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Abstract

In this project we will use reinforcement learning, the CACLA algorithm,
to let an agent learn to control a robotic arm. Inspired by domestic service
robots that have to perform multiple complex tasks, manipulation is only a
small part of it. Using neural networks an agent should be able to learn to
complete a manipulation task without having to calculate paths and grasp-
ing points. We will be using a 6 degree of freedom robotica arm, Mico, and
make use of a simulator called V-REP to perform the experiments. We com-
pare the results to a traditional simple inverse kinematic solver to see if there
is a gain in speed, accuracy or robustness. Whilst most agents use one neural
network to perform their task, we will experiment with different architec-
tures, namely the amount of neural networks that each control a sub-set of
the joints, to see if this can improve results. Whilst for reinforcement learn-
ing exploration is very important we test two different exploration methods;
Gaussian exploration and Ornstein-Uhlenbeck process exploration, to see if
there is any influence in the training. We experimented first with letting
the end effector of the arm move to a certain position without grasping an
object. It was shown that when using only 1 joint learning is very easy, but
when controlling more joints the problem of simply going to a single location
becomes more difficult to solve. While adding more training iterations can
improve results, it also takes a lot longer to train the neural networks. By
showing a pre training stage consisting of calculating the forward kinematics
without relying on any physics simulation to create the input state of the
agent, we can create more examples to learn from and improve results and
decrease the learning time. However when trying to grasp objects the extra
pre training stage does not help at all. By increasing the training iterations
we can achieve some good results and the agent is able to learn to grasp an
object. However when using multiple networks to control a sub-set of joints
we can improve on the results, even reaching a 100% success rate for both
exploration methods, not only showing that multiple networks can outper-
form a single network, also that exploration does not influence training all
that much. The downside is that training takes a very long time. Whilst
it does not outperform the inverse kinematic solver we do have to take into
account that the setup was relatively easy, therefore making it very easy for
the inverse kinematic solver.
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Chapter 1

Introduction

1.1 Introduction

Robots are becoming more common in our daily lives and the industry for
creating robots is only growing more according to the International Feder-
ation of Robotics [19]. Since the late 70’s the industrial robot has become
quite important for faster production in factories, whilst robots that can be
used outside of factories like the autonomous car [26], autonomous drones
[11], security drones [10] and robots that can help in hospitals [29] are under
development or even already being used. Whilst fully autonomous cars are
still in development, an autonomous driving assistant [9] is already avail-
able and used in cars from Tesla [1]. A lot of research is also being done
on domestic service robots, these robots should be able to help people with
household tasks, or in hospitals and elderly care [5]. Domestic service robots
should be able to perform lots of complex tasks: navigating, speech recogni-
tion, object recognition and manipulation. All this has to be done safely and
fully autonomously. To keep track of the development of domestic service
robots there is a competition, Robocup@home [47], that is used as a bench-
mark. The Robocup@home competition exists of different challenges that
test different aspects of a domestic service robot. A reoccurring part in the
challenges is manipulation: grasping an object and putting it down some-
where else, put objects in a cupboard with different height shelves, opening
doors, prepare breakfast and turn off the television via the remote.

1.2 Project and Motivation

This project will focus on the manipulation part, mainly on picking up ob-
jects with a 6 Degree of Freedom (DoF) robotic arm. The objects that need
to be picked up will have simple shapes because of the limited complexity of
the robotic arm’s end effector, a two finger underactuated gripper. Instead
of using Cartesian control or planners that use inverse kinematics to control
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the arm’s motion, we will make use of neural networks to control the arm.
Neural networks are capable of learning, the idea is that a neural network
can learn to complete complex tasks without having to calculate paths and
grasping points whilst also being able to handle unseen situations. Since
manipulation tasks are getting more difficult, like using a remote to turn off
a television, it would be better to be able to learn how to complete tasks
instead of having to program an approach on how to solve the task.

In this project the arm, or rather an agent, will have to learn how to
grasp an object by making use of Reinforcement Learning (RL) [42]. For this
project we want to compare how a simple inverse kinematic planner performs
versus an agent that has learned how to grasp objects. For the inverse
kinematic solution we will make use of the MoveIt [40] package. MoveIt
can plan collision free paths but it can not plan on how to grasp an object.
The operator needs to tell the planner how to grasp an object by providing
possible grasp angles. Giving multiple grasping angles is needed because
not every grasp angle is reachable by the arm and the arm could collide
with other objects in the scene on certain angles. Giving more possible
grasp angles means more computation time for planning a path to grasp the
object. By using RL we can let the agent learn how to perform the grasp
and therefore when the training is done it is able to execute the grasping
motion without the need for an operator to specify how to grasp it, nor does
it need to calculate a path.

1.3 Research Questions

We will focus on neural networks that can control the robotic arm. We will
make use of the Mico [21] robotic arm, with 6 DoF and a two finger gripper.
We will perform the training and testing in a simulator called V-REP [35].
For RL we will make use of the CACLA [45] algorithm, it will try to learn
velocity commands for each of the actuators so it can grasp an object. In
order to test the performance we will compare the controller to a simple
inverse kinematic planner with simple grasping suggestions using MoveIt.
Since the arm itself does not contain any force sensors in its fingers and the
fingers are underactuated, we cannot get any feedback during grasping and
therefore this will make learning more difficult.

Another aspect is the architecture of the neural network, commonly only
one neural network is used to learn a mapping from inputs to actions. In
this project we will look at different architectures for controlling the arm,
instead of one neural network we can have multiple neural networks each
controlling a set of joints. This way we can change parameters for each of the
networks separately to possibly improve training time or the performance.
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Exploration is very important in reinforcement learning, without it learn-
ing can not be done. Since exploration influences how well an agent can learn
we will explore two different methods for exploration to see if this influences
the training.

Training will be done in simulation because training on a real arm would
require constant supervision of a human operator that can reset the envi-
ronment. It will also take a lot of time since the arm cannot operate faster
than real time, furthermore only one arm is available therefore only one set
of parameters can be tested at the time.

The main research question is:

• How does reinforcement learning compare to a much simpler inverse
kinematic controller for grasping objects? Is there a gain in speed,
accuracy or robustness?

The sub-questions:

• Which neural network architecture results in the best performance?

• How does the exploration method influence the training?
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Chapter 2

State of the Art

In this chapter we will describe different methods that are used to solve
manipulation tasks. We will discuss a trajectory planner, supervised and
unsupervised machine learning methods, and reinforcement learning meth-
ods that are used for performing manipulation tasks with a robotic arm.

2.1 Trajectory Planner

In order for complex movements and obstacle avoidance, a trajectory should
be created that the end effector should follow. In order to get information
about the environment a sensor is needed, this allows the planner to plan
a collision free path. We will make use of MoveIt [40], a framework for 3D
perception and manipulation control. MoveIt makes use of the Open Motion
Planning Library (OMPL) [41], an open-source motion planning library that
primarily uses randomized motion planners.

2.1.1 URDF

The Unified Robot Description Format (URDF) [12] is used by MoveIt to
represent a robot model. The URDF describes the robot’s geometry and
kinematics, which are used for self-collision checking and inverse kinematics
calculations. It is important that the details in the URDF are precise and
match the real world model. Since planning is based on the URDF model
and not based on the real world model, executing a trajectory with wrong
parameters in the URDF will result in wrong behaviour on the real robot.

2.1.2 RRT-Connect

The OMPL has lots of different trajectory planners, but we will only make
use of one; the Rapidly-exploring Random Trees Connect (RRT-Connect)
[23] path planner because in a simple benchmark it performs the best in
both planning time and solving result. The planner needs to know about
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its environment in order to plan collision free paths. The environment can
either be in 2D or 3D. In our case MoveIt will provide the environment to
OMPL which provides it to the planners. The RRT-Connect is an exten-
sion of the RRT [24] path planner. RRT tries to create a tree between the
starting point, qinit, and the goal point, qgoal. In order to expand the tree
a random point, q, is chosen from the search space. The random sampling
of the point q prefers to explore large unsearched areas. When a point q
is chosen, the nearest point in the tree, qnear, is found and a connection is
attempted to be created between those two points by a vector pointing from
qnear to q. The new connection however is limited to a certain distance,
ε. A new point, qnew, is added to the tree with a distance ε from qnear, if
qnew does not collide with an obstacle by checking if the new path does not
intersect with an obstacle in the environment.

RRT-Connect makes use of two trees, one starting from qinit, and one
starting from qgoal. For each tree a q is also chosen, but instead of one ε
step, it will repeat the distance step until it has reached q or reaches an
obstacle. At each step a tree will attempt to connect to the other tree by
finding the qnear of the other tree, if a collision free path can be found it will
be connected and a path is found.

