distribution for each prediction during training: ω̂n ∼ q(ω). Finally, the loss is
scaled by 1/τN, which yields the final objective:

JGP−MC ∝
1
N

N

∑
n=1

− log p (yn|xn, ω̂n)

τ
+

L

∑
i=1

(
pil2

2τN
‖Mi‖2

2 +
l2

2τN
‖mi‖2

2

)
(3.18)

This loss function can be optimized with any gradient optimization technique, such
as SGD. Note that the loss is equivalent to the training objective that is used when
training NNs using weight-decay and dropout:

J dropout :=
1
N

N

∑
i=1

E (yi, ŷi) + λ
L

∑
i=1

(
‖Wi‖2

2 + ‖bi‖2
2

)
(3.19)
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Above, E (yi, ŷi) refers to the standard NLL loss as a function of the ground truth yi
and the prediction ŷi . In summary, the well-established training procedure of using
gradient optimization with dropout for training NNs amounts to finding the param-
eters {Mi}L

i=1 for the variational distribution which approximates the posterior.
After training, predictions can be made by sampling from the variational distri-

bution. In practice, that means performing several stochastic forward passes through
the network using dropout. This is referred to as Monte-Carlo (MC) dropout, to
distinguish it from standard dropout, in which dropout is performed only during
training and all units are used during test time.

3.6 Domain-Shift Detection

Recall from the introduction that covariate shift is a special case of dataset shift in
which only the input distribution changes. Supervised learning generally assumes
that any data that a model might encounter is i.i.d. with the training set. It would
therefore be useful to be able to determine when such a distributional shift takes
place because generalization to a new input distribution is not guaranteed. One
benchmark task for detecting covariate shift involves training a classifier on the
MNIST dataset [39] and subsequently applying it to notMNSIT [5], a similar dataset
which consists of symbols of different fonts, instead of the handwritten digits in
MNIST. On these image classification datasets, it was shown that out-of-distribution
(OOD) detection could be performed using the predictive uncertainty derived from
ensembles [38] and Bayesian NNs [47] since uncertainty was larger for the OOD data
points, on average.

Similarly, dropout uncertainty has been found to increase when an NN classi-
fier, trained on medical images of eyes to detect diabetic retinopathy, is applied to
a dataset with different semantics (ImageNet) [41]. The authors also investigated
whether an autoencoder, attached to the penultimate layer of the NN, could be used
for the same purpose. Autoencoders are NNs which are designed to learn an identity
mapping, that is to reconstruct the inputs [21]. These networks are usually subject
to some constraint which makes perfect reconstruction difficult in order to force the
autoencoder to learn meaningful representations of the data.

Conceptually, autoencoders consist of an encoder c = e(x), which transforms the
input to a code c. The code is a representation in a hidden layer that is then passed
to the decoder x̂ = d(c), which attempts to reconstruct the input from the code. In
NNs, the encoder and decoder may consist of multiple layers each. One of the most
common constraints that is placed on the autoencoder is that the dimensionality of
the code is much smaller compared to that of the input, which is often implemented
in a shape that resembles an hour glass, with layers that decrease in width for the
encoder and for the decoder layers that increase in width in order to recover the
original input dimensions. Autoencoders can be applied to detect covariate shift
based on the assumption that due to the constraints that are placed on the hidden
representation, the autoencoder is forced to learn transformations that are specific
to the distribution of the training set. In other words, the fact that the autoencoder
might overfit to the training set may be used to detect unfamiliar data points, which
should be associated with a higher reconstruction error.

There are other approaches which are specially designed to address this problem.
For neural network classifiers, the authors of [28] suggest the softmax probability of
the predicted class as a simple baseline for detecting OOD examples. In addition,
they propose an abnormality module which combines the softmax predictions with a
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reconstruction error from a reconstruction module, specifically attached to the deep
features of the network for this purpose. Another approach modifies the loss func-
tion such that the Kullback-Leibler divergence between the output distribution for
out-of-data examples generated by generative adversarial networks (GANs) and the
uniform distribution is minimized [40]. A third approach learns an extra confidence
output which, during training, determines the extent to which the softmax output
is interpolated with the ground truth to reduce the loss. This amounts to the net-
work being able to pay for hints when it is uncertain and is somewhat similar to the
learned loss attenuation proposed in [33].
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Object Detection

Viola and Jones presented one of the earliest successful real-time object detection
algorithms in 2001 [64]. It was primarily designed for face detection in images. The
algorithm adopts a sliding window approach by partitioning the image into patches
(which is repeated for different scales) and then performing binary classification on
each patch to determine whether a face is present in that region. This classification
relies on a large set of Haar-like features that were designed manually based on
prior knowledge. The final detector is then trained by applying the AdaBoost [11]
boosting algorithm to iteratively select features based on the reduction in error rate
that is associated with the inclusion of the feature. To achieve real-time performance,
a cascade of classifiers is used in which later classifiers are only used for prediction
if no previous classifier rejected the patch by predicting the absence of a face.

With advances in NN research and state-of-the art performance in image classi-
fication, performing object detection with NNs was a natural next step. The main
obstacle that was needed to overcome was the dual nature of the task, since both
localization and multi-class classification are required, early NN approaches were
essentially hybrid approaches that relied on computer vision algorithms to obtain
regions of interest (RoIs), which are likely to contain an object.

4.1 Performance Metrics for Object Detection

When evaluating object detection models, we need a way to match predictions with
the ground truth boxes. The criterion that is used for this is the intersection over
union (IoU), also known as the Jaccard similarity coefficient. The IoU is defined as
the size of the intersection of two sets divided by the size of the union:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (4.1)

When applied to images, A and B are the areas of the predicted bounding box
and the ground truth box and the IoU is thus obtained by dividing the area of the
overlap of the two boxes by the total area covered by the two boxes (counting the
overlap only once). The most commonly used threshold for counting a predicted
box as a match with respect to a ground truth box is IoU = 0.5, though other values
can be used and sometimes evaluation is repeated for different IoU thresholds.

Precision is a performance metric that originates form information retrieval and
can be defined as follows

precision =
#TP

#TP + #FP
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Here, #TP refers to the number of true positives, i.e. target objects that were correctly
classified and #FP refers to the number of false positives, i.e. instances where the
model predicts an object but no object is present at that location.
Similarly, recall is defined as

recall =
#TP

#TP + #FN

#FN denotes the number of false negatives, that is to say the number of objects in
the data which were not detected by the model.