2.1.3 MoveIt

MoveIt is the framework that is used for combining the different packages
that are needed in order for making trajectories that a manipulator has to
perform. MoveIt creates a planning scene which represents the world and
the current state of the robot, it can make use of 3D sensors or manual
input to create a model of the world. It makes use of the URDF model and
actual robot joint positions to place the URDF model into the current state
of the robot, the initial starting position. MoveIt also configures the OMPL
planner so that it has a representation of the arm. The planner will use the
end-effector for trajectory planning, an inverse kinematic solver will tell if a
valid solution exists for a certain position and orientation of the end-effector.
Collision detection is provided by the Flexible Collision Library (FCL) [32].
The collision detection makes use of an Allowed Collision Matrix (ACM)
to reduce the amount of collision check operations. The ACM has a value
for each pair of bodies in the world, such as parts of the robot itself, the
table and objects that are on the table. If a pair of bodies are never able
to collide, for example the body of an arm that is fixed and an object on
a table, the ACM sets a value for the two bodies so that they are never
checked, therefore saving computing time. The OMPL planners do not take
into account maximum velocities and accelerations of the joints, therefore
MoveIt will process the path and generate a trajectory that is properly time-
parameterized accounting for the maximum velocity and acceleration limit
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that each joint has. The final processing step will create smooth trajectories.

MoveIt does not have an object recognition package thus in order to
know where the object is an external package is needed, or manual input is
required. Since MoveIt does not know about objects, it will see everything
as an obstacle. It is therefore needed to place a simple geometric shape
that resembles the object into the planning scene where the actual object is.
This simple geometric shape can then be set to allow some collision when
attempting to grasp, but it can also be used, when actually grasped, to plan
a trajectory that takes into account the end-effector holding the object so
that it does not collide with other obstacles or the arm itself.

MoveIt itself does not know how to grasp objects. The operator needs to
tell (via programming) how an object should be picked up, for example from
which angle does the end-effector approach the object, how close should the
end effector approach the object and in which direction the end effector
should move when it has grasped the object. All these parameters and more
need to be set by the operator and depend on different scenarios as well.
Each object needs to be picked up differently, and after grasping the motion
depends on the environment. Picking up an object on a table will allow for
an upwards motion after grasping, picking up an object from a closet with
shelves will not always allow for an upwards motion after grasping. All these
parameters need to be programmed, MoveIt will not do this itself.

2.2 Supervised Learning

Supervised Learning is a form of machine learning that makes use of la-
beled training data. Labeled data can come from human experts, but also
from agents that can create the labeled data. Supervised Learning is often
used for classification tasks, like object recognition [15]. For classification a
training data set is usually created with annotated data, and after training
the classifier should be able to classify new data correctly. This can also be
used to classify images on where to grasp a certain object. Learning from
Demonstration (LfD) is also a supervised method, where a human expert
can show a robotic arm how to grasp an object. This motion can be recorded
and used for training.

2.2.1 2D Images for Grasp Localization

In [37] the authors use 2D images of objects and label them on where a
gripper should perform a grasp. Since creating a training data set manually
would take a lot of time, they make use of synthetic data. They create
3D models of objects and use ray tracing [16], a standard image rendering
method, to create a 2D image of that object. By changing the camera
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position, adding different colors and textures they can create lots of different
examples of the same object. For each object they only need to specify the
grasping area once instead of labeling each image separately. With this data
set of labeled data a logistic regression model is trained that can give the
probability of a good grasping point at a 2D position in an image. After
supervised training is done the classifier can only classify in 2D space where
to grasp an object. The robot takes at least two images from different
orientations and determines the 3D grasping location from it. Once the
grasping location is determined the robot makes use of a planner to create
a path and grasping motion. The authors trained the logistic regression
model with only 5 synthetic objects, resulting in a total of 2,500 examples
for training. The tests were performed with a real robotic arm and with 14
real objects, 5 objects that are similar to the objects used for training, and
9 objects that were different from the training objects. The similar objects
have an average of 1.80cm in grasp position error and a success rate of 90%
when grasping the object. The new objects have an average of 1.86cm in
grasp position error and a success rate of 87.8% when grasping.

2.2.2 Depth Segmentation for Grasping Objects

The authors of [34] also make use of Supervised Learning to determine pos-
sible grasping places of objects by making use of depth information. Instead
of only choosing one grasp point, they determine all possible grasp positions
on an object. The robot makes use of a 3D camera and looks for specific
segments and tries to determine with a classifier if these segments are good
for grasping the object. The classifier makes use of both color and depth
information. The classifier makes use of three different features. Geometric
2D features; for each segment they compute the width, height and area.
Color image features; an RGB image is converted to a LAB image format
which is less sensitive to lighting conditions. The variance in L, A and B
channels are used as feature. Geometric 3D features; The variance in depth,
height and range of height from segments. The authors’ intuition is that
ungraspable segments tend to be either very small or very large and tend
to have lesser variation in color composition. With these features a Sup-
port Vector Machine [6] is trained to classify segments as graspable or not.
From all possible graspable segments they select the segment to grasp that
is closest to the robot but also farthest away from other graspable objects
in the scene. From a graspable segment a mesh is created, on that mesh
sampling is performed to find contact points that are feasible for grasping.
The authors trained the classifier with 200 scenes of 6 objects. The testing
was performed on a real robot where objects were placed on a table and the
robot was placed at different positions with respect to the table. The robot
tried to grasp 8 different objects, resulting in a total grasping success rate
of 87.5%.
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2.2.3 Learning from Demonstration

Learning from Demonstration (LfD) can be seen as a form of Supervised
Learning. LfD makes use of example joint trajectories instead of labeled
data. A teacher can show a robot how a job is performed by manually mov-
ing the end effector of the robotic arm. The data is recorded and a policy
can be learned so that the robot knows how to execute the behaviour on its
own. The idea behind LfD is that it does not require an expert in machine
learning or robotics to make a robot learn specific tasks.

In [38] the authors use a system that makes use of both speech and
gestures to learn from. With a vision system the robot can focus on a region
that the instructor points at, and also perform object detection. With speech
the instructor can give simple descriptions like ’the red cube’ or ’in front of’.
For grasping the robot arm makes use of a camera mounted on the arm, so
it can move itself above an object. Grasping is done by slowly wrapping the
fingers around the object and using force feedback to determine if the fingers
are touching the object to be grasped. They also suggest a way to learn
grasping by imitation. By transforming hand postures to joint angle space
of the robot hand, they can learn how a robot hand should grasp objects
by just letting the instructor grasp objects with his/her own hands. In [46]
the authors make use of a glove to register hand motions, including grasping
and the forces that are required to grasp an object. The authors performed
a test with the peg-in-hole task where the goal is to put an object, the peg,
inside a cylindrical object, the hole. The learned task was performed by a
robot arm with a 4 finger gripper, which was able to perform the task 70%
of the time.

2.3 Unsupervised Learning

Unsupervised Learning is a form of machine learning that makes use of
unlabeled training data. A common Unsupervised Learning algorithm is
k-means [27] for clustering data. It can cluster data without labels into k
clusters. Unsupervised Learning can be used to let a robot learn about the
environment but also to let it learn how to grasp objects.

2.3.1 Object Affordance

The word affordance was first used by perceptual psychologist J.J. Gibson
[13][14] to refer to the actionable properties between the world and an actor.
Affordances are relationships [31] that suggest how an object may be inter-
acted with. In [44] the authors use Unsupervised Learning to let a robot
learn about object affordances. The robot can perform different fixed be-
haviours, like move forward, rotate, and a lift behaviour. The robot learns
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from interacting with the environment, the robot can collide for example
with a box and it would learn that the box doesn’t move, if the robot col-
lides with a sphere, the sphere would roll away and clear a path. By using
a robotic arm with a magnet the robot can try and lift objects to see if
they are graspable. When interacting with the environment it creates re-
lation instances; the effect, the initial feature vector that comes from a 3D
range scanner representing the environment, and the executed behaviour.
The effect is clustered using k-means and for each cluster an effect-id is as-
signed. The relationship between objects and the effects created by a given
behaviour are learned with a Support Vector Machine [6] classifier. These
learned affordance relations can be used during planning to see if an action
is possible. The authors used a simulator to train the classifier and tested
it on the real robot. One object was placed in front of the robot and the
robot performed the behaviour to either move or lift the object. The robot
was able to perform the correct action 90% of the time.

2.3.2 Grasping

Manually labeling data will take a lot of time, not only because objects can
be grasped in multiple ways, it also needs different viewpoints of the object.
In [33] a robot is used to create the data set. A human is only needed to
start the process and place objects on the table in an arbitrary manner.
The robot builds a data set by trial and error. It finds a region of interest,
an object, on the table and moves the end effector 25cm above the object.
The end effector has a camera which is now pointing at the object, the arm
selects a random point to use as grasping point and an angle to orientate the
gripper. The robot then attempts to grasp the object, the object is raised
20cm and annotated as a success or failure depending on the gripper’s force
sensor readings. All the images, trajectories and gripping outcomes are
recorded. They collected data for 150 objects, resulting in a data set of
50,000 grasp experiences, consisting of over 700 hours of robot time. A
Convolutional Neural Network [22] was trained with a region around the
grasping point as input, as output they train an 18-dimensional likelihood
vector. Each output represents a grasp angle from 0° to 170° with 10° steps.
The output will indicate if the angle is a good grasping angle or not. To
test the system the robot tried 150 times to grasp an unseen object, and 150
times a previously seen object. For the unseen objects the robot was able to
grasp and raise the object 66% of the time, for the previously seen objects
the robot was able to grasp and raise it 73% of the time.

2.4 Reinforcement Learning

Reinforcement Learning (RL)[42] is a form of machine learning that does not
make use of a data set, but allows an agent to learn which actions to take
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in an unknown environment so that it receives a maximum sum of rewards.
RL can be used to let a robotic arm grasp an object, or open a door.

2.4.1 Grasping under Uncertainty

In [39] the authors make use of RL to learn how to grasp an object under
uncertainty. Instead of learning to grasp an object from a specific location
they take into account that the object might not be at the exact location
because of inaccuracies of a sensor for example. They acquire movement
primitives for their arm as Dynamic Movement Primitives [20], that are
initialized with a trajectory using LfD and a grasp posture that is generated
with a grasp planner, GraspIt! [28]. The Dynamic Movement Primitives are
optimized for grasping with RL, where the reward function only rewards a
successful grasp. To learn the Dynamic Movement Primitives they randomly
sample the actual position of the object from a probability distribution that
represents a model of the uncertainty in the object’s pose. With the Policy
Improvement with Path Integrals [43] algorithm the arm is able to learn
robust grasp trajectories that allows for grasping where the object is not
always in the same exact location. Experiments were done in simulation,
the arm had to grasp a cylinder that could be placed with a deviation of 5cm
from its original position. It was able to grasp the object 100% of the time.
The arm also had to learn to grasp more complex objects. The objects were
made of boxes so that the object would represent the letters ’T’ and ’H’.
For each experiment they initialized the grasping position to a different part
of the object, resulting in five different grasps. For three grasps the success
rate was 95%, while for two grasps the success rate was 60%.

2.4.2 Opening a Door

Whilst often robots are trained in simulation, in [17] the authors gather data
directly from real physical robots. The authors want to train a robotic arm
so that it is able to open a door. Training was done with the Normalized
Advantage Function [18] algorithm. For training the authors make use of a
replay buffer to perform asynchronous learning. The asynchronous learning
algorithm was proposed by [30] to speed up simulated experiments. Since a
real physical robot can not operate faster than real time, they make use of
multiple robot arms to train the same network. A training thread trains on
a replay buffer, while for each physical robot arm a worker thread is used
to collect data. A worker thread gets the latest network for controlling the
arm at the beginning of its run, and then it executes actions based on the
network, with some exploration added to it. The worker thread records the
state, reward, action and new state so that it can be sent to the replay buffer.
One worker would require more than 4 hours to achieve 100% success rate,
2 workers can achieve a 100% success rate in 2.5 hours of training time.
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Chapter 3

Theoretical Framework

In this chapter we will describe the theoretical framework used in this
project. We discuss Forward and Inverse Kinematics, used to determine
the position of a robotic arm end effector or joint positions. We also discuss
Reinforcement Learning in general, and CACLA which is the method used
in this project to let a robotica arm learn to grasp an object via Reinforce-
ment Learning. Multilayer perceptrons are also discussed as they are used
for letting the agent learn. We discuss two different exploration methods
and the use of a replay buffer to help reduce training time.

3.1 Forward Kinematics

Forward Kinematics (FK) [7] uses kinematic equations to compute the end
effector position of a robotic arm given the joint states. A robotic arm can
be seen as a set of joints connected with each other via links. These links
can be described by a kinematic function so that the relation between two
joints is fixed. To describe the link kinematically four values are needed,
two describe the link itself, and two describe the link’s connection to a
neighboring link. This convention of describing the parameters is called the
Denavit-Hartenberg notation [8] (DH). The four parameters are as follow
(the following notations are from [7]), see also Figure 3.1:

ai : the distance from Ẑi to Ẑi+1 measured along the X̂i

αi : the angle from Ẑi to Ẑi+1 measured about X̂i

di : the distance from X̂i−1 to X̂i measured along Ẑi

θi : the angle from X̂i−1 to X̂i measured about Ẑi

With these parameters a transformation matrix (Equation 3.1) can de-
scribe the transformation from joint i−1 to joint i. To calculate the transfor-
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Figure 3.1: The transformations from frame i− 1 to frame i.

mation from joint 2 with respect to the origin two transformation matrices,
0
1T and 1

2T need to be multiplied in order to create 0
2T .

i−1
iT =


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1


(3.1)

To compute the end effector position we need to multiply the transfor-
mation matrices for each link that is part of the robotic arm. In Equation
(3.2) the matrix 0

eT contains the position of the end effector. The coordi-
nates can be read from 0

eT at positions [1,4] for x, [2,4] for y, and [3,4] for z,
see Equation (3.3).

0
eT =0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 T (3.2)

0
eT =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (3.3)
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3.2 Inverse Kinematics

Inverse Kinematics (IK) [7] is the reverse from FK, IK computes the joint
positions of a robotic arm given the end effector position and orientation.
This can be used for motion planning where the planner plans the trajectory
of the end effector. The IK will provide, when possible, the solutions for
the joint positions. IK solutions can only be found when the end effector is
within the reachable workspace of the arm.

Two common approaches for solving IK problems are algebraic and ge-
ometric solutions. Algebraic approaches make use of the transformation
matrix, like Equation (3.3), in order to find the joint angles. By providing
the required position and orientation 6 constants are known which can be
used to solve the equations. The main idea of the algebraic approach is
manipulating these equations into a form for which a solution is known. In
the geometric approach the spatial geometry of the arm is decomposed into
several plane-geometry problems. On a plane the links of the arm create a
triangle which can be used to find the angles of the joints. A problem in IK
is that sometimes there are multiple solutions available, a valid solution for
this would be to find for each current joint angle the closest solution, this
would mean that the joint does not have to move as much.

3.3 Reinforcement Learning

In Reinforcement Learning (RL) [3] a decision maker tries to learn to com-
plete a task in an environment. The decision maker, called an agent, can
interact with the environment by performing actions. The agent perceives
the environment as a state in which it can make an action that will modify
its state. When the agent takes an action the environment provides a reward
from which the agent can learn. RL makes use of a critic that tells the agent
how well it has been performing.

The following notation is used from [3]. Time is discrete as t = 0, 1, 2, ...,
and states are defined as st ∈ S, where st is the state in which the agent
is at time t, S is the set of all possible states. The actions are defined as
at ∈ A(st), where at is the action that the agent takes at time t, A(st) is
the set of possible actions when the agent is in state st. An agent gets a
reward rt+1 ∈ R when going from st to st+1, where R is the set of all possi-
ble rewards. The RL problem is modeled using a Markov decision process,
the reward and next state are sampled from their probability distributions,
p(rt+1|st, at) and p(st+1|st, at).

A policy, π, defines the agent’s behavior and is a mapping from state
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to action: π : S → A. The value of a policy, Vπ(st), is the expected
cumulative reward that will be received when the agent follows the policy,
starting from state st. A discount factor, 0 < γ < 1, is used to determine
the influence of rewards that happen in the future. A small discount factor
indicates that only rewards in the immediate future are being considered,
a larger discount factor prioritizes rewards in the distant future. For each
policy π there is a Vπ(st), therefore also an optimal policy π∗ exists such
that V∗(st) = max

π
Vπ(st), ∀st. Instead of using the V(st) it is also possible

to use the values of state-action pairs, Q(st, at), which tells how good it
is to perform action at when the agent is in state st. The definition of
the optimal Q(st, at) is known as the Bellman’s equation [4] (3.4). With
Q∗(st, at) a policy π can be defined as taking the action a∗t , which has the
highest value among all Q∗(st, at).

Q∗(st, at) = E[rt+1] + γ
∑
st+1

P(st+1|st, at)max
at+1

Q∗(st+1, at+1) (3.4)

When the model is not known beforehand exploration is required to find
values and rewards for new states, with this information the value for the
current state can be updated. These algorithms are called temporal dif-
ference algorithms because they look at the difference between the current
estimate value and the discounted value of the next state. When the model
is deterministic there is no probability of moving to a certain state, there-
fore the Equation of (3.4) can be reduced to (3.5). A reward is received
performing an action, which gets the agent in a new state.

Q(st, at) = rt+1 + γmax
at+1

Q(st+1, at+1) (3.5)

The actions are discrete, meaning that they represent a certain action
that the agent can perform in the environment. The policy will select the
action and the agent will then perform this action, which could represent
moving the agent one grid upwards in a grid-based environment.

3.4 CACLA

The Continuous Actor Critic Learning Automaton (CACLA) [45] is able to
handle continuous actions. A continuous action can directly be performed
by the agent, with or without scaling the action. Whilst with discrete ac-
tions only one action is chosen, with continuous actions the agents performs
all actions.

CACLA uses the Actor-Critic method. An Actor is the policy of the
agent, it gives the actions that the agent should perform, the Critic is the
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value of the current state and gives the expected cumulative reward given
the state. For both the Actor and Critic a multilayer perceptron (MLP) can
be used to train the corresponding action and value outputs. In Equation
3.6 the temporal difference error is given, V is the output of the Critic MLP.