Since neural networks for classification generally output a confidence score be-
tween 0 and 1 for each class, we have to choose a threshold value above which we
predict the presence of the class. Since the number of TP, FP, and FN depends on
how high or low we set the classification threshold, each threshold value is associ-
ated with a pair of precision and recall values. We can obtain the precision-recall
curve assigning precision to the y-axis and recall to the x-axis and plot the preci-
sion/recall points for the whole range of classification thresholds. The average pre-
cision (AP) for a class is then defined as the area under the precision-recall curve:

AP =
∫ 1

0
p(r)dr

As the name suggests, it can be interpreted as the the average precision for the dif-
ferent recall values. AP is the main metric that is used in the literature to evaluate
object detection performance for a given class. The mean average precision (mAP)
for all classes can be calculated to evaluate the performance across multiple classes.

4.2 Object Detection Neural Networks

4.2.1 R-CNN

In 2014, Girshek et al. proposed the Region-based Convolutional Network (R-CNN)
[17], which relies on the Selective Search algorithm [63] to propose RoIs, which are
then resized to a fixed size and passed as input to the AlexNet ConvNet. Here,
the ConvNet is only used for extracting (4096) features from the RoIs. To perform
the final detection, an SVM is trained for each class to perform binary classification
(whether or not the class is present). In addition, the features are used to train a
linear regression model in order to more accurately predict the bounding box for
the object. The combined approach was able to achieve a leap in performance, an
increase in mAP of more than 30% on the PASCAL VOC 2012 data set [10], a fre-
quently used benchmark, compared to the next best model at the time. However,
since the ConvNet has to process a large number of RoIs per image, the model is
much too slow for real-time prediction.

4.2.2 Fast R-CNN

The fast R-CNN [16] is an adaptation of the R-CNN architecture, in which the whole
image is passed to the ConvNet (instead of selected RoIs) and the Selective Search
is performed on the feature maps of the ConvNet. After identifying RoIs in the
feature map, these regions are resized to a fixed size by a RoI pooling layer. Next,
the resized features are passed to a fully connected layer which performs additional
processing before passing the output to a softmax layer for multi-class classification
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and a regression layer that refines the shape and location of the bounding box. These
changes made training the fast R-CNN about 10 times faster compared to the R-CNN
and predictions about 20 times faster. While the bottleneck in terms of performance
for the R-CNN was that the ConvNet had to evaluate all RoIs separately, for the fast
R-CNN, the bottleneck is the region proposal itself.

4.2.3 Faster R-CNN

To adress this bottleneck, a region-proposal network (RPN) was devised, which ob-
viates the costly Selective Search for RoIs [55]. First, the RPN performs a 3× 3 con-
volution, followed by a 1× 1 convolution to extract a feature vector at each location
in the feature map of the last convolutional layer of the ConvNet. To propose the
actual RoIs, each of the feature vectors is passed to (the same) two fully connected
layers. The first fully connected layer uses regression to predict the offset with re-
spect to k predefined anchors, which are default bounding boxes of different size and
aspect ratios. The second fully connected layer uses the same features and predicts
the objectness score corresponding to each of the anchors. In order to avoid multiple
detections of the same object when there are multiple anchors which receive high
objectness scores, non-maximum suppression (NMS) is performed by only retaining
the boxes associated with the highest scores for boxes whose overlap is larger than a
given IoU threshold. The final classification after NMS takes place by first perform-
ing RoI pooling on the last convolutional layer of the ConvNet and then passing the
features to a softmax layer, which predicts a probability score for each class (back-
ground also being counted as a class). Since the RPN uses the same convolutional
features as the final classifier, the region proposal is virtually for free during runtime.
One drawback of this architecture is that the RPN network has to be trained first and
then the proposed RoIs can be used to train the fast R-CNN part of the model. This
is repeated iteratively since both parts of the model share the same ConvNet.

4.2.4 SSD

The Single Shot Multibox detector (SSD, [46]) takes a similar approach to the faster
R-CNN, but simplifies the architecture and training procedure. One of the main
changes is that feature maps from several parts of the ConvNet are taken for pre-
dicting object location and class. Four new convolutional layers are added to the
two feature maps from the VGG-16 model [58]. This has the purpose of account-
ing for the large variation in the size of objects because the height and width of the
feature maps become increasingly smaller, meaning that nodes in the deeper layers
have a much larger receptive field with respect to the input image. The architec-
ture is shown in Figure 4.1. The early layers are therefore used for predicting small
objects and the later layers for predicting large objects.

To be more precise, the network attaches a 3× 3 convolutional layer with (c +
4) · k filters to each of these six feature maps, where c is the number of classes and
k is the number of anchor boxes per cell in the feature map. The network therefore
predicts at each location in those feature maps and for each of the k anchors the
corresponding softmax class probabilities in addition to four regression offsets with
respect to the anchor box. By using several feature maps of different sizes and recep-
tive fields with anchors of different sizes, the SSD discretizes the output space and
performs classification for each box before applying NMS. The lack of an explicit
region proposal step makes the network easier to train compared to the approaches
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discussed above and when first published, the network achieved state of the art per-
formance while being faster than most existing models. A difficulty that arises from
the architecture described above is that during training, the large majority of boxes
will be classified as negatives (i.e. as background), which is an issue because these
negative examples dominate the loss during training. To deal with this particular
problem, hard negative mining (HNM) is used for training the SSD. HNM selects
only a subset of these negatives during training by only taking those with the high-
est classification loss and ensuring that at most three times as many negative boxes
as positive boxes are used for training per image.

FIGURE 4.1: Adapted from [46]. Single Shot Multibox Detector (SSD).
Additional layers of decreasing height and width are appended to the
VGG-16 ConvNet. Predictions are made by sliding detection filters
across the feature maps at multiple scales with respect to the input

image.

4.3 RetinaNet

RetinaNet [44] is a relatively recent state of the art object-detection network that is
similar to SSD, but is improved by a new loss function and richer convolutional fea-
tures at multiple scales with respect to the input image. These changes increased
performance from an AP of 31.2 and 34.9 for the faster R-CNN+++ [26] and an im-
proved version of SSD [13] respectively to an AP of 39.1 for RetinaNet on the chal-
lenging MS COCO [45] data set. This is a significant improvement, considering that
all three models used the same ResNet-101 backbone as feature extractor.

4.3.1 Focal Loss

The training of the network is characterized by the focal loss function, which ad-
dresses the problem that the ground truth for the vast majority of output boxes cor-
responds to background which can dominate the overall loss for an image. This is
the same problem that SSD tries to solve by hard negative mining. To detect ob-
jects, for each box, RetinaNet performs a binary classification for each class using a
sigmoid activation function which predicts whether the given class is present in the
box or not. Defining pt as the probability that is assigned to the ground truth,

pt =

{
p if y = 1
1− p otherwise

(4.2)
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the focal loss for the classification of a box is given by

FL (pt) = − (1− pt)
γ log (pt) (4.3)

This is just the cross entropy with an additional factor (1− pt)
γ, with hyperparam-

eter γ ∈ [0, ∞). Adding this factor has the effect of significantly reducing the con-
tribution of easy predictions (high pt), especially for high values of γ. The authors
found that γ = 2 worked best in their experiments. By using focal loss, the network
can be trained using all outputs and without extra steps such as HNM.

For the bounding box regression, a smooth L1 loss is used. This loss was also
used by SSD and fast(er) R-CNN and is very similar to the standard L1 loss, but
smoothed around zero.

4.3.2 Feature Pyramid Network

The second defining feature of RetinaNet is that it uses a feature pyramid network
(FPN) [43] which can be obtained from the majority of recent ConvNets, such as
residual networks [26]. Extending standard ConvNets to FPNs is motivated by the
fact that ConvNets often have difficulties detecting small objects [46]. In contrast,
FPNs are particularly designed to facilitate object detection at multiple scales. This
is motivated by the success of traditional multi-scale approaches in computer vision,
such as the scale-invariant feature transform (SIFT) [48] and was indeed found to
provide a significant increase in performance when applied to object detection.

FIGURE 4.2: RetinaNet. Figure adapted from [44]. A ResNet is used
as feature extractor (a). Pyramid layers are connected in a feedfor-
ward manner by upsampling from small to large feature maps. In ad-
dition, they receive lateral connections from the corresponding layers
in the backbone. This feature pyramid network (b) creates features at
multiple scales. Weight-sharing classification subnetworks and box

regression subnetworks are attached to each pyramid layer.

The main idea of FPNs is to append new layers that are increasing in height
and width to the base network, which usually decreases in height and width as the
network becomes deeper. This architecture results in an hour-glass shape, such as
shown in Figure 4.2. Each new pyramid layer receives input from the previously
added smaller pyramid layer in addition to the deepest convolutional layer of the
base-network with the same dimensions as the new layer. To be more precise, the
relevant layers from the base network undergo a 1× 1 convolution to reduce dimen-
sionality. These feature maps are then added element-wise to the layers which were
upsampled by a factor of 2 (using nearest neighbor upsampling) from the previous
pyramid layer. Finally, a 3 × 3 convolution is used to generate the final pyramid
layers and reduce alias that may occur due to the upsampling. In this manner, it is
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possible to obtain abstract semantic information by upsampling from small to large
layers while also retaining precise spatial information by lateral connections from
the original layers of the base network.

4.3.3 Classification and Regression Subnetworks

In order to perform object detection, two fully convolutional subnetworks are at-
tached to each level of the feature pyramid, with the weights of these subnetworks
being shared between pyramid layers. See Figure 4.2 for a visual reference. The first
subnetwork is the classification subnetwork and consists of 4 convolutions with 256
channels per layer, followed by a convolutional layer with output depth c× k, where
c again denotes the number of classes and k denotes the number of anchor boxes per
location in the spatial grid that is given by the width and height of the convolutional
feature map. By default, 9 anchors (3 sizes with 3 aspect ratios) are used. Since the
network is fully convolutional, each grid cell corresponds to a region of the origi-
nal image. This means that RetinaNet provides detection outputs for each spatial
location as defined by the width × height grids of the feature maps of the feature-
pyramid layers and for each anchor bounding box in each grid cell. The last layer
uses sigmoid activation to predict the presence of each class, with scores close to 1
indicating complete confidence in the presence of an instance of a particular object
category and values close to 0 indicating strong confidence that no object of that
class is present in the region corresponding to the anchor.

The regression subnetwork has a very similar architecture and is used to adjust
the anchor bounding boxes to better fit objects that are detected by regressing the
offsets of the predicted box with respect to the anchor. Like the classification sub-
network, the regression subnet is attached to each layer of the FPN and consists of
4 convolutions with 256 channels per layer. The last layer is a convolutional layer
with output depth 4× k. Thus, the output of the regression subnet represents the
predicted offset of the x1, y1, x2, and y2 coordinates of the sides of the bounding box
with respect to the anchor per spatial location. In practice, the offsets are predicted
relative to the width and height of the anchor boxes.

In conclusion, the classification and regression subnetworks output sigmoid clas-
sification scores (for each class) and class-agnostic bounding box regression to pre-
dict the offset relative to the height/width of the anchor dimensions. To obtain the
final predictions, non-maximum suppression (NMS) is performed, in which only the
predictions with the highest classification scores are selected when there are several
detections with overlapping bounding boxes, as measured by the intersection over
union (IoU) criterion.
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Chapter 5

Experiments

In this chapter, we will discuss the experiments that we performed in order to an-
swer the research questions that were introduced in section 1.4. To recapitulate, these
can be summarized as follows: In the NN object-detection setting,

1. how does dropout affect the calibration of the model?

2. does the dropout uncertainty provide value when used as a measure that is
used for decision referral?

3. can dropout uncertainty be used to detect covariate shift?

4. can we model bounding box regression uncertainty by training the model to
predict the regression variance? How does this compare to the dropout uncer-
tainty for regression?

5.1 Dataset

The Berkeley Deep Drive dataset [65] is a recent data set that contains object de-
tection annotations for 100,000 images taken from independent clips of traffic sit-
uations. The videos are captured by cameras that are mounted on cars that drive
to a number of cities and highways in the United States. Images have a resolution
of 1280x720 pixels. The object categories that are annotated are: Bus, Light, Sign,
Person, Bike, Truck, Motor, Car, Train, Rider. Here, Rider refers to the person who
is riding a bicycle or motorbike. Bike and Motor refer to the bicycles and motor-
bikes respectively. As can be expected from real-world scenes, there is a substantial
class-imbalance in the data set, as illustrated in Table 5.1.

The dataset is quite challenging since many images were taken from behind the
windshield of a car and are therefore blurry or subject to flare on the windshield or
occlusion due to rain drops.

For the main part of the experiment, we removed the annotations for traffic lights
and traffic signs in order to focus on vehicles and people as participants of traffic.
The data set also contains annotations with respect to the time when the videos were
captured (Dawn/Dusk, Daytime, and Night). We split all of the Night images from
the rest of the images in order to obtain an additional test set that could be used
to evaluate how this distributional shift affects performance when testing on a split
that differs from the training distribution. This split is henceforth referred to as DAY
(Daytime, Dawn/Dusk) and NIGHT respectively.