δt = rt+1 + γV(st+1)− V(st) (3.6)

The Critic is trained by given the target value of the current output plus
the temporal difference error (Equation 3.7). The Actor is only trained when
the temporal difference error is larger than zero, in this way the Actor only
learns from actions that benefit the agent and not from actions that would
make it perform worse. The Actor is updated by taking st as input and train
on the at plus exploration noise (Equation 3.8), where gt is the exploration
noise. The CACLA algorithm also has the benefit of being invariant to
scaling of the reward function.

τc = V(st) + δt (3.7)

τa = at + gt ; if δt > 0 (3.8)

3.5 Multilayer Perceptron

The multilayer perceptron (MLP) [3] is an artificial neural network structure
that can be used for classification and regression problems. Neural networks
are built from perceptrons, a perceptron is a processing unit which has inputs
and an output. A weight is connected to each input, and the output of a
perceptron is the summation of the input value times the weight value plus
a bias value (Equation 3.9), notation used from [3]. wj refers to the weight
value that is connected to the jth input value xj , y is called the activation
of the perceptron.

y =
d∑
j=1

wjxj + w0 (3.9)

To make a perceptron learn, the weight values need to be updated. One
way of training is online learning, where learning is performed on a single
example with the target output at a time. Batch learning is making use of
multiple examples, a batch, and calculates the average error over that batch
to update the network. An error function can be defined from which the
weight values can be updated. To train for example a single perceptron an
error function can be defined (Equation 3.10), where r is the expected target
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value and y the output of the activation function (Equation 3.9) based on
the input x and weights w.

E(w|x, r) =
1

2
(r − y)2 (3.10)

In order to update the weights we can make use of stochastic gradient
descent, as seen in Equation (3.11). The weights are updated by the error
given the target output and actual output, η is the learning rate which
dictates how large the update step is.

∆wj = η(r − y)xj (3.11)

An MLP consists of multiple perceptrons, ordered in layers (Figure 3.2).
The first layer is the input layer which gives the input values for the network,
these input values represent data from which the neural network needs to
produce correct output. The final layer is the output layer which represents
the output of the neural network. In between are one or more hidden layers,
which allow the neural network to learn nonlinear functions by making use
of nonlinear activation functions such as the sigmoid function and hyper-
bolic tangent function.

Training an MLP is similar to a single perceptron, the weights for the
connection between the hidden layer and the output can be updated with
Equation (3.11), where the input is now defined as the output of the hidden
layer. In order to update the weights from the input layer to the hidden
layer we need to apply the chain rule (3.12), where whj are the weights from
the input to the hidden layer, zh the output of the hidden layer and yi the
output of the output layer. The process is called backpropagation [36], as it
propagates the error from the output y back to the weights of the input.

∂E

∂whj
=
∂E

∂yi

∂yi
∂zh

∂zh
∂whj

(3.12)

3.6 Exploration

Exploration is needed for an agent to learn, since the agent does not know
anything about the world and how to achieve its goal. Exploration is the
process of choosing a random action, or adding noise to a continuous output.
In this project we will use two different exploration methods, Gaussian noise
and Ornstein-Uhlenbeck process (OUP) exploration.

Gaussian exploration makes use of the Gaussian function (Equation 3.13)
to sample random noise, µ defines the expected value, or center value, and σ
defines the standard deviation. To explore, the µ value is set to the current
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Figure 3.2: A multilayer perceptron with 2 inputs and one bias value, 2
hidden units and one bias value, and 2 outputs. Whj are the weights from
the input to the hidden layer, Vih are the weights from the hidden layer to
the output layer. Xi is the input value, Zi is the output of the hidden unit,
and Yi is the output of the output unit.

value of the action, the Gaussian function then samples around this value
with σ, the value that comes out of g(x) is added to the current action value
to create a new action value. With Gaussian exploration the agent explores
around its current policy. By reducing the σ the agent will start to exploit
its policy, instead of mainly exploring. To reduce the σ a decay rate can be
set. If the σ would never decrease the agent would only be exploring and
never perform its learned policy.

g(x) =
1

σ
√

2π
e
−

1

2

(x− µ
σ

)2

(3.13)

OUP exploration takes into account the previous value of the action when
exploring [25]. The idea behind this exploration method is that continuous
actions are most likely to be correlated to the previous and next time steps.
The OUP models the velocity of a Brownian particle with friction, which
results in temporally correlated values centered around 0. Whilst not taking
into account for the physics quantities it can be modeled as Equation (3.14).
K is the decay factor, K ∈ [0, 1], and gt refers to Equation (3.13) with µ =
0. The previous exploration values are taken into account when exploring,
making the actions rely more on previous explored actions.

ot = Kot−1 + gt (3.14)
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3.7 Replay Buffer

When an agent is running in a physics simulator, or even in the real world,
the rate at which an agent can learn is limited to how fast it can gather
training examples. With online learning the rate is also depending on how
fast the MLPs can perform the feed-forward calculation and how fast a
training step is. Algorithm 1 shows the steps that are needed to do a single
online learning step for updating the networks. Line 2, 7, and 8 are feed-
forward passes of the Actor and Critic neural networks. TrainActor and
TrainCritic are the update functions for the MLPs, where the first param-
eter is the input and the second parameter the target value.

Algorithm 1 Online learning single time step

1: st = GetState()
2: at = π(st)
3: at = at + gt
4: PerformAction(at)
5: st+1 = GetState()
6: rt+1 = GetReward()
7: vt = V (st)
8: vt+1 = V (st+1)
9: δt = rt+1 + γvt+1 − vt

10: if δt > 0 then
11: TrainActor(st, at)

12: TrainCritic(st, vt + δt)

In order to not depend on the rate at which the agent can update the
network, a training tuple (st, at, st+1, rt+1) can be sent to a replay buffer.
The replay buffer is a first-in-first-out buffer, meaning the first tuple that is
added to the buffer is also the first tuple that is removed from the buffer.
The buffer will only hold a limited amount of tuples, where new tuples will
push-out the older tuples. With this replay buffer a separate thread can
train the Actor and Critic MLPs without having to wait for the agent to
perform its actions. The training thread can take a mini-batch, instead of
just one training tuple, from the replay buffer to reduce training time. The
mini-batch is sampled at random from the replay buffer, and it is therefore
possible that the networks are trained on the same training tuple multiple
times, but the output of the MLPs will be different at a later t because the
MLPs have been trained with new examples. The agent can now use the
examples faster because it does not have to perform multiple MLP opera-
tions, the only thing that the agent needs before it starts a trial is the newest
version of the Actor network so it can perform the actions. During a trial
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the agent will use the same Actor network that is not being updated, how-
ever when it starts a new trial the Actor network has been updated by the
training thread many more times than it would have during online learning,
this should provide the agent with a better Actor network for the next trial.

Even with the replay buffer the agent is sometimes still very slow in
generating training tuples, therefore also limiting the exploration that it
can do. By adding more agents the replay buffer can be filled with more
diverse examples of different possible training tuples, allowing to find the
optimal policy faster. Each agent receives the newest Actor MLP, adds its
own exploration to the actions and pushes its training tuple to the same
replay buffer.
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Chapter 4

Experimental Setup

In this chapter we will discuss the experimental setup that is used for this
project. We will describe the arm used for training, the simulation, different
architectures we want to test and different exploration methods.

4.1 Kinova Mico Arm

In this project we use the Mico arm [21] from Kinova Robotics. We use
the 6 Degree of Freedom (DoF) version of the arm, with a gripper that has
2 fingers. The fingers are underactuated, and do not contain any sensors.
Each finger consists of two segments, see Figure 4.1(a), where the bottom
segment is attached to a linear actuator, and the top segment is attached to
the bottom segment and can move with a spring mechanism. When closing
the fingers the actuators will pull the bottom segments toward each other,
Figures 4.1(b)(c). When the bottom segment gets blocked by an object,
the top segment will start to move closer because of the spring, Figures
4.1(e)(f). Because of the underactuated fingers it is difficult to determine
the finger positions. Whether the fingers hold an object or not, when the
fingers are fully closed the position of the actuators are very similar making
it impossible to determine via position of the fingers whether it has grasped
something. It is also difficult to grasp smaller objects with just the finger
tips, the underactuated fingers are not able to put a lot of force on the
finger tips when holding for example a pencil. The fingers work best when
grasping larger objects where the fingers try to wrap around the object.

The real robotic arm has a link that determines the position for the
end effector. The position of the end effector is determined by forward
kinematics and depends on the joint positions. This end effector link is not
available in the simulation model, it is therefore added into the model. In
table 4.1 the DH parameters are given for the real robotic arm.
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Figure 4.1: The Mico end effector with underactuated fingers. (a) shows the
segments of the fingers, and the fingers are fully open, (b) shows the fingers
half closed, and (c) shows the fingers fully closed. In (d) the fingers are fully
open with object, (e) the fingers half closed with an object, and (f) fully
closed and grasping an object.
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i α(i - 1) a(i - 1) di theta

1 0 0 0.2755 q1

2 −π/2 0 0 q2

3 0 0.2900 0.0070 q3

4 −π/2 0 0.1661 q4

5 1.0472 0 0.0856 q5

6 1.0472 0 0.2028 q6

Table 4.1: The Modified DH Parameters for the Mico arm. Where i is the
joint number, α is the angle between the z-axes measured about the x-axis,
a is the distance between the z-axes measured about the x-axis, di is the
distance between x-axes measured about the z-axis and theta is the angle
of the joint.