Examples from both sets are shown in Figure 5.1. This leaves us with a train-
ing set of 41,972 images, a validation set of 6,071 images and 31,957 night images.
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bike bus car motor person rider train truck
395 638 33,059 188 5,012 272 4 1,672

TABLE 5.1: Number of instances per class in the DAY test set

Since no annotations are available for the official test set (consisting of the remain-
ing 20,000 images), we split the validation set into a smaller validation set of 3,036
images and test set of 3,035 images.

FIGURE 5.1: Example images sampled from the DAY (left column)
and NIGHT (right column) dataset.
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5.2 Detection Networks

All experiments were performed using a Keras [6] implementation1 of RetinaNet
[44] and we used weights that were pretrained on MSCOCO 2017 [45], achieving a
mAP of 0.537 for IoU = 0.5 and a combined mAP of 0.350 for the IoU threshold rang-
ing from 0.50 to 0.95. This network uses ResNet50 [26] as the backbone to build the
feature pyramid network. To answer our research questions, we modified the net-
work in different ways and fine-tuned all versions on the BDD dataset, as described
below. The dropout rates for the networks were obtained by favoring large dropout
rates in order to obtain meaningful variation in the output, while also ensuring that
any decrease in detection performance remains as small as possible.

5.2.1 Standard network (noDrop)

This is the standard network without modifications.

5.2.2 Backbone Dropout 10 (BB-10)

To perform dropout in the ResNet50 backbone, we added a dropout layer with
a dropout probability of 0.1 before the last convolutional layer of each bottleneck
block. Dropout uncertainty can then be obtained by performing stochastic forward
passes using the training model to obtain a set of outputs for each anchor in the im-
age. The stochastic predictions can then be combined by computing the mean and
variance of the output before performing NMS.

5.2.3 Backbone Dropout 20 (BB-20)

As for BB-10, but doubling the dropout rate (p = 0.2). We include this model because
in preliminary experiments dropout in the backbone was associated with a decrease
in performance, whereas the BB-10 actually improved detection performance on the
main experiment a little as we will see below. For a more thorough comparison, we
therefore also include a model that performs similarly to the other dropout variants
below.

5.2.4 Backbone 2D Dropout 10 (BB2D-10)

Similarly to BB-10, but using SpatialDropout [62] which randomly drops convolu-
tional filters, thereby setting whole depth-slices (channels) of the output volume to
zero. The BB2D-10 configuration uses a SpatialDropout probability of 0.1 in the
backbone.

5.2.5 Subnet Dropout 20 (SN-20)

For dropout in the regression and classification subnetworks, we add a standard
dropout layer with dropout rate of 0.2 before each of the four convolutional lay-
ers that precede the last layer. Performing dropout in the subnetworks means that
we induce noise in the semantically richer feature maps, compared to performing
dropout in the backbone. This results from the finding that convolutional filters be-
come more abstract as the network becomes deeper [66].

1https://github.com/fizyr/keras-retinanet
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car person truck rider motor bike train bus mAP
SN-20 0.700 0.606 0.587 0.467 0.463 0.511 0.00 0.578 0.489
SN2D-20 0.694 0.595 0.582 0.449 0.464 0.490 0.00 0.568 0.480
BB-10 0.702 0.611 0.589 0.477 0.472 0.517 0.00 0.577 0.493
BB-20 0.698 0.597 0.572 0.448 0.465 0.495 0.00 0.568 0.480
BB2D-10 0.700 0.606 0.576 0.454 0.469 0.496 0.00 0.575 0.484
Laplace 0.691 0.595 0.569 0.446 0.446 0.494 0.00 0.536 0.472
Gauss 0.688 0.591 0.558 0.430 0.439 0.495 0.00 0.534 0.467
NoDrop 0.702 0.614 0.588 0.464 0.453 0.498 0.00 0.583 0.488

TABLE 5.2: Detection performance (AP) of different networks on the
DAY test set (at IoU = 0.5).

5.2.6 Subnet 2D Dropout 20 (SN2D-20)

In the SN2D-20 configuration, dropout is implemented as for SN-20, but using Spa-
tialDropout instead of standard dropout.

5.2.7 Laplace Regression (Laplace)

In the Laplace configuration, the network is trained to predict (for each of the four
sides) the spread parameter b (cf. Equation 3.7) of the Laplace distribution which
we assume underlies the error of the bounding box regression. This assumption is
based on the fact that RetinaNet is trained with a smooth version of the absolute
regression error and an absolute error term is also obtained by assuming a Laplace
noise distribution, as discussed in section 3.3. In practice, we predict the log of b for
numerical stability and to ensure that b > 0. The regression error is then just the
NLL.

5.2.8 Gaussian Regression (Gauss)

We do the same but using a Gaussian observation noise model. That is, we predict
the log variance log σ2 from Equation 3.2, assuming that the regression error follows
a normal distribution. We again use the NLL as the regression loss.

5.3 Training and Optimization

All networks were trained for 80,000 iterations with a batch size of 2, using the
ADAM optimizer with a learning rate of 5× 10−5, which worked well for all re-
ported models. Learning rates were decreased by half if the validation loss did not
decrease for two subsequent epochs of 4000 iterations. If the validation loss did not
decrease further after three subsequent epochs, training was stopped. Data augmen-
tation was performed by randomly mirroring training images around the vertical
axis.

5.4 Model Performance

As suggested in [14], we use MC-dropout to obtain predictions for the dropout mod-
els at test time. Specifically, we perform 30 forward passes2, from which we compute

2in preliminary experiments we found no improvement when performing more than 30 forward
passes.
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car person truck rider motor bike train bus mAP
SN-10 0.638 0.563 0.495 0.356 0.205 0.441 0.000 0.436 0.392
SN2D-20 0.633 0.549 0.503 0.327 0.273 0.473 0.000 0.463 0.403
BB-10 0.646 0.554 0.527 0.385 0.231 0.525 0.000 0.416 0.410
BB-20 0.633 0.541 0.515 0.377 0.251 0.467 0.000 0.452 0.404
BB2D-10 0.643 0.565 0.506 0.431 0.207 0.489 0.000 0.453 0.412
NoDrop 0.644 0.558 0.499 0.378 0.222 0.501 0.000 0.460 0.408

TABLE 5.3: Detection performance (AP) of different networks on the
NIGHT test set (at IoU = 0.5).

the average sigmoid and regression predictions, as well as the variance around these
predictions. The detection performance of the networks that were trained on the
DAY training set and tested on the DAY test set is shown in Table 5.2.