4.2 V-REP

In this project we use the Virtual Robot Experimentation Platform, V-REP
[35], from Coppelia Robotics. V-REP is free to use for educational pur-
poses, supports multiple programming languages, including Python, and is
accessible via a remote API. The simulator has models of multiple robotic
platforms, including the Mico arm. Whilst the simulation model is very
accurate and represents the real arm very well, the control of the fingers
is different. Since underactuated fingers are more difficult to implement in
simulation, a finger has two actuators that each control a segment. Whilst
the real arm uses a linear actuator, the two actuators in simulation are ro-
tational actuators.

Since V-REP isn’t made just for grasping but more for general simula-
tions, attempting to grasp objects based on physics is quite difficult because
V-REP doesn’t model friction that accurately. However in simulation we can
detect collision fairly easily, therefore when the fingers are colliding with an
object whilst trying to grasp it we can instead of relying on physics, attach
the object to the end effector simulating a grasp.

V-REP can operate in different modes; asynchronous and synchronous.
The asynchronous mode is most commonly used, it runs the simulation as
fast as possible without pausing it. For the synchronous mode however a
trigger signal is needed in order to advance the simulation one time step.
We need to make use of the synchronous mode because we need the current
state of the arm, perform an action and get the new state of the arm whilst
keeping the delta time (∆t) the same. This also allows for calculating the
reward value, send data to the train buffer, and calculate the new action
without the arm still executing its previous action making it end up in a
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different state.

The big downside of using the synchronous mode is that when a camera
is added to the simulator the update rate drops to about 4Hz-6Hz, versus
normally running at around 40Hz-60Hz. This makes it impossible to use
visual input for training because it would take to long to train.

For this project we will try to grasp a simple cylinder, with no textures
on it since there is no visual input. The cylinder is 12cm in height and has a
radius of 3cm, approximately the same size as a Coca-Cola can. V-REP can
calculate and visualize the minimum distance between points, in our case we
take the minimum distance between the end effector and the middle of the
cylinder, which will be used for the reward function. V-REP does collision
detection, but we don’t want to register all collisions it can possibly make,
we are mostly interested in the end effector. We therefore only check if the
end effector is colliding with the floor or the object, not with the arm itself.
For checking in simulation whether the fingers are grasping the object we
perform collision checking on each of the segments whether they collide with
the object.

4.3 Tensorflow

In this project we use Tensorflow [2] to program our neural networks. Ten-
sorflow can be programmed in Python which makes it very easy to connect
the simulation with the neural networks. Tensorflow is also able to use a
GPU to train the neural networks, even though our network sizes are not
large enough to fully profit from the parallelism that GPUs provide, it will
unload a lot of processing power from the CPU which needs its processing
power to run the simulations.

Tensorflow makes it easy to create complex networks, although in our
project we only make use of fully connected neural networks. A fully con-
nected neural network can easily be created by matrix multiplications. Ten-
sorflow also has lots of different activation functions available. Tensorflow
will automatically calculate the derivatives needed to update weights, this
allows for creating deep networks without having to worry about calculating
the derivative ourselves. We can also specify the error function and train-
ing algorithm. It is also easy to make use of batches for training, and we
can easily get the output of a network based on its input. In order to use
different parameters we read in a configuration file that allows us to build
a correct Tensorflow model based on the specified number of inputs and
outputs, number of hidden neurons and layers and learning rates.
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4.4 Architectures

Besides using one neural network to control the arm we want to investigate
if it is possible to optimize the architecture for controlling the arm. An
architecture is the amount of networks controlling a set of joints. Where
one neural network would control all 6 joints and fingers, all depending on
the same reward function, it could be possible to have two neural networks
where each controls a subset of the available actuators and have their own
reward function. For example the lower joints have a great effect on where
the end effector will end up, whilst the higher joints are used to fine tune
the final position of the end effector. Therefore giving these networks dif-
ferent reward functions might improve training performance. To reduce the
amount of different hyper parameters that can be fine tuned when using
multiple networks, we keep the amount of hidden neurons the same for each
network in the architecture. We will however experiment with different re-
ward functions for the networks.

4.5 Exploration

Exploration is an important part of reinforcement learning, without it the
agent can not learn. In this project we will try two different exploration
methods; Gaussian exploration, and Ornstein-Uhlenbeck process exploration.
Besides those two different methods we will also limit the amount of explo-
ration by setting a probability that an actuator will explore. Because we
have 7 actuators, 6 joints and 1 end effector, moving in 3d space trying to
reach a goal and perform a grasping task, it will become very difficult for
just exploration alone to reach the goal. By letting an actuator sometimes
perform their learned motion the arm will move closer to its goal and should
explore around its goal.

4.6 Agent

An agent will handle the connection with the simulation and neural net-
works. Before the agent starts with a run it receives the latest Actor network
and it resets the simulation world. It will then perform a maximum of 250
steps, where a step is a single action performed in simulation with a ∆t of
50ms, resulting in a maximum run time of 12.5 seconds. For each step the
agent gets the state, uses the state as input for the Actor network, and uses
the output as the actions that it should perform. An action is the velocity in
radians that a joint should perform. During training the agent will also add
exploration to the action before performing it in simulation. After taking a
time step in simulation the new state is gathered and the reward is deter-
mined. The begin state, reward, the performed action and the new state are
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saved into the replay buffer. The state is the position of all used joints in
radians, the x, y, z position of the end effector link in meters with respect
to the origin of the arm, and when used, the angle of the fingers in radians,
and finally the goal location (x, y, z) in meters. The angle inputs of the
joints are normalized to a value between 0 and 1 by dividing the angle with
2π (a full rotation of a joint). The finger joints are normalized by dividing
by 1.0472 radians (60 degree) since this is the maximum range they can
open. For the position values we don’t have to normalize the inputs since
the reach of the arm is below 1 meter. This information can be gathered
from the simulation. Besides the agent a training thread is running which
will take a mini-batch from the replay buffer and will train the Critic and
Actor networks, the training thread runs at about 100Hz.

4.7 Pre-Training

Training, or better creating training samples, can be relatively slow using
a physics simulator like V-REP. We can however simplify the simulator by
only using Forward Kinematics. By keeping track of the current position
of each joint we can calculate the end effector position by calculating the
forward kinematics. By adding the action from the Actor network, plus
exploration, times a delta time of 50ms we can simulate the arm moving.
We can run many more trials since one trial takes about 170ms to run.
However the downside of this method is that we cannot grasp objects, nor
do we have any collision checking. Therefore we will only use this method
as a pre-training stage to see if we can reduce the training time when using
the physics simulator.

4.8 Experiments

We will perform different experiments to show how well CACLA performs
when trying to make a robotic arm learn to grasp objects. The experiments
will start with only using a small sub-set of the joints of the robotic arm,
until we make use of all joints. We will experiment with making the end
effector learn to go to a certain position, and finally we will make the arm
attempt to grasp an object.

4.8.1 Network

For the Actor and Critic networks we use the same amount of inputs and
same amount of neuron in the hidden layers. The Actor network will always
have one output for each joint that is used, when the fingers are used it
will use only one output to control both fingers. The Critic network always
has one output. The weights for both networks are initialized with a value
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between 5 × −10−2 and 5 × 10−2. For the Actor the hidden layers will use
a rectified linear unit (ReLU) activation function (4.1), the Actor output
will be the hyperbolic tangent (tanh) activation function (4.2) to limit the
actions within -1 and 1. For the Critic the hidden layers will use the tanh
activation function, and the output layer will be linear.

relu(x) = max(0, x) (4.1)

tanh(x) =
1− e−2x

1 + e−2x
(4.2)

The networks will be trained with a mini-batch of 64 examples tak-
ing from the replay buffer. The replay buffer will hold a maximum of 104

examples. The networks are trained with the stochastic gradient descent
optimization algorithm.

4.8.2 Position

We first start with letting the arm learn to move the end effector to go to
a certain position, this will demonstrate that the algorithm is working cor-
rectly and also gives a better insight to parameter tuning. The experiments
will start with only using one joint, this means that the end effector will
only move on a plane, once we add more joints the end effector will move in
3D space making it more difficult for it to find its goal. We start with using
the first joint (Figure 4.2), and add more joints to increase the complexity.
In the early stages we will test different learning rates and hidden layers
sizes, to reduce the amount of parameters to test we will use early results
to determine the best learning rate and hidden layer sizes. We will also test
how robust the algorithm is and see if it can handle learning multiple goals.
We will experiment with the two different exploration algorithms. When
using multiple joints we will also explore different architectures.