A baseline for comparison is provided in [65], in which a faster R-CNN [55] is
trained on all daylight images (excluding night and dawn/dusk). They report an
mAP of 0.3515 for these classes. Note that we used a different split by also including
dusk/dawn images in the DAY split. The relatively large difference in performance
can be attributed to the fact that RetinaNet is a more recent object detection network.
In addition, we fine-tuned the weights of a pretrained model, which often improves
performance. The network fails to detect any trains in the test set (which is also true
for the baseline reported by [65]). This is likely due to the fact that there are only 171
trains in the 100,000 images and only 4 instances in our test set that was obtained by
random assignment of the images.

The performance that results from testing these models on the NIGHT split is
presented in Table 5.3. The networks generalize a bit better to the NIGHT test set
with a drop of about 0.08 mAP compared to [65], who found a drop of 0.093 mAP.
This is probably due to the fact that our DAY split also includes dusk/dawn im-
ages, which are more similar to the night images. We deliberately decided to keep
dusk/dawn images in the DAY set in order to ensure that the NIGHT split is not
completely different compared to the DAY split. We consider this scenario of en-
countering different, but still related data distributions to be more likely to occur in
practice.

5.5 Association between Dropout and Sigmoid

Considering that the derivative of the sigmoid function is largest when the input to
the sigmoid is zero and close to zero when the input is a large positive or negative
number, we can expect the dropout variance to be largest for predicted probabilities
of 0.5 (corresponding to an input value of zero) because any change in the input due
to dropout has a much larger effect on the output compared to the saturated parts
of the function. This relationship is indeed found when we assign sigmoid scores
to bins and measure the mean and variance of the dropout variance of the sigmoid
score. This is illustrated in Figure 5.2, in which we see that the dropout variance in
the subnetworks is larger compared to dropout in the backbone, for instance σ̄(p =
0.5) ≈ 0.077 for SN-20 and σ̄(p = 0.5) ≈ 0.061 for BB-20. We surmise that this is due
to the fact that feature maps become more abstract and semantically richer for deep
layers [66]. This would explain why dropout in layers that are very close to the NN
output would induce larger variation in the output.
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FIGURE 5.2: Empirical association between sigmoid score and corre-
sponding dropout variance. Blue lines represent ± 1 standard devia-

tion in dropout variance.

5.6 Calibration

The calibration of the different models can be obtained by binning predictions into
confidence ranges and computing for each bin the empirical performance on the test
set. We chose to divide the sigmoid range of [0, 1] into 60 bins. This is presented in
Figure 5.3, which shows that model predictions are overconfident for detection val-
ues below 0.4 and underconfident for values that are larger than 0.4. Looking closely,
we can see that the calibration appears to be slightly worse for the BB variants in the
range of [0.4, 0.8], but the difference is rather small.

5.7 Decision Referral

In order to determine whether dropout uncertainty can be used to rank which pre-
dictions are most likely to be wrong, we apply dropout uncertainty in a decision
referral paradigm. In decision referral, difficult predictions are referred to an oracle,
such as a human expert. The performance of the model is then computed on the
reduced data set of predictions that have not been referred to the oracle. Specifi-
cally, we use the sigmoid score of the standard RetinaNet for the predicted class as
a baseline. For this model, sigmoid scores are considered to be more uncertain the
closer they are to 0.5. For dropout uncertainty, we take the dropout variance in the
sigmoid score for the predicted class as the referral criterion. We can then investigate
how performance increases if we remove more and more potential detections from
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FIGURE 5.3: Calibration on the test set. The predicted score is the
sigmoid confidence for the predicted class. Calibration was obtained
after thresholding scores at a confidence of 0.05 and performing NMS.

the data set, starting with the most uncertain examples and removing increasingly
more certain instances. In practice, we consider only referral for thresholded predic-
tions (with a confidence of 0.1) after the NMS step because otherwise the number of
predictions becomes too large to be meaningful in this paradigm. This is due to the
preponderance of low-confidence predictions. Since we are interested in the change
in precision and recall as data is referred, we must choose ≤ 0.5 as a fixed score
threshold for predicting the presence of an object.

Performing decision referral on the DAY test set is visualized in Figure 5.4. On
average, there are 43 potential detections per image after thresholding and NMS.
Thus, at a referral rate of 50% (upper right end of the lines), about 21 detections are
deferred per image. This means that the performance for 5% and 10% referral is
of particular interest, as it is the most feasible in practice. From Figure 5.4 we can
infer that the sigmoid uncertainty of the noDrop model is the most suitable referral
criterion. Referring 5% or 10% of detections is associated with a much larger perfor-
mance increase compared to dropout variance of the sigmoid score of the predicted
class. The performance increase after 50% referral is also larger. While the improve-
ment in precision is largest for dropout variance in the SN-20 and SN2D-20 models
after 20% referral, this comes at the cost of an initial decrease in recall. Note that this
phenomenon can be explained by the fact that for these networks, the association be-
tween dropout variance and sigmoid scores is shifted towards higher sigmoid scores
(see Figure 5.2).

These results indicate that the standard sigmoid uncertainty is a better statistic
for ranking detections by their probability of being false compared to the dropout
variance of the sigmoid score. This stands in contrast to the finding of [41], in which
they found that that dropout uncertainty worked well for decision referral in an im-
age classification task, while softmax output was not able to achieve consistent im-
provements in accuracy. This difference in results may be due to the fact that during
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FIGURE 5.4: Decision referral. Performance on the complete test set
is represented by the lower left of the lines. Each subsequent point
represents the improved performance after referring an additional 5%
of the detections, ranked by the uncertainty metric. At the upper right

of the lines, 50% of potential detections have been referred.

training for object detection, the network encounters a significant preponderance of
background patches, which may force the network to only predict objects when it
is justified to do so. This may render the sigmoid uncertainty more meaningful for
referral compared to the softmax uncertainty for classification.

We also looked at other ways of measuring dropout uncertainty for this task.
Instead of looking only at the variance in the score for the predicted class, one could
also look at the average dropout variance or standard deviation across all classes. As
can be seen in Figure A.1 in Appendix A, these measures did not beat the sigmoid
baseline.

5.8 Domain-shift Detection

In the next step, we set out to investigate whether dropout uncertainty can be used
for detecting that distributional shift took place, meaning that the network is tested
on data that differs from the training distribution. For this purpose, we applied the
dropout networks, which were trained on the DAY split to the NIGHT split and com-
pared the distribution of scores for the predicted class, the dropout variance in these
scores, and an adjusted dropout variance in which we correct for the association be-
tween sigmoid scores and the dropout variance around these scores, as illustrated in
Figure 5.2. In particular, we divided the sigmoid range of [0, 1] into bins and mea-
sured the dropout variance for these bins. Subsequently, to adjust a given dropout
variance, we subtract the mean of its bin and divide by the standard deviation. The
distribution of scores of the SN-20 network for the Day test set and 1,000 randomly
selected images from the NIGHT set is presented in Figure 5.5.

To compare the distributions, we compute the two-sample Kolmogorov-Smirnov
(KS) statistic, which is equal to the maximum vertical distance between the cumula-
tive empirical distribution functions of the two sampled distributions. Large values
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FIGURE 5.5: Cumulative density histogram of sigmoid scores, ad-
justed dropout variance, and dropout variance for the DAY vs.
NIGHT split for SN-20. All measures are taken with respect to the

predicted class.



5.8. Domain-shift Detection 45

FIGURE 5.6: Cumulative density histogram of sigmoid scores, ad-
justed dropout variance, and dropout variance for the DAY vs.
NIGHT split for BB-20. All measures are taken with respect to the

predicted class.
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of this statistic indicate that the two samples do not originate from the same under-
lying distribution. The results for this statistic are presented in Table 5.4. Overall,
the adjusted variance for SN-20 results in the largest discriminability according to
the statistic, which is approximately twice as large as the KS statistic for the sigmoid
score of the BB models and the noDrop models. Note that for the BB models, the
adjusted dropout variance is not a useful measure for discriminating between the
two distributions, as is shown for BB-20 in Figure 5.6.

Sigmoid score Variance Adj. variance
SN-20 0.183 0.001 0.357
SN2D-20 0.181 0.002 0.253
BB-10 0.181 0.001 0.075
BB-20 0.181 0.001 0.069
BB2D-10 0.181 0.001 0.054
NoDrop 0.184

TABLE 5.4: The Kolmogorov-Smirnov statistic for the three measures,
comparing the distribution of DAY images to that of NIGHT images.

Large KS statistics reflect larger differences in distributions.

5.9 Regression

For the dropout models, regression variance is obtained similarly to the classifica-
tion case: 30 stochastic forward passes are performed, from which we compute the
mean and standard deviation of the regressed box offset. In contrast, the Laplace
model does not require sampling and directly predicts the variance of a Laplace
distribution. In Figure 5.7, the first column shows the regression residuals (errors)
with respect to the ground truth objects from the test set. In the second column,
the predicted standard deviations are visualized, which can be used to compute
normalized residuals (right column) by dividing the regression errors by the pre-
dicted variance. We can see that the normalized residuals of the Laplace model fit
the standard Laplace distribution rather well, which indicates that the model has
successfully learned to predict a Laplace distribution for the regression task.

The Gauss model performs similarly, but since both the regression residual and
the normalized residual resemble a Laplace distribution more than a Gaussian dis-
tribution, it would be more natural to opt for the Laplace regression, which is also
associated with a slightly better performance 3 (see Table 5.2).

In contrast, the variance that is predicted by the dropout models is rather low.
Consequently, the normalized residuals have a much higher spread compared to the
Laplace model. In this case, one may still use the dropout variance for instance to
compare regression uncertainty between different datasets. However, the paramet-
ric Laplace model can also be used to make probabilistic inferences about the precise
location of objects.

By inspecting the Laplace regression uncertainty overlayed on the predicted bound-
ing boxes, we generally find that the model seems to have learned meaningful re-
gression uncertainty. For instance, regression uncertainty is usually larger when
objects are partially occluded. Two examples are shown in Figure 5.8 and Figure 5.9.

3the difference in performance was more pronounced on preliminary experiments on the similar
KITTI dataset [15].
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FIGURE 5.7: Bounding box regression: Regression error (left column),
predicted STD (middle column), and normalized residuals (right col-
umn) of seven trained models. Normalized residuals are residuals
that are divided by the predicted standard deviation. The predicted
standard deviation is a learned model output for the first two rows
and dropout uncertainty for the rows below that. The red line in the

right column represents a standard Laplace distribution.
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FIGURE 5.8: Predicted bounding boxes (red) and ground truth boxes
(green). Predicted Laplace uncertainty is shown as white bars, indi-
cating ±1 standard deviation. This image is a crop from the original

image.

FIGURE 5.9: Ground truth boxes (green) and predicted boxes (red
for cars, yellow for the person, blue for the truck). Predicted Laplace
uncertainty is shown as white bars, indicating±1 standard deviation.

This image is a crop from the original image.
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5.10 Novelty Detection

Novelty detection, also referred to as anomaly detection, is closely related to domain-
shift detection and deals with the detection of inputs to the system that have not
been encountered during training. Given that with the Laplace and Gauss models
we provide over learned regression uncertainty, we surmised that this could be used
in order to detect novel objects of interest. Since everything that is visible can be con-
sidered an object in some sense (i.e. there is no real background), we are especially
interested in novel objects that have some similarity with objects categories from the
dataset. We hypothesized that compared to instances of known classes, these objects
will more frequently have a combination of high classification uncertainty, coupled
with low regression uncertainty. This relies on the assumption that the class-agnostic
bounding box regression generalizes to novel, but similar classes.

5.10.1 Dataset

To investigate this, we created an additional dataset split, removing all images in
which at least one bus or truck is present from the DAY set (we further refer to this set
as the DAY-Car set). The images that were removed together form the DAY-TB set.
This results in test and validation sets of 1,686 images each, a training set comprising
22,773 images, a bus/truck subset of 21,898 images containing at least one bus or
truck and 31,957 night images (which were not used during further analysis).

A model variant of the Laplace model was trained on the DAY-Car dataset, using
the same training configuration that was described above, but now for 6 instead of
the 8 classes that were used previously.

5.10.2 Regression Uncertainty

We test this hypothesis by finding predictions for DAY-TB that have at least a sig-
moid confidence of 0.25 for the car class and match a ground truth bounding box of
a car, bus, or truck by at least IoU = 0.5. Bounding boxes that are smaller on one side
than 100 pixels are excluded because we want to focus on objects that are not too far
away from the camera. We plot the sigmoid confidence and the average regression
uncertainty of the four box sides in Figure 5.10. While it seems that there is a pre-
ponderance of buses and trucks in the region of high regression confidence and low
sigmoid confidence, at closer inspection we can see that the regression uncertainty
does not seem to facilitate the separation of cars from trucks and buses. In other
words, the sigmoid uncertainty is much more discriminative for the three classes.