The agent has succeeded when it is able to place the end effector within
4cm of the goal, keep it there for at least one time step and the length of the
action vector is smaller than 0.001. This would allow the arm to move a bit
when it has reached the goal, but making the arm learn to stop at the exact
location requires a lot more training time. In this way the arm still has to
slow down when it is close to the goal location but doesn’t have to spend
a lot of time around the goal location in order to come to a complete stop.
For the reward function we take the negative distance times a constant,
c1, and the negative dot product of the actions times a constant, c2, see
Equation (4.3) where dist(EEF,Goal) is the Euclidean distance between
the end effector and the goal position. Early experiments showed that the
value 1 for c1 and 0.2 for c2 give good results, meaning that the factor
of distance is more important over the action output. With this reward
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Figure 4.2: The Mico arm in simulation with joint number indication.
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Figure 4.3: The simulation experimental setup for moving to a position.
The starting position of the arm with a distance measurement to its goal
position.

function the highest reward can be achieved by moving to the goal position
and have a zero output value for each action, moving away from the goal
location would give a lower reward. When the arm collides with the floor
the run fails and is ended, an extra negative reward of -1 is added to the
already existing reward that was calculated when taking its final action. If
the arm is colliding with itself the run keeps continuing. The reason for not
failing on self collision is because it requires extra calculations slowing the
simulation down, but also because during early experiments it was shown
that it never causes a problem because it barely happens and it will only
receive larger negative reward since it does not progress towards the goal.
In Figure 4.3 the experimental setup is shown. The line between the two
indicators shows the distance between the end effector and its goal position.

r = −dist(EEF,Goal)× c1− c2×
∑
i

aiai (4.3)

4.8.3 Grasping

For grasping we will only attempt to grasp a single object, a cylinder rep-
resenting a Coca-Cola can. With a grasp we mean that the fingers are
grasping the object, but it doesn’t have to lift the object. Grasping and
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lifting an object using the physics of the simulation can be a very difficult
thing to do correctly and would require a lot of fine-tuning of settings in the
simulator. Also not receiving any feedback from the end effector makes it
very difficult to determine good grasps. We use all the joints in these exper-
iments and the fingers are always added in these experiments. The fingers
are controlled with one action, even though the fingers could be controlled
separately we only control both of them at the same time. This will also
create a better gripping motion. We will test the two different exploration
methods, and also different architectures. We also test the same setup with
a simple IK planner. We will use MoveIt for these experiments. The down-
side of comparing with this method is that it requires an extra step to tell
the IK planner how to grasp the objects. We will use a very simple method
of determining how to grasp the object, we will give it multiple angles for
approaching the middle point position of the object, the planner will deter-
mine the best from that collection.

The agent has succeeded when all the finger segments are touching the
object. This would mean that fingers are grasping the object, however it
could also be that the grasp is not very accurate. The end effector could
grasp the object with an angle causing the fingers to not fully grasp the
object but only with a small surface. In real life the object would then move
and most likely fit better into the grasping fingers, however in simulation
this can cause the object to create weird collision behavior. It was therefore
chosen that the object is heavy and could not be moved by the arm, in this
way we don’t have to worry about the object acting weirdly but do take
into consideration that a grasp is not always an optimal grasp. For the
reward function we take the negative distance times a constant, c1, when
more than 5cm away from the object a negative angle of the fingers times a
constant, c2, when within 5cm of the object a positive angle of the fingers
times c2, and the negative dot product of the actions times a constant, c3,
see Equation (4.4). Early experiments show that the value 1 for c1, 0.5 for
c2, and 0.2 for c3 give good results. Similarly to the previous experiments
the run stops when the end effector touches the ground, with -1 added to the
reward, but not on self collision. Figure 4.4 shows the experimental setup
for grasping the object. The distance measurement is the distance between
the end effector point and the center of the object.

r = −dist(EEF,Goal)× c1 + sgn(dist(EEF,Goal))× c2× θfingers−

c3×
∑
i

aiai ; sgn(dist(EEF,Goal)) =
{−1 if dist>5cm

+1 if dist<=5cm
(4.4)
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Figure 4.4: The simulation experimental setup for grasping an object. The
starting position of the arm with a distance measurement to its goal position,
the center position of the object. The object is a cylinder approximately the
size of a Coca-Cola can.
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Chapter 5

Results

In this chapter we present the results for the experiments that were per-
formed. In the first part we present the results of the positioning experi-
ments, in the second part we present the results for the grasping experiments.

5.1 Position Experiments

During each experiment we performed a test run after each 10 trials, a test
run was without adding exploration and without training the networks at
each step. The Actor and Critic networks have 2 hidden layers of each
150 neurons, and they were trained using the online method. The network
configuration did not seem to have a large impact on the results in early
experiments and we therefore chose this configuration to also keep it robust
for later more complex experiments. The starting position was kept the
same for all experiments, the experiment with one joint had a different goal
position from when using multiple joints because it can only reach a position
on a certain radius, when using multiple joints the position was always kept
the same. Each experiment ran for a total of 5,000 trials and was conducted
10 times. We also experimented with the two different exploration methods.
For the Gaussian exploration we started with a sigma of 30 degrees, for the
OUP exploration we used a K value of 0.15. We used a learning rate of
0.01 for both the Actor and Critic as these seemed to give good results in
early experiments. Table 5.1 shows the success rate and the mean distance
to the goal location of 10 trials for different number of used joints with the
Gaussian exploration method. Table 5.2 shows the result when using the
OUP exploration method.
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1 Joint 2 Joints 3 Joints 4 Joints 5 Joints 6 Joints

Success rate 100% 50% 40% 20% 0% 10%

Mean distance 0.84cm 4.42cm 6.73cm 14.08cm 21.39cm 13.5cm

Standard deviation 0.21cm 2.10cm 4.21cm 11.19cm 13.62cm 11.89cm

Table 5.1: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
with the Gaussian exploration method.

1 Joint 2 Joints 3 Joints 4 Joints 5 Joints 6 Joints

Success rate 100% 80% 30% 0% 10% 20%

Mean distance 0.77cm 3.67cm 9.91cm 15.78cm 12.10cm 15.51cm

Standard deviation 0.21cm 1.60cm 8.68cm 11.73cm 6.56cm 13.29cm

Table 5.2: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
with the OUP exploration method.

The results show that with 1 joint the problem can easily be solved with
a 100% success rate and the final position is very close to its goal position
for both exploration methods, the problem is also much easier to solve since
the end effector can only move with a fixed radius on a plane level. When
adding more joints the end effector can move in 3 dimensions making it
a much more difficult problem to solve. When adding the second joint the
OUP exploration seems to perform slightly better, 80%, having a 30% higher
success rate than Gaussian, 50%. The mean distance of both explorations
methods are very close to the distance threshold for counting a success,
4.42cm for Gaussian and 3.67cm for OUP. Adding the third and fourth joint
gives the Gaussian exploration a bit higher success rate, 40% and 20%, but
only 10% and 20% higher compared to OUP, 30% and 0%. The mean dis-
tances are fairly close to each other. When adding the fifth and sixth joint
however the OUP performs slightly better, 10% and 20%, both 10% higher
success rate than Gaussian, 0% and 10%. For the five joints the Gaussian
mean distance, 21.39cm, is almost double as that of the OUP exploration,
12.10cm, but for the 6 joints it is a bit smaller, 13.5cm for Gaussian and
15.51cm for OUP, even though it was not more successful. In Figure 5.1
the cumulative reward for the Gaussian experiments are shown for all the
different joints used, it shows the test results during training. With one
joint, Figure 5.1a the reward goes up very quickly and stays very constant.
When adding more joints there are more spikes downwards, specially dur-
ing the first 1,000 trials. This mostly happens because the Actor starts
with very low velocity outputs and slowly learns to move towards the goal.
But whilst it has sometimes learned to go to the goal it has not yet learned
to stop, therefore overshooting the goal and creating extra negative rewards.
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(a) The cumulative rewards for using 1, 2 and 3 joints.

(b) The cumulative rewards for using 4, 5 and 6 joints.

Figure 5.1: The cumulative rewards for a single run for the online 5,000
trials experiments with Gaussian exploration. A test run was done every 10
trials. In (a) the result for using 1, 2 and 3 joints, in (b) the results for using
4, 5 and 6 joints.
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Online learning does not seem to work very well when using a higher
amount of joints. Instead of online learning we can make use of batch learn-
ing with the use of a large buffer and using two agents to create examples.
By using two agents to create examples we create more diverse samples in
the buffer, but also generate examples faster since the agents work in a
separate thread independently from each other.

5,000 trials, Gaussian 10,000 trials, OUP 10,000 trials, Gaussian

Success rate 60% 80% 90%

Mean distance 9.20cm 5.49cm 2.63cm

Standard deviation 10.20cm 6.31cm 1.00cm

Table 5.3: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
by making use of a buffer for batch learning and two agents. All six joints
are used.