5.10.3 Autoencoder Reconstruction Error

As an additional step, we want to see whether the reconstruction error of an autoen-
coder can serve as an anomaly score for the same task, as discussed in section 3.6.
We follow the previously discussed configuration that was applied to the disease
detection task, [41], but adapt the setup for object detection. To train the autoen-
coder, we only consider detections with a sigmoid confidence of at least 0.15 be-
cause the large majority of the outputs corresponds to less confident predictions.
Recall that the regression subnet and classification subnet have output dimensions
height ×width × #anchors × #classes, and height ×width × #anchors × 4 respec-
tively. For each prediction, the input for the autoencoder is the concatenation of the
two 256 dimensional (depthwise) feature vectors in the corresponding (row, column)
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FIGURE 5.10: Scatterplot for instances of the classes car, bus, and
truck, found in a test set of 1000 images. The x-axis of the scatter-
plot shows the sigmoid score for the class car. The y-axis shows the
predicted standard deviation of the Laplace distribution, taking the
average of the four sides of the bounding box. The network was
trained with a Laplace regression loss on a training set which con-
tains no trucks or buses. The density plots show marginal densities
for the corresponding axes. Densities are estimated with a Gaussian

kernel.

location in the penultimate layer of the classification and regression subnetworks.
The input is encoded to 128 and then 32 features. The decoder reconstructs the code
back to to 128 and then 512 features. Both encoder and decoder consist of two fully-
connected layers with ReLU activation functions. This is visualized schematically
in Figure 5.11. In practice, the actual detection output for the predicted box is also
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concatenated to the input to the autoencoder.

FIGURE 5.11: A schematic visualization of the autoencoder. For each
prediction to be considered, the 256 dimensional feature vectors of the
corresponding location (row, column) in the penultimate layer of the
classification (green) and regression (purple) submodels are concate-
nated and encoded to 128 and then 32 features. The decoder recon-
structs the code back to 128 and then 512 features. Both encoder and
decoder consist of two fully-connected layers with a ReLU activation

function.

The autoencoder is trained using ADAM with a learning rate of 5× 10−5 and a
batch size of 4 for 20,000 iterations (20 epochs with 1000 steps each), while freezing
the parameters of the previously trained base network. As for the standard net-
works, the learning rate was decreased by half if the validation loss did not decrease
for two subsequent epochs of 4000 iterations. If the validation loss did not decrease
after three subsequent epochs, training was stopped.

Since we previously saw that the sigmoid score is much more discriminative
compared to the regression uncertainty, we now look at the association between
the sigmoid score and the reconstruction error. This is shown in Figure 5.12 for an
autoencoder that is trained using the MSE of the reconstruction. Contrary to our
expectations, buses and trucks are generally associated with a lower reconstruction
error compared to the cars. Furthermore, there is a non-linear association between
the anomaly score and the sigmoid uncertainty in that large anomaly scores are only
observed for confident predictions (> 0.9) which predominantly correspond to cars.
We first assumed that this may be related to the fact that the majority of predictions
that are used for training the autoencoder have low sigmoid confidence, even after
thresholding at 0.15. However, we repeated the procedure with sigmoid thresholds
of 0.25 and 0.75 using both the MSE and the MAE as a loss function and did not find
that that the novel classes are associated with higher reconstruction errors. We also
looked at these configurations without using an activation function, thereby map-
ping the autoencoder to a linear mapping. In all of these cases, the reconstruction
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FIGURE 5.12: Scatterplot for instances of the classes car, bus, and
truck, found in a test set of 1000 images. The x-axis of the scatter-
plot shows the sigmoid score for the class car. The y-axis shows the
anomaly score (reconstruction error) that is obtained by the autoen-
coder that is applied to the feature vector associated with the individ-
ual predictions. The network was trained with a Laplace regression
loss on a training set which contains no trucks or buses. The autoen-
coder was trained with MSE (cf. Figure B.1 in Appendix B for the
MAE). The density plots show marginal densities for the correspond-

ing axes. Densities are estimated with a Gaussian kernel.

error does appear to improve the separation between classes compared to using the
sigmoid uncertainty alone.



5.11. Discussion 53

5.11 Discussion

The main purpose of the experiments above was to see whether dropout uncertainty
can be of additional value when performing object detection with a state-of-the-art
detection NN. In order to maintain the model performance as measured by mAP,
we opted for relatively small dropout probabilities because providing an additional
uncertainty measure at the cost of detection performance is unlikely to be useful in
practice.

We found that there are only small differences in model calibration when dropout
is used. When looking at the decision referral task, dropout uncertainty did not
result in an increase in performance when compared to the entropy of the sigmoid
output of the standard network. This suggests that for object detection, the sigmoid
detection output is a better predictor for which examples are most difficult.

For domain-shift detection, it initially appears that the distribution of dropout
uncertainty is less discriminative compared to the sigmoid output for detecting a
difference between the DAY and the NIGHT test sets. However, by adjusting the
dropout variance for the non-linear association with the sigmoid confidence, a rela-
tively large increase in discriminability as measured by the KS statistic is observed
for the SN dropout models.

When looking at regression uncertainty, training the model to predict the vari-
ance of a Laplace noise distribution results in normalized regression residuals that
fall within the expected standard Laplace distribution, indicating a good fit between
predicted variance and observed regression residuals.

In contrast, regression variance that is obtained by dropout tends to underes-
timate the residual in our experiments, resulting in a wider distribution when we
divide the observed residual by the predicted variance. For individual predictions,
this means that regression variance obtained by dropout is less effective at narrow-
ing down a range of values that the error is likely to fall into compared to the Laplace
regression, which provides more reliable, probabilistic estimates.

We further found that using regression uncertainty for detecting novel objects
does not seem to constitute an improvement compared to just using the sigmoid
score by itself. Based on the work presented in [41] on disease detection, we expected
the reconstruction error of the autoencoder, when applied to the hidden features, to
increase for novel objects. Counter to our expectations, the reconstruction error was
smaller, not larger for novel objects. Again, the sigmoid score by itself seems most
discriminative.
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Chapter 6

Conclusion

6.1 Summary of Results

In this thesis, we examined a number of scenarios in which additional uncertainty
estimates may be of value when performing object detection with an NN. Overall,
we found mixed evidence for the hypothesis that adding dropout uncertainty to the
NN provides added value beyond the standard output. We now revisit our research
questions in light of the experimental results shown in Chapter 5.