In Table 5.3 we can see the results from batch learning using two agents.
Using the same amount of trials for the agents, 5,000, the Actor and Critic
networks have been updated with a batch of 64 samples approximately five
million times. We can see that this gives better results than online learning,
however 60% is not very efficient for a relatively easy task. When we let the
agents learn for 10,000 trials the results become much better, both increasing
in success rate, 80% for OUP and 90% for Gaussian, and in a lower mean
distance, 5.49cm for OUP and 2.63cm for Gaussian. The OUP exploration
seems to perform well, however the trials that failed had a high distance
from their goal. The Gaussian exploration seems a lot better with only one
trial failing, and having a very low mean distance and standard deviation.
The big downside of letting the agents run for 10,000 trials is that it takes
over 10 hours to train. If we add a pre-training stage of 6,000 trials, and a
normal training stage of 3,000 trials the results are much better. The results
are shown in Table 5.4. The Gaussian exploration has a 90% success rate,
where the OUP exploration has a 100% success rate and a very low standard
deviation, 0.35cm. The total number of trials is lower, whilst also having
a better accuracy in both cases compared with the 10,000 trials without
pre-training. Another aspect is that the total training time is reduced to
approximately 4 hours.

In order to show the robustness of the algorithm we let it train to go to
a point that is randomly chosen within a 20×20cm workspace, keeping the
height always the same, during each trial. When testing we pick 100 random
point within this area and see how many times it can find that point. Table
5.5 shows the results for each trial. For all trials except trial 8 the neural
network is able to position the end effector in the correct position 100 times
when choosing a random goal whilst also having a very low mean distance
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Gaussian OUP

Success rate 90% 100%

Mean distance 3.01cm 2.25cm

Standard deviation 2.19cm 0.35cm

Table 5.4: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
using pre-training of 6,000 trials, and training using the physics simulator
for 3,000 trials, using a buffer for batch learning and two agents. All six
joints are used.

Trial Success rate Mean distance Standard deviation

1 100% 1.80cm 0.41cm

2 100% 2.51cm 0.59cm

3 100% 2.5cm 0.47cm

4 100% 1.8cm 0.46cm

5 100% 1.47cm 0.78cm

6 100% 2.79cm 1.09cm

7 100% 1.63cm 0.28cm

8 85% 1.40cm 0.45cm

9 100% 1.69cm 0.32cm

10 100% 2.39cm 0.33cm

Table 5.5: The average success rate, mean distance with standard deviation
of the final position relative to the goal position. The goal position was
in a 20×20cm workspace. Per trial, 100 random points were chosen. Pre-
training was used for 6,000 trials, training in the physics simulator was done
for 3,000 trials, using a buffer for batch learning and two agents. All six
joints are used.

and standard deviation. Only trial 8 has a lower success rate, 85%, where
its mean distance and standard deviation are slightly larger than the other
trials. This shows that the algorithm is able to learn multiple goals.

We also tested one architecture with two networks each controlling a set
of joints, the first network controlled joints 1, 2 and 3, the second network
controlled joints 4, 5 and 6. We only tested Gaussian exploration. Table
5.6 shows the results. It can be seen that in 70% of the time the multi
neural network architecture is able to create a success. Whilst this is still
lower than using the one neural network, it has shown that it is able to learn
using multiple neural networks. Whilst the mean distance is relatively close
to the results from one neural network, the standard deviation is quite large,
meaning that the networks that have failed didn’t even come relatively close
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2 Neural Network Architecture

Success rate 70%

Mean distance 3.64cm

Standard deviation 3.40cm

Table 5.6: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
using pre-training of 6,000 trials, and training using the physics simulator for
3,000 trials, using a buffer for batch learning and two agents. Two networks
were used, one to control joints 1, 2 and 3, the other network to control
joints 4, 5 and 6.

to the goal. This could mean that one of the two neural networks never
learned to go to the goal properly or that both networks where not capable
of learning correctly.

5.2 Grasping Experiments

During each experiment we performed a test run after each 10 trials, a test
run was without adding exploration and without training the networks at
each step. The Actor and Critic networks had 2 hidden layers of each 150
neurons, and were trained using the buffer method. We always used the
same objects to attempt to grasp, and the object was always in the same
position. Table 5.7 shows the results of using 8,000 trials of pre-training
and 4,000 trials of learning in the physics simulator. As the results show
the network has not learned to grasp the object. Whilst the mean distance
does show it was coming close to the object it was not able to actually
grasp it. Whilst during the test run it came very close to grasping in some
trials, it mostly had a wrong orientation trying to grasp the object verti-
cally instead of horizontally. This is most likely the case because it was
over trained during the pre-training stage. Since this stage has no physics,
and therefore can not even attempt to grasp, it has only learned to go to
a position without knowing there is an object in its way that it should grasp.

Since grasping is a lot harder than just going to a point, we increase the
total of runs to 10,000 and do not train with the pre-training stage. Table
5.8 shows the results. With a 70% success rate it is shown that the algorithm
is able to learn to grasp an object. The downside is that it takes a very long
time to train, over 10 hours, without using the pre-training method. The
mean distance of 3.94cm shows that the networks were able to get the end
effector close to its final position, but sometimes the orientation was not
correct. Sometimes the end effector and fingers were around the object but
the trial was not successful. This most likely means that not all segments
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Gaussian

Success rate 0%

Mean distance 6.11cm

Standard deviation 4.12cm

Table 5.7: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
using pre-training of 8,000 trials, and training using the physics simulator
for 4,000 trials, using a buffer for batch learning and two agents. All 6 joints
and two fingers were used.

OUP

Success rate 70%

Mean distance 3.94cm

Standard deviation 1.93cm

Table 5.8: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
training using the physics simulator for 10,000 trials, using a buffer for batch
learning and two agents. All 6 joints and two fingers were used.

of the fingers were correctly colliding with the object.

When using 2 neural networks, one to control joints 1, 2, and 3, and
the other to control joints 4, 5, 6, and the fingers the results become a bit
better. For the first neural network only the distance and action were taken
into account for the reward function, for the second neural network the fin-
gers were also taken into account. Table 5.9 shows the results of using the
two neural network architecture. Whilst the success rate hasn’t improved,
70%, the mean distance and standard deviation, 1.36cm and 0.37cm, have
decreased quite a lot. Again not every failure was a complete failure. This
shows that using multiple neural networks to control the robot arm can im-
prove results a bit.

When using 3 neural networks the results can be improved even more.
The first network controls joint 1 and 2, the second network joint 3 and
4, and the third network controls joint 5, 6 and the fingers. The first two
networks only used the distance and action as rewards, the third network
also takes into account the fingers. Table 5.10 shows the result from the
3 neural network architectures for each of the exploration methods. Both
exploration methods perform almost similar, both achieving a success rate
of 100% and a mean distance of 2.87cm and 2.51cm, with both a standard
deviation of 0.9cm. This shows that using multiple networks to control a
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OUP

Success rate 70%

Mean distance 1.36cm

Standard deviation 0.37cm

Table 5.9: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
training using the physics simulator for 10,000 trials, using a buffer for batch
learning and two agents. Two networks were used, one to control joints 1,
2 and 3, the other network to control joints 4, 5, 6 and the fingers.

OUP Gaussian

Success rate 100% 100%

Mean distance 2.87cm 2.51cm

Standard deviation 0.9cm 0.9cm

Table 5.10: The average success rate and mean distance with standard devi-
ation of the final position relative to the goal position. Average of 10 trials,
training using the physics simulator for 10,000 trials, using batch learning
and a buffer. Three networks were used, one to control joints 1 and 2, the
second network to control joints 3 and 4, the third network to control joint
5, 6 and the fingers.

robotic arm can actually perform much better than using only one neural
network. The downside of using multiple networks is that the training time
is even longer since it takes more time to iterate through all the networks.
When using 3 neural networks (6 when including the Critic networks) the
training time can approximately be 1.5 times longer than using only one
neural network.

5.3 MoveIt

A very short experiment was performed using the MoveIt framework in or-
der to compare the results from a neural network controller to a simple IK
planner. The object was the same as the grasping experiments, and was
positioned at the same position, the starting position of the arm was also
the same. The planning algorithm used was the RTT-Connect algorithm
using standard parameters. The grasping location was the center of the
cylinder, the same position as used in the grasping experiments, and a sug-
gested grasp angle was given to the planner for approaching the object from
straight forward, +/- 90 degrees from the object with steps of 1 degree whilst
keeping the end effector level with ground, and also angling the end effector
downwards with steps of 10 degree up to 50 degrees, giving it 9000 possible
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approach angles to perform the grasp. MoveIt will select the grasp approach
from which it finds a valid solution first. Even when performing the runs
multiple times the average planning time took about 0.5 seconds to find a
valid solution, and it was 100% accurate with 10 trials. The experiments
were however performed with the real robotic arm because of some stability
problems with the simulation. The results show that the simple IK planner
can easily solve a simple grasping problem.
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Chapter 6

Conclusion

In this chapter we will conclude our research, answer the research questions
and discuss future work that can be done to improve the results from this
project.