1. How does dropout affect the calibration of the model? We found in our exper-
iment that variants of RetinaNet which perform predictions with MC-dropout
showed very similar calibration when compared to the standard version of
RetinaNet. At the outset, we did not have particular reasons to assume that
calibration would be improved by dropout other than perhaps that predictions
would be more robust when they are the result of several stochastic forward
passes instead of a single deterministic forward pass. However, with respect
to model calibration, this intuition does not seem to hold. If good calibration
is required, dedicated approaches which calibrate trained models [24] should
be considered.

2. Does the dropout uncertainty provide value when used as a measure that is
used for decision referral? When performing decision referral in the BDD
dataset, we found that dropout uncertainty did not result in an increase in
performance when compared to the entropy of the sigmoid output of the stan-
dard network. This is surprising, considering the research in [41], where it was
found that only dropout uncertainty and not the softmax classification score
was associated with consistent increases in performance. This hints at the fact
that the sigmoid detection output is a better predictor for which examples are
most difficult, perhaps because the large number of background patches that
the model encounters during training make the output more robust compared
to classification tasks. Note that we do not attribute this difference in find-
ings to the different output layer types because the softmax function can be
considered a generalization of the sigmoid function to multiple object cate-
gories when classification is mutually exclusive1. Rather, we attribute this to
the large difference in the number of instances corresponding to a non-target
(background) class that is present in object detection, but often not in classifi-
cation tasks.

3. Can dropout uncertainty be used to detect covariate shift? We trained differ-
ent versions of RetinaNet on the DAY split and tested these models on the

1Some object-detection NNs such as SSD do in fact use a softmax layer instead of independent
sigmoids for each class
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NIGHT dataset to assess how this covariate shift would be reflected in the dis-
tribution of output and dropout uncertainty scores. In this setting, we found
that standard dropout uncertainty was less discriminative compared to the
sigmoid output for detecting a difference in distribution between the DAY and
the NIGHT test sets. However, after adjusting the dropout variance for the
non-linear association with the sigmoid confidence, the Kolmogorov–Smirnov
statistic indicates that such dropout variance is much more predictive com-
pared to the standard output for the subnetwork dropout models. This sug-
gests that such a type of adjusted dropout variance can be used to detect co-
variate shift when the shift in distribution results in a new data distribution
which is different, but still shares a minimum level of similarity with the orig-
inal distribution. If the shift is so significant that the network has to process
completely different inputs (such as only completely white or black images in
the extreme case), we would predict that the KS statistic would be largest for
the standard sigmoid scores because we would expect the model to predict
only background and with high confidence.

4. Can we model bounding box regression uncertainty by training the model to
predict the regression variance? How does this compare to the dropout uncer-
tainty for regression? Our experiments showed that assuming a Laplace noise
distribution and training the model to predict the variance for the regression
errors results in normalized residuals that coincide with the expected standard
Laplace distribution. While learning to predict regression variance has been
investigated before (e.g. [33]), we found that this is also possible for object-
detection networks like RetinaNet, which normally use the smooth L1 loss for
regression. This allows us to make probabilistic predictions with respect to the
bounding box dimensions. In contrast, the dropout regression variance tends
to underestimate the residual and therefore has much fatter tails compared to
the Laplace distribution. Considering the distinction between aleatoric and
epistemic uncertainty, one may conceive of scenarios in which it would be
useful to provide both types of uncertainty by using the Laplace and dropout
uncertainties respectively. For most practical purposes, however, it seems that
the Laplace regression suffices to estimate regression uncertainty and by visual
inspection we did not find that dropout uncertainty and Laplace uncertainty
reflected different underlying causes such as visual noise versus visual seman-
tic ambiguity.

To answer these research questions, we compared models that used different
types of dropout (standard dropout and SpatialDropout [62]) in different parts of
the network (backbone and subnetworks). For comparable mAP scores, dropout
in the subnetworks resulted in larger output variance, which we concluded to be
due to the observation that feature maps in deep layers are semantically richer [66]
compared to early layers in the network. Since adjusted dropout variance to detect
covariate shift was only most predictive for dropout in the subnetworks but not in
the backbone, we hypothesize that perhaps dropout in layers that are close to the
output layers results in more meaningful variation with respect to the prediction
task.

It is further worth mentioning that SpatialDropout resulted in larger output vari-
ation compared to standard dropout for equal dropout rates. However, whether
dropout was performed in the backbone or in the subnetworks had a much larger
effect on performance in all of our experiments.
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In summary, Monte-Carlo dropout did not improve calibration and did not im-
prove the performance of the model when used as a decision-referral criterion. We
found dropout uncertainty most promising for detecting covariate shift, but in or-
der to make definite claims about the effect of adjusted dropout variance for this
purpose, further research is required, using different datasets and object-detection
networks. Research on the subject of covariate shift and novelty detection would
further require a thorough comparison with approaches that are dedicated to this
purpose.

One conclusion that can be drawn from our results is that prior research on
image classification does not necessarily generalize well to the object detection do-
main. This becomes clear by contrasting our results with the results in [41], in which
dropout uncertainty was a useful criterion for decision referral and in which the re-
construction error that was obtained by an autoencoder was larger for novel data,
which we did not replicate in our experiments. It can be argued that this is due to
the output of object-detection networks being more robust compared to the output
of classification models if these do not encounter a diverse set of non-target inputs
during training.

6.2 Recommendations for Future Research

Previous research [14] showed that dropout uncertainty could be used for identi-
fying inputs that the model is uncertain about and that would be most valuable to
be trained on in an active learning paradigm. Given the results that we obtained in
the decision-referral task, we suspect that this would not work well in our object-
detection set-up as the sigmoid output was the best criterion for identifying difficult
examples. Although we did not pursue this question further, active learning would
still be an interesting topic for future research.

There is a large number of stochastic regularization techniques which could be
investigated in a similar manner compared to our investigation of dropout. For
example, we could replace Bernoulli dropout with multiplicative Gaussian noise
[60] or distort the input images and observe the variation in network output.

Another avenue of investigation would be to extend the feasibility of Bayesian
NNs such as the one proposed in [3] to large object-detection models like RetinaNet.
It can be argued that this will become increasingly interesting as the performance
and memory of GPUs increases over time.
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Appendix A

Decision Referral - Other Metrics

FIGURE A.1: Same as Figure 5.4 on page 43, but using the mean
dropout variance (top) and the mean standard deviation (bottom) in
the sigmoid output across classes instead of the predicted class as the

referral criterion.
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Appendix B

Novelty Detection with MAE

FIGURE B.1: Same as Figure 5.12 on page 52, but for an autoencoder
trained using the MAE instead of the MSE.
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