6.1 Position

In the go to a position set of experiments we have shown that CACLA is
able to learn and control a robotic arm. Whilst online learning is possible
using one to three joints, the performance decreases when using more than
three joints. Whilst one solution would be to let it run for longer than 5,000
trials, it would also take a lot more time to learn this relatively simple task.
By making use of a buffer from which a training thread can train the net-
works with mini-batches, we have shown that when using the same amount
of trials the results are much better, but not perfect yet. When doubling
the amount of trials the success rate becomes acceptable with 80% and 90%
success rates for each of the exploration methods, however the training time
is also doubled. We introduced a simplified version of the representation of
the arm using Forward Kinematics to increase the amount of iterations an
agent can make to create training examples. When using a relatively large
amount of pre-training trials and a smaller amount of training using the
physics simulator we have increased the performance whilst also decreasing
the total time it takes to train the networks. With a 90% and 100% success
rate over 10 runs, the algorithm seems very robust in order to let the arm
learn to move the end effector to a certain position. It is even more robust
by letting it learn to go to a random goal that lies within a small workspace.
With a 100% success rate in almost all the trials, it is shown that the net-
work can learn multiple goals. The difference between the two exploration
methods does not seem to effect the final results very much. In some cases
the Gaussian exploration method seemed to perform better while in other
cases the OUP exploration method seemed to perform better, however the
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difference in success rate, mean distance and standard deviation was rela-
tively small. When using two neural networks to control the arm the results
do not improve, although we showed that using multiple neural networks
still works with a 70% success rate.

6.2 Grasping

In the grasping experiments we have shown that CACLA is able to learn
to let a robotic arm grasp an object. Whilst pre-learning worked really
well when learning to go to a position only, the grasping part requires the
actual physics simulator to learn, giving a 0% success rate when using the
pre-training phase. When we use only the physics simulator and increase
the total amount of runs the agent does to 10,000, the results show that
it is able to learn to grasp an object with a 70% success rate. The large
downside is that training takes quite a lot of time because we cannot speed
it up with pre-training. When using multiple networks to control the arm
the results slightly increase. Whilst only testing with the OUP exploration
method, the success rate stays at 70% compared to the single network, but
the mean distance is decreased from 3.49cm to 1.36cm, meaning it has gotten
closer to its target. But when using 3 neural networks the results actually
become a lot better, for both exploration methods the success rate is 100%,
and a mean distance that is very close to each other, 2.87cm and 2.51cm.
The main success can most likely be explained by the difference in reward
function. Only the last network takes into account the finger position and
therefore whether it is going to grasp or not, the networks with the lower
joints are mainly for bringing the end effector close to its target. By only
using distance and not the finger position it is most likely to learn a lot
faster to put the end effector close to its goal position since it can learn
separately from the grasping part.

6.3 Answers to Research Questions

How does reinforcement learning compare to a much simpler in-
verse kinematic controller for grasping objects? Is there a gain in
speed, accuracy or robustness?

Comparing a reinforcement learning algorithm with an inverse kinematic
controller is quite difficult. Whilst in short we can say; no there is no gain
in speed, it is not more accurate, and it is not (always) more robust, it is
not completely fair. Kinematic controllers are being used and developed
for a much longer time and are specifically aimed at robotics, whilst rein-
forcement learning can be applied to much more problems than just robotic
grasping and therefore not as much used to control a robotic arm for ex-
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ample. Because of the simple setup the inverse kinematic planner has no
problem solving it, even when given 9000 possible approach angles, and has
no problem grasping the object and is always able to complete its task. But
if we extrapolate the problem and assume that a reinforcement learning al-
gorithm can learn to solve much more complex problems, then the answer
for speed can be answered in two different ways. One way of speed is taking
into account the amount of time it takes to calculate a solution and perform
the trajectory versus the amount of time it takes to train a neural network
and it takes to execute its trajectory. If the planner would take more than
0.5 seconds, let’s say 10 seconds to solve a complex problem then compared
to how much time it takes to train a neural network it is still faster. However
if the complex problem needs to be solved many times, e.g. in an indus-
trial setting, the amount of training time, that could perhaps take 20 hours,
might be negated since a trained neural network can execute its trajectory
immediately. So if a trained neural network is used more than the total
time it takes for the kinematic controller to plan its trajectory, the neural
network controller is faster. For the other speed measurement, the actual
speed of the execution, it is a bit more complex. A trained neural network
will always output the same velocity if it needs to repeat a run with the same
goal position. Whilst with a kinematic planner the velocity can be scaled to
the operators needs, this is however also possible with the neural network
controller by simply multiplying the output with a scaling factor. However
the total trajectory execution time cannot be determined beforehand with a
neural network controller and therefore there is no gain in speed compared
to a kinematic controller.
Accuracy can be measured as how precise the grasping is compared to where
it was supposed to grasp. In this case the kinematic controller is much more
accurate than the neural network controller. Since the kinematic controller
follows a specific path and plans to a specific goal location given by the
operator it is not going to deviate from it. The neural network controller
has to learn itself and it is therefore very difficult to have millimeter preci-
sion. We define a success when it is within a certain threshold, measured in
centimeters, otherwise it would never be able to succeed. The inverse kine-
matic planner’s success can be measured in millimeters, although its result
depends more on the controller than on the planner.
The neural network controller has shown that it can be very robust, in most
cases at least 1 trial was able to complete its task. The 3 neural network
architecture controller shows that it is very robust and can learn with a
100% success rate to complete its task. The kinematic planner however is
also very robust since it is also always able to complete its task. In more
complex scenes the kinematic planner has the advantage of failing before
executing, if the planner can not find a valid plan it will not execute move-
ment of the robotic arm. The neural network controller will always output
something because it cannot determine beforehand if it can solve the prob-
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lem or not, as seen in the failed trials where it did execute its trajectory but
was not able to complete it. So for robustness it can in some cases compete
with a kinematic controller, except when it is going to fail since a kinematic
controller would not execute where a neural network controller would try to
solve the problem.

Which neural network architecture results in the best perfor-
mance?

Whilst we were not able to test all different architectures because of time
limitations, we can conclude that the 3 neural network architecture performs
best, even better than a single neural network when trying to grasp an ob-
ject. However we do have to take into account it was only tested within a
very simple experimental setup, it would require more testing to see whether
a 3 neural network architecture can outperform a one neural network. We
were also not able to test an architecture where each joint got its own neural
network.

How does the exploration method influence the training?

When looking at our final experiment, it doesn’t seem to be of any
influence at all. The amount of success rate is the same, 100%, and the
mean distance has only a difference of 0.37cm, showing that the exploration
doesn’t really change the results. But if we look at earlier results there is
still no clear indication which exploration method performs better. In some
cases the OUP exploration was slightly better, whilst in other cases the
Gaussian exploration was better. Therefore the exploration methods used
in this project do not influence the training.

6.4 Future Work

There are a lot of things that can and need to be done to improve the re-
sults. First we could add a camera to the setup so that the network can
learn from perception. Whilst this was the initial idea to use, we hit a limit
in the V-REP simulation with respect to update rates. Adding perception
could improve the learning because it provides a more informative state.
Although adding a camera in our experimental setup might improve the
results for our setup, when we increase the difficulty of the experiment by
adding multiple objects in the scene, a higher level decision making process
needs to be added that tells the network which of the objects needs to be
grasped.

Another improvement could be made by adding regularization techniques
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like batch normalization and dropout. Whilst we shortly experimented with
them, although not presented in this thesis, we did not see any significant
improvement. However we only briefly experimented with the two tech-
niques and only used the standard values that were provided by the Ten-
sorflow framework. Improvements could happen with different parameters,
but this would require more experiments for which we did not have the time.

Improvements could also be made by making use of a different robotic
arm. The only reason the Mico arm was chosen is because it was the only
robotic arm available in our robotics lab at the time and one of the impor-
tant part in robotics is that it actually works in the real world. Therefore
having a real robotic arm of the same type used in simulation would be
more useful then picking a robotic arm that is not accessible to us in the
real world. However during the final phase of this project a new robotic arm
became available in our robotics lab, the Panda robotic arm from Franka
Emika1. The Panda is a 7 Degree of Freedom (DoF) robotic arm with a two
finger gripper that is moved linearly. The main advantage of this robotic
arm is that is has force sensing, meaning it can sense with how much force
it is pushing against an object if it is colliding with something, and also has
force sensing when grasping an object. This feedback can provide valuable
information for the reward function. The other interesting part is the 7th
DoF, this 7th DoF allows for the end effector to stay in the same position
whilst the rest of the arm can still move. This added complexity should make
it easier for the end effector to reach its final position, but it would also in-
crease the complexity during exploration and possibly making it harder for
the Actor and Critic to learn.

This research has only focused on a relatively simple scenario in the
field of manipulation. Whilst this project originated from the research done
with a domestic service robot, the experimental setup does not reflect real
world use such that it can be used on a domestic service robot platform.
In order for it to be used on such a platform it needs to have learned a lot
more complex tasks; it needs to know how to handle multiple objects, learn
how to grasp all sorts of different objects from all possible positions that
the end effector can actually grasp the object. It will also have to learn
the difference between grasping a solid object that can be moved with high
speed versus the grasping of a glass full of water without spilling anything.
Besides grasping it also has to learn to place objects down, poor the content
of an object into an other object, hand the object to an operator, not crush
the object, not cause collisions and in general safe operating around and
with humans. Besides grasping objects it should also be able to open doors,
closets, and tasks like cleaning a table with a wiper, or operate a machine

1http://franka.de/
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to, for example, make coffee.
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